State-of-Affairs Semantics for
Positive Free Logic

Hans-Peter Leeb

1. Introduction 2
2. Syntax of L 5
3. Truth-value semantics for L 7
3.1. Models and assignmentS..........ccovvvviiiiiieeeieeiiiiinneeeeeeeanns 7
3.2, SEMANtiC CONCEPLSI...ccvvveriieiiieeeieeeiie e e e e e e eeees 8
4. State-of-affairs semantics for L 9
4.1. The set of states of affairs........cccccceeeviiiiiiiiiiiiiieeees 9
4.2. Definition of (not) obtaining ........ccccoooeevviiiiiiiiiiiieeeees 10
4.3. Definition of an extension function ..............ccoeeeevneenn.. 12
4.4, All-quantified statements and logical attributes............ 12
4.5, SEeMaNtiC CONCEPLS)...cvvrrreiiieeeieeeiiiie i e e e e e e e eeaiiee e e e eeeeaens 21
4.6. Theorem of adequacy ..........cccoveeriiiiiiiieiiiiiiiie e 21
4.7. Theslingshot argument .............ccccoeeiiiiiiiiiiie e, 25
4.8. EXtensionality .....ccccccieiiiiiiiiiii e 27
Abstract. In the following the details of a state-of-affairs semantics for positive

free logic are worked out, based on the models of common inner domain-outer do-
main semantics. Lambert’s PFL system is proven to be weakly adequate (i.e.
sound and complete) with respect to that semantics by demonstrating that the con-
cept of logical truth definable therein coincides with that one of common truth-
value semantics for PFL. Furthermore, this state-of-affairs semantics resists the
challenges stemming from the slingshot argument since logically equivalent
statements do not always have the same extension according to it. Finally, it is ar-
gued that in such a semantics all statements of a certain language for PFL are
state-of-affairs-related extensional as well as salva extensione extensional, even
though their salva veritate extensionality fails.



1. Introduction

In modern philosophy of language it is to a large extent undisputed
that singular terms have individuals as extensions and n-place gen-
eral terms, or predicates, sets of ordered n-tuples of such individu-
als. However, in the early phase of modern philosophy of language,
the question “What has to be taken as the extensions of state-
ments?” was answered quite differently.® Whereas Frege argued
that the extensions of statements are truth-values, Carnap argued
that they are states of affairs. Nowadays, states of affairs are
widely held to be a rather unfortunate choice for the extensions of
statements, due mostly to the influence of the slingshot argument.?
According to this argument, it can be proven that al true state-
ments have the same extension (as well as all false ones); so, as
long as a semantics proceeds from the assumptions of this argu-
ment, all true and false statements taken together can have at most
two different entities as extensions. These might be, but do not
have to be, the two truth-values True and False, since the assump-
tions of this argument only determine the number, but not the kind
of the extensions of statements.® The upshot of all this for the as-
sumption that states of affairs are such extensions is that all true
and false statements taken together can have at most two different
states of affairs as extensions. This unpleasant consequence of the
slingshot argument, however, conflicts with the pre-semantic in-
tuition that, generally, different true statements talk about different
things (and analogously for the false ones).

! See Frege 1892 and Carnap 1942. Further, in this paper, a singular termis a
linguistic expression serving to refer to exactly one individual. An n-place gen-
eral termis alinguistic expression true of all ordered n-tuples of individuals from
a given class of individuals; it is simple iff it does not contain any connectives
and bound individual variables. Finally, a statement is a linguistic expression that
can be true or false.

2 See Godel 1944, p.450 f. and Church 1943, p.299 f.
3 See Leeb 2004, p.175 and p.156.



What are the principal assumptions of this argument? The first
assumption is that of the principle of compositionality, understood
as a substitution thesis, according to which co-extensional expres-
sions can always be substituted for each other in a statement with-
out changing its extension. Further, it is assumed that logically true
statements always have the same extension.

With respect to these assumptions, the following points merit
consideration:

(i) The substitution thesis underdetermines any answer to the
qguestion what the extensions of statements are. According to this
thesis, every entity is admissible as the extension of a statement as
long as it does not change when co-extensional expressions are
substituted for each other. Hence, in classical first-order logic,
truth-values are admissible as such extensions, and in free logic —
as will be demonstrated later on — states of affairs, understood in a
certain way, are also admissible.

(ii) A state-of-affairs semantics for PFL can be developed in
such a way that logically equivalent statements do not always have
the same extension, as will be shown. That way one of the two
principal assumptions of the slingshot argument is refuted allowing
one to retain the substitution thesis as a principle that guides the
search for the extensions of statements.

(iii) The substitution thesis is closely connected to the concept of
extensionality (in the sense of substitutivity of co-extensional ex-
pressions). Accordingly, a statement is extensional in the neutral
meaning of ‘extensional’, namely, in the sense of salva extensione
substitutivity (in short: SE-extensional) iff co-extensional expres-
sions can always be substituted for each other in this statement
without changing its extension.*

*In the concept of SE-extensionality it is not fixed what entities the extensions
of statements are. By contrast, in the different notions of non-neutral extensional-
ity this is specified by an additional assumption, e.g. in the concept of salva
veritate extensionality not only the notion of SE-extensionality is involved, but it
is also assumed that truth-values are the extensions of statements.



Lambert, however, has argued that in free logic, one-place gen-
eral terms that are co-extensional cannot always be substituted for
each other in simple statements containing empty singular terms
without changing their truth-value as extension.® Thus, in free logic
such simple statements turn out to be non-extensional in a non-
neutral meaning of ‘extensional’, namely, in the sense of salva
veritate non-substitutivity (i.e. they turn out to be, in short, non-
SV-extensional). This raises the question whether their non-SV-
extensionality also involves their non-SE-extensionality: Can co-
extensional expressions always be substituted for each other in
such simple statements without changing their extension, even
though this cannot be done without changing their truth-value as
extension?

| argue that SE-extensionality of such simple statements with
empty singular terms can be ensured if one replaces the assumption
that truth-values are the extensions of statements with the follow-

ing:

S The extension of a statement is composed of the extensions of
its singular as well as general terms and sub-statements, and
the logical form (in Kaplan's sense®) of this statement deter-
mines how that extension is composed (I call such complexes
abstract states of affairs).

Here the logical form of a statement depends on how its truth-value
is determined. Hence, in so far as SE-extensionality is a desirable
feature of scientific language, truth-values cannot be looked on in
free logic as a reliable choice for the extensions of statements.
Actually, such states of affairs seem to be preferable — were it not
for the slingshot argument to discredit such a choice.

