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Abstract

In the brain the relations between free neurons thedconditioned ones establish the
constraints for the informational neural procesSdsese constraints reflect the system-
environment state, i.e. the dynamics of homeocognéctivities.The constraints allow us
to define the cost function in the phase spaceesf heurons so as to trace the trajectories
of the possible configurations at minimal cost whiéspecting the constraints imposed.
Since the space of the free states is a manifola mon orthogonal space , the minimum
distance is not a straight line but a geodesic. Mimmum condition is expressed by a set
of ordinary differential equation ( ODE ) that iergeral are not lineam the brain there is
not an algorithm or a physical field that regulates computation, then we must consider
an emergent process coming out of the neural ¢séebehavior triggered by synaptic
variability. We define the neural computation as the studyeftthsses of trajectories on a
manifold geometry defined under suitable constsaiiihe cost function supervises
pseudo equilibrium thermodynamics effects that rgartae computational activities from
beginning to end and realizes an optimal contrabufgh constraints and geodetidhe
task of this work is to establish a connection leetwthe geometry of neural computation
and cost functionsTo illustrate the essential mathematical aspectsmlleuse as toy
model a Network Resistor with Adaptive Memory (Mgtors).The information
geometry here defined is an analog computatioereforeit does not suffer the limits of
the Turing computation and it seems to responchéodemand for a greater biological
plausibility. The model of brain optimal control proposed here lba a good foundation
for implementing the concept of "intentionality”,
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according to the suggestion of W. Freeman. Inddezl,geodesic in the brain states can
produce suitable behavior to realize wanted funetiand invariants as neural expressions
of cognitive intentions.

Keywords: neural geometry; Fisher information; analog comjoma brain simulator,
memristor; physic models of cognition

1. Introduction

We open by referring to the inspiring imaginarycdission between Alan Turing and

Santiago Ramon y Cajal [1] on the meaning of netmadputation:

Santiago: I'm beginning to like the perspectivenetiral computation. Even more, |
like the idea that each neuron computes.

Alan: You do? I'm not sure | like it myself.

Santiago: Why? Don't you think that the brain cobep@ | could understand it if
someone else would say so, but you?

Alan: Well, you see, the term computation has taohra formal meaning for me, and
it is hard for me to see what do they mean by sp{@gomputation"? | suspect that
they use it just as one of these buzz words.

Santiago: Maybe I'm too naive, but | think that teem “computation” is meant to
emphasize some very simple but deep idea. Nanhelly tite brain is yet another
machine that computes functions. Functions, whigghtrbe very complicated but
basically relates the external world of sensorygint” to our output in terms of action
in the world.

Alan: | think | share this view. | will not clainhat the brain is a kind of special
machine.

Santiago: Hey, beware, it is a very special machymel know, but it is not so special
that it uses some extra metaphysical powers. Same d&f “virtual spirits" as
Descartes called them. Putting it differently, thrain is very complicated, but once
we understand it, we can, at least ideally, impletiewith a different hardware. For
example, simulate it on an electronic computer. béathis is where the computation
comes from.

Alan: This is an interesting point, but very comfigs You see, when we talk about
computation what | have in mind is a Turing Machihemean that even if any
computable function is computable by a Turing Maehinot everything that is
computable by a Turing Machine is a computationt &xample, just as you would
like to simulate the brain, you can simulate otbemplex systems, say the collision of
two galaxies. Surely the simulation is a computatnd a very complicated one. But
the collision itself is probably not a computatibns a physical phenomena that has
nothing to do with computation.

Actually Turing, in the last years of his short andative life, showed a keen interest
in what we now call "natural computation”[2,3]. Aaption on which classical
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cognitivism seems to get mislead is that of infation. If the new cognitive science
has to be based on what we know of the embodied,lifen it is appropriate to ask
whether the Shannon-Turing computational modeiesmost suitable one to describe
the characteristics of the informational flow ingoitive processes. In other words, in
order to study cognitive emergence it is necesgarydevelop an approach to
information which can include thmeaningand purposeof behavioural scenario
theory of this kind must combine syntax and sencantand a geometric approach
such as the one outlined here seems to us veryigimgmn different areas [4, 5, 6].
With a theoretical apparatus of this kind it migjet possible to set up various matters
not approachable within the classical symbolic thesoof cognition.

Walter J. Freeman discusses the question of carsuéss in the brain in this way[7]:

Given that current efforts to deal with the problefitonsciousness have led either to
its dismissal (Dennett, 1991), trivialization (CkicLl994), or transplantation to fields
outside of biology, my view is that an alternatpra@ach may be called for. Rather
than pursuing forthrightly the elusive concept ohsciousness, | suggest that an
alternative target be formulated. For me that tartjes in the area of goal-directed
behaviors, overlapping largely but not completelthwhat are commonly called
'voluntary' actions (Smith, 1994), whether or rfagyt are conscious These behaviors
emerge from within brains, in contrast to evokededlex actions, and their flexibility
and adaptiveness in the face of unexpected obstheles the possibility of genetic
or environmental programming. The experimental, lmecstic question is: How can
populations of neurons in brains generate the nactivity patterns directing these
movements? A useful set of theoretical tools witichvto seek answers is to be found
in the self-organizing properties of nonlinear dymia systems. The theoretical,
philosophical question is: What principle or orgaimg concept can be adopted to
supplant the notion of consciousness? My choideais is the term ‘intentionality’.

Freeman’s idea of intentionality is the startingnp@f our work, in which we consider the
best optimal adaptation in the neural space as bibenathematical image of the
intentionality.

