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SEEING BY MODELS: VISION AS ADAPTIVE EPISTEMOLOGY 

IGNAZIO LICATA 

ISEM, Institute for Scientific Methodology, Palermo, Italy 
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In this paper we suggest a clarification in relation to the notions of computational and intrinsic 
emergence, by showing how the latter is deeply connected to the new Logical Openness Theory, an 
original extension of Gödel theorems to the model theory. The epistemological scenario we are 
going to make use of is that of the theory of vision, a particularly instructive one.  
In order to reach our goal we introduce a dynamic theory of relationship between the observer and 
the observed which takes into account the co-adaptive processes as well as the ecological nature of 
the mind/world relations. In order to fulfill the requirements of complexity sciences, this theory 
assumes that the scientific activity has to be able to comprehend the adaptive dynamics between 
system and environment as well as the model and the context where it is applied. This leads to an 
adaptive epistemology based on logical openness which overcomes the thigh corners of both naïve 
objectivist conception and radical relativism temptations by stressing that the knowledge building is 
a process of continuous shifting from the “frozen” syntactical dimensions to the plurality choices 
which make possible for mind and world to meet each other. 

Keywords: computational emergence, intrinsic emergence, logical openness, system-environment 
relationship. 

veritas est adaequatio rei et intellectus 

Thomas Aquinas, De Veritate 

 

The situation of complete certainty 

is reached only by observation of an 

infinite number of events (God’s Eye) 

Tibor Vámos 

1 Introduction 

In the last years the debate on complexity has been developing and developing in 
transdisciplinary way to meet the need of explanation for highly organized collective 
behaviors and sophisticated hierarchical arrangements in physical, biological, cognitive 
and social systems. Unfortunately, no clear definition has been reached, so complexity 
appears like an anti-reductionist paradigm in search of a theory. 

In our short survey we aim to suggest a clarification in relation to the notions of 
computational and intrinsic emergence, and to show how the latter is deeply connected to 
the new Logical Openness Theory, an original extension of Gödel theorems to the model 
theory. The epistemological scenario we are going to make use of is that of the theory of 
vision, a particularly instructive one. Vision is an element of our primordial relationship 
with the world; consequently it comes as no surprise that carefully taking into 
consideration the processes of visual perception can lead us straight to some significant 
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questions useful to delineate a natural history of knowledge. The common Greek 
etymological root of “theory” and “vision” sounds like a metaphor pointing out the 
analogy  between the modalities of vision and those we use “to see and build the world” 
(Goodman, 1978), because them both can say us something about the central role of the 
observer and the semantic complexity of cognitive strategies. 

2 Reductionism and  Naïve  Objectivism 

Most of the problems in focusing the notion of complexity just come from the unsuitable 
extension of that naïve objectivism which represents the conceptual driftage of 
reductionism. This one is very useful a tool which has guaranteed Physics a considerable 
success; but when it is regarded as the unique and universal method an hidden postulate, 
apparently innocuous and natural, comes out: the world is “out there”, independent from 
the observer, organized by levels, explicable by means of a chain of theories logically 
connected and each description level can be derived from the previous one simply by 
using proper mathematical techniques and, at the most, “bridge-laws”. 

Such kind of complexity corresponds to the algorithmic complexity (Chaitin, 2007); 
it measures the information that a Turing machine has to process to solve a problem in 
relation to the processing time and space (program length). It is interesting noticing how 
Artificial Intelligence and the current Everything Theories share the same conception: a 
Laplace’s demon (Hahn, 2005) can solve “mind” in purely syntactical terms just in the 
same way as it reduces the physical world variety to a nutshell of fundamental particles 
and interactions. Similarly, in such a Universe nothing authentically new can turn out, and 
the only detectable emergence is the computational one (detection of patterns) which is 
obtained by the fundamental algorithmic compression. 

An example of the above-mentioned emergence is well represented by the non-linear 
chaotic systems. There, the long-range predictability is missing, but it is possible the step-
by-step computation of the system’s trajectories in the phase space. Even if such 
ingenuous idea of reductionism has been radically criticized (Anderson, 1979; Laughlin, 
2006; Laughlin and Pines, 1999; Laughlin, Pines et al., 2000) and it has been observed 
that this kind of description can only be fulfilled within classical systems (Licata, 2008a), 
naïve objectivism and the independence from the observer are still the “hidden” 
postulates in the scientific activity. 