® For his non-extensionality argument see Lambert 2003, p.96 f. and 1991,
p.278 f. Further, a statement is simple iff it does not contain connectives and
quantifiers; and a singular term is empty iff it does not refer to an existent, e.g.
‘Vulcan'.

6 See Kaplan 1970, p.283 and Lambert 2003, p.104.
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In what follows the details of a state-of-affairs semantics are
worked out. First, | shall prove (i) the adequacy of the PFL system’
with respect to this semantics. Two further goals are then pursued:
(ii) 1 argue that in this semantics logically equivalent statements do
not always have the same extension (thus refusing one of the prin-
cipal assumptions of the slingshot argument); and (iii) | demon-
strate that therein all statements of a certain language for PFL are
SE-extensional (as a result of which SE-extensionality of simple
statements with empty singular terms is ensured as well).

2. Syntax of L

Since the syntax | have choosen to achieve my goals is somewhat
unusual, the alphabet and formation rules of a language L for Lam-
bert’s PFL system will be given.

The alphabet of L shall contain as descriptive signs infinitely
many singular terms a, aj,..., an,..., and for each n (with n = 1,
2, ...) infinitely many simple n-place general terms. As logical
signs it shall contain the connectives —, A, the all-quantifier Vv, in-
finitely many individual variables X, Xi,..., Xp,--+, ¥s Y1:---» Yns--., the
existence predicate E!, the identity sign =, the term abstractor A
(read: ‘thing such that’), and the auxiliary signs (, ).

The formation rules of L are as follows:

(1) If F" is a simple n-place general term and vy, vi,..., Y, are
individual variables, then F"y,...y,, E!'y and y, =y, are for-
mul as.

(2) If Oy,. .y, isahomogenous formula® with y;, ..., y, as the only
individual variables, but without quantifiers, singular terms,

” For the PFL system see Lambert 1997, p.39 f., p.65 f., and p.114 f.

8 A homogenous formula is one whose simple general terms all have the same
number of places for individual expressions (‘E!" is here added to the one-place
and ‘=’ to the two-place simple general terms).
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and A-operators, then Ay;...Ay,Oy, v is acomplex n-place
general term.

(3) If G"is a complex n-place general term and ty,..., t, are
singular terms or individual variables, then G";...t, is a
formula.®

(4) If A Bareformulas, then —A and (A A B) are formulas.

(5) If Aisaformulain prenex normal form' (with m complex
general terms Gy,..., G, not necessarily distinct from each
other) and x; is a free individual variable contained in A
(withi, m=1, 2,...), then VX A[Gy,...,Gn] isaformula.

(6)  Nothing else is a complex n-place general term or formula.

In the following the n-place general term Ay;...Ay,Oy, . IS
abbreviated by ‘Gj,’ and Vx A[Gy,...,Gy by ‘Vx A[Gg]’ . Further
connectives and the existence-quantifier may be introduced as
usual, according to demand. The statements of L are the closed for-
mulas of L.

The following is an abbreviating convention™:

A C[Oy,. .y, (t/y1,..., tlyn)] :¢> C[AY1... Ay Oy, y. t1...to]

Here C is a context and Oy, .y (ta/y1,..., ta/yn) is the result of simul-

® The formulas G";...t, are the complex predications of L. A predication is a
formula in which an n-place general term and n singular terms and/or individual
variables are joined by the copula; it is complex iff its general term is complex
(i.e. not simple); and it is closed iff it contains no free individual variables.

10 A formulain prenex normal form is one whose quantifiers, if any, are all put
in front of it. Asis well known, every formula with quantifiers can be transformed
into a deductively equivalent one in prenex normal form (see Kalish/Monta-
gue/Mar 1980, p.225 and p.427 ff.). Hence, for the purpose of this paper the axi-
oms of PFL can be transformed into their deductively equivalent prenex normal
forms.

™ This convention restores the familiar picture of a first-order language whose
formulas only contain simple general terms. Complex general terms are here in-
troduced into L merely because of a certain application | have in mind: A state-of-
affairs semantics for such a language, based on single domain models for free
logic, will be developed in another paper to discuss Lambert’s non-extensionality
argument.



taneously substituting all occurrences of yi,..., Yo in Oy, .y, by
t,..., to.

3. Truth-value semantics for L

In the following | briefly summarize common truth-value semantics
for L to gain a basis for the development of its state-of-affairs se-
mantics.

3.1. Models and assignments

An inner domain-outer domain model (in short: IODM) M is an or-
dered triple (D,, Do, f) such that the following conditions are ful-
filled:

(1) D, and Dg are sets (possibly empty);
intuitively, D, (the inner domain) is a set of existents and Do
(the outer domain) a set of non-existents

(2) D| M Do =

3 D ubp#Y
f is a total function (interpretation function) such that the
following conditions are fulfilled:

(4) for al singular termsa: f (a) € D, U Dg

(5) for all simple n-place general terms F": f (F") is a set of or-
dered n-tuples of elements of D, U Dg

(6) for every d € D, U Dg there is a singular term a such that:
f(a)=d

(7) thereisexactly one D (domain) such that: D = D, U Do.

Further, an assignment of term-operands is a function g that as-
signs to every homogenous formula Oy, .y with yi,..., y, as the
only individual variables, but without quantifiers, singular terms,
and A-operators exactly one set of ordered n-tuples of elements of
D (these formulas are called term-operands and are assigned such
sets).



If M =(Dy, Do, f) isan IODM and Oy, , aswell as Oy, , are
term-operands, then:

(1) g(F"yi...yn) =f(F")

(2)  9(Ely) =D

(3)  9(y1=Ys) ={(di, dy) € D*|dy =d} ¥

(4) g(ﬂf);l...yn) :”D" \ 9(091...yn)13 )

(5)  9(Oy,...y, A Oy,...y,) = 9(Oy,...y,) N 9(Oy,..y,)

3.2. Semantic concepts;

According to common truth-value semantics, a truth concept for L
can be introduced as follows (read: ‘', m, 4 S’ as ‘a statement Sis
true; in an IODM M under an assignment of term-operands g’):

(1) FimgGiyas...an e (f(ar),..., f(an)) € g(Oy,..y,)
(2 EFimg—-AenotEivgA
(3) FimgAABS EimgAand v gB
(4)  Eiwm, g VX A[GH] < for all singular terms &
(if f (a5) € Dy, then [y m g AlGr (ai /%)™

Df.LT; A statement Sislogically true, (in short: |, S) :<
for all IODM M and assignments of term-operands g:

|=1M,9S

Lambert’s PFL system is weakly adequate with respect to common
truth-value semantics in the sense that for all statements S of L the
following holds: |, S < Sis atheorem of PFL."™

2p2=pDxD={(dydy)|di e D&d, e D}.

13 b is the n-times Cartesian product of D with itself.

