A Pragmatist’s Guide to Epistemic Utility

Benjamin Anders Levinstein*t

We use a theorem from M. J. Schervish to explore the relationship between accuracy and
practical success. If an agent is pragmatically rational, she will quantify the expected
loss of her credence with a strictly proper scoring rule. Which scoring rule is right for her
will depend on the sorts of decisions she expects to face. We relate this pragmatic con-
ception of inaccuracy to the purely epistemic one popular among epistemic utility the-
orists.

1. Introduction. Accuracy is an important epistemic good. Indeed, accord-
ing to accuracy-first epistemology, accuracy is the only epistemic good. The
higher your credences in truths and the lower your credences in falsehoods,
the better off you are, all epistemic things considered. Given this alethic mo-
nism, recent proponents of accuracy-first epistemology argue for a variety
of epistemic norms by co-opting the resources of practical decision theory,
with inaccuracy playing the role of epistemic disutility.' For instance, Joyce
(1998, 2009) argues that agents should have credences that obey the axioms
of the probability calculus by appeal to the decision-theoretic norm of dom-
inance avoidance. On Joyce’s favored measures of inaccuracy, any credence
function that is not probabilistically coherent will be less accurate than some
fixed probabilistically coherent alternative function at every world.?
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1. Recent examples of the epistemic utility approach include Joyce (1998, 2009), Leitgeb
and Pettigrew (2010a, 2010b), Pettigrew (2016a), and Konek and Levinstein (2017).

2. Other decision-theoretic norms appealed to include minimizing expected inaccuracy
to establish conditionalization (Greaves and Wallace 2006; Leitgeb and Pettigrew 2010b),
minimax to establish the principle of indifference (Pettigrew 2016b), Hurwicz criteria
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Unlike with traditional Dutch-book arguments, the appeal to accuracy con-
siderations appears to be nonpragmatic. Joyce claims that his argument for
probabilism brings in no practical considerations whatever and is instead
purely epistemic. Indeed, epistemic utility theory (i.e., this decision-theoretic,
accuracy-first approach to epistemology) tries to eschew pragmatic consider-
ations entirely.

Such philosophical scruples lead to two difficult problems. First, as we
will see, Joyce’s argument and the arguments of other epistemic utility the-
orists only work for a certain class of measures called strictly proper scoring
rules.? This class excludes some extremely natural measures, and it is hard to
see why only those measures of inaccuracy are legitimate. Second, if inac-
curacy measures are to play the role of epistemic disutility functions for ra-
tional agents, it is not clear how to determine which particular measure is
right for which agent.” It is doubtful that any intuitive notion of accuracy
could render one measure objectively correct for all agents, and it is also hard
to see what reasons an agent would have to choose one measure over another.

We will provide an answer to both these questions below but from a start-
ing point anathema to a pure epistemic utility theorist. Avoiding appeal to
intrinsic epistemic goodness entirely, we will assume that all value is ulti-
mately grounded in practical value. In particular, credences have value based
on their connection to practical success. For us, the first question is how a prac-
tically rational agent goes about assigning value to her own credences and
the credences of others (i.e., how does she assign value to doxastic states?).

One initial advantage we have over the pure epistemic utility theorist is
that we can assume such an agent will be probabilistically coherent, for oth-
erwise she’s vulnerable to Dutch books. Indeed, we assume such an agent
will be an expected utility maximizer.

From this starting point of expected utility maximization, we can under-
stand accuracy’s practical role by repurposing a representation theorem from
Schervish (1989). Here is the idea in brief. Suppose you have a credence of
.3 that it will rain. You may end up having to make a decision at some point
on the basis of this credence, such as whether to bring an umbrella, whether
to drive instead of walk, or whether to accept a monetary bet that pays off
just in case it in fact rains. You do not yet know for sure which particular
decisions you will have to make, but you do know that the less accurate your

to make sense of Jamesian epistemology (Pettigrew 2016¢), and chance-dominance
avoidance to establish the Principal Principle (Pettigrew 2013).

3. In fact, a few other structural restrictions are needed as well. For details, see Pettigrew
(2016a).

4. Some epistemic utility theorists will see this issue as less important than the first, but
others see it as necessary at least for the argument for probabilism. See sec. 2.2.



PRAGMATIST’S GUIDE TO EPISTEMIC UTILITY 615

credence is, the more likely it is that you will make what turns out to be the
wrong decision (relative to your desires). So, you can assign your credence
an expected loss (i.e., negative expected utility) by averaging over the values
of the possible good and bad decisions you might make based on it. As we
will see from Schervish’s theorem, under some natural assumptions, this
method generates exactly the sort of measures of inaccuracy that epistemic
utility theorists find acceptable. That is, the expected loss function a rational
agent uses to assign practical value to her own credence or to evaluate another
agent’s credence simply is a proper scoring rule. Moreover, Schervish’s the-
orem will allow us to represent an agent with a single measure of inaccuracy
that reflects her expectations of the kinds of practical decisions she will make.

Although our measures of inaccuracy will ultimately be generated from
practical considerations, they are nonetheless in a derivative sense episte-
mic. They reflect an agent’s valuation of her credence before she has any par-
ticular purpose for it in mind (i.e., before she knows which decisions she will
end up making). This allows us to treat epistemic value as quasi-separable
from practical value since we do not need to reference any specific practical
decision when evaluating how well-off an agent is epistemically. We are in
agreement with the pure epistemic utility theorist that the only epistemic
good is accuracy as measured in accord with a proper scoring rule. We sim-
ply disagree about the ultimate source of this value.

This practical approach to epistemic utility will give us a further advan-
tage over the pure epistemic utility theorist. Because inaccuracy measures
function, for us, as summary statistics of expected practical disutility, we can
use them to explain an agent’s practico-epistemic behavior—practical ac-
tions that are performed for the sake of epistemic gain, such as evidence gath-
ering, paying for information, and conducting experiments. Understanding
this sort of behavior is extremely important to epistemology but nonetheless
falls outside of the domain of the purely epistemic.’

To be clear, this practical approach does not entail that the project of the
pure epistemic utility theorist is doomed. Despite the current difficulties,
there may well be a satisfactory account of why proper scoring rules are
the only reasonable measures of epistemic utility that do not invoke any prac-
tical considerations whatever. The point instead is to investigate the valua-
tion of doxastic states from a practical perspective and to see why and how
pragmatically rational agents will use proper scoring rules for such a valua-
tion.

