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Abstract
Pure mathematical truths are commonly thought to be metaphysically necessary.
Assuming the truth of pure mathematics as currently pursued, and presupposing that
set theory serves as a foundation of pure mathematics, this article aims to provide a
metaphysical explanation of why pure mathematics is metaphysically necessary.

Keywords Pure mathematics ·Metaphysical necessity · Explanation · Set theory

1 Introduction

Pure mathematical truths, such as ‘0 < 1’, Fermat’s Last Theorem, the Four-Colour-
Theorem, the Fundamental Theorem of the Calculus, the Fundamental Theorem of
Algebra, or the Well-Ordering Theorem are commonly thought to be metaphysically
necessary. It is less common to explain why that is so. If traditional logicism had been
right, pure mathematical truths would have turned out logically true and therefore
necessary; unfortunately, it did not work out. In what follows, I will develop a different
explanation for the metaphysical necessity of pure mathematics.

When doing so, I will make two basic presuppositions that will show up in Sect. 2
as the initial two premises. First, I will take for granted that our current standard
mathematical theories—arithmetic, graph theory, the calculus, algebra, ZFC set theory,
and the like—are true. (If one did not commit to the truth of pure mathematics, the
project of trying to explain its metaphysical necessity would be a non-starter.) For
instance, according to ZFC, {∅} exists, that is, there is a set that includes the empty set
as its onlymember, which is why Iwill presuppose ‘{∅} exists’ to be true, and the same
holds for all other theorems of standard pure mathematics as accepted at this point. My
argument will not extend to statements of applied—as opposed to pure—mathematics

B Hannes Leitgeb
Hannes.Leitgeb@lmu.de

1 Faculty of Philosophy, Philosophy of Science and Study of Religion, LMU Munich, Munich,
Germany

123

Author's personal copy

http://crossmark.crossref.org/dialog/?doi=10.1007/s11229-018-1873-x&domain=pdf
http://orcid.org/0000-0002-8276-149X


Synthese

in science, engineering, and the like (at least not without further work). Furthermore,
I will not deal at all with the much more ambitious project of explaining or justifying
the truth of pure mathematics as accepted at this point. Instead, I will merely argue in
Sect. 2 that assuming a pure mathematical sentence A is true—in the current sense of
‘mathematical’, that is, arithmetical or graph-theoretic or…—then A is metaphysically
necessary, and I will simply presuppose that all theorems derivable in our standard
mathematical theories belong to these truths. Section 3 will complement this result
by showing that the argument from Sect. 2 does not just derive but even explain the
metaphysical necessity of these sentences.

Secondly, I will presuppose that first-order ZFC set theory functions as a foundation
of ordinary pure mathematics as presently pursued: every mathematical statement A
in our current mathematical languages can be reformulated as a statement B in the
first-order language of ZFC, such that A is necessarily equivalent to B, and if A is true,
the truth of B explains the truth of A. While clearly controversial philosophically, at
least some form of set-theoretic foundationalism is widely presupposed in present-
day mathematics where mathematical statements about natural numbers, graphs, real
numbers, complex numbers, and ordinal numbers are usually regarded as translatable
into set-theoretic statements about certain kinds of pure sets, where mathematical
proofs are usually considered as convertible into set-theoretic proofs, and where set-
theoretic definitions and proofs are meant to explain mathematical concepts and truths
on the foundational level (see Mayberry 2000, p. 3).1 My argument will only concern
non-controversial statements in the standard areas of pure mathematics, for which
set-theoretic foundations are broadly accepted.

Along the way, I will also make clear that at least parts of my argumentative strat-
egy could be recycled in the service of alternative explanations for the metaphysical
necessity of pure mathematics that would not rely on set-theoretic foundationalism.
But my main goal will be to argue that, whatever one may think about set-theoretic
foundationalism in general, it does possess the attractive feature of contributing to the
explanation of the metaphysical necessity of pure mathematics as we know it. If, and
when, an opponent of set-theoretic foundationalism aims to explain the metaphysical
necessity of pure mathematics in some different manner, the set-theoretic metaphysi-
cal explanation to be developed below should serve, at the very least, as non-negligible
competitor and foil.

