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Abstract 
 
In the brain the relations between free neurons and the conditioned ones establish the 
constraints for the informational neural processes. These constraints reflect the system-
environment state, i.e. the dynamics of homeocognitive activities. The constraints allow us 
to define the cost function in the phase space of free neurons so as to trace the trajectories 
of the possible configurations at minimal cost while respecting the constraints imposed. 
Since the space of the free states is a manifold or a non orthogonal space , the minimum 
distance is not a straight line but a geodesic. The minimum condition is expressed by a set 
of ordinary differential equation ( ODE ) that in general are not linear. In the brain there is 
not an algorithm or a physical field that regulates the computation, then we must consider 
an emergent process coming out of the neural collective behavior triggered by synaptic 
variability. We define the neural computation as the study of the classes of trajectories on a 
manifold geometry defined under suitable  constraints. The cost function supervises  
pseudo equilibrium thermodynamics effects that manage the computational activities from 
beginning to end and realizes an optimal control through constraints and geodetics. The 
task of this work is to establish a connection between the geometry of  neural computation 
and cost functions. To illustrate the essential mathematical aspects we will use as  toy 
model  a Network Resistor with Adaptive Memory (Memristors).The information 
geometry here defined  is an analog computation, therefore it does not suffer the limits of 
the Turing computation and it seems to respond to the demand for a greater biological 
plausibility. The model of brain optimal control proposed here can be a good foundation 
for implementing the concept of "intentionality",  
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according to the suggestion of W. Freeman. Indeed, the geodesic in the brain states can 
produce suitable behavior to realize wanted functions and invariants as neural expressions 
of cognitive intentions. 
 
Keywords: neural geometry; Fisher information; analog computation, brain simulator, 
memristor; physic models of cognition 
 
 

1. Introduction 
 
We open by referring to the inspiring imaginary discussion between Alan Turing and 

Santiago Ramon y Cajal [1] on the meaning of neural computation: 
 
Santiago: I'm beginning to like the perspective of neural computation. Even more, I 
like the idea that each neuron computes. 
Alan: You do? I'm not sure I like it myself. 
Santiago: Why? Don't you think that the brain computes? I could understand it if 
someone else would say so, but you? 
Alan: Well, you see, the term computation has too much a formal meaning for me, and 
it is hard for me to see what do they mean by saying “computation"? I suspect that 
they use it just as one of these buzz words. 
Santiago: Maybe I'm too naive, but I think that the term “computation" is meant to 
emphasize some very simple but deep idea. Namely, that the brain is yet another 
machine that computes functions. Functions, which might be very complicated but 
basically relates the external world of sensory “input" to our output in terms of action 
in the world. 
Alan: I think I share this view. I will not claim that the brain is a kind of special 
machine. 
Santiago: Hey, beware, it is a very special machine, you know, but it is not so special 
that it uses some extra metaphysical powers. Some kind of “virtual spirits" as 
Descartes called them. Putting it differently, the brain is very complicated, but once 
we understand it, we can, at least ideally, implement it with a different hardware. For 
example, simulate it on an electronic computer. Maybe this is where the computation 
comes from. 
Alan: This is an interesting point, but very confusing. You see, when we talk about 
computation what I have in mind is a Turing Machine. I mean that even if any 
computable function is computable by a Turing Machine, not everything that is 
computable by a Turing Machine is a computation. For example, just as you would 
like to simulate the brain, you can simulate other complex systems, say the collision of 
two galaxies. Surely the simulation is a computation and a very complicated one. But 
the collision itself is probably not a computation it is a physical phenomena that has 
nothing to do with computation.  
 
Actually Turing, in the last years of his short and creative life, showed a keen interest 
in what we now call "natural computation"[2,3]. A question on which classical  
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cognitivism seems to get mislead  is that of information. If the new cognitive science 
has to be based on what we know of the embodied brain, then it is appropriate to ask 
whether the Shannon-Turing computational model is the most suitable one to describe 
the characteristics of the informational flow in cognitive processes. In other words, in 
order to study cognitive emergence it is necessary to develop an approach to 
information which can include the meaning and purpose of behavioural scenarios. A 
theory of this kind must combine syntax and semantics, and a geometric approach 
such as the one outlined here seems to us very promising in different areas [4, 5, 6]. 
With a theoretical apparatus of this kind it might be possible to set up various matters 
not approachable within the classical symbolic theories of cognition. 

 
Walter J. Freeman discusses the question of consciousness in the brain in this way[7]: 
  
Given that current efforts to deal with the problem of consciousness have led either to 
its dismissal (Dennett, 1991), trivialization (Crick, 1994), or transplantation to fields 
outside of biology, my view is that an alternate approach may be called for. Rather 
than pursuing forthrightly the elusive concept of consciousness, I suggest that an 
alternative target be formulated. For me that target lies in the area of goal-directed 
behaviors, overlapping largely but not completely with what are commonly called 
'voluntary' actions (Smith, 1994), whether or not they are conscious These behaviors 
emerge from within brains, in contrast to evoked or reflex actions, and their flexibility 
and adaptiveness in the face of unexpected obstacles belies the possibility of genetic 
or environmental programming. The experimental, mechanistic question is: How can 
populations of neurons in brains generate the neuroactivity patterns directing these 
movements? A useful set of theoretical tools with which to seek answers is to be found 
in the self-organizing properties of nonlinear dynamic systems. The theoretical, 
philosophical question is: What principle or organizing concept can be adopted to 
supplant the notion of consciousness? My choice of focus is the term 'intentionality'. 
 