Indeed, epistemic utility theorists themselves may still find this discus-
sion of interest even if they reject the practical foundations. In addition to
the independent usefulness of the technical methods used for generating

5. See Gibbard (2007) for another approach that aims to make sense of accuracy in terms
of its consequences for practical success.
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measures of inaccuracy, the relationship between what epistemic utility the-
orists claim is accuracy’s purely epistemic value and its ultimate practical
value should concern them, especially when it comes to practico-epistemic
behavior.

Moreover, many philosophers will be drawn to the claim that the practical
value of accuracy is the primary or even sole value of accuracy and that there
is no such thing as purely epistemic utility. For instance, functionalists think
that we simply cannot divorce doxastic states entirely from their effects on
our behavior. Beliefs only make sense insofar as they interact with desires to
produce action. Such philosophers will then generally prefer pragmatic ar-
guments for epistemic norms (such as Dutch books) and will likewise prefer
a pragmatic basis for valuing accuracy. Like the epistemic utility theorists,
however, they too should be interested in understanding the notion of accu-
racy and how it relates to practical success.

So, although we here appeal ultimately only to pragmatic instead of pure
epistemic value, our approach will also have significant payoffs. These, in
brief, include

1. A new justification of the standard measures of inaccuracy.

2. A new explanation of why and when to use one measure over another.

3. A better understanding of the connection among accuracy, practical
success, epistemic evaluation, and practico-epistemic behavior such
as evidence gathering.

Section 2 introduces the basic tools for measuring inaccuracy and the diffi-
culties of epistemic utility theory. Section 3 explains how to determine the
practical value of a credence, presents Schervish’s theorem, and discusses
its significance. Section 4 briefly relates Schervish’s theorem to the value
of information, evidence gathering, and evaluation of other agents. Section 5
wraps up.

2. Inaccuracy and Scoring Rules. In this section, we look at the two im-
portant questions identified in the introduction: what are the general con-
straints on plausible candidate measures of inaccuracy, and which measure
in particular is right in a given context? We will approach these questions for
now from the point of view of the epistemic utility theorist. That is, we will
see how we might try and answer them if we want a purely epistemic notion
of inaccuracy.

Let us start with credences in individual propositions. A measure of inac-
curacy, or scoring rule, is meant to quantify how close a credence in a prop-
osition is to its truth-value at a world. At the very least, a higher credence in a
true proposition should not count as more inaccurate than a lower credence
in that same proposition. We can use this minimal constraint to define the
class of functions of interest:
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Definition 1 A function G:[0, 1] x {0, 1} — [0, 0] is a (local) scoring
rule if G(x, 1) is monotonically decreasing and G(x, 0) is monotonically
increasing.

Often we will write a scoring rule G as (g, go) where g,(x) = G(x, i). By re-
quiring g,(x) and g,(x) to be monotonically decreasing and increasing re-
spectively, we guarantee that as a credence gets closer to a truth-value, its
score will not get worse. Note that for now, we do not even require the mono-
tonicity to be strict.

We can generalize this idea to constrain good measures of inaccuracy for
entire credence functions. Let Q be a finite set of worlds and F be a subset
of the power set of ; bel(F) is the set of belief functions over F, where a
belief function assigns some number x € [0, 1] to each proposition in F.
Note that probability functions form a subset of the belief functions. For
we Qand X € F,letw(X) = 1 if w € X and = 0 otherwise. To constrain
the class of relevant functions, we first define an analogous weak monoto-
nicity constraint:

Definition 2 A function G : bel(F) x @ — [0, o] is weakly truth-directed
if for any b, ¢ € bel(F), if |[w(X) — b(X)| < [w(X) — c(X)| for every X €
F, then G(b, w) < G(c, w).

Weak truth-directedness says that if ’s credence is always at least as close
to the truth as ¢’s credence, then b is no more inaccurate than c. We then say:

Definition 3 A function G : bel(F) x @ — [0, 0] is a (global) scoring rule
if it is weakly truth-directed.

These definitions of scoring rules are too weak to carve out a good class of
inaccuracy measures, but they will be useful below. The most obvious way

to strengthen them is to require stronger monotonicity conditions. We say:

Definition 4 A function G :[0, 1] x {0, 1} — [0, 0] is a (strict local) scor-
ing rule if G(x, 1) is strictly decreasing and G(x, 0) is strictly increasing.

Likewise, we define a stronger notion of truth-directedness:

Definition 5 A function G: bel(F) x Q — [0, 0] is truth-directed if for
any b, ¢ € Prob(F), if

1. [wX) — b(X)| < [W(X) — ¢(X)| for every X € F and
2. wX) — b(X)| < WX) — ¢(X)] for some X € F,

then G(b, w) < G(c, w).



618 BENJAMIN ANDERS LEVINSTEIN

In turn,

Definition 6 A function G : bel(F) x Q — [0, «] is a (strict global) scor-
ing rule if it is truth-directed.

2.1. Propriety. Any strict scoring rule is in some sense a measure of
inaccuracy. However, from the point of view of the epistemic utility theo-
rist, even some strict scoring rules fail to generate the results she wants.

Joyce (1998, 2009), for instance, argues that epistemic agents should be
probabilistically coherent. In schematic terms, Joyce’s argument runs as fol-
lows. There is some class Z of reasonable measures of inaccuracy. For any
scoring rule G € 7 and any nonprobabilistic belief function b, there exists
an alternative probability function c that is less inaccurate than b according
to G at every possible world. Furthermore, according to G, for any proba-
bilistically coherent function c and any belief function b, c is less inaccurate
than b at some world. In other words, all and only the nonprobability func-
tions are dominated according to every reasonable measure of inaccuracy.

The major weakness of this argument is that some measures of inaccu-
racy that seem perfectly reasonable do not yield this result. Consider the
absolute-value measure, for instance:

abs(b, w) = 3|b(X) — w(X)|.

XeQ

Here, abs is clearly truth-directed and at least seems natural. Nevertheless, it
yields absurd verdicts about the relative accuracy of two belief functions.
Imagine an urn contained a red, a green, and a blue ball, one of which will
be drawn at random (i.e., with a 1/3 chance). According to abs, an agent
with a credence of 0 in red, green, and blue counts as less inaccurate than
an agent with a credence of 1/3 in each proposition, regardless of which ball
is actually drawn.®

Surprisingly, it is relatively easy to identify exactly what further major re-
striction on measures of inaccuracy is needed to generate Joyce’s results: ev-
ery probability function must assign itself minimum expected inaccuracy.’

6. Note that the agent with a credence of 0 in each proposition will receive a total score
of 1, since her credence in two of the propositions will be perfectly accurate, while her
credence in one proposition will be off by 1. The agent with a credence of 1/3 in each
proposition will be off by 2/3 in one proposition and by 1/3 in the remaining two, for
a total score of 4/3.

