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In this paper we motivate the ‘principles of trust’, chance-credence principles that are
strictly stronger than the New Principle yet strictly weaker than the Principal Princi-
ple, and argue, by proving some limitative results, that the principles of trust conflict
with Humean Supervenience.

1. Introduction
Humean Supervenience is the speculative, albeit appealing, thesis that
the nomic supervenes on the categorical.1 This paper asks whether
Humean Supervenience is compatible with there being a tight enough
connection between chance and rational credence, and offers new rea-
sons for thinking not.

Past work is instructive.2 There is, on the one hand, some familiar
bad news for Humeans: Humean Supervenience is incompatible with
the Principal Principle. In fact, Humean Supervenience is incompatible
with the weakening of the Principal Principle one gets from a restric-
tion to initial chance and rational initial credence. If Ch is the initial
chance function,Cr is the class of rational initial credence functions, p is
a proposition, and ⟨Ch(p) = x⟩ is the proposition that the initial chance

1 Like Briggs (2009a), we take Humean Supervenience to be necessary and a priori if true,
distinguishing it from the thesis that the nomic supervenes on the distribution of the categorical
properties which are intrinsic to point-sized regions or objects, which may be, as Vranas (2002)
and Lewis (1994) argue, contingent or a posteriori, or both. Although, for reasons discussed in
note 13, that assumption may not be necessary.

2 The literature discussing Humean Supervenience and chance-credence principles is
vast; see, for example, Arntzenius and Hall (2003), Bigelow, Collins and Pargetter (1993),
Briggs (2009a, 2009b), Hall (1994, 2004), Halpin (1994, 1998), Hicks (2017), Ismael (2008), Levin-
stein (2023), Lewis (1980, 1994), Pettigrew (2012, 2015, 2016), Schaffer (2003), Thau (1994),
Vranas (2002), and Ward (2005).
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2 Levinstein and Spencer

of p equals x, then we have the following, a principle that asserts that
rational initial credence reflects initial chance:3

Reflection. ∀π ∈ Cr ∶ π(p∣⟨Ch(p) = x⟩) = x.

As the so-called ‘big, bad bug’ shows, Humean Supervenience and Re-
flection are not both true if chance has the features that science takes it
to have. (See §3 for more.)

There is, on the other hand, some familiar good news for Humeans:
Humean Supervenience is compatible with the New Principle.4 Restrict-
ing theNew Principle to initial chance and rational initial credence gives
us the following, a principle that asserts that rational initial credence
new-reflects initial chance:

New Reflection. ∀π ∈ Cr ∶ π(p ∣ ⟨Ch(p)=x⟩)=Ch(p ∣ ⟨Ch(p)=x⟩).

Chance having the features science takes it to have does not force a
choice between Humean Supervenience and New Reflection. (See §4 for
more.)

Past work leaves much undecided, however. New Reflection does
not draw a tight enough connection between chance and credence. And
a case can be made that Reflection is stronger than need be: that the con-
nection between chance and rational credence can be tight enough, even
if Reflection fails. An investigation of intermediate chance-credence
principles, strictly stronger thanNewReflection and strictly weaker than
Reflection, is thus prompted.

This paper focuses primarily on three such principles: collectively,
the principles of trust.5 The first asserts that rational initial credence
simply trusts initial chance:

Simple Trust. ∀π ∈ Cr ∶ π(p ∣ ⟨Ch(p) ≥ x⟩) ≥ x.6

3 Let Cht be the chance function that holds at time t, and let q be any proposition. The Prin-
cipal Principle is the following: ∀π ∈ Cr ∶ π(p ∣ q ∧ ⟨Cht(p) = x⟩) = x, if q is admissible with
respect to ⟨Cht(p) = x⟩. See Lewis (1980).

4 Let Cht be the chance function that holds at time t, and let q be any proposition. Then we
have the New Principle: ∀π ∈ Cr ∶ π(p ∣ q ∧ ⟨Cht(p ∣ q) = x⟩) = Cht(p ∣ q ∧ ⟨Cht(p ∣ q) = x⟩).
See Hall (1994), Lewis (1994), and Thau (1994).

5 For discussion of intermediate chance-credence principles, including the principles of trust,
see Dorst (2019, 2020), Dorst et al. (2021), Elga (2013), and Levinstein (2023); see also Schervish
(1989).

6 Equivalently, using upper bounds: ∀π ∈ Cr ∶ π(p ∣ ⟨Ch(p) ≤ x⟩) ≤ x.
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Bigger, Badder Bugs 3

Fig. 1. π assigns each of w and v probability 0.5. At w, the chance of w equals
0.9, and the chance of v equals 0.1. At v, the chance of w equals 0.1, and the
chance of v equals 0.9.

Reflection is about equality. Credence function π reflects chance just if,
for every value x and proposition p, conditional on the chance of p being
equal to x, π(p) equals x. Simple Trust is about lower (or, equivalently,
upper) bounds. Credence function π simply trusts chance just if, for each
value x and proposition p, conditional on the chance of p being at least
x, π(p) is at least x.

Figure 1 illustrates the difference with a two-worldmodel. Sincew is
the only world at which the chance of w equals 0.9, w = ⟨Ch(w) = 0.9⟩;7
and since, for every x, 0.1 < x ≤ 0.9, w is the only world at which the
chance of w is at least x, w = ⟨Ch(w) ≥ x⟩. Similarly, v = ⟨Ch(v) = 0.9⟩,
and, for any x, 0.1 < x ≤ 0.9, v = ⟨Ch(v) ≥ x⟩. Credence function π sim-
ply trusts chance: for any x, 0.1 < x ≤ 0.9, π(w ∣ ⟨Ch(w) ≥ x⟩) ≥ x
and π(v ∣ ⟨Ch(v) ≥ x⟩) ≥ x. But π does not reflect chance:
π(w ∣ ⟨Ch(w) = 0.9⟩) ≠ 0.9; rather, π(w ∣ ⟨Ch(w) = 0.9⟩) = 1.

The second principle of trust strengthens Simple Trust by ensur-
ing that a rational initial credence function updated on some informa-
tion simply trusts initial chance updated on the same information, thus
asserting that rational initial credence resiliently trusts initial chance:

Resilient Trust. ∀π ∈ Cr ∶ π(p ∣ q ∧ ⟨Ch(p ∣ q) ≥ x⟩) ≥ x.8

The third, strictly stronger than the previous two, strengthens Sim-
ple Trust by extending it to the expectation of all random variables.
If χ is a random variable,𝔼π(χ) is the expectation of χ derived from some

7 To ease the exposition, we ignore the distinction between a world and its singleton.
8 Equivalently, using upper bounds: ∀π ∈ Cr ∶ π(p ∣ q∧ ⟨Ch(p ∣ q) ≤ x⟩) ≤ x.
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4 Levinstein and Spencer

rational initial credence function π, and 𝔼Ch(χ) is the expectation of χ
derived fromCh, then we have the following, a principle that asserts that
rational initial credence totally trusts initial chance:

Total Trust. ∀π ∈ Cr ∶ 𝔼π(χ ∣ ⟨𝔼Ch(χ) ≥ x⟩) ≥ x.9

Imagine a forecaster who predicts the profit or loss that a given com-
pany will make in the next quarter. And to illustrate just one way in
which totally trusting and reflecting come apart, imagine that we take
the forecaster to be a timid expert, and that we predict, for each n, that
the company will make a profit or loss of $2n, conditional on the fore-
caster predicting that the company will make a profit or loss of $n. If
we divide our credence uniformly among the finitely many predictions
that the forecaster might make, then we totally trust the forecaster’s pre-
dictions: conditional on the forecaster predicting that the company will
make a profit or loss of at least $n, we predict that the companywill make
a profit or loss of at least $n; conditional on the forecaster predicting that
the company will make a profit or loss of at most $n, we predict that the
company will make a profit or loss of at most $n. A more familiar form
of deference is reflection-like: predicting, for each n, that the company
will make a profit or loss of $n, conditional on the forecaster predicting
that the company will make a profit or less of $n. If we regard the fore-
caster as a timid expert, then we do not defer to the forecaster in this
reflection-like way. But, as we will see, totally trusting is a relation of
tremendous interest, a real epistemic joint. Some properties that chance
ought to have—some properties that chance must have, we claim, if the
connection between chance and rational credence is tight enough—are
had by chance only if Total Trust holds. (See §6 for more.)

Reflection is substantially stronger than Total Trust, as recent work
on higher-order evidence underscores. A case can be made that rational
initial credence, though not reflecting itself, totally trusts itself.10 Hop-
ing that Humean Supervenience will prove compatible with Total Trust,
despite being incompatible with Reflection, is thus—prior to a proper
investigation of the matter—not unreasonable.

But the new news is bad news for Humeans. The compatibility of
Humean Supervenience and Total Trust is doubtful. In fact, in light of
the limitative results proved below, it is doubtful that any rational initial
credence function totally trusts initial chance if Humean Supervenience

9 Equivalently, using upper bounds: ∀π ∈ Cr ∶ 𝔼π(χ ∣ ⟨𝔼Ch(χ) ≤ x⟩) ≤ x.
10 This case is made in Dorst (2019, 2020) and Dorst et al. (2021).
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Bigger, Badder Bugs 5

holds. One of the bigger, badder bugs below concerns Simple Trust. We
develop an argument that no rational initial credence function simply
trusts initial chance if Humean Supervenience holds. But the assump-
tions of that argument are stronger than the assumptions needed for the
other bigger, badder bug: the argument that no rational initial credence
function totally trusts chance if Humean Supervenience holds.

2. Inventory of formal tools
Let us begin with an inventory of the formal tools invoked below.

There is, to begin with, a set of possible worlds, W, assumed (for
convenience) to be finite, and a set of propositions, identified with the
power set of W.

There is also a set of random variables. A random variable χ is a func-
tion that maps each possible world w to some real number, χ(w), the
value of χ atw. One special set of random variables is the set of indicator
variables, the random variables whose only possible values are 0 and 1.
The set of indicator variables is, in a certain sense, interchangeable with
the set of propositions: for each indicator variable χ, there is a unique
proposition that contains world w just if χ(w) = 1; for each proposition
p, there is a unique indicator variable that maps world w to 1 just if w is
an element of p.

There is the aforementioned set of rational initial credence func-
tions, Cr. Every credence function maps each proposition to some real
number on the unit interval, and we assume that every rational ini-
tial credence function is a regular probability function: a function that
satisfies the probability axioms and gives non-zero credence to every
non-empty proposition.11 Rational credence evolves: a rational agent’s
present credences are arrived at by conditioning their rational initial cre-
dence function on the information they have gathered heretofore. But
to keep things simple, we set non-initial credence aside, hereafter letting
‘credence’ denote initial credence.