2 The argument

As promised in the introductory section, the first premise of my (as we shall see)
explanatory argument expresses the commitment to the truth of pure mathematics as
accepted right now:

P1 All theorems of our present standard purely mathematical theories are true.

1 Friedman (2000) positions the foundations of mathematics “in between mathematics and philosophy”. In
our second premise, this combination of disciplines will show up as a combination of claims concerning set-
theoretic expressibility (as confirmed bymathematical practice) andmetaphysical necessity and explanation
(as studied by philosophers).
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The second premise pins down set-theoretic foundationalism in the form explained
before:

P2 Every statement A in the language of pure mathematics, as presently practiced, can
be reformulated as a statement B in the first-order language of pure set-theory, such
that their material equivalence is metaphysically necessary (in short, L(A ↔ B)), and
if A is true, then the truth of B explains the truth of A. (‘L’ is the sentential operator
for metaphysical necessity.)

I will not go into the details of how exactly the required set-theoretic foundations are
provided. Following typical textbooks in set theory, one option would be: by replacing
definiendum by definiens in a set-theoretic definition. For instance, by applying the
set-theoretic definition of natural numbers as Von Neumann ordinals, the arithmetical
statement ‘0 < 1’ becomes the set-theoretic statement ‘∅ ∈ {∅}’, and P2 would main-
tain: L(0 < 1 ↔ ∅ ∈ {∅}) and, since ‘0 < 1’ is true, the truth of ‘∅ ∈ {∅}’ explains
the truth of ‘0 < 1’. Reformulating, in similar set-theoretic terms, Fermat’s Last The-
orem, the Four-Colour-Theorem (with graphs defined as set-theoretic pairs of a set
of vertices and a set of edges), the Fundamental Theorem of the Calculus (with real
numbers defined as Dedekind cuts, that is, as special sets), the Fundamental Theorem
of Algebra (with complex numbers defined as set-theoretic pairs of real numbers), and
so on, would only be more cumbersome but not different in principle.

Alternatively, a set-theoretic foundationalist might be a set-theoretic structuralist
moved by Benacerraf’s (1965) objections to identifying the natural numbers with, e.g.,
the Von Neumann ordinals (rather than, say, Zermelo ordinals): if so, she might prefer
set-theoretic reformulations by which, e.g., an arithmetical statement such as ‘0<1’ is
translated into a set-theoretic statement that quantifies universally over all set-theoretic
systems satisfying the Dedekind–Peano axioms, and which claims the following about
all these systems: the initial “zero” element in the system stands in the “less-than”
relation of the system to the “successor” in the systemof the “zero” of the system. (I use
scare quotes, since, e.g., the “zero” in such a systemcould really be any setwhatsoever.)
Similarly, statements in the language of the calculusmight be taken to translate into set-
theoretic statements that quantify universally over all set-theoretic systems satisfying
Dedekind’s axioms for real numbers, statements of Euclidean geometrymight be taken
to translate into set-theoretic statements quantifying universally over all set-theoretic
systems satisfying Hilbert’s axioms for Euclidean geometry, and so forth. See Shapiro
(1997) and what is called “universalist structuralism” in Reck and Price (2000) for
more details.

The fact that many present-day mathematicians adhere (if often tacitly) to a version
of P2 conveys a non-trivial insight into pure mathematics as developed up to this
point of time: it took mathematicians and philosophers a good part of the nineteenth
and twentieth century to determine the set-theoretic foundations of pure mathematics,
and initially there was no guarantee at all that the project would succeed—but it did:
standard pure mathematics as we know it can be reformulated within ZFC set theory.
Of course, the language of pure mathematics may well progress in a way that will
eventually invalidate P2. But for the time being, if one is inclined towards set-theoretic
foundationalism at all, P2 should be safe at least so far as the generally acknowledged
parts of present-day pure mathematics are concerned.
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The third premise concerns the modal properties of set-theoretic membership:

P3 Set membership is rigid: ∀x∀y(x ∈ y → L(x ∈ y)), and ∀x∀y(x /∈ y → L(x /∈ y)).
(Here, the universal quantifiers are meant to range over all and only pure sets, that is,
members of the cumulative hierarchy of sets that is based solely on the empty set ∅.)
On the one hand, P3 is grounded in the fact that sets are extensional combinatorial
collections the identity conditions of which are given by reference to their members
and to their members only: for by the Axiom of Extensionality, two sets are identical
just in case they have precisely the same members. It is fair to say that if anything
captures the nature of sets, this is: a set is what it is (rather than something else) in
virtue of its members—because of the members it has, and because it does not have
any other members. For that reason, it is highly plausible that if x ∈ y, then this is
essential to y (for otherwise it would something else), and if x /∈ y, this is essential to y,
too (or it would be something else again).2 Finally, essentiality implies metaphysical
necessity (cf. Fine 1994a, b).

Since ‘x’ and ‘y’ range just over pure sets, there should not be any worry either that
‘L(x ∈ y)’ might still fail to be implied by ‘x ∈ y’ in view of x or y failing to exist at
some possible world: for instance, by P1, ∅ exists at the actual world, and if a pure set
such as ∅ exists at the actual world, it is hard to see how it could fail to exist at some
other world. Things would be different for impure sets of sets of… empirical atoms
or urelements, such as e.g., the singleton set {Socrates} that includes Socrates as its
only member, since many metaphysicians would want to argue that Socrates might
not have existed, which is why {Socrates} might not have existed either. But what
metaphysical law could prohibit the application of the set-of operation to nothing at
all in some possible world when the application of the set-of operation to nothing at
all does yield an entity in the actual world? Similarly, if {∅} exists at the actual world,
which is indeed the case by P1, it should do so at any other one; and so forth, for all
other pure sets such as {{∅}}, {∅, {∅}},… resulting from iterated applications of the
set-theoretic power set operation and union operation to ∅. The same may be said in
support of x /∈ y implying L(x /∈ y). Hence, P3 should be fine. (Compare, e.g., Fine
1981; Linnebo 2016.)

By P2, statements about natural numbers or graphs or… can be reformulated as
set-theoretic claims. By P3, set-theoretic membership is rigid. As we are going to see,
given the rest of our premises, all statements of pure mathematics can be shown to
inherit their “own” rigidity properties from the rigidity of set-theoretical membership.
If, alternatively, one were to think of natural numbers as objects sui generis, the meta-
physical necessity of arithmetical truths might perhaps still be defended along these
lines: by first arguing for the rigidity of all basic properties and relations for natu-
ral numbers, such as the rigidity of the successor relation for natural numbers3 (that
is, ∀x∀y(S(y, x) → L(S(y, x))) and ∀x∀y(~S(y, x) → L(~S(y, x))), with quantifiers
ranging over the natural numbers), and then applying an argument analogous to the
one below just to arithmetical claims. Similarly, if unlabelled graphs were regarded as

2 Recently, Korbmacher (2016) has defended a general explication of essential properties as properties
grounded in identity.
3 I am grateful to Ed Zalta for suggesting this in personal communication.
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objects sui generis, their edge-relations might be argued to be rigid, and the metaphys-
ical necessity of graph-theoretic truths could again be demonstrated by an argument
analogous to the one below. Perhaps, for any domain of current pure mathematics
taken as sui generis, an analogous argument could be used to demonstrate the meta-
physical necessity of its truths—I will leave that open here. The advantage of P2 is
to allow us to replace that piecemeal argumentative strategy by just one argument in
which pure set theory is used as a foundation for pure mathematics as a whole.

Let me now turn to the fourth premise. At least at first glance, one of its conjuncts
might seem more controversial than the previous premises:

P4 (i) All theorems of the system K of modal logic formulated for the modal first-
order language with the predicates ‘∈’ and ‘=’ and with the operator ‘L’ are true (and
the underlying non-modal logic contains the rule of universal instantiation with free
variables). (ii) Identity is rigid: ∀x∀y(x &y → L(x &y)), and ∀x∀y(x ̸&y → L(x
̸&y)). (iii) All instances of the (universal quantifier version of the) Barcan formula
scheme ‘∀x L(A) → L(∀x A)’ are true. (In all three cases, the respective universal
quantifiers range over all and only pure sets.)