7. Joyce (2009) himself derives propriety from truth-directedness along with the weaker
principle of Coherent Admissibility, which requires every probability function to be non-
dominated.
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That is, the argument requires scoring rules to be strictly proper according to
the following definition:

Definition 7 A scoring rule G is a proper scoring rule if for all probability
functions b and belief functions ¢, E,(G(c)) is minimized at b = ¢, where
E, denotes b’s expectation function. If this minimum is unique, then G is a
strictly proper scoring rule. If G is proper but not strictly proper, then we
say that G is a merely proper scoring rule.

Note that if G is a local scoring rule, then G is (strictly) proper if for all
x,y € [0,1], yg,(x) + (1 — y)g,(x) is (uniquely) minimized at x = y.

Propriety is a curious property. On the one hand, it is a crucial constraint
necessary for the success of the epistemic utility program. In addition to
Joyce’s argument, nearly every other argument in the epistemic utility liter-
ature requires this restriction as well.* Without it probabilistically coherent
credence functions would be self-undermining. That is, they would face a
kind of Moorean paradox: ‘I assign credence x to X, but I think a credence
of x" in X would be more/at least as accurate.” On the other hand, it seems
hard to justify on the basis of reflection on the notion of inaccuracy alone.
Propriety simply does not seem to stem from alethic monism on its own.’
Furthermore, propriety rules out two of the most obvious measures of inac-
curacy right from the bat, that is, abs and the euclidean measure:

cuc(bw) = (3,01 - w(x>>2)m.

XeF

Two of most common measures of distance are abs and euc, and inaccuracy
is supposed to be a measure of proximity to truth. Both are truth-directed,
yet neither is proper.'°

Fortunately for the epistemic utility theorist, other scoring rules are rel-
atively natural as well and do turn out to be proper. Three common strictly
proper global rules include

8. See, e.g., n. 2.

9. There are a number of arguments that try to independently motivate restrictions on the
class of reasonable inaccuracy measurements that entail propriety. Discussing each would
substantially lengthen this article, but I refer the interested reader to Joyce (1998),
D’Agostino and Sinigaglia (2010), Leitgeb and Pettigrew (2010a), and Pettigrew (2016a).
For further doubts about the plausibility of propriety stemming from alethic monism, see
Gibbard (2007).

10. We have already seen that abs is improper. To see that euc is improper, suppose an
agent assigns credence .9 to X and .1 to —.X. She expects the credence function that as-
signs 1 to X and 0 to —X to be less inaccurate than she is according to euc.
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Brier Score

BS(b, w) = % 3 (0(X) ~ B(X))
Log Score
Log(h, ) =~ 3, In[(1 = (X)) = B(X)).

Spherical Score

11— w(X) — b(X
(b(X)* + (1 = b(X))*)

1
Sph(b, w) = | 7| 21 -
XeF

12 °

Each of these rules is additive. That is, each is simply the (normalized) sum
of a local strictly proper rule:

Local Brier BS(x, i) = (i — x)’.
Local Log Log(x,7) = —In(J(1 — i) — x]).
Local Spherical Sph(x,i) = 1 — |1 —i — x|/(¥* + (1 — x))"".

Later on, we primarily focus on local rules and then see how they relate to
additive global rules."

So, despite its theoretical importance, propriety itself is in need of some
additional explanation. We provide one below—when we walk through Scher-
vish’s theorem we will gain a new understanding of what makes proper scor-
ing rules so special. Our solution will not satisfy the austere scruples of those
who want inaccuracy to be a purely epistemic notion with no appeal to prag-
matic considerations but instead will explain why pragmatically rational
agents use them to determine the value of their own credences.

2.2. Which Scoring Rule to Use? A second question is which scoring
rule serves as the best measure of inaccuracy in a given context. Even if we
insist on strict propriety, we have infinitely many rules left to choose from.

11. The Spherical Score looks odd at first, but it is more natural when understood geo-
metrically. For given credence function ¢, proposition X, and world w, let | ¢, || be the
length of the vector ¢, = (c(X),1 — ¢(X)). Let 6y, be the angle between cy and
(w(X), w(=X) ). The local spherical score of a credence c(X) is then | ¢, || cosf,,.
That is, it is determined by the length of the vector ¢y and the angle between cy and
the actual truth-value of X at w. For a more thorough discussion, see Jose (2007).
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It is not immediately clear why someone would opt for the Brier or the Log
or the Spherical rule.

Some epistemic utility theorists may regard this question as less pressing.
As we saw, Joyce establishes an accuracy-dominance argument for proba-
bilism. As long as the scoring rule in question is strictly proper—and meets
a few other structural assumptions'>—all and only probability functions are
undominated, so it appears in this case that there is no need to choose any
single measure. However, as Bronfman (2009) and Pettigrew (20164, chap. 5)
point out, which functions dominate which others is scoring-rule dependent.
In particular, if b is not a probability function, then there may be no proba-
bility function that dominates it on every rule that is considered legitimate.
So, if an agent adopts b as her credence function but does not adopt any par-
ticular measure of inaccuracy, then any probability function ¢ will do worse
than b at some world according to some measure. Both authors argue that if
we do not choose a single rule with which to measure an agent’s inaccuracy,
then the normative force of accuracy-dominance arguments for probabilism
is undermined."

In response, one may be a subjectivist and claim that the scoring rule
merely reflects an agent’s subjective epistemic values, just as in practical
contexts rational agents may adopt alternative credence functions.'* One
may also be an objectivist and claim that a single rule is correct.'”

Schervish’s theorem will enable us to provide a new kind of answer. An
agent’s scoring rule will not reflect her epistemic values, but instead it will
represent the kinds of decision problems she expects to face. In full gener-
ality, any proper scoring rule could be correct in a given context. Further-
more, an agent’s global scoring rule will usually be built out of different local
scoring rules for different propositions.

3. The Pragmatic Evaluation of Credences. Letusnow put aside this no-
tion of pure epistemic utility unsullied by practical value and return to the

12. Namely, as long as the rule is truth-directed, continuous, strictly proper, and additive
(i.e., the sum of local scoring rules), the result that all and only probability functions are
undominated goes through.

13. I harbor doubts as to whether this objection is actually successful, but I mention it
here to note that epistemic utility theorists themselves consider this issue an important
problem. It is worth acknowledging as well that the class of admissible measures of in-
accuracy need not be narrowed all the way down to a singleton to avoid the Bronfman
objection.