At the Berkeley conference on memristors (Novenir2008) Greg S. Snider of the
Hewlett Packard Laboratory discusses the quesfioeural net as follows:

In 1980 an artificial neural network was built thatork but has high precision
components, slow unstable learning, non adaptivaiiTand ship) and external control.
Now we want Low precision components, fast stadening, Adapt to environment and
autonomous. How we can get this? We can get makparzents dynamical, add feedback
(positive & negative) and close the loop with thesade world. The ordinary differential
equations or ODE to control the neural dynamic arstiff and nonlinear system. Why not
just program this on a computer? We know that atiti nonlinear dynamical systems are
inefficient on digital computer. An example is tB& Blue Gene project with 4096 CPUs
and 1000 Terabytes RAM. To simulate the Mousexcoge 8 x 1Dneurons, 2 x 18
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synapses T0Hz, 40 Kilowatts and digital. The brain uses%@eurons, 18 synapses 10
Hz and 20 watts with analog system. Analog is meffecient by several order of
magnitude.

Greg S.Snider suggests to use analog electricalicotenoted CrossNet with memristor to
tackle the simulation of the brain neural compotatin the brain [8, 32, 33, for the
breaking news see 34 Fnider suggests that physical (or analog) compwsgsmore
efficient to solve the problem of neural networks.fact, in analog systems we do not
have algorithms to program the neurons, but glabaktraints. We propose to substitute
the digital program with the minimum action and desic in a non Euclidean space or a
informed/deformed space. The minimum path in theralespace currents is the Freeman’
intention, whose dynamics is in the geodesic ttajgc Geometric and physical
description of the Freeman intentionality is beyamg algorithmic or digital computation.
In other words, what we try to do is a return te ¢feometrical approaches at the beginning
of the post-Hopfield neural networks age [9,Mathout forcing the “metaphorical” nature
of these toy models( Arbib & Amari, [ 11 Put with a special attention to the new
scenarios of brain simulation.

To clarify better the new computation paradigm,oaa refer the following principle:

“Modeling brain dynamics requires us to define tehavioral context in which brains
interact with the world...) Animals and humans use their finite brains to caghpnd and
adapt to infinitely complex environmentFreeman & Kozma, 2008[12])

We show that this adaptive system has a geomettarpretation that gives us the
possibility to implement the required parameter©DE to achieve the desired behaviors
[two classics are:13, 14; for a general review &@EOGn neural dynamics see 15]

We will consider three classes of neuronal dynaniléee inertial neuronal systems, in
which there are no adaptation and therefore anyifioation of the parameters; the
conservative neural systems, whose behavior adajs tenvironment, converging on
towards a final goalThey are, as it is evident, two cases very singdifiThe last one is
the non conservative and non inertial neural systesmere the noise is present to destroy
the coherence and the synchronicity of the consgevaystem. The noise gives the
possibility to explore new waysompared to the conservative systems, providesra ve
wide variety of behaviors and reveals as the regltk the understanding of the brain [16]
The noisy geodesic is modelled here as a percolatiovement from one state to another
one of the neural behaviours.

2. Geodesic and constrains in the states’ space

We define the state space as a vector space wigpoant is located in the N dimension,

0=(ay.0y.G )=0 (1)
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Any component of g is a state of one neuron. Navkwow that in general neurons are
not independent but are constrained by a set afifums or invariants

1‘j(q1,q2,....,q\l )=0 j=1,....m (2

Now in N dimension we have the space of the stéte sub space of the m dimension is
the space of the interior coordinates and the cemehtary space of N — m dimension has
the exterior coordinates of the free states. Thesipte trajectories are in the N — m

exterior coordinates..

Because in (2) the time is not present in exph@y we have that

df;  of, mjd of of Td . ;
= + = = | — =
at = ot " T ag kT Lag KT 5q | % )

For the (3) the functions in (2) are invariantsvéh the function
A = A (4 Xy ) (4

Where x = (Xl""XN _m)are the free variable , we have

0
dg, =3 K dx, 5
k  Tox;
|
So
of ; of; 9 ofi 9
kaqk kaqk i 6Xj K, Jaq( XJ

We conclude that

T
of ; aq aq aq
Df:[aq]{ J}:( B 0 %hoao o, NL).:O (6

. . ) . J
axJ 0q ()xJ aql axJ aql 0)3 OCN

D is the derivative in the direction of the tangehthe manifold which dimension is
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N — m. The functions f have derivatives zero ( nevats ) when we move inside the
manifold. Given a new function F we have that

T
oF; 0 0 0

DF:!aaq] {aj}: ho o, (N 9 )F

xj q axj aql axj aql 0>ﬁ aq\l

It measures the change of F respect to the invafuaustions for which the derivative D is
0q

equal to zero. The components of the tangent ofttamifold of N- m dimension ar;aFk
X
J
Now because(l — A(A"A)™* A") A=0 (7
Where A i
ereA= =
we have

T T
0 of . of . of ; of.
axj aqk aqk aqk aqk

For which we have the ODE ( ordinary differentiglations)

aqk h .
E - k(quqzy ----- 1% ) ("‘

So the tangent vector can be computed by the matakthe derivative of the functions in

(2)

The metric tensor in the manifold is

T

0 0 _ _
g=| 20| | 20 =g -anTATA)T(1- aaT 71 ATy
axj axj

=1 -AAT AT AT (10)
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And the geodesic is

d?< dx (11

Now for the geodesic in the space of the states is

h
SA =314/ gp X Ak :Jj\/ h k%xtcz‘:( d=0 (12)