There is also the chance assignment, a function that maps each world
w to the initial chance function that holds atw, namely, Chw. We assume
that every possible initial chance function is a probabilistic credence
function. Chance evolves: the present chances are arrived at by condi-
tioning the initial chance function on the history of the world heretofore.

11 Assuming that every rational initial credence function is regular simplifies many of the
arguments below. But the assumption is not essential.
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6 Levinstein and Spencer

But to keep things simple, we set non-initial chance aside, hereafter
letting ‘chance’ denote initial chance.

Uncertainty about chance is uncertainty about chance de dicto. If
an agent is uncertain whether the chance of p equals x, they are not
uncertain, for anyworldw, aboutwhetherChw(p) = x.What they are un-
certain about is whether Ch(p) = x: whether the chance of p, whatever it
is, equals x. Claims about chance are thus, unless otherwise noted, claims
about chance de dicto. The proposition that the (de dicto) chance of p
equals x, ⟨Ch(p) = x⟩, is a set that includes world w just if Chw(p) = x;
the proposition that the (de dicto) chance of p is at least x, ⟨Ch(p) ≥ x⟩,
is a set that includes world w just if Chw(p) ≥ x.

Random variables are not bearers of chance; only propositions
are. But random variables have (de dicto) chance-expectations, and
our space of propositions includes propositions concerning the chance-
expectations of random variables.The chance-expectation of χ,𝔼Ch(χ), is
a Ch-weighted average of the possible values of χ,∑v∈W Ch(v)χ(v). The
proposition that the chance-expectation of χ equals x, ⟨𝔼Ch(p) = x⟩, is a
set that includes world w just if∑v∈W Chw(v)χ(v) = x; the proposition
that the chance-expectation of χ is at least x, ⟨𝔼Ch(p) ≥ x⟩, is a set that
includes world w just if∑v∈W Chw(v)χ(v) ≥ x.

3. The big, bad bug
With the inventory of formal tools behind us, let us rehearse the big, bad
bug: an argument that the conjunction of Humean Supervenience and
Reflection is inconsistent with scientific practice.

Humean Supervenience is a constraint on the chance assignment.
Possible worlds can be partitioned by their Humean mosaics.12 A cell of
the partition is amosaic. A chance assignment verifies Humean Superve-
nience just if it maps any pair of worlds in the same mosaic to the same
chance function.13

Reflection is another constraint on the chance assignment. The
chance assignment verifies Reflection only if some rational credence
function reflects the chances it engenders. A chance assignment is

12 Or so one must assume to take Humean Supervenience seriously.
13 Here we rely on the assumption that Humean Supervenience is necessary if true. For a

defence of the assumption, see Briggs (2009a, pp. 443–4). But in so far as we are interested in
Resilient Trust or Total Trust, the assumption is not essential. If Humean Supervenience is con-
tingent, then we can focus on the following claim entailed by Resilient Trust: every rational initial
credence function updated onHumean Supervenience simply trusts chance updated onHumean
Supervenience.
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Bigger, Badder Bugs 7

immodest just if it verifies the following, a principle that asserts that each
possible chance function gives itself chance one:

Immodesty. For any worlds v and w, if Chv ≠ Chw, then Chv(w) = 0.

And, if we ignore degenerate chance assignments (as we will, hereafter),
Reflection implies Immodesty: a regular probability functions reflects
the chances engendered by a non-degenerate chance assignment only if
the chance assignment is immodest.14

There are chance assignments that verify both Humean Superve-
nience and Immodesty, but there is a third constraint. An adequate
chance assignment must accord with scientific practice. It is not easy to
say what it takes to accord with scientific practice, but a necessary condi-
tion is ready to hand. Consider the best-system function: a function that
maps eachmosaic to the theory or theories that best systematize the mo-
saic, as judged by the method of theory choice implicit in science. Any
theory that could be among the outputs of the best-system function de-
termines a chance function over the space of possible worlds. A chance
function systematizes a mosaic just if it is determined by all of the theo-
ries to which the best-system function maps the mosaic. To accord with
scientific practice, a chance assignment must verify:

Possible Systematization. Every chance function is compossible with
every mosaic it systematizes.

Verifying Possible Systematization is easy if Humean Supervenience
fails, since different chance functions then can hold at worlds in the
same mosaic. But if Humean Supervenience holds, then a chance func-
tion is compossible with a mosaic only if it is necessitated by the mo-
saic. Humean Supervenience and Possible Systematization thus together
imply:

Necessary Systematization. Every chance function is necessitated by
every mosaic it systematizes.

14 Reflection is a norm of local chance reflection. There is also a norm of global chance re-
flection: ∀π ∈ Cr ∶ π(p ∣ ⟨Ch = Chw⟩) = Chw(p). The global norm straightforwardly implies
Immodesty; see Dorst (2020, p. 616, Fact 3.1). And although, strictly speaking, the local and
global norms are not equivalent, the difference between them can be ignored. For, as Gallow
(2023) proves, they come apart only in the degenerate case in which the chance assignment is
‘half-cyclic’.
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8 Levinstein and Spencer

A chance function is system-modest just if it assigns positive chance to
a mosaic systematized by a distinct chance function. If some mosaic is
systematized by a system-modest chance function, then Immodesty and
Necessary Systematization are not both true. Possible Systematization,
Humean Supervenience, and Immodesty together imply:

Immodest Systematization. No mosaic is systematized by a system-
modest chance function.

And therein lies the problem, for Immodest Systematization is false.
There is room for disagreement about when a chance function system-
atizes a mosaic. The method of theory choice implicit in science is not
entirely transparent to us. But nor is it entirely opaque.We know enough
about it to know that some mosaics are systematized by system-modest
chance functions.

There are realistic ways of illustrating the failure of Immodest Sys-
tematization. Lewis (1994, p. 482) appeals to radioactive decay, noting
that a mosaic systematized by a chance function that encodes one half-
life for a given radioactive particle gives positive chance to mosaics
systematized by distinct possible chance functions that encode distinct
half-lives for the same radioactive particle. But partly to make the prob-
lem clearer and partly to set the stage for the limitative results below, we
will appeal to, as we call them, ‘flip models’.

Each flip model is associated with some natural number, n. The
mosaic of a world in an n-flip model is a binary sequence of length n,
envisaged, picturesquely, as the outcomes of the flips of some quantum
coin:HTHHTH … We assume that every binary sequence of length n is
the mosaic of some world in the n-flip model; we assume—identifying
worlds and mosaics and thereby hard-coding the truth of Humean Su-
pervenience—that no binary sequence of length n is themosaic of more
than one world in the n-flip model; and we assume that each world w
has some precise chance function, Chw.15 We can thus refer to an n-flip
model as a pair ⟨W,P⟩, whereW is the set of binary sequences of length
n, and P is a function from W to probability functions over W, that is,
P ∶W→ Δ(W), w↦ Chw.

15 For some w, Chw may be deterministic, that is, it may specify the result of each flip with
probability 1.
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Bigger, Badder Bugs 9

We call a chance function IID when it treats the coin flips as
independent and identically distributed. Formally, if Hj is the proposi-
tion that the jth flip lands heads, then:

IID. Chance function Ch is IID just if, for any j and k, j < k ≤ n:
(1) Ch(Hj ∧Hk) = Ch(Hj)Ch(Hk), and
(2) Ch(Hj) = Ch(Hk).

One expects the chances associated with coin flips to be distributed
binomially, and it is the IID chance functions that deliver binomial distri-
butions. Let IID(x) be the IID chance function centred on x, the chance
function that deems each flip independent and accords each flip chance
x of landing heads; and let ⟨Ch = IID(x)⟩ be the proposition that holds
at world w just if Chw = IID(x). If w is a world in the n-flip model
at which ⟨Ch = IID(x)⟩ holds, and v is a world in the n-flip model at
which k of the n flips land heads, then Chw(v) = xk(1 − x)n−k; hence,
if ⟨#H = k⟩ is the proposition that exactly k of the n flips land heads,
Chw(⟨#H = k⟩) = (nk)xk(1 − x)(n−k).

Some venerable approaches to chance entail that every world in a
flip model is systematized by an IID chance function. For example, ac-
cording to frequentism, whenever exactly k of the n flips at worldw land
heads, Chw = IID(k/n). Frequentism is not obvious, however. Consider
the following, from the 20-flip model:

wi ∶ HHHHHHHHHHTTTTTTTTTT

It may be that the best-system functionmapswi to the deterministic the-
ory that a flip lands heads if and only if it is among the first ten flips, in
which case the chance function that systematizes wi does not treat the
coin flips as identically distributed.

But we know that many worlds in flip models are systematized by
IID chance functions—IID chance processes are ubiquitous in science,
the norm from which exceptions deviate. We know that the following,
from the 20-flip model, is systematized by IID(1):

wj ∶ HHHHHHHHHHHHHHHHHHHH

We know that the following, from the 20-flip model, is systematized by
IID(0):

wk ∶ TTTTTTTTTTTTTTTTTTTT
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10 Levinstein and Spencer

And we know that many of the worlds wherein exactly half of the flips
land heads are systematized by IID(1/2), the following being a good
candidate:

wl ∶ HTHTHHTTTHHHTTTHTTHH

Arguably, we know something stronger. The great virtue of focus-
ing on flip models is that it allows us to state precise claims about what
science requires of the chance assignment, and a case can be made that
we know the following, a principle that asserts that IID(x) systematizes
some world in the n-flip model whenever x is the actual proportion of
heads to flips at some world in the model:

Proportional Systematization. For any m and n, 0 ≤ m ≤ n, there is
some world in the n-flip model systematized by IID(m/n).

Proportional Systematization is plausible and interesting, and it will play
an important role in one of the bigger, badder bugs to come.

But if our aim is only to bring out the falsity of Immodest Systemati-
zation, nothing so strong is needed. Indeed, the following suffices:

Non-trivial Systematization. In some n-flipmodel, someworld is sys-
tematized by IID(x), 0 < x < 1, and some world is systematized by
some chance function distinct from IID(x).

Non-trivial Systematization is an extremely weak claim about what sci-
ence requires of a chance assignment, yet it is inconsistent with Immod-
est Systematization. If some world in the n-flip model is systematized by
IID(x), and some world is systematized by a chance function distinct
from IID(x), then every world systematized by IID(x) is systematized
by a system-modest chance function, since IID(x) gives positive chance
to every world in the n-flip model.