In order to find an alternative we have to look at a dynamic theory of relationship 
between the observer and the observed which takes into account the co-adaptive 
processes as well as the ecological nature of the mind/world relations. 

3 Vision between Syntax and Semantics 

The difficulties in developing artificial vision devices have been strongly instructive in 
understanding the semantic features of the complexity involved in the process. As it is 
known, the symbolic-algorithmic approach of classical cognitivism has succeeded only in 
recognition of very simple shape and dynamics, while connectionism - thanks to bio-
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morph inspired parallel and distributed computing - has achieved larger success in 
recognition of even greatly complicated patterns. Anyway, there’s a common problem 
with them both: the meaning of vision. To clarify this crucial point, it will be useful to 
shortly examine some of the salient outcomes in neurodynamics. 

When a visual impulse related to an object (frequency, luminosity, dynamics and so 
on) hits the retina, the information is distributed on the receptor-fields of many 
specialized neural “agencies”. The classical problem is to bring the activity of many 
cognitive agencies back to a perceptive act we experience as a single one. In these years, 
the coherence process which makes the neural agencies synchronized so as to respond in 
collective and unitary way to an object recognition – know as “feature binding” (Singer 
and Gray 1995; Varela et al., 1999) – has been experimentally verified. If we consider 
each neuron as a threshold non-linear device, it means that the coherence process needs 
the threshold rearrangement of each neuron so as to arrange its output according to the 
other neurons involved in the same perception act.  S. Grossberg studied the general logic 
of such feed-back process by ART, Adaptive Resonance Theory (Grossberg, 1988; 
Levine, 2000). The input is triggered by a series of bottom-up stimuli (physical signals 
carrying the visual information and biological transduction mechanisms to the working 
memory towards the cognitive agencies) which are selected and set by top down signals 
acting as global constraints on the collective neural response which allow the recognition 
and the response-outputs. 
 

 
 

Figure 1. From Julesz, 1991. 
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The bottom-up activities, in principle, can be totally codified as syntactic processing 
according to reductionist logic, but the same does not go for the top-down features which, 
instead, depend on the previous memories, knowledge and aims of the observer. Without 
such elements there’s no vision, just pattern recognition. The basic evolutionary meaning 
of top-down dynamic constraints - some of which are part of our deep genetic baggage – 
consists in filtering the stimuli related to essential information for adaptation. The top-
down processes selectively amplify the expected stimuli and extinguish or soften other 
ones according to a priority ranking centred on the stratification of previous experiences. 
So, the resonance feed-back between neural agencies can be considered as an information 
“evaluating” so as to select a stimulus from the background noise and activate a motional 
and linguistic decision. On the other hand, it may happen that an impulse does not fall 
upon the already stored memories, in this case cognitive activity has to make the feature 
binding by building new categories and new interpretative codes able to create the 
required harmonization  

An interesting model of neural micro-dynamics for the adaptive relation between 
bottom-up and top-down processes uses the mechanisms of homoclinic chaos (Arecchi et 
al., 2002a, 2002b). Since their famous programmatic paper, the “Dynamical System 
Group” had put forth the hypothesis that the order/disorder peculiar mixture of non-linear 
dynamics could be a model for the critical sensitivity of the attentive processes regarded 
as information amplifying (Crutchfield et al., 1986; Licata, 2008b). Within the 
homoclinic chaos scenario the neuronal spikes are considered as regular orbits having 
erratic times. When a stimulus is recognized via an ART feed-back, such spikes get 
synchronized by means of a phase-linking process. 
 
 

 
 

Figure 2. From Arecchi et al., 2002. 
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Figure 3. From Arecchi et al., 2002. 