Freeman’s idea of intentionality is the starting point of our work, in which we consider the 
best optimal adaptation in the neural space as the biomathematical image of the 
intentionality. 

 
At the Berkeley conference on memristors (November 21 2008)  Greg S. Snider of the 
Hewlett Packard Laboratory discusses the question of neural net as follows: 
 
In 1980 an artificial neural network was built that work but has high precision 
components, slow unstable learning, non adaptive (Train and ship) and external control. 
Now we want Low precision components, fast stable learning, Adapt to environment and 
autonomous. How we can get this? We can get make components dynamical, add feedback 
(positive & negative) and close the loop with the outside world. The ordinary differential 
equations or ODE to control the neural dynamic are a stiff and nonlinear system. Why not 
just program this on a computer? We know that stiff and nonlinear dynamical systems are 
inefficient on digital computer. An example is the IBM Blue Gene project with 4096 CPUs 
and 1000 Terabytes RAM. To simulate the Mouse cortex use 8 x 106 neurons, 2 x 1010  
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synapses 109 Hz, 40 Kilowatts and digital. The brain uses 1010 neurons, 1014 synapses 10 
Hz and 20 watts with analog system. Analog is more efficient by several order of 
magnitude.  
 
Greg S.Snider suggests to use analog electrical circuit denoted CrossNet with memristor to 
tackle the simulation of the brain neural computation in the brain [8, 32, 33, for the 
breaking news see 34 ]. Snider suggests that physical (or analog) computers are more 
efficient to solve the problem of neural networks. In fact, in  analog systems we do not 
have algorithms to program the neurons, but global constraints. We propose to substitute 
the digital program with the minimum action and geodesic in a non Euclidean space or a 
informed/deformed space. The minimum path in the neural space currents is the Freeman’ 
intention, whose dynamics is in the geodesic trajectory. Geometric and physical 
description of the Freeman intentionality is beyond any algorithmic or digital computation. 
In other words, what we try to do is a return to the geometrical approaches at the beginning 
of the post-Hopfield neural networks age [9,10], without forcing the “metaphorical” nature 
of these toy models( Arbib  & Amari, [ 11 ]) but with a special attention to the new 
scenarios of brain simulation. 
To clarify better the new computation paradigm, we can refer the following principle: 
 
“Modeling brain dynamics requires us to define the behavioral context in which brains 
interact with the world (…) Animals and humans use their finite brains to comprehend and 
adapt to infinitely complex environment.” (Freeman & Kozma, 2008[12]) 
 
We show that this adaptive system has a geometric interpretation that gives us the 
possibility to implement the required parameters in ODE to achieve the desired behaviors 
[two classics are:13, 14; for a general review on ODE in neural dynamics see 15] 
We will consider three classes of neuronal dynamics. The inertial neuronal systems, in 
which there are no adaptation and therefore any modification of the parameters; the 
conservative neural systems, whose behavior adapt to its environment, converging on 
towards a final goal. They are, as it is evident, two cases very simplified. The last one is 
the non conservative and non inertial neural systems where the noise is present to destroy 
the coherence and the synchronicity of the conservative system. The noise gives  the 
possibility to explore new ways compared to the conservative systems, provides a very 
wide variety of behaviors and reveals as the real key to the understanding of the brain [16] 
The noisy geodesic is modelled here as a percolation movement from one state to another 
one of the neural behaviours. 
 
 

2. Geodesic and constrains  in the states’ space 
 
We define the state space as a vector space where any point is located in the N dimension, 
 

   (1)q = (q ,q ,....,q ) = 0     N1 2
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 Any component of q is a state of one neuron. Now we know that in general neurons are 
not independent but are constrained by a set of functions or invariants 
 

          (2)f (q ,q ,....,q )= 0      j = 1,.....,mj N1 2  

 
Now in N dimension we have the space of the state , the sub space of the m dimension is 
the space of the interior coordinates and the complementary space of N – m dimension has 
the exterior coordinates of the free states. The possible trajectories are in the  N – m 
exterior coordinates.. 
Because in (2) the time is not present in explicit way we have that 
 

        (3)

Tdf f f f fj j j j j
= + dq = dq = dq = 0k kdt t q q qk kk k

∂ ∂ ∂ ∂ 
∑ ∑  ∂ ∂ ∂ ∂    

 
For the (3)  the functions in (2) are invariants. Given the function  
 

( , ... )                 (4)
1

q q x x
k k N m

= −  
 
Where ( , ... )

1
x x x

N m
= − are the free variable , we have 

 

                  (5)
qkdq dxjk xj j

∂
= ∑

∂  

 
So 
 

,

f f fq qj j jk kdq = dx = dx 0k j jq q x q xk k k jk k j k jj

∂ ∂ ∂∂ ∂
=∑ ∑ ∑∑

∂ ∂ ∂ ∂ ∂
 

 
 
We conclude that  
 

1 1( ..... ) 0          (6)

1 1

T
q q qfq j NDf f jx q x q x q x qj j j j N

  ∂ ∂ ∂∂  ∂ ∂ ∂∂ = = + + + = 
∂ ∂  ∂ ∂ ∂ ∂ ∂ ∂     

 
D is the derivative in the direction of the tangent of the manifold which dimension is  
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N – m. The functions f have derivatives zero ( invariants ) when we move inside the 
manifold. Given a new function F we have that 
 