Taking a step back, we can see the structure of the challenge facing
Humeans. The big, bad bug has three parts. There is a scientific part, a
purported claim about what science requires of the chance assignment.
There is an epistemological part, the claim that the connection between
chance and rational credence is tight enough only if Reflection holds.
And there is themathematical part, a proof that Humean Supervenience
is inconsistent with Reflection, given the purported claim about what
science requires of the chance assignment. Humeans wax poetic about
the epistemological virtues of theirmetaphysics, the optimific balance of
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Bigger, Badder Bugs 11

strength, simplicity and fit that chance and laws as they envisage them
achieve. But the big, bad bug is an impossibility result, and waxing po-
etic is not adequate response to an impossibility result. What Humeans
need is a tenability result: a proof that Humean Supervenience is consis-
tent with some not-too-loose connection between chance and rational
credence, given some not-too-weak claim about what science requires
of the chance assignment.

4. New Reflection
The challenge facing Humeans would be less formidable if New Re-
flection drew a tight enough connection between chance and rational
credence. But it doesn’t.

Indeed, New Reflection bears on the connection between chance
and rational credence only indirectly. What it directly bears on is the
connection between rational credence and, as we will call it, ‘informed
chance’. For each possible chance function Chw, there is the proposition
that Chw holds, ⟨Ch = Chw⟩, and the informed chance function at world
w, Ch+w, is Chw(− ∣ ⟨Ch = Chw⟩), the chance function at w conditioned
on ⟨Ch = Chw⟩. Our space of propositions includes propositions con-
cerning the (de dicto) informed chances of propositions.Theproposition
that the informed chance of p equals x, ⟨Ch+(p) = x⟩, is a set that in-
cludes world w just if Ch+w(p) = x; the proposition that the informed
chance of p is at least x, ⟨Ch+(p) ≥ x⟩, is a set that includes world w just
if Ch+w(p) ≥ x.

NewReflection is equivalent to the following, a principle that asserts
that rational credence reflects informed chance:

Informed Reflection. ∀π ∈ Cr ∶ π(p ∣ ⟨Ch+(p) = x⟩) = x.

The connection New Reflection draws is thus just as tight as the connec-
tionReflection draws, butwhereasReflection connects rational credence
and chance, New Reflection connects rational credence and informed
chance.

If chance is immodest, then chance and informed chance coincide:
Chw = Ch+w for each world w. But if Humean Supervenience holds, then
chance is modest,16 and if chance is modest, then chance and informed
chance can come apart.

16 Humean Supervenience, Possible Systematization, and the negation of Immodest System-
atization together entail the negation of Immodesty.
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12 Levinstein and Spencer

A frequentist, 2-flip model provides a simple illustration. There are
four worlds, HH, HT, TH, and TT. If frequentism holds at each, then
ChHH = IID(1), ChHT = IID(1/2) = ChTH, and ChTT = IID(0). But
the chance of both flips landing heads is 1/4 only if exactly one flip land
heads. So chance and informed chance come apart: ChHT(HH) = 1/4 <
Ch+HT(HH) = 0.

The connection New Reflection draws between rational credence
and informed chance induces an indirect connection between chance
and rational credence. But the induced connection is not tight enough
if chance and informed chance can come apart, as we can see by consid-
ering anti-expertise.

Say that credence function π treats de dicto probability function P as
an anti-expert with respect to some proposition-value pair, (p, x), just
if π(p ∣ ⟨P(p) ≥ x⟩) < x and π(p ∣ ⟨P(p) < x⟩) ≥ x; and say that P
is free of anti-expertise just if no rational credence function treats P as
an anti-expert with respect to any proposition-value pair. While Reflec-
tion entails that chance is free of anti-expertise,17 New Reflection does
not. In fact, it is consistent with New Reflection that chance is rife with
anti-expertise.

Chance is, as Lewis says, a guide to life:

It is reasonable to let one’s choices be guided in part by one’s firm
opinions about objective chances or, when firm opinions are lacking,
by one’s degrees of belief about chance.…The greater chance you
think the ticket has of winning, the greater should be your degree
of belief that it will win; and the greater is your degree of belief that
it will win, the more, ceteris paribus, it should be worth to you and
the more you should be disposed to choose it over other desirable
things. (Lewis 1980, pp. 287–8)

But because it is consistent with New Reflection that chance is rife with
anti-expertise, it is consistent with New Reflection that chance is an anti-
guide to life. It is consistent with New Reflection that rational agents
often take truth and chance to be anti-correlated, regarding as evidence
against p information that increases what they think the chance of p
is. It is thus consistent with New Reflection that rational agents often
prefer a lesser chance to a greater chance of getting the things they de-
sire. And that, we think, is absurd. Chance is not an anti-guide to life;

17 Chance is free of anti-expertise if and only if Simple Trust holds, and Reflection entails
Simple Trust.
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Bigger, Badder Bugs 13

Fig. 2. π assigns w and v probability 0.5. Chw(w) = Chv(v) = 0.9, and
Chv(w) = Chw(v) = 0.1. π new reflects Ch.

and from that we conclude that every tight enough chance-credence
principle entails that chance is free of anti-expertise.

A two-world model provides an illustration. Suppose that each of
w and v accords the other more chance than it accords itself: Chw(v) =
Chv(w) = 0.9, andChw(w) = Chv(v) = 0.1.The agent prefersw to v.The
agent divides their credence equally between the two worlds and new-
reflects chance: π(w) = π(v) = 0.5, and for any p, π(p ∣ ⟨(Ch(p) = x⟩) =
Ch(p ∣ ⟨(Ch(p) = x⟩)). The agent then regards chance as an anti-expert:
the agent thinks that evidence that the chance ofw is low is evidence that
w is true, and thus prefers a lesser chance of getting what they prefer, a
lesser chance of w, to a greater chance. See Figure 2 for a depiction of
this scenario.

Reflection is tight enough—Reflection entails that chance is free of
anti-expertise. But Reflection implies Immodesty, and as the big, bad
bug shows, Humean Supervenience is incompatible with any chance-
credence principle that entails Immodesty. The principles of trust thus
prove their interest; for all of them entail that chance is free of anti-
expertise, and none of them imply Immodesty.

5. Simple Trust
Simple Trust, the weakest of the principles of trust, is equivalent to
the claim that chance is free of anti-expertise. So if every tight enough
chance-credence principle entails that chance is free of anti-expertise,
Simple Trust holds.

Simple Trust can also be motivated by appeal to accuracy. Say that
credence function π treats de dicto probability function P as expectedly
inaccurate just if, for some acceptable way of measuring accuracy, π
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14 Levinstein and Spencer

expects itself to bemore accurate than P; and say that P is free of expected
inaccuracy just if no rational credence function treats P as expectedly
inaccurate. Chance ought to be free of expected inaccuracy. The indica-
tor function at world w specifies the value of each indicator variable at
w, thus—given the aforementioned interchangeability of indicator vari-
ables and propositions—specifying the truth-value of each proposition
at w. Chance is highly inaccurate at world w just if the divergence be-
tween Chw and the indicator function at world w is great, and while
proponents and opponents of Humean Supervenience disagree about
the prevalence of worlds at which chance is highly inaccurate, all sides
agree that no rational (initial) credence function gives high credence to
worlds at which chance is highly inaccurate.

Chance is free of expected inaccuracy only if Simple Trust holds,
however. In fact, the implication goes both ways. As Levinstein (2023)
shows, if the received view is correct about what the acceptable ways of
measuring accuracy are—if the acceptable ways of measuring accuracy
are the additive, strictly proper, truth-directed measures that satisfy cer-
tain continuity and limit assumptions—then Simple Trust is equivalent
to the claim that chance is free of expected inaccuracy.18

6. Total Trust
It is doubtful that Simple Trust is itself tight enough, however, for two
reasons.

The first concerns accuracy. The accuracy argument for Simple
Trust, when generalized, becomes an argument for Total Trust. The
specification function at world w generalizes the indicator function at
world w, specifying the value of all random variables at w. A proba-
bility function P induces an estimate function, 𝔼P, which maps each
random variable χ to some real number, 𝔼P =∑W P(w)χ(w), and just as
divergence is distance between probability and indication, estimate in-
accuracy—the generalization of inaccuracy to all random variables—is
divergence between estimate and specification. The estimate inaccuracy
for a set of random variables of probability function P at world w is a
measure of how far apart 𝔼P is from the specification function for those
variables at w.19

18 For the precise conditions required on measures of accuracy, see Levinstein (2023).
19 For technical details, see Dorst et al. (2021) and Campbell-Moore (MS).
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Bigger, Badder Bugs 15

Say that credence function π treats de dicto probability function P
as expectedly estimate inaccurate just if, for some acceptable way of mea-
suring estimate inaccuracy, π expects itself to be more estimate-accurate
than P for some random variable; and say that P is free of expected esti-
mate inaccuracy just if no rational credence function expects itself to
be more expectedly estimate-accurate than P for any random variable.
Chance ought to be free of expected estimate inaccuracy, for the same
reasons that chance ought to be free of expected inaccuracy. But, as
Dorst et al. (2021) show, generalizing the result proved in Levinstein
(2023), if the received view is correct about what the acceptable ways of
measuring estimate inaccuracy are—if the acceptable measures of esti-
mate inaccuracy are strictly proper, truth-directed measures that satisfy
certain continuity and limit assumptions—thenTotal Trust is equivalent
to the claim that chance is free of expected estimate inaccuracy.20

The second reason concerns choice. If chance is a guide to life, then
deferring a choice to chance—letting chance choose on one’s behalf, as it
were, giving chance power of attorney—ought always to be rational. But
deferring a choice to chance is always rational only if Total Trust holds.
In fact, the implication holds both ways. As Dorst et al. (2021) show, To-
tal Trust is equivalent to the claim that deferring a choice to chance is
always rational.

Choice technicalities: A choice is a set of pairwise exclusive options,
O = {o1, … , on}. Each option is a random variable, a function that
maps each world to some real number which represents how desirable
the agent finds the option at the world. The expected value of option o,
relative to credence function π, V(π, o), equals∑W π(w)o(w).

Deferring a choice among O to chance is a strategy: the chance-
expected value of option o at world v is∑w Chv(w)o(w), and deferring a
choice amongO to chance is a function that maps each world v to some
option that maximizes chance-expected value at v. If s(w) is the value at
w of the option to which world w is mapped by the strategy of deferring
a choice to chance, then the expected value of deferring a choice among
O to chance, relative to credence function π, is∑W π(w)s(w).