14. Joyce (2009) at least leans in this direction.

15. This position is perhaps the most popular among epistemic utility theorists, with the
Brier usually being the rule of choice (Rosenkrantz 1981; Leitgeb and Pettigrew 2010a;
Pettigrew 2016a).
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world of hard-nosed pragmatism. We wish now to understand how a practi-
cally rational agent will evaluate her own doxastic state and possible alter-
native doxastic states. For instance, we will try to determine how much ex-
pected utility an agent assigns her credence of .6 that it will rain.

Our task is a bit easier than the epistemic utility theorist’s, as we already
have some understanding of practical rationality. We will assume that prac-
tically rational agents are expected utility maximizers.' In particular, they
have probabilistically coherent credence functions, since otherwise they would
be subject to Dutch books. This starting point will give us some initial trac-
tion.

We make a few additional assumptions. First, unlike in causal or eviden-
tial decision theory, we will only look at situations in which acts and states
are independent. That is, in the situations we consider below, whether an
agent performs an action has no bearing on whether an event of interest oc-
curs. For instance, whether you bring an umbrella does not by itself (at least
normally) affect your credence that it will rain. Because the actions do not
affect outcome, we will often refer to actions as ‘bets’.

This may seem unduly restrictive, but we are interested in evaluating cre-
dences in propositions, not credences conditionalized on or imaged on the
performance of action. Your credence that you will get a promotion is dif-
ferent from your credence that you will get a promotion supposing you bribe
your boss, and the two in turn have different values.

Second, we will assume that credences and states are independent. That
is, the probability of events of interest does not depend on an agent’s cre-
dences. For example, the chance a coin will land heads will not be affected
by your belief that the coin will land heads. Third, we assume that the value
of an outcome is not itself affected by an agent’s credence. In other words,
agents do not themselves assign direct value to the beliefs they hold. For ex-
ample, we will not try to account for the utility you gain from your high cre-
dence that your colleagues are fond of you. These last two assumptions are
for the sake of simplification.

3.1. The Practical Value of a Credence. With this background out of
the way, let us now see how an agent may evaluate her own credence in
terms of expected practical value. Let R be the proposition that it will rain
today. There are a number of different bets on R that an agent, let us call her

16. In particular, I assume that agent’s doxastic states are (or are representable by) a
unique probability function and that she has a utility function that is unique up to pos-
itive affine transformation. Both of these idealizations are necessary for Schervish’s the-
orem to generate a unique scoring rule. An important question that I will not explore
here is what happens when these assumptions are relaxed.
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Alice, might take that will affect her utility. Suppose the possible actions are
bringing an umbrella (), wearing a raincoat (w), or staying home (s).

Suppose we want to know whether Alice will bring an umbrella. Given
that she is an expected utility maximizer, she will only if

EU(u) > max(EU(w), EU(s)) = EU(-u),

where EU is Alice’s expected utility function. In other words, we can see
whether she will bring an umbrella by looking at her decision between
two actions, bringing an umbrella or not bringing an umbrella, even though
the action space itself is more fine grained. This will allow us to treat each of
Alice’s decision problems as if there were only two options from now on:
whether to u or —u."”

Imagine Alice’s payoff matrix is as given in table 1, which shows how
much utility Alice gets, depending on whether she brings an umbrella when
it rains or does not rain. By a simple calculation of Alice’s expected utility,
we can determine how high her credence x in R must be before she decides
to bring an umbrella.

EU(u) = x(—1) + (1 — x)(—2)

()

x — 2.

EU(—u) = x(—4) + (1 — x)(0)
. @

We then have (1) > (2) if and only if x > 2/5. So, Alice will bring an um-
brellaif x > 2/5 and not bring an umbrella ifx < 2/5. For ease, we will con-
ventionally decide that Alice will bring the umbrella if and only if x > 2/5.

17. An important issue in decision theory is the relationship between small- and grand-
world decision problems. In small-world problems, an agent does not partition the space
of outcomes, states, and acts maximally finely. In the current (small-world) decision
problem, for instance, Alice does not distinguish between outcomes in which her um-
brella breaks and outcomes in which her umbrella remains in tact, even though those
clearly result in different rewards. Ideally, an agent would always deliberate using a
maximally fine-grained partition (if such there be), but that requirement is so unrealistic
that it would render decision theory of little guiding value. I agree, then, with Joyce
(1999) that when an agent deliberates using a small-world partition and selects action
a from that set of actions, she is committed to the view that her “fully considered beliefs
and desires would sanction the choice of a from among the alternatives listed” (74). In
other words, “we can think of a rational agent’s attitudes toward the states, outcomes,
and acts in a small-world decision problem as her best estimates of the attitudes that
she would hold regarding those states, outcomes, and acts in the grand-world context”
(75, emphasis mine).
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TABLE 1. PAYOFF MATRIX

R =R
u —1 -2
—u —4 0

All that matters for how much utility Alice ends up getting is (i) whether R and
(i1) whether her credence is greater than 2/5.

3.2. Reformulation. We need to reformulate this problem to suit our
aims of constructing proper scoring rules. Since scoring rules are loss func-
tions, we will describe Alice as an expected loss minimizer instead of as an
expected utility maximizer. This choice is purely conventional. Table 2
reexpresses table 1 in terms of losses instead of gains.

Notice that if it rains, Alice is sure to incur a loss of at least 1 no matter
what she does. As far as her decision is concerned, this loss is irrelevant
since it is merely a result of the state of the world. So, we can normalize
table 2 by subtracting the minimum loss that is sure to result at each state.
We then arrive at table 3.

Finally, we rewrite table 3 as table 4 by dividing the loss in each cell by
the sum of the total losses in each cell. In this case, the sum is 5, since Alice
will lose 2 if she performs u and —R and will lose 3 if she performs —u and
R.

When considering this problem in isolation, we can forget about the sum
of the losses. It represents the ““stakes™ of the problem, but it will not affect
Alice’s decision. So, for now, we can rewrite the payoff matrix as table 5,
which captures this single decision problem conspicuously. As before, all
that matters for much (dis)utility Alice ends up getting is (i) whether R
and (ii) whether her credence is greater than 2/5.

3.3. Scoring Rules and the Problem of the Umbrella. 'We can now de-
sign a scoring rule that will track how much of a loss (under our normali-
zation) a credence of x in R will bring Alice. That is, given that her credence
is currently x, we determine how much she expects to lose from her bet on
rain.

TABLE 2. Loss MATRIX
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TABLE 3. Loss MATRIX, FIRST NORMALIZATION

R -R
u 0=1-1 2=2-0
—u 3=4-1 0=0-0

First, let us determine how much she would lose if R and if =R, respec-
tively. Per table 5, If R and x < 2/5, Alice will lose 3/5, since she will not
bring an umbrella. If x > 2/5 and —R, she will lose 2/5, since she will bring
an umbrella. Otherwise she loses nothing.