1 In the framework of such a truth-value semantics one can define the exten-
sion of a statement Sin M under g as follows: extu, ¢ (S) = T(rue) :< E;m,¢ S, and
extu, ¢ (S) = F(alse) i< not ;m, ¢ S

1% See Lambert 1997, p.65 f. and p.114 f. and Leblanc/Thomason 1968.
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4. State-of-affairs semanticsfor L

The state-of-affairs semantics for L | propose here is based on the
IODM and assignments of term-operands as presented in 83. The
idea is that statements are either true or false because they have
states of affairs as extensions that either obtain or do not obtain;
for the obtaining or not obtaining of a state of affairs is it
what makes a statement true or false.’® Thus, in such a semantics a
statement is true (respectively, false) if it has a state of affairs as
extension that obtains (respectively, does not obtain). Intuitively a
state of affairs obtains if in a model (world) things happen to be
that way, but not another way.

4.1. The set of states of affairs

| shall now say a word or two about the complexes that are (ac-
cording to S) composed of the extensions of the sub-expressions of
a statement. The extensions of closed predications are taken to be
composed of three basic elements, namely, the set-theoretical ele-
ment relation (correlating to the copula), an ordered n-tuple of in-
dividuals, and a set of ordered n-tuples of such individuals. For ex-
ample the state of affairs such that Mercury is a thing such that it
rotates, is an ordered triple composed of the element relation, the
individual Mercury, and the set of the rotating individuals. Ac-
cording to whether the empty singular term ‘Vulcan’ refers to a
non-existent or to nothing at all, there are in principal two possi-
bilities to compose the state of affairs such that Vulcan is a thing
such that it rotates:

(i) If “Vulcan’ refers to a non-existent, then let that complex be
composed of the element relation, the non-existent VVulcan, and the
set of the rotating individuals.

(ii) If “Vulcan’ does not refer to anything at all, then an individ-
ual isjust missing and that complex may be composed only of the

16 See van Fraassen 1969, p.479 f.



element relation and the set of the rotating individuals. Such a
complex | would like to call ‘degenerate’ since one can neither
sensibly say that it obtains nor that it does not obtain.

Whereas state-of-affairs semantics as modelled on supervalua-
tion semantics would have to proceed, at least in the first phase of
evaluation, from alternative (ii), state-of-affairs semantics as mod-
elled on inner domain-outer domain semantics might rest on alter-
native (i).

Further, the extensions of all-quantified statements in prenex
normal form are complexes composed of sets of ordered n-tuples of
individuals and so-called logical attributes of such sets. An exam-
ple of a logical attribute is the all-existing-things-are-such-that-
they-lie-therein-property that can be defined as follows:

Ri A set X has the all-existing-things-are-such-that-they-lie-
therein-property (in short: Ri-property) =
for all singular terms a (if the extension of a is an existent,
then this extension liesin X).

Actually, those logical attributes are defined inductively only later
on in this paper, they are nevertheless mentioned here in advance
merely for systematic exposition. The idea is to capture the whole
logical structure of an all-quantified statement Vx A[Gx] in a sin-
gle logical attribute that is then claimed to hold of the extensions
of the m general terms contained in such an all-quantified state-
ment. Finally, the set of states of affairs is supposed to be closed
under the operations of negation and conjunction.

4.2. Definition of (not) obtaining

In the following | shall define what it is for a state of affairs to
obtain in an IODM under an assignment of term-operands. Next, it
will be defined what state of affairs a statement has as extension in
an |ODM under such an assignment. Both inductive definitions are
put forward successively because of the linear order of written
English. However, the concepts of the obtaining of a state of af-
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fairs and of the extension of an expression are, in fact, defined si-
multaneously in so far as, e.g., the extensions of the all-quantified
statements with one quantifier depend on the obtaining of the ex-
tensions (i.e. state of affairs) of certain quantifier-free statements.’
Finally, I will define what it actually is for a statement to be true in
an |ODM under an assignment of term-operands, on the basis of
which further semantic concepts can be introduced.

If M = (D, Do, f) isan IODM, g an assignment of term-oper-
ands, di,..., d, areindividuals, X", Xy,..., X, are sets'®, R is the k™"
m-place logical attribute™ (with k, m, n =1, 2,...), and s;, s, are
states of affairs, then:

(1) The state of affairs such that: (d,,..., d,) liesin X",
i.e. (e, (dy,..., dpy, X",
obtains (respectively, does not obtain) in M = (D,, Do, f)
under g <
(dy,..., dyy € X" (respectively, (d,..., d,) ¢ X").

(2) The state of affairs such that: Xy,..., X have the Ry-attrib-
ute, i.e. (RY, X,..., Xm),
obtains (respectively, does not obtain) in M = (D,, Do, f)
under g <
X4,..., Xm have (respectively, have not) the Ry-attribute in
M =(D,, Do, f) under g.%

(3) The state of affairs such that: s; is not the case,
i.e. (not, s;),
obtains (respectively, does not obtain) in M = (D,, Do, f)
under g <
s; does not obtain (respectively, obtains) in M = (D, Dg, f)
under g.

Y Seep.14.

18 x " is the n-times Cartesian product of X with itself.
% The logical attributes will be defined in §4.4.

2 \what the latter means will be defined on p.16.
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(4) The state of affairs such that: s, and s, are the case,
i.e. {(and, s;, S,),
obtains (respectively, does not obtain) in M = (D,, Do, f)
under g <
s; and s, both obtain (respectively, at least one of s; and s,
does not obtain) in M = (D, Do, f) under g.

4.3. Definition of an extension function

In the following | shall define what state of affairs a statement has
as extension in an IODM under an assignment of term-operands. In
doing so the following kinds of expressions in primitive notation
are matched with extensions in M under g: singular as well as com-
plex n-place general terms and statements in prenex normal form.
By contrast, simple general terms, individual variables, and open
formulas are not matched with such extensions (nevertheless, the
first are interpreted by the interpretation functions and the latter by
the assignments of term-operands, at least in so far as they are ho-
mogenous):

(1) extug(a)=f(a)
(2) exty, g(GZy) =g(Oy,...y,)
(3) exty ¢(Ghayay...ay) =
(€, (extm, g(a1),..., eXtm, g(an)), EXtu, g (GZy»
(4)  exty, g(—A) = (not, exty, 4 (A))
(5) extm, g(A A B)=(and, exty ¢(A), extu,4(B))
(6) exty, g (in A[Grﬁ]) = <er?- exty, g (Gl)u---u exty, g (Gm)>

4.4. All-quantified statements and logical attributes

In the following the extension of Vx; A[Gx] in M under g, i.e. the
state of affairs