Credence function π permits deferring a choice amongO to P just if,
for each o inO, V(π, o) ≤ V(π, s). It is rational to defer a choice among
O to P just if every rational credence function permits deferring a choice
amongO to P. And it is always rational to defer a choice to P just if, for
anyO, it is rational to defer a choice amongO to P. End of technicalities.

20 For the precise statement and proof of this result, see Dorst et al. (2021)
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16 Levinstein and Spencer

It is doubtful that the connection between chance and rational
credence is tight enough if it is not always rational to defer a choice to
chance. Deferring a choice to chance is playing the chances, selecting an
option that maximizes chance-expected value, and if chance is a guide
to life, then it should always be rational to play the chances. But if it is
always rational to defer a choice to chance, then Total Trust holds: the
claim that every rational credence function totally trusts some de dicto
probability function P is equivalent to the claim that it is always rational
to defer a choice to P.21

It is an interesting questionwhether Total Trust is itself tight enough.
One worry stems from expectation-matching.22 Another worry stems
from stochastic dominance.23 One could insist that nothing short of Re-
flection is tight enough. Indeed, the big, bad bug is often cited as a reason
against Humean Supervenience. However, many Humeans remain, and
many of them have taken solace in the New Principle. These Humeans
are our dialectical targets. The New Principle is not tight enough, as it
does not require chance to be a guide to life. More is needed, and we sub-
mit that even those willing to abandon Reflection should still demand
that chance be totally trustworthy.

21 Dorst et al. (2021) offer an example to help illustrate the difference between Simple Trust
and Total Trust. Suppose that there are three worlds, w, v, and u. Suppose that there are two
options, o0(w) = o0(v) = o0(u) = 0, o1(w) = 29, o1(v) = −3, and o1(u) = −13. And con-
sider the following chance assignment: Chw(w) = 0.45, Chw(v) = 0.10, and Chw(u) = 0.45;
Chv(w) = 0.15; Chv(v) = 0.70, and Chv(u) = 0.15; and Chu(w) = 0.30, Chu(v) = 0.10, and
Chu(u) = 0.60. At each of the three worlds, the chance-expected value of o1 exceeds zero, and
hence exceeds the chance-expected value of o0. But some probabilistic credence functions that
simply trusts (and indeed resiliently trusts) this chance assignment nevertheless strictly prefer o0
to o1. One example is π(w) = 0.17, π(v) = 0.56, and π(u) = 0.27.

22 Matching one’s credences to one’s expectation of the chances is a central part of science and
a ubiquitous part of daily life. It is thus natural to insist that a chance-credence principle entail
Chance Expectation: ∀π ∈ Cr ∶ π(p) = ∑W π(w)Chw(p). Reflection entails Chance Expecta-
tion, but Total Trust does not, as the following two-world model illustrates: π(v) = π(w) = 0.5;
Chv(v) = 0.9;Chv(w) = 0.1;Chw(w) = 0.8; andChw(v) = 0.2; cf. (Dorst et al. 2021, p. 124, n. 18).

23 The proposition that the value of option o exceeds x ⟨o ≥ x⟩, is a set that includes world w
just if o(w) ≥ x. The proposition that option oi chance-wise stochastically dominates option oj,
⟨oi ≻ oj⟩, is a set that includes world w just if (a) for every x, Chw(⟨oi ≥ x⟩) ≥ Chw(⟨oj ≥ x⟩),
and (b) for some x, Chw(⟨oi ≥ x⟩) > Chw(⟨oj ≥ x⟩). Reasoning by chance-wise stochas-
tic dominance is ubiquitous and intuitive. It is thus natural to insist that a chance-credence
principle entail Chance-wise Stochastic Dominance: ∀π ∈ Cr ∶ if π(⟨oi ≻ oj⟩) > 0, then
∑W π(w ∣ ⟨oi ≻ oj⟩) oi(w) ≥ ∑W π(w ∣ ⟨oi ≻ oj⟩) oj(w). Reflection entails Chance-wise
Stochastic Dominance, but Total Trust does not, as the following four-world model illustrates:
π(u) = π(v) = π(w) = π(x) = 1/4; π = Chu; Chv(u) = 2/9, Chv(v) = 1/3, Chv(w) = 2/9, and
Chv(x) = 2/9; Chw(u) = 2/11, Chw(v) = 3/11, Chw(w) = 4/11, and Chw(x) = 2/11; Chx(u) = 2/13,
Chx(v) = 3/13, Chx(w) = 4/13, and Chx(x) = 4/13; oi(u) = 1, oi(v) = 2, oi(w) = 0, and
oi(x) = 4; and oj(u) = 4, oj(v) = 0, oj(w) = 1, and oj(x) = 1. Although π totally trusts chance,
∑W π(w ∣ ⟨oi ≻ oj⟩) oi(w) = 1.5 <∑W π(w ∣ ⟨oi ≻ oj⟩) oj(w) = 2.
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Bigger, Badder Bugs 17

7. A bigger, badder bug
Our first limitative result concerns Simple Trust. Consider the following,
a principle that asserts that every proposition is compossible with every
possible proposition that sets a positive lower bound on its chance:

Threshold Compossibility. For every value x > 0, if ⟨Ch(p) ≥ x⟩ is
possible, then p ∧ ⟨Ch(p) ≥ x⟩ is possible.

Simple Trust entails Threshold Compossibility. In fact, no regular prob-
ability function simply trusts chance if Threshold Compossibility fails.24
And as flip models make clear, the conjunction of Humean Superve-
nience and Threshold Compossibility is incompatible with plausible
claims about what science requires of the chance assignment. For exam-
ple, as we prove in this section, in any n-flip model, n > 4, Threshold
Compossibility is incompatible with Proportional IID.

The proof proceeds by cases. Let a k-heads world be a world at which
k flips land heads, and consider the following, a principle that asserts that
IID(k/n) holds at some world w in an n-flip model only if w is a k-heads
world:

Matching. For any world w in an n-flip model, if Chw = IID(k/n),
then w ∈ ⟨#H = k⟩.

If Proportional IID holds, andMatching fails, then the chance that some
world accords itself is exceeded by the chance accorded to it by some
other world. To see this, take an arbitrary counter-instance to Matching:
suppose thatChw = IID(k/n), and suppose thatw is a j-heads world, j ≠ k.
Since Proportional IID holds, there is some world v in the n-flip model
at which IID(j/n) holds. For any z, 0 ≤ z ≤ n, the chance of w at a world
at which IID(z/n) holds equals (z/n)j(1 − k/n)n−j, which takes its unique
maximum at z = j. The chance of w at v thus exceeds the chance of w
at w, and Threshold Compossibility therefore fails. The proposition that
the chance of w is at least as high as the chance of w at v is, although
possible, not compossible with w.

Threshold Compossibility also fails, however, in any n-flip model,
n > 4, if Proportional IID and Matching hold, as we see clearly in the
6-flip model. Let ⟨#H = 2⟩ ∨ ⟨#H = 4⟩ be the proposition that the coin

24 If π is a rational credence function, and ⟨Ch(p) ≥ x⟩ is possible, then π(p ∣ ⟨Ch(p) ≥ x⟩)
is defined. If π(p ∣ ⟨Ch(p) ≥ x⟩) is defined, and p ∧ ⟨Ch(p) ≥ x⟩ is impossible, then
π(p ∣ ⟨Ch(p) ≥ x⟩) = 0 < x.
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18 Levinstein and Spencer

lands heads either exactly two or exactly four times; let w2 be a 2-heads
world atwhich IID(2/6)holds; letw3 be a 3-headsworld atwhich IID(3/6)
holds; and let w4 be a 4-heads world at which IID(4/6) holds. Because
of the bell-shape of the binomial curve, Chw3(⟨#H = 2⟩ ∨ ⟨#H = 4⟩),
the sum of the fairly high chance w3 accords to 2-heads worlds and
the fairly high chance w3 accords to 4-heads worlds, exceeds both
Chw2(⟨#H = 2⟩ ∨ ⟨#H = 4⟩), the sum of the high chance w2 accords
to 2-heads worlds and the low chancew2 accords to 4-heads worlds, and
Chw4(⟨#H = 2⟩ ∨ ⟨#H = 4⟩), the sum of the low chance that w4 ac-
cords to 2-heads worlds and the high chance that w4 accords to 4-heads
worlds.

Chw2(⟨#H = 2⟩ ∨ ⟨#H = 4⟩) = (6
2
) (2/6)2 (4/6)4

+ (6
2
) (2/6)4 (4/6)2 ≈ 0.41

Chw3(⟨#H = 2⟩ ∨ ⟨#H = 4⟩) = (6
2
) (3/6)2 (3/6)4

+ (6
2
) (3/6)4 (3/6)2 ≈ 0.47

Chw4(⟨#H = 2⟩ ∨ ⟨#H = 4⟩) = (6
2
) (4/6)2 (2/6)4

+ (6
2
) (4/6)4 (2/6)4 ≈ 0.41

For a visual depiction, see Figure 3.
We can thus produce a counterexample to Threshold Compossibil-

ity by taking any non-empty subset of ⟨Ch = IID(2/6)⟩∨⟨Ch = IID(4/6)⟩,
which includes exactly as many elements of ⟨Ch = IID(2/6)⟩ as ⟨Ch =
IID(4/6)⟩. One example is the disjunction of w2 and w4:

Chw2(w2 ∨w4) ≈ 0.027
Chw3(w2 ∨w4) ≈ 0.031
Chw4(w2 ∨w4) ≈ 0.027
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Bigger, Badder Bugs 19

Fig. 3. Figure 3(a) displays the probabilities assigned to 0, 1, 2, 3, 4, 5, 6 oc-
currences of heads for IID(3/6) and IID(2/6). Figure 3(b) isolates the difference
assigned to two occurrences and six occurrences of heads. Although IID(3/6)
assigns lower probability to there being exactly two occurrences of heads than
IID(2/6) does, it assigns significantly higher probability to there being exactly
four occurrences of heads.