Consider G = (g,, g,), Where

3/5ifx<2/5
g(x) = .
0 ifx>2/5,

and

0 ifx<2/5
(%) :{ /

2/5 if x> 2/5.

Given Alice’s credence and R’s truth-value, G returns the amount Alice will
lose.

Now suppose Alice wishes to evaluate a credence of y given her cre-
dence x. That is, she wants to determine how much she would expect to lose
if she had decided whether to bring an umbrella on the basis of a credence
of yin R.

We then have

E(G(»)

xx g (y) + (1= x)g (),
xx3/5 if y<2/5

{ (1 —x) x2/5ify>2/5,

where E (G(y)) is minimized exactly when

x,y<2/5

or

TABLE 4. Loss MATRIX, SECOND NORMALIZATION

R -R

u 0 Q2/5) x 5
—u (3/5) x 5 0
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TABLE 5. Loss MATRIX, STAKE-FREE VERSION

R -R

u 0 2/5

- 3/5 0
x,y>2/5.

So, G is a merely proper scoring rule.

3.4. The General Case. More schematically, we can represent the agent
as choosing between two options, d, and d,, where d, is better to perform if
P and d, is better to perform if —P. That is,

L(d,, P) < L(d,, P)
L(d,, ~P) > L(d,, ~P).

0°

We again normalize losses in the same way we did in table 3 by setting
L(d,,P) = L(d,,~P) = 0.

Then, in accord with table 4, we can now construct a loss matrix as ex-
pressed in table 6, where ¢ € [0, 1] and W € (0, «0|. Alice’s cutoff for per-
forming d, is represented by ¢. That is, if and only if Alice’s credence in P <
q will she perform d,. Otherwise, she will perform d,. The weight or stakes
of the problem is represented by W. Again, we ignore W for now and focus
only on the cutoff points for deciding whether to d,.

Definition 8 A g-problem with respect to P is a two-decision problem such
that L(d,, ~P) = W x q.

For any particular ¢, Alice sees no difference in expected value between
two forecasts on the same side of ¢ since those forecasts will lead to the ex-
act same action.

In this more general case, we can determine Alice’s valuation of a cre-
dence x with the merely proper scoring rule G = (g,, g,):

TABLE 6. Loss MATRIX, SECOND NORMALIZATION

P -P

d, 0 qxw
d, (1—qxw 0
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g (x) =

l—qifx<g
0 ifx>gq,

and

0 ifx<g
g (x) = ,
q ifx>gq.

3.5. Uncertainty about the Bet. We are often uncertain what bets we
are actually going to face in the future. Supposing you are going to bet
on P, you may still be uncertain whether you will face a ¢- or ¢’-problem.
For instance, Alice may know she will be offered some bet that will return
$1 if it rains, and $0 otherwise, but not yet know what price the bookie will
offer her.

We will handle the more general case in a moment, but for now assume
that there is some finite set @ C [0, 1] such that Alice has credence 1 that
she will face some g-problem, where ¢ € Q. We will treat Q as a random
variable representing the g-value of the decision problem Alice faces and
use Pr(g,) as an abbreviation for Pr(Q = g,).

So, if Alice is uncertain about the value of O, what expected loss does
she assign her credence x in P? Ignoring the stakes, we find

h(x):= EL(x|P) = X (1 —q) x Pr(q), ()
g€
x<gq
hy(x) 1= EL(x|=P) = 3 ¢ x Pr(q), )
g€
q<x

where 4, represents Alice’s expected loss of having credence x conditional
on P, and A, represents Alice’s expected loss of having credence x condi-
tional on —P. That is, &, represents Alice’s expected loss given the truth-value
of P but with the g-value of the bet still undetermined.

We calculated /4, as follows: if P is the case and Alice’s credence x turns
out to be less than or equal to Q, she will lose 1 — Q. If her credence turns
out to be greater than Q, she will not lose anything. So, /4, just is the sum of
1 — g discounted by Alice’s credence Pr(Q = g) for every g > x. The for-
mula for 4, is determined similarly.

We can then determine Alice’s unconditional expected loss of credence x
in P by
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EL (x) = x X h,(x) + (1 = x)hy(x),

where EL,(x) is the loss Alice currently expects to suffer from her credence
of x before she learns whether P is true or false. More generally, we can cal-
culate Alice’s unconditional expected loss of alternative forecast y in P by

EL(y) = x> hy(y) + (1 = x)hy(y),

where EL,(y) is the expected loss Alice assigns to using another forecast
instead of her own, but with her utility function held fixed. It is easy to
check that H = (h,, h,) is in fact a merely proper scoring rule.

3.6. Letting the Stakes Count. As we noticed, two g-problems can
have very different stakes. The same hand in blackjack matters a lot more
at the $1,000 table than the $1 table, even though the probabilities remain
the same.

Furthermore, an agent may expect that if she faces a g-problem it will
present her with stakes different from a ¢’-problem. Suppose, for instance,
she is 50% confident she will face the low-stakes problem in the top panel
of table 7 and 50% confident she will face the high-stakes problem in the
bottom panel of table 7. Because the latter problem has much higher stakes,
having her credence on the right side of 2/3 is significantly more important
than having her credence on the right side of 1/2. In general, for any given
g, the expected value of the stakes W can vary.

Let E(WW|q) be the expected value of W given that Alice faces a g-
problem. Letting g, represent the expected loss of credence x conditional
on P and g, be the expected loss of credence x conditional on =P, we have

g (x) = Eg(l —q) x E(Wlq) x Pr(q), ®)
quq
g((x) = X g xE(Wlg) x Pr(q). (6)
geQ
g<x

TABLE 7. g-PrROBLEMS WITH DIFFERENT STAKES

P -P
Low stakes:

d, 0 12

dy 12 0
High stakes:

d; 0 (2/3) x 15

dy (1/3) x 15 0
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The overall expected loss Alice assigns forecast y if her credence is x is then

EL,(y) = x x g, (y) + (1 = x) x g(»). (7

Again, G is a merely proper scoring rule. Let @ = {q,, ... ,q,}. If Alice’s
credence is x where ¢, < x < g,,,, then she assigns any y in the same inter-
val the same expected loss she assigns herself. Otherwise, she assigns y a
greater expected loss.

To determine G, what matters then is both how high the stakes are ex-
pected to be given that a g-problem is faced and how likely Alice thinks
it is that she will face a g-problem. That is, what matters is the quantity

M(q):= E(W|q) x Pr(q).