(1) <er?1 eXtM,g(Gl)v"'! eXtM,g(Gm»y
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is defined inductively. For this purpose | suggest a procedure
whereby one can construct for every all-quantified statement
VX A[Gr] the corresponding logical attribute (with i, k, m = 1,
2,...). It is here assumed that this all-quantified statement is in
primitive notation (hence, in prenex normal form) and, further, that
it contains m complex general terms (not necessarily distinct from
each other). Since

(2)  IXAGH
isin prenex normal form, (2) can be described as follows:
B) VX (=) VXi_1(=)...(—=) VXA [Grl

The negation signs enclosed in brackets shall indicate zero or one
occurrence” thereof and, further,

(4)  AlGql

is the remaining open formula without quantifiers (with at least x;
as free individual variable and at most i different individual variab-
les). Replace now simultaneously the individual variables x4, X,,...,
X;, distinctly from each other and contained in the open formula
A'[Gr], by the singular terms a;, a,,..., &, also distinctly from each
other. The latter all have to be different from singular terms possi-
bly occurring in A[Gg]. That is construct the quantifier-free state-
ment

(5)  ATGrl(ay/X1, aslXs,..., ailx) = A°

such that these requirements are fulfilled. The statement A° then
can have only one of the following forms:

a Simplifying convention: If the number of negation signs occurring between
two all-quantifiersis even, then they are reduced to 0, and if it is odd, then to 1.
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(@) A° hastheform GZy a;...a, (i.e. is a closed predication), or
(b) A° hasthe form —B (i.e. is a negation statement), or

(c) A° hastheform B A C (i.e. is aconjunction statement).

Then, due to §4.3.(1)—(5), extu, 4 (A°) is already defined as follows:

ad (@) If A° has the form Gzyal...an, then it holds because of
clause 84.3.(3) and the fact that Gzy contains no quantifiers
that:
exty. ¢ (A°) = (€, (eXty. ¢ (a),..., Xty ¢ (an)), EXty 4 (Gay))-

ad (b) If A° has the form —B, then it holds because of clause
84.3.(4) and the fact that A° contains no quantifiers that:
exty ¢ (A°) = (not, exty, ¢(B)).

ad (c) If A° has the form B A C, then it holds because of clause
84.3.(5) and once again the fact that A° contains no
quantifiers that:
exty 4 (A°) = (and, exty, (B), exty 4(C)).

The simplest logical attributes are those which are contained in the
extensions of all-quantified statements with only one quantifier.
They can be defined by means of the obtaining of the extensions of
the quantifier-free statements A [Gg](ai/x,) already previously de-
fined, as follows:

R} The sets exty, 4(Gy),..., ety 4(Gm) have the R-attribute in
M =(Dy, Do, f ) under g <
for all singular terms a; (exty, 4(a;) € D, =
extu, g (A [Gr](ai/x1)) obtainsin M = (D,, Do, f ) under g)

Accordingly, the extensions of the all-quantified statements with
only one quantifier are:

14



(6) If VxA[Gx] has the form Vx,(A[Gr](ai/x1)(X:/a1))%, then
extu, o (VX A[Gr]) = (R}, extu ¢(Gy),..., extu ¢(Gm)) (with
i=1,2..))

An example might be helpful to fix ideas. Because of the defini-
tions of (i) the obtaining of a state of affairs as well as of (ii) an
extension function and, further, (iii) clause R',-n the following holds:
for all singular terms a,,

(7)  extm, g (VX1(Gyx1 A Gpap)) obtains in M under g < ;i
<Rf, extu, ¢ (G1), extu, 4 (Gy)) obtainsin M under g <
the sets exty, ¢ (G;1) and exty, 4(G2) have the Rf—attribute inM
under g <
for al singular terms a; (exty,q(a1) € D, =
extu, g (Giay A Goap) obtainsin M under g) < i
for all singular terms a; (exty, 4(a;) € D, =
eXtM' g (a.l) € eXtM, g (Gl) and eXtM' g (az) € eXtM, g (Gz))

Due to (7) the following holds: for all singular terms a,,

(8) extm, g(Vx1(Gix1 A Gpap)) obtainsin M under g <
for al singular terms a; (exty,4(a1) € D, =
eXtM' g (a.l) € eXtM, g (Gl) and eXtM' g (az) € eXtM, g (Gz))

Finally, in the following construction-schema for the k™ m-place
logical attribute R} the object-linguistic statement

(9 VX (=)VXia(=) . () VX
(A[Grl(a1/X1, ..., & Ix)(xi/ay,..., X 1&))

is translated by the meta-linguistic expression

2 The reasons for this peculiar notation will get obviously when it comes to the
proof of the theorem of adequacy.
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(10) for all singular terms a; (extw, q(&) € D; =
(not)®
eXtM' g (VXi_l(—|) . (—|)VX1
(A_[Gm](allxl,..., a; /Xi)(Xl/al,..., Xi_llai_l)))
obtains in M under g)

Thus:

m

Rk  The sets exty, 4(Gy),..., extu, 4 (Gm) have the Ry-attribute in
M =(Dy, Do, f) under g <

for al singular terms a; (exty, 4(a) € D, =

(not)

extum, g (VXi—1(=)...(—) VXg

(A_[Gm](allxl,..., a; /Xi)(Xl/al,..., Xi_llai_l)))

obtains in M under g)

Accordingly, the extension of an all-quantified statement with i
quantifiersis:

(1) If vx A[Gg] has the form
VX () VXi_1(=) ... (m) VX
(A [Grl(a/Xs, ..., & Ix)(X/a,..., Xila)),
then exty 4 (X A[Ga]) = (RK, extu, ¢ (G1),..., ety ¢ (Gm))

Once again an example will help to fix these ideas. Because of
the definitions of (i) the obtaining of a state of affairs as well as of
(ii) an extension function and, further, (iii) clause R} the following
holds:

(12)  exty, g (VXVx1(G1X1 A G2Xp)) obtainsin M under g < i
<R§, extu, ¢ (G1), extu, 4 (Gy)) obtainsin M under g <
the sets exty, 4 (G1) and exty, 4(G;) have the R%-attribute inM
under g < iii)

% Here occurrences of ‘not’ put into brackets indicate zero or one occurrence
thereof, according to whether the object-linguistic all-quantified statement con-
tains at the corresponding positions zero or one occurrence of the negation sign.
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for al singular terms a, (exty,4(a2) € D, =

exty, g (VX1(G1x1 A Gpap)) obtains in M under g) < (g
for al singular terms a, (exty,4(a2) € D, =

for al singular terms a; (exty,q(a1) € D, =
extu, g (a1) € exty ¢(G1) and exty, 4 (az) € exty, 4(G2)))