The duration and the specific modalities of the coherence depend on the kind of 
experience and give a natural explanation for to the consciousness’ time as the duration of 
the coherence states (Libet, 2005). S. Zeki hypothesized the activation of this kind of 
processes for the neural agencies related to “shape” and “motion” which come into play in 
the aesthetic experience (Zeki, 2000). Tangible and suggestive examples of coherence 
processes realized by vision are the Escher’s famous lithographs or the dilemmas like 
“duck-rabbit” (see for ex. Jastrow, 1973). There we have a reliable performance of visual 
perception mechanisms, but it does not correspond to the semantic dimension of seeing; 
this one only occurs when coherence makes an interpretation “to collapse”. 
 

 
 

Figure 4. 

The D. Hofstadter “statistical mentalics” hypothesis is centred on the idea to carry 
out a correlation between symbolic and sub-symbolic states, like it has been done in 
Statistical Physics with thermodynamics and kinetic theory of gases (Hofstadter, 1996). 
Following this physical model, it has been suggested that different sub-symbolic states 
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correspond to the same cognitive-symbolic description (Clark, 1991). One might thus be 
tempted to assimilate the top-down constraints with the cognitivism high level symbolic 
language and the visual perception bottom-up processes with the connectionism low-level 
one. Nevertheless, it has been showed that this kind of program can only be carried out in 
few, very simple cases (Smolensky, 2006), moreover the scheme here discussed provides 
further reasons for such hypothesis failing. Actually, the top-down constraints are not 
fixed schemes that can be assimilated to an algorithm, but they are neural landscape 
continuously and dynamically redefining by the system/environment relations. The 
computational descriptions of classical cognitivism (Marr, 1983) only work in “close” 
worlds - far from the emergence zones - when the ART process does not remodel the 
cognitive scenario. Some experiments on the olfactory memory of locusts and rabbits 
(Laurent and Wehr, 1999; Laurent et al., 1996; Freeman, 2000) are quite significant. The 
first experiment has revealed that the temporal sequence of the neuronal activities 
codifying on odour does not vary when the same stimulus is presented again, whereas, in 
rabbits, different sequences correspond to the same stimulus; it means that the rabbit’s 
cognitive dynamics changes at each experience so modifying its repertory of meanings. 
Differently from what statistical mentalics hypothesizes, top-down and bottom-up 
features of vision are not two different descriptive levels, but the facets of a single 
dynamic process. Therefore describing vision as a coherence process provides a way out 
of the classical representationalism tight corner as well as its microscopic version which is 
the “grandmother neuron”. What we are looking at is the evolutionary dynamics of 
observer-centred meanings, without these ones there is just passive perception of stimuli, 
but not authentic vision (Arecchi, 2001; Tagliasco and Manzotti, 2008).  Such analysis 
can be easily moved to the epistemological area of model building. 

4 Seeing by Models 

There’s an old tendency in the “Platonic-inspired” epistemology to be able to abstractly 
outlining the knowledge method, compressing it in “agnostic” form with respect to 
meaning and making it as much independent from the observer as possible. An explicit 
program of this kind has been proposed within the ambit of Neopositivism in the 
“Encyclopedia of unified science”, which has been conceived as the empirical sciences 
equivalent of Whitehead and Russell “Principia Mathematica”, a purely formal-logic, 
syntactically well defined and totally self-contained structure of science knowledge. Here 
too, likewise in artificial vision, the difficulties in creating an “automatic scientist, have 
proven to be extremely instructive about the real dynamics of science knowledge 
production (Thagard, 1993; Magnani, 2006). 

Let us consider an S system studied by an Obs experimental apparatus and described 
by an M model. M is essentially made up of a set of variables, their evolution equations 
and the boundary conditions defining S. Once the Oi system’s observables are fixed (with 
i varying on a finite set), Obs can be completely specified by algorithm-like operational 
procedures, a Turing-Observer (see Licata, 2006). Under such conditions an M model can 

 M
et

ho
ds

, M
od

el
s,

 S
im

ul
at

io
ns

 A
nd

 A
pp

ro
ac

he
s 

T
ow

ar
ds

 A
 G

en
er

al
 T

he
or

y 
O

f 
C

ha
ng

e 
D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 P

ro
f.

 I
gn

az
io

 L
ic

at
a 

on
 0

9/
04

/1
2.