The seemingly more controversial component is (iii), whereas (i) and (ii) are pretty
much standard and should be unproblematic at least for pure sets x and y. Linsky and
Zalta (1994) and Williamson (1998) mounted some influential arguments in favour of
the logical truth of the Barcan formula, but I will not need to rely on their arguments.
In the present context, I only presuppose the Barcan formula to be true when ‘∀x’
ranges over the universe of pure sets. If formulated in the language of possible worlds
again: no “new” members of the cumulative hierarchy should ever “emerge” in the
transition from one metaphysically possible world to another, as would have to be the
case in order for an instance of ‘∀x L(A) → L(∀x A)’ to be false. Analogously to what
was said in support of P3, if a pure set exists at a metaphysically possible world, it
should exist at any other world, including the actual one. Once again, this would not be
plausible at all for impure sets, but as far as quantification over pure sets is concerned,
every instance of the Barcan formula scheme should be true.4

Now we can draw a first intermediate conclusion based just on P3 and P4:

C1 The first-order language of pure set theory is rigid: Every statement of the form
‘B → L(B)’ with whatever antecedent (B) within the first-order language of pure set
theory is derivable. And: Every statement of the form ‘~B → L(~B)’ with whatever
negative antecedent (~B) within the language of first-order pure set theory is derivable.

For one can show that all rigidity formulas mentioned in C1 can be derived by classical
logic from the principles stated in P3 together with the principles mentioned in P4. The
proof proceeds by induction over the syntactic complexity of arbitrary open or closed
formulas B in the first-order language of pure set theory. (I will suppress quotation
marks or other devices of reference to formulas whenever feasible.)

4 Linnebo (2013) rejects the Barcan formula in his potentialist conception of the hierarchy of sets, but that
is in a context in which the corresponding necessity operator does not express metaphysical necessity (see
Linnebo 2013, p. 207).
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The induction basis is: for all atomic formulas F—which have complexity 0, and
which must involve either ‘∈’ or ‘=’—it holds that both F → L(F) and~F → L(~F)
are derivable. This follows directly using the principles in P3 and (ii) of P4.

The inductive hypothesis states: for all formulas F, G up to a certain complexity,
it holds that F → L(F), ~F → L(~F), G → L(G), ~G → L(~G) are derivable
from the relevant principles. The inductive step extends this to the derivability of the
corresponding rigidity claims for all formulas of the next greater degree of complexity:

• For negation formulas, one concludes from F → L(F) and~F → L(~F) that~F
→ L(~F) and~~F → L(~~F). In the latter case, this is by classical logic, which
yields~~F → F, furthermore by the inductive hypothesis F → L(F), and finally
by (i) of P4, which yields L(F) → L(~~F). Combining the three of them leads to
the intended conclusion.

• For conjunction formulas, one derives from F → L(F), ~F → L(~F), G
→ L(G), ~G → L(~G) that F ∧ G → L(F ∧ G) and~ (F ∧ G) → L(~ (F ∧
G)). Both derivations rely on classical logic and (i) of P4. E.g., the main steps in
the second case are:~ (F ∧ G) → ~F ∨~G, ~F ∨~G → L(~F) ∨ L(~G), L(~F)
∨ L(~G) → L(~F ∨~G), L(~F ∨~G) → L(~ (F ∧ G)). (For disjunctions one
proceeds analogously.)

• For universally quantified formulas, one uses the assumption thatF → L(F) and~F
→ L(~F) are derivable from the principles stated in P3 together with the principles
mentioned in P4 to show that also ∀x F → L(∀x F) and~∀x F → L(~∀x F)
are derivable from these principles. The proof exploits classical logic and (i) and
(iii) of P4: in the first case, one concludes from the derivability of F → L(F) the
derivability of ∀x (F → L(F)), from this the derivability of ∀x F → ∀x L(F),
which one combines with the Barcan formula ∀x L(F) → L(∀x F). In the second
case, one infers from the derivability of~F → L(~F) the derivability of ∀x (~F
→ L(~F)), thus the derivability of ∃x~F → ∃x L(~F) and therefore of~∀x F
→ L(∃x ~F). (Other than exchanging the antecedent by a logically equivalent one,
the last step uses:~F → ∃x ~F by logic, therefore L(~F → ∃x~F) and hence
L(~F) → L(∃x~F) by (i) of P3, and so ∀x (L(~F) → L(∃x~F)) and thus ∃x
L(~F) → L(∃x~F) by logic again.) Finally, from~∀x F → L(∃x ~F) one can
infer~∀x F → L(~∀x F), by (i) of P4. (For existential formulas, the proof is
analogous.)