Moreover, in accordance with a set-theoretical view, logical at-
tributes might be looked on as certain second-order sets. Hence,
one might understand here, e.g. the two one-place logical attributes
Ri and R% that are contained in the extensions

(13) (Ru, extu o(Gyy))

and

(14) (Rs, extu o(Gyy))

of the two all-quantified statements

(15) Vx:GiyXs

and

(16) VXlﬁGiyxl

having the form Vx;(A [Gz](ai/x1)(x1/a;)) as follows:

Ri the set exty 4 (Giy) has the Ri—attribute

inM =(Dy, Do, f) under g <

for all singular terms a; (exty, 4(a;) € D, =
extM,g(Giyal) obtainsin M = (D,, Do, f ) under g),
i.e. iff for all singular terms a, (exty, 4(a1) € D, =
extu, g(a1) € extu, g (Giy))

and

R>  theset exty 4 (Giy) has the R%—attribute
inM =(Dy, Do, f) under g <
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for al singular terms a; (exty,q(a1) € D, =
extM,g(ﬂGiy a;) obtainsin M =(D,, Do, f) under g),
i.e. iff for all singular terms a, (exty, 4(a1) € D, =
extu, ¢(a1) & extu, ¢(Gay))

Hence, the logical attributes Ri and R% can be understood as certain
sets of sub-sets X of the domain D as follows:

(a7) R: = {X| for al singular terms a;
(extm,g(a1) € Dy = extu, g(a1) € X)} ={X|X 2D}

and

(18) R; = {X'| for al singular terms a;
(extm,g(a1) € Dy = extu g(a1) ¢ X)} ={X|X < Do}

Accordingly, the following then holds:

(19) exty 4(Gay) has the Ri-attribut in M = (D,, Do, f) under g <
exty 4(Ga,) € R1 (i.e. exty 4(Gx,) 2 D))

(20) extM,g(Giy) has the R%-attribut in M =(D,, Do, f) under g <
1 1,. 1
exty. ¢(Gay) € R (i.€. exty, 4(Gyy) < Do)

This view of logical attributes as certain second-order sets can
easily be generalized for the k™ m-place logical attribute R%. Con-
sider for this purpose an object-linguistic all-quantified statement

(21) VX A[Gql
having the form

(22) X (=)VXia(=)...(-) VX
(AT[Grl(as/Xa, ..., & I%)(X/aa, .., % /&)

2 Thus, all one-place logical attributes of the extensions of complex one-place
general terms can be reduced to these two second-order sets R: and Rs.
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This all-quantified statement can be translated into our metalan-
guage as follows:?®

(23) for all singular terms &; (exty, 4(a;) € D; =
(not) for all singular terms a;_; (exty, ¢(ai-1) € D; =
(not) ... (not)
for all singular terms a; (exty, 4(a;) € D, =
extu, o (A [Grl(ai/Xy, ..., & /%)) obtainsin
M =(Dy, Do, f) under g)...))

The quantifier-free (object-linguistic) statement
(24) A[Gal(au/X1,..., &ilx)

contained in (23) gets now transformed by replacing every predica-
tion occurring in (24) having the form

(25) Gayay...a

as well as every negated predication occurring in (24) having the
form

(26) —Ghya...a,

by expressions having the following forms:
(27) (extu g(ai),..., Xty g(an)) € X"
(28) (extm g(ai),..., Xty g(an)) & X"

assuming that X" = D".?® | designate the result of this replacement
by:

(29) ATGa](@1/Xe, .., @ /%) | Xayeros Xon

% The following translation is equivalent to that one on p.15.
% The following common convention shall hold that for all d € D: (d) = d.
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assuming that for all | with 1 <| < m the following shall hold:
(30) X < D" extM,g(Gq) c D"

One can then construct the k™ m-place logical attribute as a second-
order set as follows:

(31) RY ={{X4,..., Xm | for all singular terms a (extm, g(a) € D,
= (not) for all singular terms a_; (exty,4(8i-1) € D} =
(not) ... (not)
for al singular terms a; (exty,q(a1) € D, =
A[Grl(a/X1,..., & I%) | Xq,..., Xm) ... )}

In this way the formulation ‘the sets exty,q(Gi),..., €xtu, q(Gm)
have the R¥-attribute in M = (D,, Do, f ) under g’ can be understood
to be a second-order predication as follows:

(32) The sets exty, ¢(G1),..., extyu, 4(Gn) have the R¥-attribute in
M =(Dy, Do, f ) under g <
(exty, ¢ (Gy),..., ety 4 (Gm)) € RY

Hence, our examples (19) and (20) turn out to be special cases of
this general construction of logical attributes.

The following three criteria of identity for logical attributes that
apply to object-linguistic all-quantified statements in primitive
notation will aid in the examination of identity in a given case:

ICA; If two meta-linguistic translations of two object-linguistic
all-quantified statements with i quantifiers and m complex
general terms differ only in two singular terms s; and s, for
identical states of affairs from each other, then the two at-
tributes defined by those translations are identical.

ICA, If two meta-linguistic translations of two object-linguistic
all-quantified statements with i quantifiers and m complex
general terms are deductively equivalent, then the two attrib-
utes defined by those translations are identical.
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ICA; If two object-linguistic all-quantified statements with i
qguantifiers and m complex general terms have the same
syntactical structure (i.e. the same succession of quantifiers,
connectives, individual variables, singular terms, complex
general terms, and brackets), then the two attributes defined
by their meta-linguistic translations are identical.

4.5. Semantic concepts,

In the framework of this state-of-affairs semantics a concept of
truth and further semantic notions can be defined as follows:

Df.T» A statement Sistrue, in an IODM M under an assign-
ment of term-operands g (in short: F,m ¢ 9 (&
there is a state of affairs s such that:
extw ,¢(S) = sand s obtainsin M under g.

Df.LT, A statement Sislogically true, (in short: |, ) (<
for all IODM M and assignments of term-operands g:

|:2M,gs-

Df.LE, Two statements S;, S, are logically equivalent, (<
F2 S < 3227

4.6. Theorem of adequacy

| shall now prove some metalogical results concerning adequacy
and extensionality.

T1 Every system of positive free logic that is weakly adequate
with respect to common inner domain-outer domain truth-
value semantics is one that is also weakly adequate with re-
spect to the state-of-affairs semantics under consideration
(e.g. the PFL system).