 F
or

 p
er

so
na

l u
se

 o
nl

y.
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be regarded as an expert system manipulating the data obtained by the Turing-Observer, 
and the “competition” between the M models describing S can be considered a Bayesian 
procedure of this kind: 

 ( )
Oprob

MprobMOprob
OMprob

.
=  (1) 

The formula expresses the greater capacity of one model among the others to quickly 
climb the probability hill’s peak, so providing the maximum fitness in the space of O 
observables in terms of correlation and predictability according to the algorithmic 
compression criterion. The formula (1), applied to a single model perfectioning, can be 
seen as a Darwinian procedure as: model formulating – its matching to data – mutation 
and picking out of the maximum a posteriori probability. 
 

 
 

Figure 5. 

We can obtain a formally alternative, but conceptually similar description within the 
ambit of Game Theory. If we take into consideration the model with the highest score in 
the game whit the system’s values of observables, or within Fuzzy Theory, then we can 
say that the winning model is the one allowing a total defuzzification of the system. 
Patently, if theories (or the Nature!) worked like that, natural and conceptual ecosystems 
would be quite poor! In actual fact, in studying phenomena, we cannot identify a priori 
the system we are dealing with and its significant variables, it depends on the model 
choosing, that is to say very refined and “opportunist” choices (Einstein said that the 
scientist must appear as a type of unscrupulous opportunist to the epistemologist!). 
According to the above-outlined setting, the observational-experimental context is 
prearranged and fixed, it “takes a picture” from a frozen perspective. The most interesting 
things in research happen instead when we change the code and choose to observe the 
system from different viewpoints. It means that the builder of models changes his 
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“perspective” and the variables, and he uses a different Obs observational-experimental 
context. In practice, the same system can be described by a family of models, finite or 
countably infinite, each one “specialized” in seeing different features which mirror the 
possible interactions between the observer – here an active agent – and the observed 
system (Minati and Guberman, 2007). There the (1) defines a multi-peaked model 
scenario which can be regarded as an indication of the semantic complexity of the system. 
 

 
 

Figure 6. 

We can write the symbolic form of the relation between a system S and the model M 
representing the status of the knowledge about the system by means of the Obs observer’s 
set of choices at a given nth stage as: 

 ( ) ( )nn SObsM 1=  

Obs1 is an operator which guarantees the correspondence between S and M. It means 
that the M model “sees” the data the S system produces through the correspondence 
operational procedures Obs2: 

 ( ) ( )nn MObsdata 2exp =  

The acquisition of new experimental data can modify the model and require new 
strategies Obs3: 

 ( ) ( )nn dataObsM exp3
1 =+  

From the above expression, we have: 
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 ( ) ( )( ) ( )( )( )nnn MObsObsObsSObsM 231
1

1
1 == ++  

The operators Obsi have not to be considered as “rigid” formal tools, but as a set of 
model-based procedures depending on the system’s nature and the observer’s goals. 

By putting Obs=Obs1,2,3 and generalizing the procedure at n stages, we have the 
recursive formula: 

 ( ) ( ))0(MObsM n
n =   with  Nn∈  (2) 

The (2) sums up the analysis we have carried out: the information extraction from the 
system S takes place via a succession n of M models – Von Foester eigen-models (Von 
Foester,1999) – representing the “perspectives” through which the observer “watches” the 
system. The model is thus a cognitive filter which realizes a coherence status between the 
system and the observer. 
Now, let us consider an infinite succession of interactions between the observer and the 
system: 

 ( ))0()( lim MObsM n
n ∞→

∞ =  

The natural question is: can this scenario based on models converge to a “fixed 
point”, a unique model that somehow contains all the others? We will find out the answer 
- in general - is a negative one. Nevertheless, we have first to focus on the hypothesis of a 
positive answer, that is to say – traditionally – the reductionist one. 