Where A is the general action.
Now for the Euler differential equations we havattthe minimum condition can be found

when

d a.lgh’kvhvk 6,/ gh,kvhvk o
ax]

h
dx h
— = 13
at Vv (13)

We show in a graphic the geodesic as a minimumindkis way

Figure 1 Geodesic as the trajectory at the minimafae for the action A

When we know the invariants we can compute theemangector and the geodesic for
which we have the stationary condition (the locatiation of the geodesic is equal to
zero).
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2.1 Toy example of geodesic and electrical circuit

According to Krone [17], the tensor image of thecgélical circuit is given by the trivial
electrical circuit

R
Vl V2

i1

Va4 Vs

Figure 2 Toy electrical circuit with one generatoand one resistor R

Now we compute the power W that is dissipated atrésistance R in this way
d

w = Rz = R¢
dt

Where i is the current in the circuit and g are shees that move inside the circuit. Now
we define the infinitesimal distance ds in this way

ds d
=) =W =R-)’= Rf
(dt) R(d?)

And

ds=+/Wdt= / R%)Z dt (14

Now we know that in the electrical circuit the ants flow in the circuit so as to dissipate
the minimum power, The geodesic line in the oneetigion current space is the
trajectory in time.

For the minimum dissipation of the power or costw,have
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dC=5[ds=d[VWdE=4d| Fg%)z de0  (15)

Now we can compute the behaviour of the statesvfoch we have the geodesic condition
of the minimum cost. We know that this problem tensolved by the Euler differential
equations or ODE

da,. da,,
q 9( R(dt))_a( R )

a5 dg 5 0 (16
dt
or
dg,. da,.
4 OR()" ORCY) .
dt 5dg 0q
dt

When R is independent on the states so R has ncorgenwe have that the previous
equation can be written in this way

dg

d(R—
(RGt) .
dt

When R is independent on the time we have

dq

d(—>) 2
dt’ _dd_j (17
dt dt?

g(t)=at+b

So the current is constant and is equal to

i:%:a:E
dt R

The geodesic is a straight line in the space oftates.
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3. Inertial , non inertial ( conservative ) and dissi@tive geodesic.

3.1 Inertial and non inertial geodesic

Given the tangent vector to the manifold in a salespof the N - m number of the free
variables x ,

9%
dxl
6q2

axl

6q3

axl

6q4

axl

(oo
0Xx

1

aq1 aql
0x, OXN -m
6q2 6q2
6x2 OXN -m
6q3 6q3
6x2 OXN -m
6q4 6q4
0x, OXN -m
adp [oJ o™
0x, OXN -m

41
2.1
3.1
41

n,l

(18)

Where @ are constant values, the tensor metric givesmstac of an inertial system. We
remember that an inertial system is used heredgorite the ODE types based on standard
physical terminology, which is well defined. The tnetensor is

Y1
a1
431

Y1

anJ

81,2 alN_m
Ay 2 = N-m
a3, - Agn_m
44,2 AAN-m
A2 " FHN-m

T

a1
ar1
431
a1

anJ

a

a

a

a

a

1,2
2,2
3,2
4,2

n,2

a]N_ m
azu—rn

aN-m

8.4N_m

ah,N—m

(19)

An example of non trivial inertial system is theodesic ( Kinetic energy ) for s

mechanical rotatory system with the inertial momgntSo we have
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Where m is the mass of the system. The geodesic is

ds. 2 dx dx) i
- = - . 0 = I .
at) ing,,J dt dt mizj Y

T=( (20)

where v is the vector of the differemgular velocities of the syster

and T the Kinetic energy.[18]

When we have

aql aql aql
0xy 0%, OXN -m
% %% %% | a0 a9 . a1 (0]
0x 0X 0x
aql aq2 aI\(Iq—m az,l(x) a2’2(x) a2N—m())
aq |_ 3 3 3 _ a3,l(x) a3,2(x) a3N_m(>) ”1
=|ox, 0x ax (21)
%] Ll O I EVPIC LY C BRI
% % - %%
0x 0Xx 0x
1 2 N-m _an,l(x) an,z(x) ah,N—m( ))_
dqn  9qp [oXo ™
_axl 0x, axN_m_

The metric tensor is
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(a0 a0 OV [ af X agx e ay (X
35100 ay (9 Ay (3 L { ¥ a,,(0) .oayN_p(¥
g . = 8310 33o(X Ay (3] 85X 83 (X agy_ (3 (22)
1) a4’1(x) a472(x) a4N_m(>) a4’1(x) a4,2(x) a4N_m(>)
an (¥ a 5% g (3] a0 a0 g (3

And in this case the geodesic is a non inertiatlge@ with invariant given by the geodesic
(20).