2'D1 (A B) 1> (2(A A =B) A (B A —A))
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Proof

It holds for all statements Sof L: F; S< [k, S In order to prove
this, it has to be demonstrated that for all IODM M, assignments of
term-operands g, and statements S of L holds:

(1) |=1M,gs<:> |=2M,gS

The latter holds since one can establish the following for all IODM
M, assignments of term-operands g, and statements S of L:

(2) exty, ¢(S) obtainsin M under g < Fym, ¢S
For it follows from (2) that

(3) Eim,gS= exty, 4(S) obtainsin M under g
Since further the following holds:

(4) exty, ¢(S) obtainsin M under g = E,m ¢S
it follows from (3) and (4):

(5) EimgS=FamgS

Moreover, it follows from (2):

(6) extm, ¢(S) obtainsin M under g = F;m ¢S
As further the following holds:

(7)) Eom,gS= exty, 4(S) obtainsin M under g
it follows from (7) and (6):

8) EamgS=FimgS

Therefore, (1) holds if (2) holds (for all M, g, S).
In the following the assertion (2) will be proven by induction on
the construction of a formula:
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(a) Predications
(9) extM,g(GZyal...an) obtainsin M under g <

((extw, g (a1),..., eXtu, g(an)) =) (f(as),..., f (@) € 9(Oy,..y,)
(= extw, ¢ (Gay)) <

n
Fim, g Gayay...an

(b) Negation statements
The induction-hypothesis here is:

IH  extu ¢(A) obtainsin M under g < Fim g A

(10) exty,4(—A) obtainsin M under g <
extu, g (A) does not obtain in M under g < 4
not Eym, g Ae
|=1M,g_‘A

(c) Conjunction statements
The induction-hypothesis here is:

IH  extu, ¢ (A) and exty, 4(B) obtainin M under g <
FimgAand ;v ¢B

(11) extm, ¢(A A B) obtainsin M under g <
extu, g (A) and exty, 4(B) obtainin M under g < 14
FimgAand v g¢Be
FimgAAB

(d) All-quantified statements |
If Vx A[Gg] has the form

(12)  vx(A [Grl(a/x1) (X)),

then the following holds because of (9)—(11): for all singular terms
a,

(13) extu, g (A [Grl(au/x1)) obtainsin M under g <
Eim. g A [Grl(ai/x)
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Then the following holds:

(14) exty, (VX A[Gg]) obtainsin M under g <
(Rr,-", extu, ¢ (Gy), ..., exty, 4 (Gy)) obtainsin M under g <
exty. ¢ (Ga), ..., ety 4(Gn) have the R}-attribute
in M under g <
for all singular terms a; (exty, 4(a;) € D, =
extu, (A [Grl(a1/x1)) obtains in M under g) < (13
for al singular terms a; (extu,q(a1) € D, =
Fim, g AlGrl(a1/x1)) <
|:1 M, g VXi A[Grﬁ]

(e) All-quantified statements ||
If Vx A[Gq] has the form

(15) VX (=)VXia(=) . () VX
(A [Grl(as/X4,..., a; Ix)(x/ay, ..., x /a)),

then the induction-hypothesis here is: for all singular terms a;,

IH eXtM,g(VXi_l(—‘)...(—‘)Vxl
(A [Grl(as/X4,..., a; Ix)(X/ay, ..., Xi_1/ai_1)))
obtainsin M under g <
Fim, g VXica(=)...(5) Vg
(A [Grl(as/X4,..., a; Ix)(x/ay, ..., Xi_1/ai_1))

Then the following holds:

(16) exty, ¢ (VX A[Gg]) obtainsin M under g <
(RY, exty, g(G1),..., exty, 4 (Gy)) obtainsin M under g <
extu. g(G1), ..., extw 4(Gm) have the Ry-attribute
in M under g <
for all singular terms a; (extu, ¢(a;) € D; =
(not)
eXtM' g (VXi_l(—|) . (—|)VX1
(A [Grl(as/X4,..., a; Ix)(X/ay, ..., Xi_1/ai_1)))
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obtainsin M under g) < |4

for all singular terms a; (extu, ¢(a;) € D; =
(not)

Eim, g VXica(=)...(—)VX:

(A[Grl(a1/X1, ..., ai Ix)(Xi/ay,..., Xi_1/ai_1))) <
for al singular terms a; (exty, 4(a) € D, =
Fim, g (5)VXic(=)...(m)VXq

(A [Grl(ai/Xq, ..., & Ix)(X/ay,..., Xi_/a1))) <
Fim, g VX (5)VXia (=) ... (5) VXe

(A [Grl(as/X1,..., & IX)(Xday,..., X [a)) <

|:1 M, g VXi A[Grﬁ]

Thanks to the cases (a)—(e) it holds for all IODM M, assignments
of term-operands g, and statements S of L:

(17) exty, ¢(S) obtainsin M under g < F;m, ¢S

Thus, it follows because of (2)—(8) that: ;1 S< E, S(for all S of
L). Since it already holds that: ; S < Sis atheorem of PFL (for
all Sof L), it follows that: , S< Sis atheorem of PFL (for all S
of L). Therefore, T1 holds.0®

4.7. Theslingshot argument

The present state-of-affairs semantics resists the challenges of the
slingshot argument since in this semantics the principle does not
hold that logically equivalent, statements are always strongly (re-
spectively, weakly) co-extensional. Strong co-extensionality can be
defined as follows:

% The semantics on hand can easily be adapted to a state-of-affairs semantics
with respect to which classical first-order logic is weakly adequate by carrying out
the appropriate changes in the model definition and dropping the existence prem-
ises from this proof. After these changes a result analogously to the theorem of
extensionality of 8§4.8 can also be achieved for classical first-order logic.
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Df.CE An expression A; is strongly co-extensional in an |ODM
M under an assignment of term-operands g to an expres-
sion A,
(in short: A; Vexty, , As) i<
(Ver)(extu, g (A1) = €1) & (Ver)(extu, g (A2) = &) &
(Ney, e)(exty, g (A1) = €1 & exty ¢(A2) =€ = € =€)

For weak co-extensionality the condition is dropped that both ex-
pressions have an extension. Both relations collapse in the frame-
work of the present semantics since therein the extension function
exty, ¢ IS a total one. Hence, these two relations are equivalence
relations. Accordingly, it holds with respect to co-extensionality
=extw  fOr all expressions A; and A, of L:

T2 Al = extu, g A2 < eXtM' g (Al) = eXtM' g (Az)

Moreover, in the state-of-affairs semantics under consideration it
can be illustrated by means of many examples that logically
equivalent, statements do not always have the same extension, e.g.
by way of the difference between inner and outer negation:

(i) extu, 4 (AYF'y) is the set of all d e D that lie in f (F'); thus,
extu, g ((AYF y)a) is the state of affairs such that the individual f (a)
liesin f (FY).