We can then reformulate equations (5) and (6) above as

gx)= X (1—q) xMg), ®)
q€Q
x<gq
g(x) = X gx M), )
geQ
qg<x

where M(q) measures how important Alice thinks g-problems are to get
right. Note that (i) M(g) = 0 and (ii) M(¢q) = 0 if and only if Pr(g) = 0.
Neither of these facts is surprising: it is never good to get a g-problem
wrong, and if you think you might face a g-problem, then getting it right
matters at least a little bit.

3.7. The Continuous Case. So far, we have assumed that ¢ is in some
finite set Q C [0, 1] to keep things discrete. However, Alice could poten-
tially face a g-problem for any ¢ € [0, 1]. The main difficulty is that once
we make this generalization, the probability of any particular g-problem
is 0.'8

The natural way to handle this problem is to trade out M(q) for a function
m(q) that measures the probability density of facing a g-bet factored by the
expected stakes of that bet. That is,

m(q):= p(q)E(Wlq),

where p(q) is the probability density Alice assigns to the claim that she will
face a g-problem. We call such an m Alice’s support function. The support

18. With the exception of at most countably many values of Q.



630 BENJAMIN ANDERS LEVINSTEIN

function measures how much relative importance is assigned to each pos-
sible value of Q.

To get a handle on m, note that (i) m(g) > 0 and (ii) m is constantly 0 over
some region [«, 3] just in case Alice is certain that she will not face a ¢-
problem for any ¢ € [a, 3]. As with M, the first condition reflects the fact
that it is never good to get a g-problem wrong. The second condition means
that if Alice thinks it is possible she will face a g-problem for ¢ in some re-
gion, then getting such a problem right matters at least a little bit.

By switching out M for m and the sums for integrals in equations (8) and
(9), we can generate scoring rules when Q = [0, 1]. With some reformula-
tion and loss of generality, Schervish’s theorem is then:

Theorem 1 (Schervish). Let m(q) be a support function, and let

g () = J (1 - g)m(g)dg,

X
X

g(x) = J g x m(q)dg.

0

Then G = (g,, g,) is a proper scoring rule. If m is strictly positive almost
everywhere, then G is a strictly proper scoring rule.

With some generalization, this method gets us every proper and strictly proper
scoring rule, aside from uninteresting ones that, for example, assign every
region infinite importance.

Note that the condition that m be positive almost everywhere is a kind of
regularity condition. Alice will set m(q) = 0 if and only if she is certain she
will not face a g-problem for that g-value. So, if she leaves open the possi-
bility (however remote) of facing any g-problem whatever, then she will use
a strictly proper scoring rule to evaluate her credence.

3.8. Examples. Above, we defined the local versions of the Brier Score,
Log Score, and Spherical Score. Let us see how these each encodes very dif-
ferent expectations about the bets Alice may face.

If Alice assigns constant weight to every point, we have

m(q) = ¢,

which generates the Brier Score (times c¢/2).

19. For theories that allow E(W|q) to be defined even when Pr(g) = 0, see Rényi
(1955) and Popper (1959).
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If Alice cares about points in [0,1] closer to 0 or 1 more than she cares
about other points, she might set

1
m(q) = ———-,
@ =7 (1-4q)
which generates the Log Score.

If Alice weights points near .5 more than she weights other points, she may set
1

¢ —2¢ + 1)’

m(q) =
which generates the Spherical Score.

Figure 1 provides a visual representation of each of these scoring rules
along with their corresponding support functions.

The Brier Score is the most egalitarian of all scoring rules in terms of the
decisions the user expects to make. Imagine you knew you were going to be
offered a bet on X that paid $2 if X and $0 otherwise. The price of the bet
will be chosen at random (i.e., by the uniform distribution on [0,2]). In is
case, the Brier Score is the right scoring rule. The stakes of the bet are con-
stant; that is, E(W|gq) = 2 for all q. Furthermore, since the value of Q fol-
lows a uniform distribution, p(q) = 1 for all g. So, m(q) = 2.

Brier Score Brier Support
1.0 — 2.10 T T
0.8 |- 4 2.05F -
0.6 |- 4 2.00
0.4 4195 |
0.2} 4 1.90 | E
0.0 ! L 1.85 - L L -
Log Score

6 T T T T

5

4

3

2L i3

1k J

0
" Spherical Score 4 Spherical Support
* T T % T T T T
0.8 | 4 25} ]
0.6 |- —
0.4 4 20r ]
02} 4 15F 1

U.O L 1 L L 1-0 L 1 L L
0.0 0.2 04 06 0.8 1.0 0.0 0.2 04 0.6 0.8 1.0
Credence g-Value

Figure 1. Brier, log, and spherical scores along with their support functions. Left,
ascending curves represent go(x) and descending curves represent g,(x) for the re-
spective scoring rules. Color version available as an online enhancement.
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The Logarithmic Score is approximately right when, in expectation, bets
will be concentrated near the end points of the unit interval and when the
stakes are high near those points. The Spherical Rule is best when the suc-
cess of your decisions will likely depend on correct unbiased binary classi-
fication, that is, guessing whether X or —X is true depending on whether
your credence in X is greater or less than .5.

In real life, of course, our views over the bets we will face on proposi-
tions are a lot messier. Suppose [ am wondering whether my house will burn
down in the next year. I do not yet know exactly which bet I will face on that
proposition, but in expectation a credence of .01 is very different from a cre-
dence of .0001. In the former case, I will likely pay quite a bit for an insur-
ance policy. So, relatively close to 0, my loss function will behave a lot like
the Log Rule. However, a credence of 107¢ and a credence of 1077 in this
same proposition are roughly equivalent as far as my real-world success is
concerned. Despite the value of my house, if my credence is low enough
that it will burn down, I am effectively morally certain that it will not burn
down. I assign, at some point, negligible practical weight to the possibility
that I will wrongly bet that it will remain in tact for the next year. So the Log
Rule will not be a perfect fit.

Similarly, the Spherical Score is a good approximation of the right score
for my credence in whether it will rain. Whether I make the right decision
about bringing an umbrella, buying baseball tickets in advance, or cancel-
ing my picnic hinges on whether my credence is above or below (approx-
imately) .5. I doubt any decision I make will depend on whether my cre-
dence is on the correct side of .05 or .95. At that point, I am effectively
certain it will not (will) rain as far as my decision making goes. Therefore,
the correct support function will place more weight on middling regions of
the unit interval and less weight on extreme regions.

3.9. Global Scoring Rules. Let us now briefly turn our attention to
scoring global credence functions. The idea is the same: the expected score
of an entire credence function is the expected loss an agent would incur from
using that credence function to make bets.