1 1( ..... )

1 1

T
q q qFq j NDF F

x q x q x q x qj j j j N

  ∂ ∂ ∂∂  ∂ ∂ ∂∂ = = + + + 
∂ ∂  ∂ ∂ ∂ ∂ ∂ ∂     

 
It measures the change of F respect to the invariant functions for which the derivative D is 

equal to zero. The components of the tangent of the  manifold of N- m dimension are 
q

k
x j

∂

∂  
 

Now because  1( ( ) ) 0                  (7)T TI A A A A A−− =  

 

Where 
,

f j
A A

k j qk

∂ 
= =  

∂    

 we have  
 

1 1( ( ) ) ( )            (8)

T T
f f f fq j j j jT Tk I A A A A I

x q q q qj k k k k

∂ ∂ ∂ ∂∂ − −= − = −
∂ ∂ ∂ ∂ ∂

       
       
                

 
For which we have the ODE ( ordinary differential equations) 

 

(q ,q ,.....,q )           (9)
1 2

q
k h

k Nx j

∂
=

∂  

 
So the tangent vector can be computed by the matrix A of the derivative of the functions in 
(2) 

 
The metric tensor in the manifold is  
 

1 1( ( ) ) ( ( ) )

1( ( ) )                    (10)

T

q q T T T T TI A A A A I A A A A
x xj j

T TI A A A A

g
∂ ∂ − −= − −

∂ ∂

−= −

   
   =
        
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And the geodesic is 
 

2                       (11),,
ds g dx dxi j i ji j

= ∑

 
 
 
Now for the geodesic in the space of the states is 
 

0     (12), ,

h kdx dxh kA g dx dx g dth k h k dt dt
δ δ δ= = =∫ ∫

 
 
Where A is the general action.  
Now for the Euler differential equations we have that the minimum condition can be found 
when 
 

, ,
0

                        (13)

h k h kg v v g v vd h k h k
j jdt v x

hdx h= v
dt

∂ ∂
− =

∂ ∂
 

 
We show in a graphic the geodesic as a minimum cost in this way 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1  Geodesic as the trajectory at the minimum value for the action A 
 
 
When we know the invariants we can compute the tangent vector and the geodesic for 
which we have the stationary condition (the local variation of the geodesic is equal to 
zero). 

L
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2.1 Toy example of geodesic and electrical circuit  
 
According to Krone [17], the tensor image of the electrical circuit is given by the trivial 
electrical circuit 
 
 
 
 
 
 
 
 
   
  
  
Figure 2 Toy electrical circuit with one generator E and one resistor R 
 
Now we compute the power W that is dissipated at the resistance R in this way 
 

2 2( )
dq

W R Ri
dt

= =  

 
Where i is the current in the circuit and q are the states that move inside the circuit. Now 
we define the infinitesimal distance ds in this way: 
 

2 2 2( ) ( )
ds dq

W R Ri
dt dt

= = =  

 
And  
 

2( )         (14)
dq

ds W dt R dt
dt

= =  

 
 
Now we know that in the electrical circuit the currents flow in the circuit so as  to dissipate 
the minimum power, The geodesic line in the one dimension current space i is the 
trajectory in time.  
 
For the minimum dissipation of the power or cost C, we have 
 
 

R 

 

E 

V1 V2 

V3 

i1 

V4 
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2( ) 0     (15)
dq

C ds W dt R dt
dt

δ δ δ δ= = = =∫ ∫ ∫
 

 
Now we can compute the behaviour of the states for which we have the geodesic condition 
of the minimum cost. We know that this problem can be solved by the Euler differential 
equations or ODE 
 
 

2 2

2 2

( ( ) ) ( ( ) )
0               (16)

( ) ( )
0

dq dq
R R

d dt dt
dqdt q
dt

or

dq dq
R Rd dt dt

dqdt q
dt

∂ ∂
− =

∂∂

∂ ∂
− =

∂∂

 

 
When R is independent on the states so R has no memory , we have that the previous 
equation can be written in this way 
 

( )
0

dq
d R

dt
dt

=  

 
When R is independent on the time we have 
 

2

2

( )
0              (17)

( )

dq
d d qdt

dt dt
q t at b

= =

= +

 

 
So the current is constant and is equal to  
 

dq E
i a

dt R
= = =

 
 

The geodesic is a straight line in the space of the states. 
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3. Inertial , non inertial ( conservative ) and dissipative geodesic. 
 
3.1 Inertial and non inertial geodesic 
 
Given the tangent vector to the manifold in a subspace of the  N - m number of the free 
variables x ,  
 

1,1 1,2 1,

2,1

q q q1 1 1...
x x xN -m1 2
q q q a a ... a2 2 2... N m
x x xN -m1 2 a a
q q q3 3 3...q

=   =x x xN -m1 2x j
q q q4 4 4...
x x xN -m1 2
... ... ... ...

q q qn n n...
x x xN -m1 2

∂ ∂ ∂

∂ ∂ ∂

∂ ∂ ∂
−

∂ ∂ ∂

∂ ∂ ∂
 ∂  ∂ ∂ ∂∂   ∂ ∂ ∂

∂ ∂ ∂

∂ ∂ ∂
∂ ∂ ∂

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

2,2 2.