3.2 Geodesic in non conservative systems [18]

To take into account a minimum of biological pldoilsty it is necessary to introduce a
simplified model of membrane.

lon channel noise asserting that conformationalngba in ion channels are actually
exposed to two different kinds of fluctuations n&mnéhe intrinsic noise and the
topological noise. The intrinsic noise is assodateith the stochastic nature of the
movement of gating particles between the innertaedouter faces of the membrane. The
topological noise, on the other hand, is associatéid the fluctuations emerging from the
uncertainty in accessing the permissible topoldg&tates of open gates. In a toy
membrane just having three potassium channels (@vghtes), for example, nine open
gates can be configured into a variety of topolabggtates with the possible results that
none of the channels is open, one is open, or tey@pen. Now the join probability for the
ion channels is given by

The join probability to open or close the chanrsecomputed in the space of the ionic
states

That move inside the channels. So given a vectorthe state of the channels , we can
compute the probability for the given configuratiqnof states in the channels. At any
configuration we associate a probability. So weehthat there exist configurations with
very low probability and configurations with highgbability.
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Now given the join probability P , we compute thagiation of the probability with respect
to the statejg So we have

_ P
6qJ

D.P
J

Now given the current

dg(y
7 at

We can compute the flux of states for the currerd eandom variable

da; (1)
®. =P
J dt

Now we assume that we have this invariant form

®.+AD.P=0
j j

When the probability P is a constant distributiaiue , the flux of the state is equal to
zero. But when the variation of P for the changetate is positive the flux is negative ,
when the variation of P is negative the flux isipes. So the flux has an inverse value to
the probability . When the probability is a constaalue the flux is zero. So the flux is
controlled by the probability in an inverse way.

da; 1 dlogP

ii=—l=-)ZD.P=-4
Idt P aq

(23)
i

Now the current across the channels is the supiéigpof two currents: one is the
ordinary current | and the other is the randomenitrri. In conclusion the total current is

Io=1 +i =1 - (q)2U009P)

24
I B A ji aq) (24)

It can be written in this way
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I=h-A Al (e

Now the noise can be formally presented as a Vidlith value is

d(logP)

Al = |
an

For the definition of the current we have

J_de _
= =(1. - AA.
dt (J J)

In conclusion we can change the previous definibbthe current and also the geodesic
expression in this way

dQ dQ

k,h dt dt =4S (29)

W=12
The new geodesic can be written also in this way

dE2—(dS)2 Zkh(l LN TR LI

Jlk h ,k

=7, (@) 20z, | (@1"A + 22 z, k(q)A A (26)

W WLtV

So we have three different powers; W the ordinary power for the ionic current withou
noise. The second W is the flux of power from current to the noiseremt. The last W
is the power in the noise currents.

3.3 The FisherInformation in Neurodynamics

Now we compute the average of the power as the faostion which value must be
minimum. So we have
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E=[P[Z (5 =28 —)IAJ)]dtdnx
=[PZ, | I(} 1, +/12AiAJ)—2A|| A ]dtd" x

20dlogP dlogP

=[PZ [(L1. +2 {

LN i e AL

=[Pz, L1, + )dtd X+ 2 Ipal(;)qualogP)] dtd' x(27)
! |

]

Let us consider a parameterized family of probgbdistributions
={P(xtq, ¢ 4}

where x and t are random variables and

q= (qu q2""’qn)

is a real vector parameter to specify a distributidhe family is regarded as a n-
dimensional manifold having g as a coordinateesyss a Riemannian manifold and

alogPangP

oy oq )] dtd” x (28)

G(a)=g ;(@=[P

Play the role of a Fisher information matrix

The idea of information geometry [19] is that enfly of probability distributions that are
labelled by some continuous parameters as statangbe thought as a space, each
distribution being a “point”, while the parameterplay the role of coordinates. A question
thatimmediately arises is whether there is a naturgl tvaneasure the extent to which
neighbouring “points” can be distinguished from leather. The answer is that such a
measure exists, that it is unique, and most rerbaykghat it has all the properties one
would wish to impose upon a measure of distances;khstinguishability is the distance
which raises the possibility that perhaps the feanihotion of physical spatial distance
might itself be explained in this way:
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ds®= 3 g, dd' dd
]

where
N
dlogP(x,t,q) d log P(x,t,Q) _

)= | Pa log P(x,t,q)0 log P(

We connect the previous distance or metric with Klullback—Leibler divergence in this
way

- E( %59 gy dt (29)

ds’ = T gy ydd ddf =2 KU R x£9: R xta oy
1]

where

KL(p:q)=] mog<g)dxdt

It is the well known Kullback—Leibler divergende26 ].

When the noise is equal to zero the Fisher infalmmatssumes the maximum value and
the geodesic is equal to the classical geodesich®mther hand, in the case with noise,
we assume that the field

N a(log.P)
dq!

interacts with the neural network and destroyscibigerence. The information approaches
zero and the cost function will be reduced. For thedom potential A we have this
example of random geodesics

3.4 Percolation and geodesics

Resistor networks, from which resistors are remoaedandom, provide the natural
generalization of the lattice models for which méation thresholds and percolation
probabilities can be considered[20, 21]. Given thembrane resistances given by the
graph
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Figure 3 Membrane resistances and equivalentrielgccircuit

Any resistance can be separate in two parallestaastes as we do in figure for the
resistance R. The resistance R is separated inpawallel resistancesiRand R. The
resistance Ris a resistance that can be removed or changexhdbm in the percolation
phenomena , Ris the crisp resistance. The total resistance R m given by the
traditional expression

~._RR
R+R

The total current is | + i where | is the curremthe crisp resistance;Rnd i in the random
value resistence R
[ +i

[ I
Rl RZ

o—90E.. . RR
R+R

Figure 4 random R and crisp resistance,Rjenerate the equivalent resistance R in a
parallel configuration.

For the additivity of the power we have

W=RP+RP=R I+ »2=(‘R1R1_+R2R;)< +02 @7,
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The geodesic can be written in this way

ds2 _ . : < AjLjfai . _
(dt) _i,zj Zl,J(Ii +|i)(|j +Ij)_i,zj Zli,j "‘Zz,j, (Ii +|i )dj +|j ) (28)

:_Z. Zz,i,j |i|. +.Z Zli ,]||]
1] J l,)

The geodesic is composed by two parts: one isythehsonic and crisp geodesic the other
is the noise change of the crisp and synchronidggo. So we have the graph image

Figure 5 In evidence we have the geodesic that are solutibtise ODE. For the noise
the geodesic is transformed in a more complex geoddat is related to the Fisher
information. The total effect is the percolationdam geodesic.