The score of an individual credence x in proposition X at a world is the
expected loss. That is, the score measures the expected loss given the actual
truth-value of X before it is known exactly which bet on X the agent will
face. Likewise, when we score an entire credence function b at a world,
we plug in the actual truth-values of the propositions in F, but we do not
yet plug in the actual bets the agent faces. Indeed, she may not face a bet
on some propositions at all.

The easiest way to determine this global score is simply to identify it
with the (normalized) sum of the local scores:
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G(b,w) = a x > G, (b(X),w(X)),
XeF

where « is positive, and Gy is the scoring rule used for proposition X. In
general, as we have seen, the scoring rule for the individual propositions
will vary heavily, depending on the expected bets the agent may face. Fur-
thermore, because we are much more likely to face bets on some proposi-
tions than on others, and because the stakes of those bets will vary heavily,
some propositions will count much more to b’s overall score at w. For in-
stance, it is much more likely that we will face a bet on whether it will rain
than on whether there are an odd number of grains of sand in the Sahara. So,
G(b,w) will give extra weight to the former proposition.

For this to work (i.e., for us to be able to simply add up a bunch of local
scores) we need a way of localizing bets. That is, given your entire credence
function, we need a way to determine which single proposition your deci-
sion to perform act u or —u is a bet on. You might, for instance, want to
bring an umbrella if your credence in rain is high enough. But you may also
decide to bring an umbrella if your credence that it will snow is high. So,
your decision is not really a bet on rain, nor is it a bet on snow, but instead
it is a bet on (rain or snow).

To do so, the best method seems to be to partition the set of states of the
world into those in which you would rather perform u and those in which
you would rather perform —u. With your utility assignments fixed, the prop-
osition u is taken to be a bet on the disjunction of all the states in which
performing u is in expectation better than performing —u.*° In this way,
Schervish’s method can be used to generate an additive scoring rule that
represents the expected loss of an agent’s entire doxastic state.

4. The Value of Information. One useful application of scoring rules is
that they allow us to quantify the value of information for various proposi-
tions. We will now see how this may work in some detail.

20. As a referee points out, this introduces another important grand-world/small-world
problem. To see this, suppose Alice would rather bring an umbrella if she learned it
was going to rain but would want to leave it home otherwise. That is, on the partition
{R, =R}, Alice considers u a bet on R. However, suppose that if it will rain only very
lightly (L), she would still rather leave her umbrella at home. So, when she considers
{R&L, R&—L, —R}, she takes u to be a bet on just R&—L. Even if all of Alice’s prefer-
ences are ultimately partition invariant, then, what actions are a bet on which states of
the world will vary depending on how the set of states is carved up. In turn, Schervish’s
method will yield different results depending on this partition. I do not have a general
answer to the question of how finely agents need to partition the set of states of the world
for the representative scoring rules to reflect their expected losses from their credence
function in the best way. However, I lean toward a subjectivist solution—your global
score should reflect the finest partition that is cognitively available.
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4.1. Experiments. Suppose Alice is a scientist interested in whether X.
She decides to spend some resources to perform an experiment that will
provide her with new evidence. She cannot perform every potential exper-
iment, so she will have to make some choices on the basis of the expected
informational value of the results. How might she go about deciding?

Following Greaves and Wallace (2006), we call a partition £ of 2 an ex-
periment if the agent will learn some element of that partition is true. We say
that an experiment & is performed once the agent learns which element of £
in fact obtains.

For example, suppose Alice is wondering whether her favorite team will
win tonight. She knows that if Jake is pitching, there is a .75 chance they
will win. Otherwise there is a .25 chance. If she looks at the team’s website,
she can find out who is pitching. So, in this case, there are four relevant
states {W AP, W A—=P,=W AP, =W A—P}, where W stands for the prop-
osition that her team wins, and P stands for the proposition that Jake is
pitching. She can perform the experiment £ of finding out who is pitching
and thereby partition Q into P = {W AP,-W AP} and =P = {W A —P,
W AP }

If Alice performs &, she will learn either P or —P. So, Alice’s posterior
credence in W, denoted b.(W), will either be b(W |P) = .75 or b(W|-P) =
.25, although she does not yet know which. Suppose Alice’s current cre-
dence in W is .5. How valuable is the experiment £ to her in expectation?

Before performing &£, Alice assigns her credence an expected loss of
EG(.5) = .5(g,(.5) + g,(.5)). If she learns P, she will either get a score
of g,(.75) or go(.75). So, her expected score given that she learns P is

b(W|P)g,(.75) + b(~W|P)g,(.75) = .75g,(.75) + .25g,(.75) .

Likewise, her expected score given that she learns —P is .25g,(.25) +
.75g,(.25). Given the constraints we have established, she must also have
a .5 credence in P. So, the expected score she currently assigns to her as-
yet-unknown posterior credence after performing & is

EG(KEW)) = 375(g,(.75) + g,(:25)) + .125(g,(.75) + g,(:25)).  (10)

Greaves and Wallace show that updating by conditionalization is the policy
that minimizes expected loss for all proper scoring rules. So, (10) is less than
or equal to Alice’s current score of EG(.5), and the inequality is strict if G is
strictly proper.

From a practical point of view, this result follows from Good (1967), who
shows that in any decision context, free information never has negative value
in expectation.?! Indeed, we can quantify the expected value of performing £

21. See Myrvold (2012) for an in-depth discussion of Good’s theorem and scoring rules.
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as the difference between Alice’s current expected loss and her expected
posterior loss, that is, as Val(€) = EG(.5) — EG(b°(W)). If we identify util-
ity with dollars, Alice should pay up to $Val(£) to learn the result of exper-
iment £.*

Note that the precise value of an experiment depends on which scoring
rule Alice uses for the proposition under investigation. Suppose, for in-
stance, that Alice had the option of performing either £ or an alternative ex-
periment £ that would reveal who won the game with 20% probability and
would reveal no relevant information otherwise. That is, if Alice performs £’
instead of &, then there is a 20% chance she will learn either that ¥ or that
=W for sure and an 80% chance her credence in W will remain at .5. If Alice
can only perform one of the two experiments, she will prefer to perform & if
she uses the Brier Score, but she will prefer to perform & if she uses the Log
Score.”

Put slightly differently, the evidence an agent chooses to gather will de-
pend on her scoring rule, which in turn depends on what sorts of decisions
she expects she will make on the basis of her credence in the proposition in
question. The decision of which evidence to collect is, what we might call,
practico-epistemic. The evidence itself will determine her credal state, but
her process of investigation is a practical one.