3,1 3,2 3,     (18)

4,1 4,2 4,

,,1 ,2

... a N m

a a ... a N m

a a ... a N m

... ... ... ...

a a ... an N mn n

−

−

−

−

 
 
 
 
 
 
 
 
 
 

 

 
 
Where ai,j  are constant values, the tensor metric gives us a metric of an inertial system. We 
remember that an inertial system is used here to describe the ODE types based on standard 
physical terminology, which is well defined. The metric tensor is 
 

1,1 1,2 1, 1,1 1,2 1,

2,1 2,2 2. 2,1 2,2 2.

3,1 3,2 3, 3,1 3,2 3,
,

4,1 4,2 4, 4,1 4,2 4,

,,1 ,2

T
a a ... a a a ... aN m N m

a a ... a a a ... aN m N m

a a ... a a a ... aN m N mg =
i j a a ... a a a ... aN m N m

... ... ... ... ... ... ...

a a ... an N mn n

− −

− −

− −

− −

−

 
 
 
 
 
 
 
 
 
 

    (19)

,,1 ,2

...

a a ... an N mn n −

 
 
 
 
 
 
 
 
 
 

 

 
 
An example of non trivial inertial system is the geodesic ( Kinetic energy )  for s 
mechanical rotatory system with the inertial moment Ii,j . So we have 
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, ,
g = mI

i j i j
 

 
Where m is the mass of the system. The geodesic is 
 
 

2     (20), ,
, ,

i jds dx dx jiT = ( ) = g = m I v vi j i jdt dt dti j i j

iwhere v  is the vector of  the different angular velocities of  the system, 

and  T  the Kinetic energy.[18]

∑ ∑

 

 
 
When we have 
 
 
 
 

( ) ( )1,1 1,2 1,

q q q1 1 1...
x x xN -m1 2
q q q a x a x ... a2 2 2... N
x x xN -m1 2
q q q3 3 3...q

=   =x x xN -m1 2x j
q q q4 4 4...
x x xN -m1 2
... ... ... ...

q q qn n n...
x x xN -m1 2

∂ ∂ ∂

∂ ∂ ∂

∂ ∂ ∂
−

∂ ∂ ∂

∂ ∂ ∂
 ∂  ∂ ∂ ∂∂   ∂ ∂ ∂

∂ ∂ ∂

∂ ∂ ∂
∂ ∂ ∂

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

( )

( ) ( ) ( )2,1 2,2 2.

( ) ( ) ( )3,1 3,2 3,      (21)
( ) ( ) ( )4,1 4,2 4,

( ) ( ) ( ),,1 ,2

xm

a x a x ... a xN m

a x a x ... a xN m

a x a x ... a xN m

... ... ... ...

a x a x ... a xn N mn n

−

−

−

−

 
 
 
 
 
 
 
 
 
 

 

 
 
 
 
The metric tensor is 
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( ) ( ) ( ) ( ) ( ) ( )1,1 1,2 1, 1,1 1,2 1,
( ) ( ) ( ) (2,1 2,2 2. 2,1

( ) ( ) ( )3,1 3,2 3,
, ( ) ( ) ( )4,1 4,2 4,

( ) ( ) ( ),,1 ,2

T
a x a x ... a x a x a x ... a xN m N m

a x a x ... a x a xN m

a x a x ... a xN mg
i j a x a x ... a xN m

... ... ... ...

a x a x ... a xn N mn n

− −

−

−=
−

−

 
 
 
 
 
 
 
 
 
 

   

) ( ) ( )2,2 2.

( ) ( ) ( )3,1 3,2 3, (22)
( ) ( ) ( )4,1 4,2 4,

( ) ( ) ( ),,1 ,2

a x ... a xN m

a x a x ... a xN m

a x a x ... a xN m

... ... ... ...

a x a x ... a xn N mn n

−

−

−

−

 
 
 
 
 
 
 
 
 
 

 
 
And in this case the geodesic is a non inertial geodesic with invariant given by the geodesic 
(20).   
 
 
 
3.2  Geodesic in non conservative systems [18] 
 
To take into account a minimum of biological plausibility it is necessary to introduce a 
simplified model of membrane. 
Ion channel noise asserting that conformational changes in ion channels are actually 
exposed to two different kinds of fluctuations namely the intrinsic noise and the 
topological noise. The intrinsic noise is associated with the stochastic nature of the 
movement of gating particles between the inner and the outer faces of the membrane. The 
topological noise, on the other hand, is associated with the fluctuations emerging from the 
uncertainty in accessing the permissible topological states of open gates. In a toy 
membrane just having three potassium channels (twelve gates), for example, nine open 
gates can be configured into a variety of topological states with the possible results that 
none of the channels is open, one is open, or two are open. Now the join probability for the 
ion channels is given by 
 

1 2( , ,..... )nP P q q q=  
 
The join probability to open or close the channel is computed in the space of the ionic 
states 
 

1 2( , ,..... )nq q q q=  
 
That move inside  the channels. So given a vector q in the state of the channels , we can 
compute the probability for the given configuration q of states in the channels.  At any 
configuration we associate a probability. So we have that there exist configurations with 
very low probability and configurations with high probability. 
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Now given the join probability P , we compute the variation of the probability with respect 
to the state qj . So we have 
 

P
D P

jj
q

∂
=

∂  

Now given the current  
 

( )dq tj
i j dt

=

 
We can compute the flux of states for the current as a random variable 

 
( )dq tj

Pj dt
Φ =

 
Now we assume that we have this invariant form  

 
0D Pj jλΦ + =

 
When the probability P is a constant distribution value , the flux of the state is equal to 

zero. But when the variation of P for the change of state is positive the flux is negative , 

when the variation of P is negative the flux is positive. So the flux has an inverse value to 

the probability . When the probability is a constant value the flux is zero. So the flux is 

controlled by the probability in an inverse way. 