By induction, C1 follows. For instance, one can show in this way:
∅ ∈ {∅} → L(∅ ∈ {∅}) (and also ∅ /∈ {∅} → L (∅ /∈{∅})). With respect to more
complex set-theoretic statements B, the proof of C1 demonstrates how one may first
derive rigidity for the atomic parts of B, from which one derives rigidity for larger
parts of B, until eventually rigidity applies to all of B, in which case one may conclude
B → L(B) (and similarly~B → L(~B)).

This leads to the ultimate conclusion ofmy argument, which is based on all premises
taken together:

C2 Every true statement within the language of pure mathematics, as presently prac-
ticed, is metaphysically necessary. In particular, all theorems of standard theories of
pure mathematics, as currently accepted, are metaphysically necessary.
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For consider an arbitrary statementA in the language of puremathematics as used right
now. Assume A to be true. By P2, A can be reformulated as a statement B in the first-
order language of pure set theory, such that:L(A↔B). (The additional explanation part
of P2 will only become important in Sect. 3.) By (i) of P4, this entails L(B) → L(A).
By C1 we know that B → L(B), from which we can conclude: B → L(A). Since A is
true (by assumption), B is true as well, by P2; thus, we also have: B. Therefore: L(A).
Thus, finishing the initial conditional proof: A → L(A). In other words: if a statement
A in the language of pure mathematics is true, it is metaphysically necessary. Finally,
by P1, all theorems A of our present standard purely mathematical theories are true.
Hence all such statements A are also metaphysically necessary.

3 The argument from Sect. 2 is explanatory

The argument from the last section lends strong support to C2, which is certainly
worth noting. E.g., one can derive from this that for every A in the language of pure
mathematics (using A∨~A): L(A) ∨ L(~A).

But does the argument also amount to an explanation for themetaphysical necessity
of puremathematics?After all, not every sound argument has explanatory power. Does
the argument also manage to convey why mathematical truths are necessary? In order
to see the answer is affirmative, let us reconsider the essential steps in the argument
frombefore.We startedwith an arbitrary true statementA in the language of puremath-
ematics, and we argued it to be metaphysically necessary. Why is A metaphysically
necessary? Because, first, A has a set-theoretic reformulation B, such that B explains
A by set-theoretic foundationalism, and B’s necessity implies A’s necessity, that is,
L(B) → L(A) (see P2). And, second, because B is indeed metaphysically necessary.
(Taking all of this together, L(B) should thus count as explaining L(A)). Why is B itself
metaphysically necessary? It is so because B is true, and the conditional B → L(B) (in
C1) is true and explanatory. Why is the conditional B → L(B) true and explanatory?
Because the truth of B implies the metaphysical necessity of B by the rigidity of both
membership and identity (that is, F → L(F) and~F → L(~F) for membership and
identity claims F, see P3 and ii of P4), and by the application of certain (see P4)
truth-preserving and explanatory inference steps. Why are membership and identity
rigid? Because of the nature of sets, the nature of entities in general, and the concepts
expressed by ‘∈’ and ‘=’. Why are the relevant inference steps explanatory? Because
they are of two especially salient kinds: either they go along with the determination
of the truth conditions of more complex statements from those of less complex ones,
as in the step from~F ∨~G to the more complex L(~F) ∨ L(~G), or in the inference
from F → L(F) via the more complex ∀x (F → L(F)) to ∀x F → ∀x L(F), or when
L(~~F) is inferred from the less complex L(F). (Schnieder’s 2011 logic of ‘because’
is based on precisely that idea, though in a non-modal context: e.g., in Schnieder’s
logic, assuming F is true, one can indeed derive ‘~~F because F’; and the like.) Or
the relevant inference steps are explanatorily distinguished instances of substitutions
of formulas by logically equivalent ones, whether inside or outside of an L context:
e.g., inferring~F ∨~G from~(F ∧ G), or L(~ (F ∧ G)) from L(~F ∨~G), or~∀x F
→… from ∃x~F →…The logical equivalences in question are not just valid in clas-
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sical logic but also according to first-degree entailment (Anderson and Belnap 1975),
analytic entailment (Angell 2002), and their truth-maker semantics (Fine 2016). For
that reason, the corresponding substitutions should not just preserve truth but even
explanatory power (see Fine 2012). Summing up: the rigidity of membership (P3)
and identity (P4, ii) do not just entail the necessity of pure mathematical truths (via
intermediate steps afforded by P2 and P4, i, iii), they also explain it. By P1, this also
applies to the theorems of our present standard theories of pure mathematics.