Finally, we observe that some experiments are absolutely preferable to
others. That is, sometimes Alice will prefer to perform &, to &, regardless
of her scoring rule. For instance, suppose Alice is interested in whether
Bob or Carol will win the upcoming election. One polling company asks
5,000 people whom they plan to vote for. A second company asks only
50 (distinct) people. If we stipulate that each company uses a reasonable
method of selecting participants, Alice will always prefer to learn the results
of the first poll to the results of the second, although she would prefer to
learn the results of both polls to the results of either one.

When performing &, is preferable to performing &, according to every
strictly proper rule, £, first-order stochastically dominates £,. That is, re-

22. For simplicity, we restrict attention here just to the gain in value with respect to the
proposition W instead of the whole credence function.

23. From the setup, if Alice performs &', she has credence .1 she will learn /¥ and cre-
dence .1 she will learn —W7. In either case, she is guaranteed a perfect score of 0, since
she will end up with credence 1 (0) in ¥ just if W is true (false). Conditional on learning
nothing relevant, she has credence .5 she will receive a score of g,(.5) and credence .5
she will receive a score of go(.5). She assigns credence .8 to learning nothing relevant,
so her total expected score should she perform experiment £ is EG(b° (W)) = .4(g,(.5) +
g,(.5)). According to the Brier Score, she expects to have disutility .1875 after perform-
ing £ and disutility .2 after performing £'. On the Log Score, she expects disutility of
appro{ximately .56 after performing £ and disutility of approximately .55 after perform-
ing £.
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gardless of the kinds of bets Alice expects to make, she is in expectation
better off if she performs &,.**

4.2. Evaluation of Agents. One special kind of experiment we often
conduct is to ask other agents what their credence is in some proposition.
Instead of going to her favorite team’s website, for instance, Alice might
ask Bob how confident he is that the team won.

Ex ante, Alice does not know what Bob thinks. We can determine Alice’s
assessment of the value of asking Bob for his credence the same way we de-
termined the value of other experiments above. Let B be the experiment of
asking Bob. Then Val(B) = EG(.5) — EG(b°(W)). That s, the value of ask-
ing Bob is the expected difference in inaccuracy (according to Alice’s scor-
ing rule) of her own credence after asking Bob and her current credence.

Note that EG(b®(W)) is not Alice’s assessment of Bob’s inaccuracy but
is instead her assessment of what her own inaccuracy will be after talking to
Bob. For instance, suppose Alice knows that Bob always has credence 0 in
truths and credence 1 in falsehoods. If Bob tells her he is certain that her
team lost, then she will become certain that they won and vice versa. So,
she is ex ante certain that Bob will be perfectly inaccurate and also certain
that she herself will be perfectly accurate after talking to him.

More formally, we can capture this distinction between Alice’s assess-
ment of her own expected posterior inaccuracy and her assessment of Bob’s
expected inaccuracy as follows. Let B = x refer to the proposition that
Bob’s credence in W is x, and let b (W) := b(W|B = x). We then have®

EG(b°(W)) = 3b(B = x) [b,(W)g,(b(W)) -
+ (1= b,(W))g, (b, (W)) ],

EG(B) = Xb(B = x)(b,(W)g,(x) + (1 = b,(W))g,(x)).  (12)

As before, then, the value of the experiment of asking Bob (i.e., eq. [11])
is determined by what Alice expects of the disutility of her own future cre-
dence, which of course depends on her expectations about what she will use
her credence for. That is why we here look at G(b(W'))—that is, the inac-
curacy of Alice’s credences after talking to Bob.

Equation (12) measures Alice’s assessment of Bob’s inaccuracy before
she learns what he actually thinks. Practically, her view of Bob’s inaccuracy

24. See DeGroot and Fienberg (1982, 1983) and Schervish (1989) for more on the value
of experiments and first-order dominance.

25. More generally, if Bob’s credence could take on any value in [0,1], we can straight-
forwardly replace the sums in both eqq. (11) and (12) with integrals.
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measures how much Alice expects to lose if she were to switch over from her
own credences to Bob’s to make decisions while retaining her preferences
over outcomes. So, if she expects that Bob is more accurate than she is,
she would prefer (ex ante) to use his credences to hers.? Note that, if Bob
is an epistemic expert for Alice, then equations (11) and (12) coincide. That
is, if for any x, b(W|B = x) = x, then g(b (W)) = g.(x).

As with experiments, which agents are expected to be more accurate than
which others is scoring-rule dependent. For instance, Alice might expect
Bob to be more accurate with respect to the Brier Score but less accurate with
respect to the Log Score than Carol is.”” If Alice uses the Brier Score, then
she would prefer Bob’s credences to her own, given the decisions she actu-
ally expects to make.

Alice may also sometimes expect one agent to be more accurate than an-
other regardless of which scoring rule she uses. For example, suppose Alice
treats Bob and Carol both as epistemic experts, but she knows that Carol will
have either credence .8 or.2 in W, while Bob will have either credence .6 or
4 in W. It is easy to check, by equation (12), that for any G that is strictly
proper, Carol is in expectation more accurate than Bob. So, regardless of
the bets Alice expects she will make, she thinks she would be better off using
Carol’s credences than Bob’s credences.® In other words, one agent is
judged absolutely more accurate than another if she is thought to be doing
better regardless of the purposes of inquiry. One agent is judged better rel-
ative to a particular rule if she is thought to be doing better relative to the
particular purposes of inquiry for the proposition(s) in question.

5. Conclusion. We began with two questions: (1) Which measures of inac-
curacy are legitimate? and (2) When should we use a particular measure over
another? Schervish’s theorem provided an answer to both. Strictly proper
scoring rules are the right tools for measuring an agent’s inaccuracy when
she is broadly uncertain what sorts of bets she might face. The exact nature
of her expectation of future decision problems will determine which proper
scoring rule in particular is right for her. Although Schervish’s theorem iden-
tifies inaccuracy with expected practical loss, it retains some claim to being a

26. Because Alice does not yet know what Bob’s credences are, G can be strictly proper
even though she still expects Bob to be more accurate than she is.

27. To see why, imagine that Alice knows Bob has either credence .25 or .75 in W and
that Carol has credence 1, 0, or .5. If she treats both agents as experts with respect to W7,
then—with the right numbers filled in—asking Bob for his credence can be made equiv-
alent to experiment &£, and asking Carol can be made equivalent to £ above.

28. See DeGroot and Fienberg (1982, 1983) and DeGroot and Eriksson (1985) for a de-
tailed characterization of when one credence function is more accurate than another on
every strictly proper rule.
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measure of epistemic utility. After all, it measures the value of a doxastic
state and the value of truth.
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