 
1 log

   (23)
dq Pj

i D Pj jdt P qj
λ λ ∂= = − = −

∂
 

 
Now the current across the channels is the superposition of two currents: one is the 
ordinary current I and the other is the random current  i. In conclusion the total current is 
 
 

(log )
( )    (24)

,
P

J I i I q
ji i i i j i q

λ ∂= + = −
∂

 

 
It can be written in this way 
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   (16)
,

j
J I A
i i i j

λ= −  

 
Now the noise can be formally presented as a field which value is  
 

(log )Pj
A

jq

∂=
∂

 

 
For the definition of the current we have 
 

( )
jdQj

J I A
j jdt

λ= = −  

 
In conclusion we can change the previous definition of the current and also the geodesic 
expression in this way 
 

2    (25)
,

k hdQ dQ
W Z ds

k h dt dt
= =  

 
The new geodesic can be written also in this way 
 

2 2( ) ( )( )
,

2( ) 2 ( ) ( )    (26)
, , ,

1 1,2 2

ds h h h k k kdE Z I A I A
k hdt

j k h k h kZ q I I Z q I A Z q A A
h k h k h k

W W W

λ λ

λ λ

= = − −

= − +

= + +
 

 
So we have three different powers. W1 is the ordinary power for the ionic current without 
noise. The second W1,2  is the flux of power from current to the noise current. The last W2 
is the power in the noise currents. 
 
 
 
3.3  The Fisher Information in  Neurodynamics 
 
Now we compute the average of the power as the cost function  which value must be 
minimum. So we have 
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[ ( )( )]
,

2[( ) 2 ]
,

log log2[( ) ]
, 1,2

log log2[ ) )]   (27)
, 1,2 ,

nE P Z I A I A dtd x
i j i i j j

nPZ I I A A I A dtd x
i j i j i j i j

P P nPZ I I W dtd x
i j i j q qi j

P Pn nP Z I I W dtd x Z P dtd x
i j i j i j q qi j

λ λ

λ λ

λ

λ

= − −∫

= + −∫

∂ ∂= + +∫ ∂ ∂

∂ ∂= + +∫ ∫ ∂ ∂

 

 
Let us consider a parameterized family of probability distributions 
 

{ }( , , , ,..., )1 2S P x t q q qn=
  

 where x and t are random variables  and  
 

( , , ..., )
1 2

q q q q
n

=  

 
is a real vector parameter to specify a distribution. The family is regarded as a n-
dimensional manifold having  q as a coordinate system is a Riemannian manifold and

 
 

 
log log

( ) ( ) )]    (28)
,

P P nG q g q P dtd x
i j q qi j

∂ ∂
= = ∫ ∂ ∂  

 
Play the  role of a Fisher information matrix 
 
The idea of information geometry [19]  is that a family of probability distributions that are 
labelled by some continuous parameters as state q can be thought as a space, each

 distribution being a “point”, while the parameters q play the role of coordinates. A question 
that

 
immediately arises is whether there is a natural way to measure the extent to which

 neighbouring “points” can be distinguished from each other. The answer is that such a 
measure exists, that it is unique, and most remarkably, that it has all the properties one 
would wish to impose upon a measure of distance. Thus, distinguishability is the distance, 
which raises the possibility that perhaps the familiar notion of physical spatial distance 
might itself be explained in this way: 
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2
,

,

1
( ) ( )

2,

log ( , , ) log ( , , ) log ( , , ) log ( , , )
( )   (29)

h kds g dq dqh k
i j

where

jig q E A A
i j

P x t q P x t q P x t q P x t q
E P dxdt

q q q qi j i j

λ

= ∑

=

∂ ∂ ∂ ∂= = ∫∂ ∂ ∂ ∂

  

 We connect the previous distance or metric with the Kullback–Leibler divergence in this 
way  
 

2 2 ( ( , , ) : ( , , )),
,

( : ) log( )

h kds g dq dq KL P x t q P x t q dqh k
i j

where

p
KL p q p dxdt

q

= = +∑

= ∫

 

 
It is the well known  Kullback–Leibler divergence  [ 26 ]. 
 
When the noise is equal to zero the Fisher information assumes the maximum value and 
the geodesic is equal to the classical geodesic. On the other hand, in the case with noise, 
we assume that the field  
 

(log )Pj
A

jq

∂=
∂

 

 
interacts with the neural network and destroys the coherence. The information approaches 
zero and the cost function will be reduced. For the random potential A we have this 
example of random geodesics 
 
 
 
3.4 Percolation and geodesics 
 
Resistor networks, from which resistors are removed at random, provide the natural 
generalization of the lattice models for which percolation thresholds and percolation 
probabilities can be considered[20, 21]. Given the membrane resistances given by the 
graph 
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Figure  3  Membrane resistances and equivalent electrical circuit 
Any resistance can be separate in two parallel resistances as we do in figure for the 
resistance R. The resistance R is separated in two parallel resistances R1 and R2. The 
resistance R1 is a resistance that can be removed or changed at random in the percolation 
phenomena , R2 is the crisp resistance. The total resistance R now is given by the 
traditional expression 
 

1 2

1 2

R R
R

R R
=

+  
 
The total current is I + i where I is the current in the crisp resistance R2 and i in the random 
value resistence  R1 . 
 