The calculations above pertain only to the 6-flip model. But similar
reasoning shows that in any n-flip model, n > 4, Threshold Compossi-
bility fails if Proportional IID and Matching both hold.25

Proportional IID enjoys considerable plausibility. If it is possible
that a quantum coin flipped n times lands heads exactlym times, then it
seems possible that each flip of a quantum coin flipped n times be inde-
pendent and have chance m/n of landing heads. A Humean who denies
Proportional IID thus denies the possibility of something that seems pos-
sible. Of course, Humeans are committed to denying the possibility of
things that seem possible already. It seems possible that an indetermin-
istic quantum coin lands heads on each of its n flips. But there is only
one n-heads world in the n-flip model. So if a Humean thinks that the
n-heads world in the n-flip model is deterministic, a world in which it is
nomically necessary that every flip lands heads, then the Humean must
deny that it is possible that an indeterministic quantum coin land heads
on each of its n-flips. But denying Proportional IID is not just denying
the possibility of something that seems possible. It is one thing to set
limits on how far apart the underlying chances and frequencies can be.
It is another thing to set limits on how close together they can be. The

25 For each m, let wm be a m-heads world in the n-flip model at which IID(m/n) holds. If
n > 4 is even, then w(n−2)/2 ∨ w(n+2)/2 is not compossible with the claim that the chance of
w(n−2)/2 ∨ w(n+2)/2 is at least x, where x is the chance of w(n−2)/2 ∨ w(n+2)/2 at wn/2. If n > 4 is odd,
then w(n−3)/2 ∨ w(n+1)/2 is not compossible with the claim that the chance of w(n−3)/2 ∨ w(n+1)/2 is
at least x, where x is the chance of w(n−3)/2 ∨ w(n+1)/2 at w(n−1)/2.
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20 Levinstein and Spencer

chances that feature in our best scientific theories are often arrived at by
fitting a curve to the actual frequencies.

And the full strength of Proportional IID is not needed to ren-
der Threshold Compossibility and Humean Supervenience incompati-
ble. Say that x is a possible IID centre in an n-flip model just if IID(x)
holds at some world in the n-flip model. The thrust of the point then
can be put, vaguely but helpfully, as follows: Threshold Compossibility
fails in an n-flip model whenever the possible IID centres are sufficiently
clustered. Proportional IID entails that the possible IID centres are suf-
ficiently clustered, but weakenings do likewise. For example, if there are
three possible IID centres inclusively between 8/20 and 12/20 in the 20-flip
model, then Threshold Compossibility fails.

Reconciling Simple Trust and Humean Supervenience is harder
than reconciling Threshold Compossibility and Humean Superve-
nience—Threshold Compossibility does not entail Simple Trust. But
appreciating the challenge of reconciling Threshold Compossibility and
Humean Supervenience helps us see how formidable the challenge fac-
ing Humeans is. Science requires that there be many possible IID cen-
tres, and apparently weak claims about the diversity and distribution
of possible IID chance in flip models renders Threshold Compossibility
false.

8. Another bigger, badder bug
The next limitative result concerns Total Trust. Consider the following,
a principle that asserts that there are at least two non-trivial possible IID
centres in big enough flip models.

Non-trivial Diversity. If n is big enough, then for some x and y,
0 < x < y < 1, IID(x) and IID(y) each hold at some world or other
in the n-flip model.

There is a claim about the extent of IID chance: a claim, clarified and
made precise below, about the proportion of worlds in flip models at
which IID chance functions hold. The claim is weak—it is very plausi-
ble that its truth is part ofwhat science requires of the chance assignment.
And aswe prove (in theAppendix), Non-trivial Diversity andTotal Trust
are not both true if this weak claim about the extent of IID chance holds.

The tension Total Trust engenders in flip models between the extent
of IID chance and the diversity of possible IID centres is easy to see if
we consider a very strong claim about the extent of IID chance.

Mind, Vol. XX . XX . XXXXXXX 2024 © Levinstein and Spencer 2024

D
ow

nloaded from
 https://academ

ic.oup.com
/m

ind/advance-article/doi/10.1093/m
ind/fzae039/7747226 by U

niversity of Illinois - U
rbana C

ham
paign user on 02 Septem

ber 2024



Bigger, Badder Bugs 21

Call w and v mirrored in an n-flip model just in case the sequence of
heads and tails in w and v is exactly switched. That is, Hj (heads on the
jth flip) holds at w just in case Tj holds at v. For example, in a five flip
model, the worldHHTTH and the world TTHHT are mirrored. The fol-
lowing constraint requires a symmetry between mirrored worlds when
one has an IID chance function.

Symmetry. An n-flip model is symmetric just if, for all w ∈ W, if
Chw = IID(x), and v mirrors w, then Chv = IID(1 − x).

Let #w be the number of occurrences of heads at w. That is, #w = k
just in case w ∈ ⟨#H = k⟩. We then have the following result:

Initial Triviality. If ⟨W,P⟩ is an n-flip model totally trusted by some
π, all members of P are IID, and ⟨W,P⟩ is symmetric, then if
0 < #w < n, Chw = IID(1/2).

So, for example, if Total Trust holds, all of the possible chance functions
in the 1000-flip model are IID, and the 1000-flip model is symmetric,
then Non-trivial Diversity fails; for IID(1/2) then holds at every world
in the 1000-flip model, except perhaps the 0-heads and the 1000-heads
worlds.26

Here is a sketch of the proof:

Proof (Sketch). The proof appeals to a background fact (Ap-
pendix, Theorem 1): if ⟨W,P⟩ is an n-flip frame, then some reg-
ular probability function π totally trusts ⟨W,P⟩ if and only if the
members of P totally trust one another.

Suppose each element of P is IID, and suppose that ⟨W,P⟩
is symmetric. We show that if the elements of P resiliently trust
one another, then Chw = Chv for all Chw,Chv ∈ P unless there
are either 0 or n occurrences of heads at w or v.

Let E be the proposition that there are either n − 1 or n total
occurrences of heads and Hn be the proposition that all flips are
heads. By Symmetry and the fact that all chance functions are IID,

26 The idea for this result depends on the fact that in a binomial distribution the probability
of all flips coming up heads decreases very rapidly for IID(x) as x decreases. Suppose, then, that
Chw is IID(x) for some low x. If Chw conditions on the fact that the chance of heads is actually
high, it still won’t assign high probability to all heads. That is, Chw(All heads ∣ Ch(H) is high)
will still be too low.
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22 Levinstein and Spencer

all worlds with the same number of occurrences of heads have the
same chance function. Let Chj refer to the chance function at all
worlds with j-occurrences of heads and let Chj(H) = pj.27 Finally,
let Chn−1(Hn ∣ E) = x.

We can then derive that:

Ch1(Hn ∣ E, ⟨Ch(Hn ∣ E) ≥ x⟩) = Ch1(Hn ∣ E)

= pn1
npn−11 (1 − p1) + pn1

(1)

and

Chn−1(Hn ∣ E, ⟨Ch(Hn ∣ E) ≥ x⟩) = pn−1(Hn ∣ E)

= pnn−1
npn−1n−1(1 − pn−1) + pnn−1

(2)

= (1 − p1)n

n(1 − p1)n−1p1 + (1 − p1)n
(3)

= x

(Lines (1) and (2) follow from the fact that H is distributed ac-
cording to a binomial distribution, and line (3) follows from
Symmetry.)

If all functions in P totally trust one another, then they re-
siliently trust one another. So we check what is required to make
line (1) greater than or equal to line (3).With some simple algebra,
we find that this requires p1 ≥ 1/2 and pn−1 ≤ 1/2. Given Resilient
Trust, this entails that p1 = … = pn−1 = 1/2. ◻

We prove a variant of this result in the Appendix (Theorem 12). Of
course, even if the chance functions at many or most of the worlds in
the n-flip model are IID, it is doubtful that every possible chance func-
tion in the n-flip model is IID. Initial Triviality thus puts little pressure,
if any, on a Humean. But all we need to render Non-trivial Diversity and
Total Trust incompatible is a weak claim about the extent of IID chance:
the claim, clarified and made precise immediately below, that the extent
of IID chance in n-flip models does not decrease as n increases.

27 For what we’ve said so far, some worlds with the same number of heads might still have (up
to two) different IID chance functions. This slightly complicates the proof in tedious ways, so we
omit details.
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Bigger, Badder Bugs 23

For simplicity, we consider only n-flip models where n is even, and
we assume that there is at least one (n/2)-heads world at which IID(1/2)
holds. We put these two ideas together with the following axiom:

Fifty/Fifty. If ⟨W,P⟩ is an n-flip model, then n is even, and at some
w ∈ ⟨#H = n/2⟩, Chw = IID(1/2).

It will now be useful to introduce some more definitions. For a
given n-flip model, we say that a number m is in the IID region of n
if there is some m-heads world at which an IID chance function holds.
In notation, we write IID(Chw) to mean Chw is IID, and we define
IID reg(n) ∶= {m ∶ ∃w such that #w = m and IID(Chw)}.

We say that m is in the even odds region of n just if there is some
m-heads world in the n-flip model at which IID(1/2) holds. In notation,
EO-region(n) ∶= {m ∶ ∃w such that Chw = IID(1/2) and #w = m}.
And we let ℓ(n) be the smallest number in the even odds region of n:
ℓ(n) ∶=minmm ∈ EO-region(n).

The next axiom codifies the earlier thought that IID chance func-
tions are possible at worlds with a reasonable mixture of heads and tails.
The specific assumption we need is:

Sufficiency. If ⟨W,P⟩ is an n-flip model, then (1) for all k such that
n/4 ≤ k ≤ n/2, k is in the IID region of n, and (2) if 0 is not in the even
odds region of n, then ℓ(n) − 1 is in the IID region of n.

The first part of this axiom ensures that an IID chance function holds
at some k-heads world if k is between n/4 and n/2. This seems very rea-
sonable, especially in large models. There is, taking such a case, some
250,000-headsworld in the 1,000,000-flipmodelwithout any discernible
pattern beyond the fact that tails occurs three times as often as heads.28
The second part ensures that there is some world with an IID chance
function centred on something other than 1/2, unless the model is com-
pletely trivial and assigns an IID chance function centred on 1/2 even in
the n-heads world.

The next assumption establishes a particular type of lower bound on
the percentage of worlds with IID chance functions.