4. Geodesic in neural space

In this chapter we show that any electrical neadivity can be represented in manifold
state space where the minimum path (geodesic) keattweo points in the multi-space of
the currents is function of the neural parametergeaistors with or without memory. Now
we begin with the simplest case given by electrigetivity of one little part of the
membrane of axons, dendrites or soma. In this wasgnore the presence of the voltage-
gated channels in the membrane.

4.1 Membrane electrical activity and geodesic

When we ignore the presence of voltage-gated clieimmthe membrane we can model the
membrane electrical activity by this circuit
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Inside the membrane
Rins

E E(s)

is i :é_ Eres

Va Vs Vs
Outside membrane assumed ground

Figure 6 Input voltage source E , Internal to thembrane resistance,R, Capacitor
voltage source E{), R is the membrane resistance esEis the rest voltage source
generator.

We remark that in the figure 6 we have three vasagpurces. The first generator source is
the impulse at the begin of the axon, the secdif) 5

_ P « Y (9 I |
(V- V,) = E(ip) = 2.~

= o ldt (29)

The third Eestis the voltages actively generated by ATP wherattan is at rest state. Any
circuit defines the relation between the voltages the currents in this way

vj = fj(|1,|2,....,|n)

Because the expression of the dissipate power W is

1 2 3 n

W:|v1+|v2+|v3+ ..... +|vn
We have

_a1 .2 .3 .n
W =i f1+| f2+| f3+ ..... +i fn

When the edges are separated one from the othehswveen free variables so the power
can be written in this way
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W:Rl'f+R2i§+R3i§+ ..... +F$]inz (3
for
2

Now when we connect the edges in a circuit we redbe independent currents from n to
p<n.

i.=a, . i, ta,. i +ta_. i +t..+ta i (31

So all the n currents are linear combinations efittdependent currents p. In this situation
the power takes the form

W = Rl (al,li1+"'+ ap ’1ip)2 + R2(a 1’i1+ ...+ap ,&p)z + R 3(a 151 Lta 0 ,ia))2+

o i ) (32)

+Rn (al,n|1+ p,np

So the power can be written in this form

W= ¥ gy ili€=g iM¥ (33
h,k ’

Where the metric tensor g is

g:aTRa

Where
(a1 a12 - A1p] RL O .. O

. a1 Q22 -+ G2p R= 0 R, ... O (34
ani @nz o dnp| L0 O Ry

Because
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j
i) = dqt i=1,2,3,.....p
and
dE
w =%
dt

Where E is the energy and W the power, the geo@egiation can be written in this way

dE= % gy dd dd = 5 (T oy j R jaiy) ddf df (35
h,k hk ji

We know that W in an electrical circuit takes thénimum value. So the power is
comparable to the Lagrangian in mechanics (Hampiamciple) or the Fermat principle in
optics ( minimum time). In the context of Freengmnéurodynamics, we hypothesize that
the minimum condition in any neural network givestiie meaning of “Intentionality”. .
A neural network changes the reference and theodgnamics in a trajectory with
minimum dissipation of power or geodesic that we sae in figure where the minimum
value is the solution of the ODE in (1)

In conclusion any neural network or the equivalehéctrical circuit generates a
deformation of the currents space and geodesict@jes.

4.2 Relation between voltage sources and currents

The relation between voltages sources and curfentie circuit in figure 2 is

: . -1
h{_| "1 |, _,,T5 -1 _|Rnst3 1 E
[iJ ) [iB_i JI Slaza) TE _{ 1 R+3} [E(iS)J’EresJ

1 R+3 -1 E
3R+3Rpst8| -1 Rinst3|| E(B)+ Eest

1 [ (R+3)E-(E(R)+ East) }

i 3R+3Rps+8| (Rins*t3)(E(3)+ Efesp)— E )

Now when we know E and.&: we have a recursive learning to compute the vector
currents

N
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The analog electrical circuit computes the curkettors without any algorithm but by the
electrical circuit. Now for all parts of the neuma¢twork is possible to give the analog
electrical circuit in this way

4.3 Geodesic in presence of voltage-gated channelshe membrane

When we have the voltage gate channels in the nambr we can introduce resistor with
memory or memristors that represented by a variasistor in figure 7:

Rins

Figure 7 Electrical membrane circuit with voltageted channels in the membrane

The graph (topology) of the network is

I2 I5 Is l11

A 4
A

11 13 le lg I12

A
\ 4
A
\ 4

The independent currents are
(IZ’IS’I 8" 11)
The metric tensor is
Rins + 3 1 0
1 R +3 R

0
0
0 R, R+ R +2 R
0 0 R, R + R

(42
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The geodesic trajectory is
W=(R,+3)f+(R,+3)f+(R+ R+2)j+ (R+ R+ 2)i+
+ 22i5+ IQmi5i8+ 2QKiE_jll (43)

The geodesic takes the minimum value for the ctsreside the circuit. For the axon we
repeat the same simple unity many times as follows:

My M
T
I 7 TT :

Figure 8. Axon and electrical circuit

The topology of the axon with three elements is

A 4
A

A 4
A
A 4
A
A 4
A
A 4
A

\ 4
A
\ 4
A
\4

A
\ 4
A
\ 4
A
\ 4
A

Figure 9 Topology of the three steps of the axdesnent. At any loop we have one
current so we have 1+3+1+3+1+3 = 4*3 =12 |loops Bhftee currents.