 
 
 
 
 
 
   
  
 
Figure 4  random R1  and crisp resistance R2 generate the equivalent resistance R in a 
parallel configuration.  
 
For the additivity of the power we have 
 

2 2 2 21 2
1 2

1 2

( ) ( )( )          (27)
R R

W R i R I R I i I i
R R

= + = + = +
+  
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The geodesic can be written in this way 
 
 

1, , 2, ,2( ) ( )( ) ( )( )     (28),
, , 1, , 2, ,

2, , 1, ,
, ,

Z Zds i j i j
Z I i I i I i I ii j i i j j i i j jdt Z Zi j i j i j i j

Z I I Z i ii j i j i ji ji j i j

= + + = + +∑ ∑
+

= +∑ ∑  

 
The geodesic is composed by two parts: one is the synchronic and crisp geodesic the other 
is the noise change of the crisp and synchronic geodesic. So we have the graph image 
 
 

 
 
Figure 5  In evidence we have the geodesic that are solutions of the ODE.  For the noise 
the geodesic is transformed in a more complex geodesic that is related to the Fisher 
information. The total effect is the percolation random geodesic. 
 
 
 

4. Geodesic in neural space  
 

In this chapter we show that any electrical neural activity can be represented in manifold 
state space where the minimum path (geodesic) between two points in the multi-space of 
the currents is function of the neural parameters as resistors with or without memory. Now 
we begin with the simplest case given by electrical activity of one little part of the 
membrane of axons, dendrites or soma. In this case we ignore the presence of the voltage-
gated channels in the membrane.   
 
4.1 Membrane electrical activity and geodesic  
 
When we ignore the presence of voltage-gated channels in the membrane we can model the 
membrane electrical activity by this circuit 
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Figure 6 Input voltage source E , Internal to the membrane resistance Rins , Capacitor 
voltage source E(i3), R is the membrane resistance , Erest  is the rest voltage source 
generator.  
 
We remark that in the figure 6 we have three voltages sources. The first generator source is 
the impulse at the begin of the axon, the  second E(i3)  is  
 

( ) 13( ) ( ) ( )         (29)33 2 3
q t

V V E i i t dt
C C

− = = = ∫
 

 
The third Erest is the voltages actively generated by ATP when the axon is at rest state. Any 
circuit defines the relation between the voltages and the currents in this way 
 

( , , ...., )
1 2

v f i i i
j j n

=  

 
Because the expression of the dissipate power W is 
 

1 2 3 .....
1 2 3

nW i v i v i v i v
n

= + + + +
 

 
We have 
 

1 2 3 .....
1 2 3

nW i f i f i f i f
n

= + + + +
 

 
When the edges are separated one from the others we have n free variables so the power 
can be written in this way 
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2 2 2 2   .....                   (30)
1 1 2 2 3 3

2

W R i R i R i R i
n n

for

v R ij j j

= + + + +

=
 

 
Now when we connect the edges in a circuit we reduce the independent currents from n to 
p < n.  
 

   .....             (31)
1, 1 2, 2 3, 3 ,

i i i i i
j j j j p j p

α α α α= + + + +
 

 
So all the n currents are linear combinations of the independent currents p. In this situation 
the power takes the form 
 

2 2 2 ( ... ) ( ... )   ( ... ) .....
1 1,1 1 ,1 2 1,11 ,1 3 1,2 1 ,2

2 ( ... )                           (32)
1, 1 ,

W R i i R i i R i i
p p p p p p

R i i
n n p n p

α α α α α α

α α

= + + + + + + + + +

+ + +

 
So the power can be written in this form 
 

               (33), ,,

h k h kW g i i g i ih k h kh k
= =∑

       

 
Where the metric tensor g is 
 

Tg Rα α=
  

 Where  
 

...1,1 1,2 1, 0 ... 01

... 0 ... 02,1 2,2 2, 2 ,  R =              (34)
... ... ... ...... ... ... ...
0 0 ......,1 ,2 ,

p R

Rp

Rnn n n p

α α α

α α α
α

α α α

   
   
   =    
   
      

 

Because  
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jdqj
i =   j = 1,2,3,....., p 

dt

and

dE
W =

dt

 

 
Where E is the energy and W the power, the geodesic equation can be written in this way 
 

( )              (35), , , ,
, , ,

h k h kdE g dq dq R dq dqh k k j j i i k
h k h k j i

α α= =∑ ∑ ∑  

 
We know that W in an electrical circuit takes the minimum value. So the power is 
comparable to the Lagrangian in mechanics (Hamilton principle) or the Fermat principle in 
optics ( minimum time).  In the context of Freeman’s neurodynamics, we hypothesize that 
the minimum condition in any neural network gives us the meaning of  “Intentionality”. . 
A neural network changes the reference and the neurodynamics in a trajectory with 
minimum dissipation of power or geodesic that we can see in figure where the minimum 
value is the solution of the ODE in (1) 
In conclusion any neural network or the equivalent electrical circuit generates a 
deformation of the currents space and geodesic trajectories. 
 