28 When combined with Symmetry, Sufficiency guarantees that there an IID chance function
holds at some k-heads world, if k is between n/2 and 3n/4.
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24 Levinstein and Spencer

Boundedness. There exist d > 0 and N ∈ ℕ such that for all n ≥ N, if
⟨W,P⟩ is an n-flip model and m is in the IID region of n, then

∣{w ∶ #w = m and IID(Chw)}∣
∣⟨#w = m⟩∣ ≥ d

Here’s the intuition. We let the Humean pick some number n that she
counts as ‘big’. We also let her pick some really small lower bound. For
concreteness, say big numbers are at least 100 and the lower bound is
1%. We give her a big n-flip model and ask her for which m ≤ n there
is at least one m-heads world at which an IID chance function holds.
This axiom then requires that at least one percent of them-heads worlds
have IID chance functions. She is free to make ‘big’ be as large as she
likes, and she is free to make d be as small as she likes so long as it is
bigger than 0.29

This axiom is technical, but innocuous. Worlds at which IID chance
functions hold are disorganized. There is not much to say about them
beyond roughly what the frequency of heads to tails is. (If there were
more to say, then there would be a nice law characterizing the pattern.)
As n grows large, more and more worlds are disorganized—most se-
quences appear totally random. Think of a television screen with its mix
of black and white pixels. There are a few arrangements of such pixels
that result in discernible patterns, something you could relatively easily
describe. But for the vastmajority, the screen is just randomnoise. Deny-
ing Boundedness is akin to thinking that discernible patterns are more
common as the size of the television screens increases, which is exactly
the opposite of what seems clear. Discernible patterns are less common
as the size increases.

The final axiom is required for technical reasons:

Monotonicity. If ⟨W,P⟩ is an n-flip model and Chw,Chv in P are
both IID with Chw(H) < Chv(H), then Chw(⟨Ch(Hn) ≥ 2−n⟩) <
Chv(⟨Ch(Hn) ≥ 2−n⟩).

If all worlds in the model are IID, then Monotonicity is redundant. In
that case, ⟨Ch(Hn) ≥ 2−n⟩ = ⟨Ch(H) ≥ 1/2⟩. This axiom rules out
strange situations where many non-IID worlds with relatively few heads
for some reason give fairly high probability to the claim that all flips land
heads.

29 We can actually weaken this axiom so that it only applies tom in the even odds region of n
instead of in the IID region of n, but it strikes us as a bit less natural when stated that way.
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Bigger, Badder Bugs 25

We can now state our most powerful result (see the Appendix for
proof).

Serious Triviality. Let ⟨W1,P1⟩, ⟨W2,P2⟩, … be a sequence of mod-
els with ∣Wi∣ < ∣Wi+1∣. Assume each validates Sufficiency, Fifty/Fifty,
Monotonicity, and Symmetry. Moreover, assume that Boundedness
holds of the sequence. Then there exists an N ∈ ℕ such that if i ≥ N
and some regular probability function totally trusts ⟨Wi,Pi⟩, then
for all Chw ∈ Pi such that IID(Chw), we have Pw = IID(1/2).

Serious Triviality tells us that the weak claim about the extent of IID
chance—the conjunction of Sufficiency, Fifty/Fifty, Monotonicity, Sym-
metry, and Boundedness—implies that Total Trust and Non-trivial Di-
versity are not both true. If any rational credence function totally trusts
chance and the weak claim about the extent of IID chance holds, then for
large n, every possible IID chance function in the n-flipmodel is centred
on 1/2, except possibly the 0-heads and n-heads worlds.

Science requires both that the extent of IID chance be considerable
and that the diversity of possible IID centres be many. The case for Total
Trust is strong. But as the proof of Serious Triviality reveals, no chance as-
signment that is totally trusted by a rational credence function provides
both the extent of IID chance and the diversity of possible IID centres
that science requires.

9. Conclusion
Thebig, bad bug shows that Humean Supervenience is inconsistent with
Reflection, given a hard-to-deny claim aboutwhat science requires of the
chance assignment. A promising Humean response is to reject Reflec-
tion in favour of some principle that draws a looser but still tight enough
connection between chance and credence. The connection that New Re-
flection draws is, we argue, not tight enough, so we are led to the prin-
ciples of trust, intermediate principles, which are strictly weaker than
Reflection yet strictly stronger than New Reflection. The suspicion that
Humean Supervenience is not consistentwith a tight enough connection
between chance and credence would be greatly reduced with a tenabil-
ity result: a proof that Humean Supervenience is consistent with some
or all of the principles of trust, given some not-too-weak assumptions
about what science requires of the chance assignment. But what we have
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26 Levinstein and Spencer

instead are bigger, badder bugs: proofs thatHumean Supervenience is in-
consistent with principles of trust, given stronger but still hard-to-deny
claims about what science requires of the chance assignment.

Our limitative results pertain to particularly simple flip models: fi-
nite, fixed flip models, wherein each world has the same number of flips.
Some of our results extend to finite, variable flip models, wherein differ-
ent worlds have different numbers of flips.30 But there ismore work to do
investigating both finite, variable flip models and infinite flip models.31

And there is work to do extending the argument beyond flipmodels.
Realistic hypotheses about the world we find ourselves in are, in various
ways, unlike a world exhausted by a sequence of coin flips. Even if a real-
istic hypothesis about our world could be encoded in a binary sequence,
it is unlikely that our best scientific theories would treat each bit in the
binary sequence as the outcome of some IID chance process. But the
difference between the worlds in flip models and realistic hypotheses
about the world we find ourselves in does not obviously provide solace
to Humeans. Our experience suggests that reconciling Humean Super-
venience and the principles of trust becomes harder, not easier, as the
size and the complexity of the model increases.

The way forward is gradual and mathematically precise, proceed-
ing from less to more realistic models. Our limitative results are just
some of the very many out there—there is a continent to explore. There
are many claims about what science requires of the chance assignment
worth considering and many intermediate chance-credence principles
besides the principles of trust. The continent is sure to contain stronger
limitative results than the ones proved here. Whether the continent
also contains philosophically interesting tenability results remains to be
seen. Is there any proof that Humean Supervenience is consistent with
some tight enough connection between chance and credence, given the
truth of hard-to-deny claims about what science requires of the chance
assignment?32

30 For example, the fact that Simple Trust and Proportional IID are not both true in a finite,
fixed flip model implies that Resilient Trust and Proportional IID are not both true in a finite,
variable flip model.

31 There is alsowork to do investigating flipmodels inwhich someworlds lack a precise chance
function.

32 Thanks to Kevin Dorst, Jason Konek, Brian Skyrms, Neal E. Young, and audiences at the
University of Chicago, the Formal Rationality Forum, Carnegie Mellon University, andMIT. Ben
Levinstein was partly supported by a Mellon New Directions Fellowship (no. 1905-06835) and
by Open Philanthropy.
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Bigger, Badder Bugs 27

Appendix
Here we prove a variant of the Initial Triviality result (Theorem 12) and
prove the Serious Triviality result (Theorem 15).

A.1. Notation and terminology
Asbefore, we use ⟨W,P⟩ to refer to a genericn-flipmodel.Wewill switch
to using Pw ∈ P to refer to the chance function at a world (instead of
Chw) and P to refer to the (de dicto) chance function—whatever it is—
(instead of Ch) partly for reasons of notational compactness and partly
because the results hold generally for all such models even when P and
Pw are interpreted differently.

As before, we will talk loosely and say that a function Pw is IIDwhen
it treats the flips in a sequence as IID. Evenmore loosely, we’ll say a world
w is IID just in case Pw is IID.

As in the main text, we will write Pw = IID(x) to mean Pw is IID
and assigns probability x to heads. It will also sometimes be convenient,
when Pw is IID, to write Pw(H) = x or Pw(H) ≥ x. As in the main text,
we will also write IID(Pw) to mean that Pw is IID.

We’ll say that ⟨W,P⟩ validates Total/Simple Trust just in case all
members of P totally/simply trust P. More explicitly, ⟨W,P⟩ validates
Simple Trust if for all w, Pw(p ∣ ⟨P(p) ≥ x⟩) ≥ x for all x, and similarly
for Total Trust.

As a reminder, we also have the following notation:

• #w refers to the number of heads at w.
• ℓ(n) is the smallest number k in an n-flip model obeying
Fifty/Fifty such that for allwwhere#w = k,w has an IID chance
function centred on 1/2.

• Hn refers to the proposition that all n flips in an n-flip model
land heads.

We also remind the reader of the following principles for reference
below (now with P and Pw replacing Ch and Chw.

Symmetry. An n-flip model is symmetric just if, for all w ∈ W, if
Pw = IID(x), and v mirrors w, then Pv = IID(1 − x).
Fifty/Fifty. If ⟨W,P⟩ is an n-flip model, then n is even, and at some
w ∈ ⟨#H = n/2⟩, Pw = IID(1/2).
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28 Levinstein and Spencer

Sufficiency. If ⟨W,P⟩ is an n-flip model, then (1) for all k such that
n/4 ≤ k ≤ n/2, k is in the IID region of n, and (2) if 0 is not in the even
odds region of n, then ℓ(n) − 1 is in the IID region of n.
Monotonicity. If ⟨W,P⟩ is an n-flip model and Pw,Pv in P are both
IID with Pw(H) < Pv(H), then Pw(⟨P(Hn) ≥ 2−n⟩) < Pv(⟨P(Hn) ≥
2−n⟩).
Boundedness. There exists d > 0 and N ∈ ℕ such that for all n ≥ N,
if ⟨W,P⟩ is an n-flip model and m is in the IID region of n, then

∣{w ∶ #w = m and IID(Pw)}∣
∣⟨#w = m⟩∣ ≥ d

A.2. Results
Our main question concerns when a regular probability function π can
totally trust chance. As it turns out, to answer that question, we just need
to find out when the frame ⟨W,P⟩ validates total trust, as the following
theorem establishes.

Theorem 1 (Dorst et al.). A regular probability function π totally
trusts a frame ⟨W,P⟩ only if ⟨W,P⟩ validates total trust.

The proof is involved, sowe omit it here and refer the interested reader to
Dorst et al. (2021,Theorem4.1). Aswe’ll see, our results below entail that
the functions in P can’t even simply trust one another. We conjecture
that no regular probability function can simply trust them.

For what follows, it’s important to keep in mind that if IID(P), then
according to P,H follows a Bernoulli Distribution with parameter P(H).
In turn, ifX is a random variable representing the total number of heads,
then X is distributed according to a binomial distribution with parame-
ter P(H). If P(H) = p, the probability of any given world with #w = k is
pk(1 − p)n−k. So, if 0 < p < 1, then for all w ∈W, P(w) > 0.

We now prove some basic facts about models that validate Simple
Trust. (Dorst 2020 provides a more general result implying part 2 of the
following proposition.)