(i) extM,g(AyﬂFly) is the set of all d € D that lie in the differ-
ence set D\ f (F'); thus, exty 4((Ay—F'y)a) is the state of affairs
such that the individual f (a) lies in the difference set D \ f (F%). It
is for this reason that the statements (AyFl'y)a and (Ay—F'y)a are
affirmative ones.

(iii) The outer negation —(AyF'y)a has the state of affairs as ex-
tension such that the individual f (a) does not liein f (FY).

(iv) By contrast, the outer negation —(Ay—F'y)a has the state of
affairs as extension such that the individual f (a) does not lie in the
difference set D\ f (F'). Accordingly, the statements —(AyF'y)a
and —~(Ay—F'y)a are negative ones.
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Since it holds for all d € D: d € f(F') < d ¢ D\f(F?Y), the
states of affairs as extensions of the statements in (i) and (iv) ob-
tain in the same IODM under the same assignments of term-oper-
ands. Consequently, they are logically equivalent,, although they
are different from each other according to the criterion of identity
for n-tuples. (Things are analogously for the statements in (ii) and

(iii)).
4.8. Extensionality

Quite generally, an extension function is a function ext from a set
of expressions that are capable of having extensions to a set of en-
tities that are admissible as the extensions of such expressions. An
expression capable of having an extension is a linguistic expression
that is well formed and independent (the latter in the sense that it
can have an extension just standing alone). Further, every entity is
admissible as the extension of such an expression that is always
preserved when in this expression co-extensional expressions are
substituted for each other, e.g. appropriate set-theoretical entities
that do not change when co-extensional expressions are substituted.
In neutral extensionality one abstracts from every specific com-
mitment to the kind of extensions of statements (e.g. from the as-
sumptions that they are truth-values or states of affairs etc.) and,
nevertheless, retains salva extensione substitutivity as a constitut-
ing feature of extensionality. According to my analysis of the no-
tions of neutral as well as non-neutral extensionality that | can only
briefly sketch here, the following theorem holds:*

T3 A statement S, is SE-extensional <
for all IODM M, assignments of term-operands g, statements
S,, and expressions A; and A,
(Res(S,, SI(AIAY)) & Ay Sexty s Ay = Sy Sexty y $)¥

2 See Leeb 2004, p.104-108 for a fuller account.

% That is a statement S, is SE-extensional iff in S, expressions that are co-
extensional in M under g can always be substituted for each other without chang-
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Here the set-theoretical entities that function as placeholders for
the extensions of statements are not yet interpreted philosophically
at all; it has not been said at all whether they are supposed to be
abstract states of affairs or anything else. As a further result of this
analysis, the following theorem also holds:

T4 A statement S, is non-SV-extensional <
S, is non-SE-extensional or
truth-values are not the extensions of statements.

Thus, non-SV-extensionality can have different sources: (i) co-ex-
tensional expressions cannot always be substituted for each other
without changing the extension, or (ii) the set-theoretical place-
holders for the extensions of statements are not understood as
truth-values.

Moreover, a state-of-affairs-related concept of extensionality can
be defined as follows:*

Df.SS A statement S, is SS-extensional <
S, is SE-extensional &
states of affairs (according to S) are the extensions of
statements.

In contrast to T3, hereit is fixed how the set-theoretical placehold-
ers for the extensions of statements have to be understood, namely,
as states of affairs (according to S).

| shall now demonstrate that all statements of the language L are
SS-extensional and thus SE-extensional. The propositional-logical
cases are fairly simple. However, for the predicate-logical cases
some of the above-mentioned criteria of identity for logical attrib-
utes are useful, as will become obviously later on. For this purpose

ing the extension (for all IODM M and assignments of term-operands g). The ex-
pression ‘Res(S;, Si(Al//Az))" expresses that S, is a result of substituting one or
more occurrences of A; in S; by A,.

3L See Leeb 2004, p.57 for afuller account.
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| shall select ICA4, although one could take ICA;. Then the follow-
ing theorem of extensionality can be proven:

T5 In the state-of-affairs semantics under consideration all
statements of L are SS-extensional and thus SE-extensional,
even though their SV-extensionality fails.

Proof

Because of the assumption that states of affairs (according to S) are
extensions of statements and due to theorem T4, all statements of L
are non-SV -extensional.

In the following it is shown by induction on the construction of a
formula that in every statement S; of L expressions that are co-ex-
tensional in M under g can always be substituted for each other
without changing the state of affairs as extension (i.e. that every
such statement is SS-extensional in M under g). As the idea of
proving this is similar in the several cases, | summarize them into
two groups.

(a)—(c) Predications, negation and conjunction statements
The induction-hypotheses for negation and conjunction statements
are:

IH1 Inthe negated sub-statement of a negation statement expres-
sions that are co-extensional in M under g can always be
substituted for each other without changing the state of af-
fairs as extension.

IH2 In the two sub-statements of a conjunction statement expres-
sions that are co-extensional in M under g can always be
substituted for each other without changing the state of af-
fairs as extension.

Consider further the statements

(1) Gayas...a
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(2) —A
(3) Al AN Az

and the states of affairs that (1)—(3) have as extensions in an IODM
M under g:

(4)  s1=(e, (eXty, g(ar),..., EXtw, ¢ (an)), eXty, g(Giy))
(5) sz =(not, extu, 4(A))
(6) ss=(and, exty, (A1), exty, 4(A2))

Replace now some sub-expressions of (1) as well as of Ain (2) and
of Ay and A, in (3) by expressions that are co-extensional in M un-
der g. Further, | designate the results of these substitutions by the
following expressions:

(7)  Haybs...b,
(8) —B
(9) Bl AN Bz

Consider, moreover, the states of affairs that (7)—(9) have as exten-
sionsin M under g:

(10) S = <€1 <eXtM, g (bl)!"'v eXtM, g (bn)>! eXtM, g (H Zy»
(11) s4 =(not, extu, 4(B))
(12) s =<and, exty, 4(B1), exty ¢(B2))

Since in the present semantics the relation of co-extensionality
=extw 4 1S @n equivalence relation and due to T2, IH1, IH2, and the
co-extensionality assumptions above, the following holds:

(13) extu, 4(Ghy) = exty g (Hay) &
exty, g (a1) = exty, g(b1) & ... & exty, 4(an) = exty, ¢ (bn)
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(14) exty, g(A) = exty 4(B)
(15) eXtM' g (Al) = eXtM' g (Bl) & eXtM, g (Az) = eXtM, g (Bz)

Accordingly, the states of affairs s;, s, as well as s3, s, and S5, S
are composed of identical elements. As further (1) and (7) are
predications as well as (2) and (8) are negation statements and (3)
and (9) conjunction statements, the truth-values of these pairs of
statements are determined in the same way (i.e. they have in pairs
the same logical form). Therefore, those identical elements in the
states of affairs s;, s, as well as s3, s4 and ss, s¢ are composed (ac-
cording to S) in an identical way. Thus, those ordered n-tuples are
composed of the same elements that are ordered in the same way.
Consequently, they are identical in view of the criterion of identity
for such ordered n-tuples:

(16) s1=s
(17) sz3=s4
(18) ss=s6

Hence, because of T2, the following holds:
(19) Gayay...a, =extu o Hayby...by,

(20) —A=exty ,—B

(21) A A A =exty B AB,

Therefore, because of the cases (a)—(c) in predications, negation
and conjunction statements expressions that are co-extensional in
M under g can always be substituted for each other without chang-
ing the state of affairs as extension.