 
4.2 Relation between voltage sources and currents

 

 
The relation between voltages sources and currents for the circuit in figure 2 is 
 

1
3 111 1 ( )

( )1 35 3 1 3

3 11
1 3 ( )3 3 8 3

( 3) ( ( ) )1 3                  
( 3)( ( ) )3 3 8 3
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R E E i Erest
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α α
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  (41)

 

 
Now when we know E and Erest we have a recursive learning to compute the vector 
currents 
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i

i
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The analog electrical circuit computes the current vectors without any algorithm but by the 
electrical circuit. Now for all parts of the neural network is possible to give the analog 
electrical circuit in this way 
 
4.3 Geodesic in presence of voltage-gated channels in the membrane  
 
When we have the voltage gate channels in the membranes, we can introduce resistor with 
memory or memristors that represented by a variable resistor in figure 7: 
 
 
 
 
 
 
 
 
 
   
  
 
Figure 7 Electrical membrane circuit with voltage-gated channels in the membrane  
 
The graph (topology) of the network is 
 

The independent currents are 
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The metric tensor is 
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The geodesic trajectory is 
 

2 2 2 2

2 5 8 11

2 5 5 8 8 11

( 3) ( 3) ( 2) ( 2)

       + 2 2 2                (43)
ins m K m K Na

m K

W R i R i R R i R R i

i i R i i R i i

= + + + + + + + + + +
+ +

 

 
The geodesic takes the minimum value for the currents inside the circuit. For the axon we 
repeat the same simple unity many times as follows: 
 

 
 
Figure 8. Axon and electrical circuit 
 
The topology of the axon with three elements is 
 
 

Figure 9 Topology of the three steps of the axons element. At any loop we have one 
current so we have 1+3+1+3+1+3 = 4*3 =12 loops and 12 free currents. 
 
In figure 9 we have three unities of the axon. The space of the currents has dimension 
equal to 
 
1+3+1+3+1+3 = 12 
 
If G1 is the space of the currents in the first four loops, the total space for the three steps is 
given by the direct sum of three equal spaces 
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G = G1 ⊕ G2 ⊕ G3 
 
 
The metric tensor is in the 12 space of the currents and is given by the matrix 
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So the geodesic for three steps in the axon is 
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For axon with myelin we have a similar structure but only at the node. 
 

 
 
 
Figure 10. Axons with myelin and electrical circuit 
 
 
 
4.4 Geodesic image of the synapses and dendrites 
 
 
We remember that any synapse is a little part of the three of dendrite that we show in 
figure 11: 
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Figure 11. Dendritic tree with synapses, soma and axon. 
 
The dendrite tree is useful to simulate a complex tensor metric in this general form 
 

 
 
The electrical activity of the synapse is given by the circuit

 

 
 
 
 
 
 
 
 
   
  
 
Figure 12 Electrical circuit for synapses. 
 
The metric tensor is 
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The geodesic trajectory is 
 

2 2 2 2( ) ( 3) ( 3) ( 2) + 2 2    (47)5 5 52 8 2 8
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= = + + + + + + +

 
 
Now we show the connection between the synapses and the dendrite by this electrical 
device 
 

 
 
Figure 13 Electrical connection between synapses and dendrite.  
 
 
4.5 Geodesic image of shunting inhibition 
 
For the shunting inhibition we have 
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Figure 14 Electrical scheme for shunting inhibition. Re is the excitatory resistance, Ri is the 
inhibitory resistance, Rm is the resistance of the membrane. 
 
The geodesic is 
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5.  Implementation of a system in a neural network 
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The metric tensor is 
 

1 1

1 2 2 1
1 12 2

1 2

q x

x x x x
J

q x

x x

∂ ∂ 
 ∂ ∂   = =   ∂ ∂   

∂ ∂  

               (50)

 

 
And 
 

1 1 1 1
21 11 2 1 2 2 1 22 1 2 1

21 1 1 12 2 2 2 1 11 2 1
1 2 1 2

T
q q q q

Tx x x x x x xx x x x
g

q q q q x x x
x x x x

∂ ∂ ∂ ∂   
     ∂ ∂ ∂ ∂ + +        = = =        ∂ ∂ ∂ ∂     + +     

∂ ∂ ∂ ∂      

 (51) 

 
The geodesic is 
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2 2 2 2 2( ) (1 ) 2(1 ) (1 )2 1 1 2 1 2 1 2
ds

x i x x i i x i
dt

= + + + + +            (52) 

 
      With the circuit of the membrane 
 
 
 
 
 
 
 
 
   
  
  
Figure 20.  The electrical circuit of the neural unit for the non inertial change of reference.  
 