In figure 9 we have three unities of the axon. Bpace of the currents has dimension
equal to

1+3+1+3+1+3 =12

If G, is the space of the currents in the first fouplgahe total space for the three steps is
given by the direct sum of three equal spaces
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G:G]_DszGg

The metric tensor is in the 12 space of the cusrant is given by the matrix

9 O
9=10 g,
0 93
where
RL . +3 1 0
1 Rl + 3 Rl
971 o Ry Rl + Rip+ 2
0 0 RL
R2, . +3 1 0
1 R2m + 3 R2m
g =
2 0 R2y  R2 + Rp+ 2
0 0 R2,
R3 o+ 3 1 0
1 R3y, +3 R3m
g =
3 0 R3m R3, + R3m+ 2
0 0 R3,

So the geodesic for three steps in the axon is

Germano Resconi and Ignazio Licata

0

0

RJK

RlK + R]Na+ 2
0
0

R

RZK + R2Na+ 2_
0 -
0
Rk

R?k + R?Na+ 2

(44
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_ds 2
W—(a) -V\{L+W2+V\é
where

W1=(R1ins+3)i§+(R]m+ 3)'§+ (Rl + Rl + 2)§+ (Rl + Ry, + 2)f1+
+ A+ Rigidg+ R kidy,

W, = (R2j g + 3)i2 + (R2m + ) + (R + Rap+ 2)f+ (R3 + R3 .+ 2)f +
+ g + R Iniglg + 2R 2y gy,

W, = (R3, o+ 3)i2 + (R3p + ) + (R3 + Rap+ 2)f+ (R + Ry, + 2)f+

+ 22i5+ R $ni5i8+ R ?(iéll

For axon with myelin we have a similar structure dnly at the node.

spoussu

Figure 10. Axons with myelin and electrical circuit

4.4 Geodesic image of the synapses and dendrites

We remember that any synapse is a little part efttivee of dendrite that we show in
figure 11:

(45
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\_\R—\ 5
1, 2\ ‘
[} S—‘
13
4 7 \
T oy
Axon

100 pm

Figure 11. Dendritic tree with synapses, soma ad.a

The dendrite tree is useful to simulate a compdesdr metric in this general form

9310 912 - 91p
g = 921 92,2 -+ 92p (46
' 9n1 9n,2 - 9n,n]

The electrical activity of the synapse is givently circuit

Figure 12 Electrical circuit for synapses.

The metric tensor is
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R.+3 1 0
g= 1 R +3 R,
0 R, R,*R*+2

The geodesic trajectory is

d
W= (G0 = (Rog * 95+ (i + 9E+ R+ Reyst D+ 2pl+ 2Rty (4

Now we show the connection between the synapseshendendrite by this electrical

device

Spine Head % T
> Vspine

Spine Neck

Dendrite

Figure 13 Electrical connection between synapsdgandrite.

4.5 Geodesic image of shunting inhibition

For the shunting inhibition we have
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Re

Figure 14 Electrical scheme for shunting inhibiti®a is the excitatory resistance; iR the
inhibitory resistance, Ris the resistance of the membrane.

The geodesic is

W=(R.+3)E+ (R, +3)f+(R+ R+2)j+ (R+ R+ 2)j+

+ 22i5+ Rmi5i8+ Riiijll

(48)

5. Implementation of a system in a neural network

W =% X2
dp=X1* X

The metric tensor is

0% | _

o 0x

;o 0 Oxp | _ [XZ Xl}
an 6x2 1 1
0x 0%y

And

g = aXl aXZ aXl
0% 0xo 0¥ 0Xo

The geodesic is

X2 X _ 1+x%
1 1

1+ X X9

1+ X1 X2 (51)
1+ ¢
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2

2 = sarx3? (62

2,.2 .
(a) =(1+ x2)|1 + 201+ X1X2)'1' >

With the circuit of the membrane

Figure 20. The electrical circuit of the neuraitdar the non inertial change of reference.
We have the geodesic

((;f)Z =(Rg + RII"IS+2)E|.2+ 2R-hip + (R+ R.+ 2)% (53)

Now when the resistances are functions of the st{aaptable conductance) in this way

RC * RnerZz1+ q§
R~ =(1+ g ) (54)

R+%+2=1+f

We can compute the resistances that simulate tegehof the currents inside the spagce q
and @,

6. Geodesic equation in non inertial state with menstors

In the neural network the cost function is exprdssefollows:

c:jdszzjq,j(c)d&dd' (55)

Where Z(q) is the matrix of the resistor with megnor adaptive conductance in neural
network, or the impedance in neural channels. Witeensber that in physics the trajectories
in the phase space of N body is a geodesic whiphesgion is
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ds? = (E- U(®) g ; dk i (56)

Here E is the total energy and U the potential gyndn the optical system we have:
&2 = n(» dk (57)

Where n(x) is the diffraction index. The metricgenis function of the position x. In the
electrical circuit we have

Charge g:comparable to the position x
Current I: comparable to the velocity v
VoltageV:comparable to the momentum p

The relation between current and voltages is

il :gi’jvj (58)

The relation between momentum and velocity is simil

pl =gy, (59)