Proposition 2. Suppose ⟨W,P⟩ validates Simple Trust. Then
(1) If ⟨W,P⟩ validates Fifty/Fifty, then for all w ∈W, Pw(w) >

0, and
(2) For all w, v ∈W, Pw(w) ≥ Pv(w)

Proof . To prove (1), let Ph = IID(1/2) be in P . (Existence is guaranteed
by Fifty/Fifty.) For all w ∈ W, it’s clear Ph(w) > 0. Suppose Pw(w) = 0
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Bigger, Badder Bugs 29

for some w ∈ W. Then w ∈ ⟨P(w) ≤ 0⟩, so Ph(w ∣ ⟨P(w) ≤ 0⟩) is
defined and > 0. Contradiction.

To prove (2), suppose Pw(w) < Pv(w) = x. Then w /∈ ⟨P(w) ≥ x⟩.
So, Pv(w ∣ ⟨P(w) ≥ x⟩) = 0 < x. ◻

Proposition 3. Suppose ⟨W,P⟩ validates Simple Trust. Let Pw,Pv ∈
P be IID with #w < #v. Then Pw(H) ≤ Pv(H).

Proof . Let Pw(H) = pw and Pv(H) = pv. Suppose #w < #v but pw > pv.
Recall that if X is the number of heads, then according to both Pv and
Pw, X is distributed according to a Binomial Distribution with parame-
ters pv and pw respectively. So, if #w/n ≤ pv < pw, then Pv(w) > Pw(w),
which entails ⟨W,P⟩ violates Simple Trust, (by part 2 of Proposition 2).
Likewise, if pv < #w/n ≤ pw ≤ #v/n, Pw(v) > Pv(v). Finally, suppose
pv < #w/n ≤ #v/n ≤ pw. In this case, Pv(w) > Pv(v) ≥ Pw(v) ≥ Pw(w),
again violating Simple Trust by Proposition 2. ◻
Remark. Proposition 3 does not rule out the possibility of distinct IID
chance functions at worlds w and v if #w = #v in an n-flip model. Fol-
lowing the proof, we see that there could be a maximum of two different
IID chance functions for worlds with the same number of heads, namely,
one on each side of #w/n. (This adds a wrinkle elided over to the proof
sketch of Initial Triviality in the main text, but it’s one that can be easily
accommodated.) As we’ll now see, there is one important exception.

Proposition 4. Suppose ⟨W,P⟩ validates SimpleTrust andFifty/Fifty.
Then if w ∈W is IID and #w = n/2, Pw = IID(1/2).

Proof . By Fifty/Fifty, some world h ∈ W is IID such that #h = n/2 and
Ph = IID(1/2). So, if Pw is also IID and #w = n/2, then Pw(w) ≤ Ph(w).
Given Proposition 2, Pw(w) ≥ Ph(w), so Pw(H) = 1/2. ◻
Remark. Note that Proposition 4 guarantees that for any n-flip model
⟨W,P⟩ validating Simple Trust and Fifty/Fifty, ℓ(n) is defined and≤ n/2.
Further, we have ℓ(n) ≥ 1 by part 1 of Proposition 2.

We can also put upper bounds on worlds with IID chance functions
that have fewer than ℓ(n) total heads.

Fact 5. Suppose ⟨W,P⟩ is an n-flip model validating Simple Trust
and Fifty/Fifty. Suppose Pw is IID for some some world w with
#w = ℓ(n) − 1. Then if Pw ≠ IID(1/2), Pw(H) < ℓ(n)/n.

Proof . Suppose ⟨W,P⟩ validates Simple Trust and ℓ(n) ≥ 1. Let #w =
ℓ(n) − 1, and let Pw = IID(p). Suppose ℓ(n)/n ≤ p. Let v ∈ W with
#v = ℓ(n) and Pv = IID(1/2). By hypothesis, p ≠ 1/2. By Proposition 3,

Mind, Vol. XX . XX . XXXXXXX 2024 © Levinstein and Spencer 2024

D
ow

nloaded from
 https://academ

ic.oup.com
/m

ind/advance-article/doi/10.1093/m
ind/fzae039/7747226 by U

niversity of Illinois - U
rbana C

ham
paign user on 02 Septem

ber 2024



30 Levinstein and Spencer

p must be < 1/2. But in that case, since ℓ(n)/n ≤ p < 1/2, Pw(v) > Pv(v),
contradicting Proposition 2. ◻

Weknow thatPw(H) ≤ Pv(H) if#w < #v and both have IID chance
functions by Proposition 3. We also know, by Fact 5 that if #w < ℓ(n)
and w is IID, Pw(H) < ℓ(n)/n.

It will be useful below to consider a special IID probability func-
tion Pℓ over W but not in P such that Pℓ(H) = ℓ(n)/n. The following
lemmawill serve to put an important constraint on Pℓ; namely, if ⟨W,P⟩
validates Simple Trust and Fifty/Fifty, then Pℓ(H ∣ ⟨Hn ≥ 2−n⟩) ≥ 2−n.

Lemma 6. Let ⟨W,P⟩ be an n-flip frame validating Simple Trust
with at least one IID function P ∈ P such that P(H) ≥ 1/2. For
any x ∈ (0, 1), let P(x) = IID(x).33 Let f(x) = P(x)(Hn ∣ ⟨P(Hn) ≥
2−n⟩). Then f is strictly increasing over (0, 1).

Proof . Let V ∶= {w ∈ W ∣ Pw(Hn) ≥ 2−n}. Note that the requirement
that there be at least one IID chance functionP ∈ P such thatP(H) ≥ 1/2
guarantees V is non-empty. Let V(k) ∶= ∣{w ∈ V ∶ #w = k}∣. With f and
P(x) defined as above, we then have

f(x) = xn

P(x)(V)
(4)

= xn

∑n
k=0V(k)xk(1 − x)n−k

(5)

f is clearly differentiable, so we just need to check that its derivative is
positive. This is straightforward but tedious to do. ◻

Our next goal is to put lower bounds on ℓ(n) for a given model
(Lemma 8). To do sowemust first prove Lemma 7, which in turn appeals
to the famous Inequality of Arithmetic and Geometric Means.

AM-GM Inequality. For any list of n non-negative reals x1, … , xn,

1
n

n
∑
i=1

xi ≥ (
n
∏
i=1

xi)
1/n

with equality if and only if x1 = x2 = ⋯ = xn.

Lemma 7. Suppose n, k ∈ ℕ with n > k. Then n
2(n+ k)/n

≥ n− k
2 .

33 Note that P(x) is not necessarily in P .
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Bigger, Badder Bugs 31

Proof . Simple algebra shows that the lemma holds if and only if for all
n ≥ k + 2, we have:

n
n − k

≥ 2k/n (6)

To prove line (6), first consider a list of numbers x1, … , xn with:

xi =
⎧⎪⎪⎨⎪⎪⎩

2 i ≤ k
1 i > k

We have:
1
n
∑ xi = n + k

n

and

(∏ xi)
1/n
= 2k/n

So, by the AM-GM Inequality, 2k/n < n+ k
n .

To prove line (6) holds, we just need to determinewhen n+ k
n ≤ n

n− k ,
and it is easy to see this holds whenever n > k. ◻

Let ⟨W,P⟩ be an n-flip frame. Suppose w ∈ W is a world with
#w = ℓ(n) − 1 with IID chance function Pw. By Fact 5, if Pw(H) ≠ 1/2,
Pw(H) < ℓ(n)/n. Let Pℓ be defined overW (but not necessarily inP) such
that Pℓ = IID(ℓ(n)/n). By Lemma 6, we know

Pw(Hn ∣ ⟨P(Hn) ≥ 2−n⟩) < Pℓ(Hn ∣ ⟨P(Hn) ≥ 2−n⟩).
This will be important for the next lemma.

Lemma 8. Suppose ⟨W,P⟩ is an n-flip model validating Simple
Trust, Fifty/Fifty, and Sufficiency, with ℓ(n) ≥ 2. Let Pℓ(H) =
ℓ(n)/n be an IID probability function. Then (1) Pℓ(⟨P(Hn) ≥
2−n⟩) > 0, and (2) if Pℓ(⟨P(Hn) ≥ 2−n⟩) ≥ 2−k for k ∈ ℕ, then
ℓ(n) ≥ (n− k)/2.

Proof . Part 1 follows trivially from the fact that ℓ(n) > 0 and Fifty/Fifty.
We now establish part 2. Let Pw ∈ P be IID with Pw(H) < 1/2 and

#w = ℓ(n) − 1 > 0. Such a Pw is guaranteed to exist by Sufficiency. By
Proposition 2, 0 < Pw(H). Since Pw is also IID and ⟨W,P⟩ validates
Fifty/Fifty, Pw(⟨P(Hn) ≥ 2−n⟩) > 0. By Proposition 5, Pw(H) < ℓ(n)/n.
Since ⟨W,P⟩ validates Simple Trust, Pw(Hn ∣ ⟨P(Hn) ≥ 2−n⟩) ≥ 2−n.
So, by Lemma 6,

Pℓ(Hn ∣ ⟨P(Hn) ≥ 2−n⟩) ≥ 2−n (7)
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32 Levinstein and Spencer

Suppose Pℓ(⟨P(Hn) ≥ 2−n⟩) ≥ 2−k. We have:

Pℓ(Hn ∣ ⟨P(Hn) ≥ 2−n⟩) = (ℓ(n)/n)n

Pℓ(⟨P(Hn) ≥ 2−n⟩)

≤ (
ℓ(n)/n)n

2−k
(8)

So, from lines (7) and (8), it follows that:

2k(ℓ(n)/n)n ≥ 2−n

which holds if and only if

ℓ(n) ≥ n

2(1+
k/n)

≥ n − k
2

where the last line follows from Lemma 7. ◻

Having established a lower bound on ℓ(n), we now aim to establish
an upper bound.The strategy is to consider a proposition true at just two
worlds w and v (both IID), where #w = n/2 − k and #v = n/2 + k. When
k is sufficiently small, it will turn out that the proposition {w, v} attains
maximumprobability amongst IID chances when P = IID(1/2).This fact,
which we establish in the next lemma, will then force IID chance func-
tions at worlds with roughly n/2 occurrences of heads to assign heads
probability 1/2.34

Lemma 9. Suppose n is even, k ∈ ℕ, and k2 ≤ n/4. Then the
polynomial

pn/2− k (1 − p)n/2+ k + pn/2+ k (1 − p)n/2− k

achieves its maximum over the unit interval uniquely at p = 1/2.