Therefore, the argument from above is indeed an explanation for why pure mathe-
matics is metaphysically necessary. At least it seems to be as good an explanation as
permitted by our current understanding ofmetaphysical explanation (or lack thereof5).

Acknowledgements I am very grateful to Øystein Linnebo and Ed Zalta for comments on an earlier version
of this paper.

References

Anderson, A. R., & Belnap, N. D. (1975). Entailment: The logic of relevance and necessity (Vol. 1).
Princeton: Princeton University Press.

Angell, R. B. (2002). A-logic. Lanham: University Press of America.
Benacerraf, P. (1965). What numbers could not be. The Philosophical Review, 74, 47–73.
Fine, K. (1981). First-order modal theories I: Sets. Noûs, 15, 177–205.
Fine, K. (1994a). Essence and modality. Philosophical Perspectives, 8, 1–16.
Fine, K. (1994b). Senses of Essence. In W. Sinnott-Armstrong, D. Raffman, & N. Asher (Eds.), Modality,

morality and belief. Essays in honor of Ruth Barcan Marcus (pp. 53–73). Cambridge: Cambridge
University Press.

Fine, K. (2012). A Guide to Ground. In F. Correia & B. Schnieder (Eds.), Metaphysical grounding
(pp. 37–80). Cambridge: Cambridge University Press.

Fine, K. (2016). Angellic content. Journal of Philosophical Logic, 45, 199–226.
Friedman, H. (2000). Foundations of mathematics: Past, present, and future. Lecture notes. https://u.osu.e

du/friedman.8/foundational-adventures/downloadable-lecture-notes-2/. Accessed 6 June 2018.
Korbmacher, J. (2016). Properties grounded in identity: A study of essential properties. PhD Thesis, LMU

Munich.
Linnebo, Ø. (2013). The potential hierarchy of sets. The Review of Symbolic Logic, 6, 205–228.
Linnebo, Ø. (2016). Plurals and modals. Canadian Journal of Philosophy, 46, 654–676.
Linsky, B., & Zalta, E. (1994). In defense of the simplest quantified modal logic. In J. Tomberlin (Ed.),

Philosophical perspectives 8: Logic and language (pp. 431–458). Atascadero: Ridgeview.
Mayberry, J. (2000).The foundations ofmathematics in the theory of sets. Cambridge:CambridgeUniversity

Press.
Reck, E. H., &Price,M. P. (2000). Structures and structuralism in contemporary philosophy ofmathematics.

Synthese, 125, 341–383.
Schnieder, B. (2011). A logic for ‘because’. Review of Symbolic Logic, 4, 445–465.
Shapiro, S. (1997). Philosophy of mathematics. Structure and ontology. Oxford: Oxford University Press.
Williamson, T. (1998). Bare possibilia. Erkenntnis, 48, 257–273.

5 If therewere anything like a generally accepted and fullyworked out “logic of (metaphysical) explanation”
for languageswith quantification, one could—and should—try to formalize the argument of this final section
within it. Alas, to the best of my knowledge, no such logical system is available at this point.

123

Author's personal copy

https://u.osu.edu/friedman.8/foundational-adventures/downloadable-lecture-notes-2/

	Why pure mathematical truths are metaphysically necessary: a set-theoretic explanation
	Abstract
	Abstract
	1 Introduction
	2 The argument
	3 The argument from Sect. 2 is explanatory
	Acknowledgements
	References