5 Reductionism’ Short-sightedness 

According to the widespread reductionist approach, the theoretical scenarios considered 
as fundamental are those whose “arrows always point downward” towards the system’s 
elementary constituents: particles, molecules, neurons, and so on. In spite of its great 
achievements, this strategy is sometimes a dead end road. If we focus our “resolution” on 
the elementary constituents, the information contained in the initial conditions per time 
unit – called Kolmogorov-Chaitin entropy – will quickly erode and the algorithmic 
complexity of the system will exponentially grow at the increasing of the amount of 
particles (Chaitin, 2007). In other words, we have to face a computational catastrophe or 
to change the code and to build a new model, for example based on new collective 
variables, in order to describe the system’s patterns. When syntax grows too complicated 
to be tackled in detailed way, it is more useful to select significant information on 
different levels. This is a cognitive strategy analogous to the one taken into consideration 
for vision: we focus our attention on a quantity of information which is quite long-lasting 
to be recorded and studied. 

These considerations are quite obvious in life and social-economic sciences, where 
the significant aspects do not merely dwell in “components”, but in the functional 
dynamics of the structures. Most of the “interesting” phenomena we deal with need global 
“architectural” approaches; these ones cannot be derived from the “fundamental bricks” 
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because systems formed by very different elements can show really similar collective 
behaviours whose universality is much more significant than the bare individuating of the 
elementary components. That is the meaning of the Anderson’s famous “More is 
Different” (Anderson, 1979) which stressed precisely the universality of the spontaneous 
symmetry breaking processes in infinite state quantum systems as general conceptual 
frame for emergence (Pessa, 2002). Furthermore, different approaches tending to take 
into consideration the possibility to individuate the “constituent objects” as a consequence 
of the universal properties of the emergence processes have recently come out also in 
physics. Consequently, even the distinctions and correlations between “macroscopic 
state” and “microscopic state” are largely problematic and context-dependent (Licata, 
2009). 

The reductionism limit lies in mainly focusing on the “level” notion as well as in 
aiming at a world description which consists in a chain of piled-level models resembling 
the “Hanoi tower”. Unfortunately, it is possible only within few, definite theoretical 
frames, such as the Effective Field Theories where the Quantum Field Theory syntax 
makes possible to build a chain of levels where each level individuates a scale of energy, 
times and lengths; it is thus possible to connect a level with the other one by proper 
“matching conditions” ruling the parameters of the bordering levels (Castellani, 2000). 

It has to be strongly stressed that the modeling process in science is not ruled just by 
the notion of level; it is, above all, “goal-seeking”, that is to say grasping the peculiar 
features of a phenomenon (Ryan, 2006). So, the above-examined problem of the “model-
based” landscape can be put as follows: which are the relations between the dynamic and 
structural modification of a system (ontological aspect) and the model choosing 
(epistemic aspect)? What kind of emergence is detected by the different class of possible 
models? Finally, is a general theory of the observer/observed relations necessary? 

6 Building of Vision: Emergence and Logical Openness 

Building a model, as it happens for vision, realizes a cognitive homeostatic equilibrium 
between the observer and the observed. The type of chosen model mirrors the builder’s 
choices about the system under examination. Let’s remember we have a logical close 
model when we can always assign a value to the state variables, which means we are 
operating within a univocally defined syntax. That’s when a computational approach to 
the problem can be followed and is useful. 

Nevertheless, most systems we deal with are logical open, continuously exchange 
matter, energy and information with environment so reshaping their internal organization 
and modifying their hierarchical and functional relations (Minati, Pessa, Penna, 1998; 
Licata; 2008b, 2008c). A system like that cannot be solved by a closed model and is 
described by a logical open model, i.e. when there does not exist a recursive procedure to 
determine which information is relevant or not in describing the system behaviour. That’s 
precisely the same as vision, where the feed-back between the bottom-up stimuli and the 

 M
et

ho
ds

, M
od

el
s,

 S
im

ul
at

io
ns

 A
nd

 A
pp

ro
ac

he
s 

T
ow

ar
ds

 A
 G

en
er

al
 T

he
or

y 
O

f 
C

ha
ng

e 
D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 P

ro
f.

 I
gn

az
io

 L
ic

at
a 

on
 0

9/
04

/1
2.

 F
or

 p
er

so
na

l u
se

 o
nl

y.



 Seeing by Models: Vision as Adaptive Epistemology 395 

top-down dynamic structures leads to the emergence of new codes able to control the 
perception of new schemes. 