Now for the neural network we determine the minimcwst we use the Euler equation in
this way

i i

ss=5[d$=45] ;,j(c}d& d(j4:5j( Z ( )qdid—q) ot 5 [ iZ ( a3 DI dt0

dt dt
for (60)
a 0z @) o @)y
dt ol g

We substitute time with the square of the powerwadave

5s=5jd§=5j4,j(qd&dé}=5j( Z ( dq dq, dsS[( 2 ()4'N) a0

ds ds
for
a4 0z @22 a7 (aa'a)) o (61)
ds 0! o
where

s=JW
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The intrinsic parameter s is the movement of on@atpo the space of the states on a
geodesic line. The parameter s is the local monemiea point inside the geodesic line.
We know that the geodesic line can be written is Way

q] [ s(hcos@, ()

q=| 02| <] SVeos@ )| (62)

an ds(fcoslp (1))
Here q are the local reference for the point P th@tes on the geodesic. In fact we have
G+t Q= S(t)Z(COS@l (t)f+ cosq, €)j+ ..« cos( t(§)3 s> (63)

For Riemann geometry, we have the differential &qoa for the neural network and the
geodesic in the neural network when we substitugetime t with the distance s that the
point P covers from one position A to another positB inside the trajectory of the

geodesic is

d’q , _, dq dd _

ds? "*ds ds

(64)

j aziI + aZkI _ aZk)

ag* o9 aq
Here Z is the matrix of the resistance with memagaptive synapses) in the neural
network. When the neural network is in an inersi@te the resistance has no memory and
the curvature of the surface in the space of theestwhere the geodesic moves is equal to
zero. Note that the geodesic differential equatsonomparable to the KO set in Freeman
K-sets[22,23,24,25,26, 27].
It 's interesting to note that the Freeman & Koznearal damped oscillator is here

obtained from (60), as a result of the neural dlahygamics in regime of auto-hetero-
organization that characterizes the autonomy obthe / self [28, 29]

For a given transformation of reference, we catdathie associate geodesic, which allows
to implement the transformation of reference inrkaral network. The neural network as
analog computer gives the solution of the ODE o tjeodesic inside the wanted
reference. The Freeman K set is the ODE of the gg@odhat is the best trajectory in the
space of the currents. We know that the neural orétlWas a lot of noise that diminishes
coherence and synchrony in the network behavior¢hwhllows a broad search for new
solutions and new goals by the neural network.
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7. Conclusion: from neuro-geometry to cognitive scerio
We want to conclude with the Freeman reflectionshenintentionality

The biological basis of mental activity can be exptl with two assumptions: that animals
think in ways less complex than humans do, and ttiatnheural mechanisms of mental
processes are basically the same across specieswitespread concern for the property
of consciousness does not offer a good biologiaett, because it remains a matter of
conjecture whether it exists and what forms it rhiggke in animals. An alternative
concept is intentionality, which can be recogniaed studied in its manifestations of goal-
directed behavior. Three accepted meanings ofdha aare the 'aboutness' of beliefs and
ideas according to analytic philosophers, intent as

conceived by cognitive psychologists, and wholemmefse process of healing from injury
in

medicine and surgery. Intention is interpreted esspectively, an attribute of mental
representations, the expression of motivations kiotbgical drives, or the proclivity of
biological tissue to grow toward wholeness. An expental search for representations in
brains has failed to find evidence for them. Analyaf brain dynamics reveals neural
mechanisms for the construction of large-scale sgane patterns of brain activity, which
emerge by interactions of neurons in the limbicteays and which coordinate the
operations of sensory and motor cortices. The amich is offered that the three
characterizations of the concept of intentionalitgmely unity, intent, and wholeness, can
be incorporated into a nonlinear dynamical model ohin function centered in the
construction of meaning rather than representatiolmsthis view, consciousness is the
dynamical process in which meanings are continualigler construction in a chaotic
trajectory through brain state space, and awarenissthe subjective experience of the
momentary focus of the activity that constitutesesning[7]

It is known by now that the question of intentiatyaimplies noisy long-range correlations
in the brain [30, 31]. The approach here definedeims of global neuro geometry is
compatible with these theories. In this paper wguarthat the multidimensional space of
the states and currents reflect the geometric tstreicof the nonlinear neurodynamics
corresponding to the optimal behaviour of the hrarother words, we have attempted to
define the "geometric correlates” for the intelhgegents. The memory in the neural
network is not a passive element where we can stéwemnation. Memory is embodied in
the neural parameters as synaptic conductancegitre@the geodesic trajectories in the
non orthogonal space of the free states. The optioalinear dynamics is a geodesic
inside the deformed space ( deformed from orthogmmnaon orthogonal ) that guides the
neural computation. The adaptation gives to mematy character of reconstructive
process, result of a complex interplay betweers cgeals, knowledge [35]. Intentionality
reflects this deformation, which gives us the ccrreference on where the dynamics is in
agreement with the goals of the intelligent systeN@ise is an important component of
neural computation, which opens the possibility of
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exploring new reference systems and new pointsen¥s/to achieve novel aims and goals.
The trajectories obtained through optimal movemaritls noise can explore new optimal
situations that cannot be obtained without the enolistention with noise as percolation
process opens the possibly to change of the iittasit.