(d)—(e) All-quantified statements | and II
The induction-hypothesis for all-quantified statements Il is:
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IH In all-quantified statements Il with i—1 quantifiers and m
general terms expressions that are co-extensional in M under
g can always be substituted for each other without changing
the state of affairs as extension.

Vx; A[Gr] is either an all-quantified statement I, i.e. has the form:
(22)  Vxu(A [Grl(au/x1) (X1/as)),
or an all-quantified statement 11, i.e. has the form:

(23) X (m)VXia(=)...(-) VX
(AT[Grl(as/Xa, ..., & I%)(X/aa, .., % /&)

Consider further the states of affairs that (22) and (23), respec-
tively, have as extensionsin an IODM M under g:

(24) s7=(R], extu, ¢(G1),..., €Xtu, ¢ (Gm))
(25) So = (RK, €xtw ¢(G1),--., €xtw ¢ (Gm)
Further, the following holds:

(26) the sets exty, ¢(Gy),..., extu, g (Gm) have the R'j“-attribute inM
under g <
for al singular terms a; (exty, q(a1) € D, =
extu, (A [Grl(a1/x1)) obtains in M under g)

and

(27) the sets exty. 4 (G1), ..., Exty. 4 (Gm) have the Ry-attribute
inM =(Dy, Do, f) under g <
for all singular terms a; (extu, ¢ (&) € D; =
(not)
extum, g (VXi—1(=)...(—) VXg
(A [Grl(as/X4,..., a; Ix)(X/ay, ..., Xi_1/ai_1)))
obtains in M under g)
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Replace now some sub-expressions of (22) and (23), respectively,
by expressions that are co-extensional in M under g. Further, |
designate the results Vx; B[Hg] of these substitutions by the follow-
ing expressions, namely, if Vx B[H7] is an all-quantified statement
[, by:

(28) Vx1(B[Hm](ai/x1)(xi/ay)),
and, if Vx B[Hg] is an all-quantified statement |1, by:

(29) VX (=) VXia(=)... (5) VX
(B_[Hm](allxl ..... a; /Xi)(Xllal ..... Xi /ai))

Consider, moreover, the states of affairs that (28) and (29), respec-
tively, have as extensions in M under g:

(30) s5=(R}", ety g (H1),..., exty, g (Hm))
(31) s10=(R¥’, extu, g (H1),..., ety g (Hm))
Further, the following holds:

(32) the sets exty, ¢(Hi),..., xtu ¢(Hm) have the R}"-attribute in
M under g <
for all singular terms a; (exty, 4(a;) € D, =
extu, ¢ (B [Hm](a1/x1)) obtainsin M under g)

and

(33) the sets exty, 4(Hq),..., exty, g (Hm) have the Ry'-attribute in
M under g <
for al singular terms a; (exty, 4(a) € D, =
(not)
eXtM' g (VXi_l(—|) . (—|)VX1
(B_[Hm](allxl,..., a; /Xi)(Xl/al,..., Xi_llai_l)))
obtains in under g)
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Because of T2 it follows from the co-extensionality assumptions
above that:

(34) exty, ¢(Gy) = exty,g(H1) & ... & exty, ¢(Gm) = extu, g (Hm)

Since, if VX B[H7] is an all-quantified statement |, the quantifier-
free statements

(35) A[Gr](ai/x1)
and
(36) B [Hm](as/x1)

differ from each other only with respect to co-extensional expres-
sions, the following holds because of the cases (a)—(c): for all sin-
gular terms ay,

(37) exty,g(A[Grl(ai/xy)) = exty, ¢ (B [Hrl(ai/x1))

Moreover, if Vx B[Hg] is an all-quantified statement II, it follows
because of T2 and IH from the co-extensionality assumptions
above that: for all singular terms a;,

(38) exty, g (VXi—1(—)...(=)VXq
(A_[Gm] (a.llxl, vy G /Xi)(X]_/al, . Xi_llai_l))) =
extum, g (VXi—1(=)...(—) VXg
(B [Hgml(a1/X4,..., a; Ix)(X/ay, ..., Xi_1/ai_1)))

That is in both cases the states of affairs in (37) and (38), respec-
tively, turn out to be identical. Hence, it follows from (26), (32)
and (37) because of the criterion of identity ICA; that:

(39) R=R"
Moreover, it follows from (27), (33) and (38) because of ICA; that:

(40) Ry =Ry
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Because of (39) and (34) — as well as (40) and (34) — the states of
affairs s; and sg — as well as sy and s, — are composed of identical
elements. As (22) and (28) are all-quantified statements | with one
quantifier — as well as (23) and (29) are all-quantified statements |1
with i quantifiers — (22) and (28) — as well as (23) and (29) — have
the same logical form. Thus, it follows because of the criterion of
identity for ordered n-tuples that:

(41) s7=sg

(42) s9=s10

Therefore, it follows because of T2 that:
(43) VX A[Gg] =extu., VX B[Hg]

Because of the cases (a)—(e) in all statements S; of L, expressions
that are co-extensional in M under g can always be substituted for
each other without changing the state of affairs as extension (for all
IODM M and assignments of term-operands g). Therefore, all
statements S; of L are SS-extensional and thus due to Df.SS SE-
extensional, t00.o

Finally, | would like to point out some relevant consequences of
the theorems T3-T5. One is that there are several sources not only
for non-SV-extensionality, as already mentioned above, but also
for SE-extensionality: a statement can be SE-extensional thanks to
its SS-extensionality or its SV-extensionality. Further, its non-SV-
extensionality need not exclude its SE-extensionality as long as
one can prove it to be SS-extensional. Hence, positive free logic
might be in view of T4 and Lambert’s non-extensionality argument
non-SV-extensional, but, what | wanted to demonstrate in this pa-
per, it is nevertheless SE-extensional. Though, of course, it re-
mains the task to demonstrate the latter also within the framework
of a single domain based state-of-affairs semantics for free logic
that | shall propose in a future paper.
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