We have the geodesic 
 

2 2 2( ) ( 2) 2 ( 2)1 1 2 2
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= + + + + + +   (53) 

 
Now when the resistances are functions of the states (adaptable conductance) in this way 
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We can compute the resistances that simulate the change of the currents inside the space q1 
and q2, 

 
6. Geodesic equation in non inertial state with memristors 
 

In the neural network the cost function is expressed as follows: 
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jiC ds Z q dq dqi j= =∫ ∫                         (55) 
 
Where Z(q) is the matrix of the resistor with memory or adaptive conductance in neural 
network, or the impedance in neural channels. We remember that in physics the trajectories 
in the phase space of N body is a geodesic which expression is 
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2 ( ( )) ,

jids E U x g dx dxi j= −            (56) 
 
Here E is the total energy and U the potential energy. In the optical system we have: 
 

2 ( ) jids n x dx dx=                                (57) 
 
Where n(x) is the diffraction index. The metric tensor is function of the position x. In the 
electrical circuit we have 
 

Charge q: comparable to the position x 
Current I: comparable to the velocity v 
VoltageV: comparable to  the momentum p 

 
The relation between current and voltages is  
 

,j i ji g v j=                                  (58)
 

 
The relation between momentum and velocity is similar 
 

,j i jp g vj=                                     (59)
 

 
 
Now for the neural network we determine the minimum cost we use the Euler equation in 
this way 
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∫ ∫ ∫ ∫
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We substitute time with the square of the power and we have 
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The intrinsic parameter s is the movement of one point in the space of the states on a 
geodesic line.  The parameter s is the local movement of a point inside the geodesic line. 
We know that the geodesic line can be written in this way 
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        (62) 

 
Here q are the local reference for the point P that moves on the geodesic. In fact we have 
 

2 2 2 2 2 2 2 2
1 2 2..... ( ) (cos( ( )) cos( ( )) ..... cos( ( )) ) ( )1n nq q q s t t t t s tα α α+ + + = + + + =     (63) 

 
For Riemann geometry, we have the differential equations for the neural network and the 
geodesic in the neural network when we substitute the time t with the distance s that the 
point P covers from one position A to another position B inside the trajectory of the 
geodesic is 
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      (64) 

 
Here Z is the matrix of the resistance with memory (adaptive synapses) in the neural 
network. When the neural network is in an inertial state the resistance has no memory and 
the curvature of the surface in the space of the states where the geodesic moves is equal to 
zero. Note that the geodesic differential equation is comparable to the K0 set in Freeman 
K-sets[22,23,24,25,26, 27]. 
It 's interesting to note that  the Freeman & Kozma neural damped oscillator is here 
obtained from (60), as a result of the neural global dynamics in regime of auto-hetero-
organization that characterizes the autonomy of the brain / self [28, 29] 
For a given transformation of reference, we can build the associate geodesic, which allows 

to implement the transformation of reference in the neural network. The neural network as 

analog computer gives the solution of the ODE of the geodesic inside the wanted 

reference. The Freeman K set is the ODE of the geodesic that is the best trajectory in the 

space of the currents. We know that the neural network has a lot of noise that diminishes 

coherence and synchrony in the network behavior, which allows a broad search for new 

solutions and new goals by the neural network.  
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7. Conclusion: from neuro-geometry to cognitive scenario 
 
We want to conclude with the Freeman reflections on the intentionality  
 
The biological basis of mental activity can be explored with two assumptions: that animals 
think in ways less complex than humans do, and that the neural mechanisms of mental 
processes are basically the same across species. The widespread concern for the property 
of consciousness does not offer a good biological target, because it remains a matter of 
conjecture whether it exists and what forms it might take in animals. An alternative 
concept is intentionality, which can be recognized and studied in its manifestations of goal-
directed behavior. Three accepted meanings of the term are the 'aboutness' of beliefs and 
ideas according to analytic philosophers, intent as 
conceived by cognitive psychologists, and wholeness in the process of healing from injury 
in 
medicine and surgery. Intention is interpreted as, respectively, an attribute of mental 
representations, the expression of motivations and biological drives, or the proclivity of 
biological tissue to grow toward wholeness. An experimental search for representations in 
brains has failed to find evidence for them. Analysis of brain  dynamics reveals neural 
mechanisms for the construction of large-scale space-time patterns of brain activity, which 
emerge by interactions of neurons in the limbic system, and which coordinate the 
operations of sensory and motor cortices. The conclusion is offered that the three 
characterizations of the concept of intentionality, namely unity, intent, and wholeness, can 
be incorporated into a nonlinear dynamical model of brain function centered in the 
construction of meaning rather than representations. In this view, consciousness is the 
dynamical process in which meanings are continually under construction in a chaotic 
trajectory through brain state space, and awareness is the subjective experience of the 
momentary focus of the activity that constitutes a meaning [7] 
 
 
It is known by now that the question of intentionality implies noisy long-range correlations 
in the brain [30, 31]. The approach here defined in terms of global neuro geometry is 
compatible with these theories. In this paper we argue that the multidimensional space of 
the states and currents reflect the geometric structure of the nonlinear neurodynamics 
corresponding to the optimal behaviour of the brain. In other words, we have attempted to 
define the "geometric correlates" for the intelligent agents. The memory in the neural 
network is not a passive element where we can store information. Memory is embodied in 
the neural parameters as synaptic conductances that give the geodesic trajectories in the 
non orthogonal space of the free states. The optimal nonlinear dynamics is a geodesic 
inside the deformed space ( deformed from orthogonal to non orthogonal ) that guides the 
neural computation. The adaptation gives to memory  its character of reconstructive 
process,  result of a complex interplay between cues, goals, knowledge [35]. Intentionality 
reflects this deformation, which gives us the correct reference on where the dynamics is in 
agreement with the goals of the intelligent systems. Noise is an important component of 
neural computation, which opens the possibility of  
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exploring new reference systems and new points of views to achieve novel aims and goals. 
The trajectories obtained through optimal movements with noise can explore new optimal 
situations that cannot be obtained without the noise. Intention with noise as percolation 
process opens the possibly to change of the intent itself. 
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