Acknowledgements
The authors gratefully acknowledge Walter Freemad Robert Kozma (GR), Michel
Arbib, Eliano Pessa e Giuseppe Vitiello (IL) foethuitful discussions on these matters

References

[1] London M., The effect of the synaptic input @mputational processes in neurons,
Thesis, University of Jerusalem 2001

[2] Copeland JThe Essential TuringClarendon Press, Oxford, 2004

[3] Rozenberg, G.,Back, T. Kok, J. N. (Eds) HandbobNatural Computing, Springer,
2012

[4] Licata, |, Effective Physical Processes andivetnformation in Quantum Computing,
Quantum Biosystems, vol.1:51-65, 2007

[5] Licata, I,Beyond Turing: Hypercomputation and Quantum Morpmragis, Asia Pacific
Mathematics Newsletter, vol.2: 20-24, 2012

[6] Resconi, G, Geometry of Knowledge for Inteling&Systems, Springer, 2013

[7] Freeman, W. Nonlinear Dynamics of Intentionality, Journal ofdi and Behavior
18,2-3: 291-304, 1997

[8] Snider, G. , Amerson, R.; Carter, D.; AbdaHlh; Qureshi, M.S.; Leveille, J.; Versace,
M.; Ames, H.; Patrick, S.; Chandler, B.; Gorchei&bm, A.; Mingolla, E., From Synapses
to Circuitry: Using Memristive Memory to Exploregttlectronic Brain , Computer,
vol.44, 2: 21 — 28, 2011

[9] Barlow, J. S. , The Cerebellum and Adaptive aln Cambridge University Press,
2005

[10] Amari S., Nagaoka H. (Eds), Methods of Infotioa Geometry, Oxford University
Press, 2008



512 Germano Resconi and Ignazio Licata

[11] Arbib, M.A., Amari, S., Sensori-motor transfoations in the brain (with a critique of
the tensor theory of cerebellum), Journal of ThecakBiology, vol.112, 1: 123-155,
1985

[12] Freeman, J. W., Kozma, R., Bollob4a, B., Sdalee Cortical Planar Networks,
Handbook of Large-Scale Random Networks, Bollobasi®zma, R., Miklés , D. (eds),
pp 277-324, 2008

[13] Hindmarsh, J , Rose, R. , A model of neurdnakting using three coupled first order
differential equations, Proceedings of the Royali&yg of London, Vol. B221, pp. 87—
102, 1984.

[14] Rinzel, J, Ermentrout, B. , Analysis of NeuEx{citability and Oscillations, Methods
in Neural Modeling, C. Koch, C, Segev,| (eds) ;TMAress, pp. 251-291, 1998

[15] Gabbiani, F, Cox, S.J. Mathematics for Neur@sitsts, Academic Press, 2010

[16] Rolls, E. T, Deco, G., The Noisy Brain: Stostia Dynamics as a Principle of Brain
Function, Oxford University Press, 2010

[17] Krone , G. , Tensor for Circuits, Dover, 1959

[18] J. Silverberg, J. Widom. A, Classical Analytical Mechanics and Entropy Produrcti
American Journal of Physics, Vol. 75, 11:993, 2007

[19] Amari,S., Information Geometry on HierarchyRrobability Distributions, IEEE
Transactions on Information Theory Vol. 47 No. 21171711, 2001

[ 20] Scott Kirkpatrick , Percolation and Conduction yRéod. Phys. Vol. 45, 4:574—
588,1973

[21], Bollobas, B., Riordan, O., Percolation, Caidge University Press, 2006

[22] Freeman,W.J. , Mass Action in the Nervous &ystNew York, NY:
Academic Press, 1975.

[23] Freeman, W.J. , Simulation of chaotic EEG grau$ with a dynamic model of the
olfactory system, Biological Cybernetics, vol. 589+150, 1987.

[24] Skarda C. A., Freeman,W.J. , How brains mdiaos in order to make sense of the
world, Behavioral and Brain Sciences, vol. 10:1635;11987.



Geometry for a brain 513

[25] W. J. Freeman, W.J. , How Brains Make Up Tiinds, Weidenfeld & Nicolson,
London, 1999.

[26] Harter D., Kozma R., Aperiodic dynamics and thé-ssjanization of cognitive maps
in autonomous agents. Int. J. of Intelligent Systep1:955-971, 2006

[27] Freeman, W. J. A pseudo-equilibrium thermodynamicleh of information
processing in nonlinear brain dynamics, Neural Neks, VVol.21, 2-3: 257-265, 2008

[28] Pare, D., Llinas, R.R., Conscious and pre-Cmnss Processes as Seen from the
Standpoint of Sleep-Waking Cycle Neurophysiologguhbpsichologia, Vol.33, 9:1155-
1168, 1995

[29] Llinas, R.R. , | of the Vortex: From Neurorms$elf, Bradford Book, 2002

[30] Basti, G., Perrone, A.L., Intentionality aRdundations of Logic: a New Approach to
Neurocomputation, Kitamura, T. (ed.) What Showddmmputed to Understand and
Model Brain Function? From Robotics, Soft ComputiBoplogy and Neuroscience to
Cognitive Philosophy, World Publishing, Singapd&@Q1, pp. 239-288

[31] Vitiello, G., Coherent states, Fractals andibbiwaves, New Mathematics and Natural
Computatiorb:245-264,2009

[32] Pershin, Y. V. Di Ventra, M. Spin memristive syster8pin memory effects in
semiconductor spintronics, Physical Review B 78:(113309, 2008

[33] Meuffels, P., Soni, R., Fundamental IssuesRrablems in the Realization of
Memristors, http://arxiv.org/abs/1207.7319 , 2012

[34] Thomas, A., Memristor-based neural netwokd$hys. D: Appl. Phys. Vol. 46, 9:
093001, 2013

[35] Nalbantian, S, Matthews, P.M.,McClelland, JHds), The Memory Process:
Neuroscientific and Humanistic Perspectives, MI&<3r 2010

Received: April, 18, 2013