Proof . Without loss of generality, assume p ∈ [0, 1/2]. When p = 1/2, the
polynomial evaluates to 2/2n, so we need to show

pn/2− k (1 − p)n/2+ k + pn/2+ k (1 − p)n/2− k ≤ 2/2n

with equality if and only if p = 1/2. From simple algebra, we see that this
holds if and only if:

pn/2− k (2 − 2p)n/2+ k + (2p)n/2+ k (2 − 2p)n/2− k ≤ 2 (9)

34 Special thanks to Neal E. Young for help with the proof of this lemma.
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Bigger, Badder Bugs 33

Let x = 1 − 2p, so x ∈ [0, 1]. Line (9) holds just in case:

(1 − x)n/2− k (1 + x)n/2+ k + (1 − x)n/2+ k (1 + x)n/2− k ≤ 2

This in turn holds if and only if:

(1 − x)n/2− k (1 + x)n/2− k [(1 − x)2k + (1 + x)2k] ≤ 2 (10)

Further, the left-hand side of line (10) decreases with n. Since k2 ≤ n/4,
we just need to check that it holds for n = 4k2.

The right- and left-hand sides are equal in line (10) when x = 0. The
left-hand side is differentiable, so to prove the theorem we just need to
show the derivative is negative.

Taking the derivative of the LHS of line (10) when n = 4k2 and
simplifying is tedious, but we end up with:

−2k(1 − x2)2k
2−k−1 ((1 + x)2k(2kx − 1) + (1 − x)2k(2kx + 1))

Factoring out the −2k(1 − x2)2k
2−k−1 out front, we see that we need to

verify that:

(1 + x)2k(2kx − 1) + (1 − x)2k(2kx + 1) > 0 (11)

for k ≥ 1.
Using binomial expansion, we see that verifying line (11) is equiva-

lent to verifying:

2k
∑
i=0
(2k
i
) [xi (2kx − 1) + (−x)i (2kx + 1)] > 0 (12)

The left-hand side of line (12), in turn, simplifies to:

4kx2k+1 + 2
k−1
∑
i=0
[(2k

2i
) 2k − ( 2k

2i + 1
)] x2i+1

It is straightforward to check that (2k2i) 2k− (
2k
2i+1) > 0, which ensures the

inequality of line (12) holds, as desired. ◻

We now can provide an upper bound on ℓ(n).
Lemma 10. Suppose ⟨W,P⟩ is an n-flip model satisfying Simple
Trust, Fifty/Fifty, Symmetry, and Sufficiency with n ≥ 4. Then
ℓ(n) ≤ (n−√n)/2.
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34 Levinstein and Spencer

Proof . Let j ≤ √n/2, with j ∈ ℕ. By Sufficiency and Symmetry, there ex-
ist w, v ∈W such that #w = n/2− j and #v = n/2+ j and where Pw and Pv
are both IID, and Pv(T) = Pw(H).

Consider the proposition X = {w, v}. Let Ph be an IID chance func-
tion at a world h with #h = n/2. By Fifty/Fifty, Ph(H) = 1/2. Lemma 9
entails that Ph assigns a strictly higher probability to X (namely, 2−n+1)
than any other IID probability function does.

Claim: Pw(H) = 1/2. For suppose not. Then Pv(H) ≠ 1/2. In this
case, X ∩ ⟨P(X) ≥ 2−n+1⟩ = ∅. So, since Ph(⟨P(X) ≥ 2−n+1⟩) > 0,
Ph(X ∣ ⟨P(X) ≥ 2−n+1⟩) = 0, violating Simple Trust.

So, if j ≤ √
n/2, then n/2 − j ≤ ℓ(n). Therefore, ℓ(n) ≤ (n−

√
n)/2 as

desired. ◻

Theorem 11. Suppose ⟨W,P⟩ is an n-flip model that validates Sim-
ple Trust, Symmetry, and Fifty/Fifty and n ≥ 6. Suppose all func-
tions in P are IID. Then for all w ∈ W, if 0 < #w < n, Pw(H) =
1/2.

Proof . Suppose ℓ(n) ≥ 1, and let Pℓ(H) = ℓ(n)/n with Pℓ an IID prob-
ability function defined over W. Let X be a random variable such that
X(w) = #w for w ∈ W. X ∼ B(n, ℓ(n)/n) according to Pℓ. The mode of
B(n, ℓ(n)/n) = ℓ(n)/n, which means Pℓ(⟨X ≥ ℓ(n)/n⟩) ≥ 1/2. By Lemma 8,
ℓ(n) ≥ (n−1)/2n. Since ℓ(n) is an integer with n ≥ 6, ℓ(n) = n/2. But by
Lemma 10, ℓ(n) ≤ √n/2−1. So, n/2 ≤ √n/2−1, which is impossible when
ℓ(n) ≥ 6. So, ℓ(n) = 1 for all n ≥ 6. This completes the proof. ◻

Theorem 12. Suppose ⟨W,P⟩ is an n-flip model that validates Sym-
metry, Fifty/Fifty, and n ≥ 6, and π is a regular probability function
that totally trusts ⟨W,P⟩. Suppose all functions in P are IID. Then
for all w ∈W if 0 < #w < n, Pw(H) = 1/2.

Proof . This follows immediately from Theorems 1 and 11. ◻

We will now see how we can relax the assumption that all chance
functions are IID and still cause trouble for the Humeans.

Lemma 13. Suppose ⟨W,P⟩ is an n-flip model satisfying Simple
Trust, Fifty/Fifty, Monotonicity, Symmetry, and Sufficiency. Then
Pℓ(⟨P(Hn) ≥ 2−n⟩) ≤ 2−

√
n.

Proof . Given the assumptions, we know from Lemma 8, that if
Pw(⟨P(Hn) ≥ 2−n⟩) > 2−k, (n− k)/2 ≤ ℓ(n). From the assumptions
and Lemma 10, we know ℓ(n) ≤ (n−

√
n)/2. So, k ≥ √n, meaning

Pℓ(⟨P(Hn) ≥ 2−n⟩) ≤ 2−
√
n. ◻
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Bigger, Badder Bugs 35

Note that ⟨IID(P) and P(H) ≥ 1/2⟩ ⊆ ⟨P(Hn) ≥ 2−n⟩. So what
Lemma 13 entails is the following. Let Pw be an IID chance function
that assigns probability under 1/2 to H, but such that if Pv ∈ P is IID
and Pv(H) < 1/2, then Pv(H) ≤ Pw(H). It’s easy to show, given the
assumptions, that Pw(⟨P(Hn) ≥ 2−n⟩) < Pℓ(⟨P(Hn) ≥ 2−n⟩).

Intuitively, at least when n is big, Pw(H) should be just under 1/2. Af-
ter all, if just one more tail had been heads, then (if done in a way that
maintained IID), the chance of headswould have been 1/2. But Lemma13
entails that Pw(⟨P(Hn) ≥ 2−n⟩) ≤ 2−

√
n, which is small. (For example,

when n is 10, this quantity is Pw(⟨P(Hn) ≥ 2−n⟩) < 0.12. When n = 100,
Pw(⟨P(Hn) ≥ 2−n⟩) < 0.001.)This can only be the case if either Pw(H) is
extremely small, or very few worlds have IID chance functions. Indeed,
as n grows, the proportion of worlds with approximately n/2 heads tends
toward 1 (where ‘approximately’ here means within x% of n/2). So, either
Pw(H)must tend toward 0 or the percentage of worlds with IID chance
functions must tend toward 0 very quickly. This is why, intuitively, when
we add Boundedness, we end up with the Serious Triviality result in the
main text.

Theorem 14. Let ⟨W1,P1⟩, ⟨W2,P2⟩, … be a sequence of models
with ∣Wi∣ < ∣Wi+1∣. Assume each validates Simple Trust, Sufficiency,
Fifty/Fifty, and Symmetry. Moreover, assume that Boundedness
holds of the sequence.Then there exists anN ∈ ℕ such that if i ≥ N
and Pw ∈ Pi is IID, then Pw = IID(1/2).

Proof . Suppose ℓ(n) ≥ 2. Let Pℓ be IID with Pℓ(H) = ℓ(n)/n. Let
IID(W) ∶= {w ∈ W ∶ Pw is IID}, and let h(W) ∶= {w ∈ W ∶ ℓ(n) ≤
#w ≤ n − ℓ(n)}.

Note that, given Symmetry, if w ∈ h(W) ∩ IID(W), then Pw(H) =
1/2. So,

d ⋅ Pℓ(h(W)) ≤ Pℓ(h(W) ∩ IID(W)) ≤ 2−
√
n (13)

where the first inequality follows from Strong Sufficiency with threshold
d, and the second from Lemma 13.

We will now show that for large enough n, d ⋅ Pℓ(h(W)) > 2−
√
n,

contradicting line (13). For fixed ⟨W,P⟩, let X(w) = #w. If X ∼ B(n, p),
thenX has increasing variancewith p over [0, 1/2]. By Lemma 10, ℓ(n) ≤
(n−
√
n)/2. So the minimum possible value for Pℓ(h(W)) is achieved

when Pℓ(H) = (n−
√
n)/2n.

So, assume Pℓ(H) = (n−
√
n)/2n. If X ∼ B(n, (n−√n)/2n), then σ(X) =√

n− 1/2, where σ(X) represents the standard deviation of X. By Cheby-
shev’s Inequality, we then know that Pℓ((n−3

√
n)/2 ≤ X ≤ (n+√n)/2) > 3/4
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36 Levinstein and Spencer

(since the probability that X is within two standard deviations must be
at least 3/4). But the mode of X is ℓ(n), so Pℓ(X < ℓ(n)) < 1/2. Therefore,
Pℓ(ℓ(n) ≤ X ≤ (n+

√
n)/2) > 1/4. Thus Pℓ(h(W) ∩ IID(W)) > d/4. For

sufficiently large n, d/4 > 2−
√
n, which contradicts line (13). So, for large

enough n, ℓ(n) = 1. ◻
We now can state our final triviality result, referred to as Serious

Triviality in the main text.

Theorem 15. Let ⟨W1,P1⟩, ⟨W2,P2⟩, … be a sequence of models
with ∣Wi∣ < ∣Wi+1∣. Assume each validates Sufficiency, Fifty/Fifty,
and Symmetry. Moreover, assume that Boundedness holds of the
sequence. Then there exists an N ∈ ℕ such that if i ≥ N and
some regular probability function totally trusts ⟨Wi,Pi⟩, then for
all Pw ∈ Pi such that IID(Pw), we have Pw = IID(1/2).

Proof . This follows from Theorems 1 and 14. ◻
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