Just in the same way as the Gödel Theorem shows the impossibility to compress 
down mathematics into axiomatic systems - mathematics is an open system (Chaitin, 
2007) - the Logical Openness Theory defines the complexity degree of a system in 
relation to its descriptive incompressibility within a single model. Two different models 
of emergence correspond to logical close and open models, respectively: 
• Computational: the formation of patterns in continuous or discrete non-linear 

systems, like dissipative structures (Nicolis and Prigogine, 1989) or cellular 
automata (Wolfram, 2002), where the information amplifying in polynomial or 
exponential time can be observed. In this case, the “newness” detected by the 
observer is a mathematical consequence, yet not banal, of the adopted model’ 
structure, i.e. in principle, it possible to have a local computational description of 
these systems, the detailed, long-term unpredictability is only linked to the critical 
sensibility to initial conditions and the “loss of memory” of these ones during the 
dynamical evolutions; 

• Intrinsic or observational: the emerging of the system’s new behaviors cannot be 
predicted by the adopted model and it requires a new formulation of the model. It is 
a more radical case than the computational one and imposes to make use of each 
other complementary models which focus on different features of the system 
depending on its behavior and the modeler goals as well. Far from being an exotic 
situation, this is the norm for biological and cognitive systems. These ones show 
semantic emergence through logical openness transitions indicating the system 
capacity to autonomously manage information and its relation with the environment. 
In other words, we can say that intrinsic emergence comes out when the very 
system’s nature compels the observer to build new models again and again by using 
different cognitive strategies and dynamically managing them (Minati, 2008). 

 
The logical open systems can be ordered within complexity classes depending, in 

general, on the thermodynamical cost their informational and physical structures meet, 
which has an impact on the model choosing. Without going into details, we have to 
remember that the more a system complexifies its structure, the more its dissipation 
increases; if dissipation does not destroys the system, it means that there is a set of n 
constraints preventing it. Within this context, the term “constraint” globally includes the 
significant features of the system/environment relation, such as the boundary and initial 
conditions, balance laws, variation of parameters and so on. Let us, thus, introduce the 
concept of system with n logical openness as characterized by n number of constraints, 
with n finite. We can draw it as a graph with n vertices, each representing, from 
thermodynamical viewpoint, an entropy containment mechanism and, from informational 
viewpoint, a specific informational path by which the system processes the inputs in 
outputs. 
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It is easy to give a formal demonstration that a) it is impossible to describe a n 
logical open system by a single model and b) describing an n degree open system of by a 
model with m logical openness, where m<n  has always a limited validity domain. We 
are going to focus here on the likeness between these results and the formal logic limiting 
ones and, putting aside the mathematical details, to concentrate on their conceptual 
meaning by taking up again the graph image. Adopting a single model means to fix 
variables and interactions, i.e. a finite and fix number of n vertices, whereas in a highly 
logical open system they continuously and unpredictably emerge and disappear as a 
consequence of the internal functional organization of the system. So, adopting a model is 
an arbitrary partition the observer does on the system/environment relation. 

The model-building activity itself, like any cognitive activity, is an open system 
which cannot be described within the syntax of a “unique” model, but by means of a 
plurality of co-adaptive processes between the observer and the observed (Maturana and 
Varela, 1992). A “theory of everything” is impossible for this kind of systems. It would 
mean to hypothesize an infinite logical openness, i.e. the existence of a sort of Laplacian 
super-observer able to describe each state at each instant of the system/world relation; it is 
nothing else but the reductionist utopia. We get no the God’s Eye! (Vamos, 1991) Such 
idea is in consonance with the interesting Breuer theorem; he states that no theory, both 
classical or quantum, can describe each state of a system where the observer is excluded 
(Breuer 1995, 1997). 

Reductionism is a good strategy for those systems whose resolution fits models with 
low logical openness, within a one-to-one correspondence between syntax and semantics. 
If we now look at cognitive models, we will find that AI hints at an observer using logical 
closure where the number of constraints is low, time independent and thus producing 
inaccessible or “opaque” information (Clark, 1991). Connectionist models, instead, are 
placed at a higher level of logical openness; the learning of a supervised neural net, in 
fact, only slightly depends on the initial “genetic program” and it gets complexified in 
interacting with the environment. The ultimate level is “quantum brain”, a model with 
very high logical openness which takes into account the emerging of new codes and 
semantic domains by means of the dissipative relations with the environment (Vitiello, 
2001). 

7 Science in the Time of Complexity 

Both vision and building world-models are features of adaptation processes implying the  
involvement of a cognitive filter, the activation of a semantic space which makes the 
representation itself possible.  We have not to intend it as a “photograph” of the world, 
but as a dynamic game between the eye and the world occurring by high logical open, 
creative strategies. The observer is part of the description by its making choices like 
Velázquez is inside his famous Las Meninas. This semantic complexity reflects the 
possible infinite states of homeo-cognitive equilibrium between the observer and the 
observed. What does all that tell us about science? 
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The received view of classical epistemology has always had a normative and linear 
character which has never seriously thrown into crisis – except for “local” one - the 
possibility to provide an objective world representation achieved by the deep stratification 
of the theoretical fabric as well as the Darwinian selection of the “right” models able to 
pass the experience test (saving the phenomena) and to connect with the “fundamental” 
theories, such as Relativity and Quantum Mechanics in Physics and Natural Selection and 
the central dogma of molecular biology in Life Sciences. Occasionally, a single, problem-
stemming model could undermine the theoretical panorama at its bottom and modifying 
it, such as the Planck hypothesis on the black-body radiation, anyway the idea of an 
asymptotic approximation towards a unified and definitive theory of the world remained 
untouched. It has caused not only the drastic splitting between hard and soft sciences - so 
ratifying the  Cartesian divorce between mind sciences and matter sciences – but it has 
endorsed a simplified  idea of the relations between knowledge processes and the world, 
the former regarded as method and the latter as a “code” to crack. 

On the other hand, some extreme forms of radical constructivism shift toward the 
relativistic-flavoured idea of eliminating the object. A simplified idea, as well. In fact, if 
we decide that a model works, we are stating something as ‘a key opens a keyhole’ and, 
above all, that another model or another key do not work! Stating that the observer creates 
all that means to recognize the context-dependent nature of the observer/observed 
relation. If so, the notion of “producing a world” must include a unitary vision of the 
adaptive relations between the observer and the observed, rather than a dangerous 
ontological leaning toward either the object or the subject. The problem with radical 
constructivism is that it does not seem to find authentic explanations for the unitary 
dynamics of science, that is to say the capacity of our models to cluster into structures and 
meta-structures, in syntactic classes and theoretical chains: there actually exist keys which 
open more than a door! ( See for ex.: Coniglione, 2008). 

Generally, the term “ontology” gives scientists hives since they are especially 
interested in building the conceptual and formal tools able to identify the problems and 
try to answer them. The viewpoint of traditional epistemologies is coarse-grained. In 
everyday reality of research, instead, many tendencies and micro-paradigms compete for 
the “saving of phenomena” and – except for few really well-defined syntaxes, such as 
Quantum Field Theory and the Standard Model – the so-called fundamental and most 
radicated theories, previous memories of scientific knowledge, do not help in univocally 
selecting among models, whose differences hardly lie in the level or comprehensiveness 
of the explanation they provide, but in their goals. 

Not by chance, D. Deutsch refers to fundamental theories as the “fabric of reality”, a 
set of leading-principles acting on emergent models as general boundary conditions 
(Deutsch, 1998). In addition, it is worthy to remember that the new acquisitions often do 
not modify the “form” of fundamental theories, but our interpretation, our way to use 
them in order to build new knowledge. 

The image of science is not that of a continent, but an archipelago, where we can see 
big islands, the most ancient and syntactically defined ones, and – at the same - the 
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emerging of smaller islands, maybe transient, where the conceptual bridges between 
different islands are built again and again. 

To fulfil the requirements of complexity sciences, the scientific activity has to be able 
to comprehend the adaptive dynamics between system and environment as well as the 
model and the context where it is applied. Adaptive epistemology based on logical 
openness overcomes the thigh corners of both naïve objectivist conception and radical 
relativism temptations by stressing that the knowledge building is a process of continuous 
shifting from the “frozen” syntactical dimensions to the plurality choices which make 
possible for mind and world to meet each other. 
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