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Abstract
In this work we focus on extensions of Description Logics (DLs) of typicality by means of probabilities. We introduce a
novel extension of the logic of typicality ALC + TR, able to represent and reason about typical properties and defeasible
inheritance in DLs. The novel logic (ALCTP: Typical ALC with Probabilities as Proportions) allows inclusions of the form
T(C) �p D, with probability p representing a proportion, meaning that “all the typical Cs are Ds, and the probability that a
C element is not a D element is 1 − p”. We also compare and confront this novel logic with a similar one already presented
in the literature (TCL, introduced in Lieto and Pozzato (2020, J. Exp. Theor. Artif. Intell., 32, 769–804)), inspired by the
DISPONTE semantics and that allows inclusions of the form p : T(C) � D with probability p, where p represents a degree
of belief, whose meaning is that “we believe with a degree p that typical Cs’ are also Ds.”. We then show that the proposed
ALCTP extension (like the previous TCL) can be applied in order to tackle a specific and challenging problem in the field
of common-sense reasoning, namely the combination of prototypical concepts, that have been shown to be problematic to
model for other symbolic approaches like fuzzy logic. We show that, for the proposed extension, the complexity of reasoning
remains EXPTIME-complete as for the underlying standard monotonic DL ALC.
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1 Introduction

Nonmonotonic extensions of Description Logics (DLs) have been actively investigated since the
early 90s [1, 3, 4–7, 9, 39] in order to tackle the problem of representing prototypical properties of
classes and to reason about defeasible inheritance. A simple but powerful nonmonotonic extension
of DLs is proposed in [12, 13, 15]: in this approach ‘typical’ or ‘normal’ properties can be directly
specified by means of a ‘typicality’ operator T enriching the underlying DL. As a difference with
standard DLs, one can consistently express typical properties of a class, admitting the presence of
exceptional elements and reason about defeasible inheritance as well. For instance, a knowledge base
can consistently express that ‘normally, a wrestler is fit’, whereas ‘a typical sumo wrestler is not fit’
as follows:

SumoWrestler � Wrestler
T(Wrestler) � Fit
T(SumoWrestler) � ¬Fit
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2 Two semantic interpretations of probabilities in DLs of typicality

The key point of this approach relies on the fact that the semantics of the typicality operator T is
essentially a restatement of the semantics of nonmonotonic entailment as defined by Kraus, Lehmann
and Magidor in the early nineties [18], corresponding to a set of properties that any concrete
nonmonotonic reasoning mechanism should satisfy. Furthermore, the semantics of ALC + TR
[15] is strengthened by a minimal model machinery corresponding to a notion of rational closure,
which extends to this context the notion introduced by Lehmann and Magidor in [21] for the
propositional case.

The resulting nonmonotonic DL, called ALC + TRACL
R , allows the user to perform some useful

nonmonotonic inferences about defeasible inheritance in presence of exceptions. For instance, in
the above example, the logic allows one to infer that a typical wrestler is not a sumo wrestler
(T(Wrestler) � ¬SumoWrestler), and that a typical swiss sumo wrestler is not fit (T(SumoWrestler�
Swiss) � ¬Fit), since being Swiss is irrelevant with respect to being fit or not. Moreover, if one
knows that Claudio is a wrestler (Wrestler(claudio)), then the logic ALC + TRACL

R allows one to
infer that Claudio is fit (Fit(claudio)); however, if we discover that Claudio is a sumo wrestler, i.e.
SumoWrestler(claudio) is added to the knowledge base, then the previously inferred information is
retracted, whereas the conclusion ¬Fit(claudio) can be derived.

The logic ALC + TRACL
R imposes to consider all typicality assumptions that are consistent with a

given knowledge base, capturing the attitude of human beings of assuming that, in case there is no
evidence to the contrary, if an individual a is a member of the category/class C, then he is a typical
one. This seems to be too strong in several application domains, especially when the domain contains
a lot of individuals: in these cases, to assume that each and every individual is a typical member of
the classes he belongs to—in other words, if not explicitly stated, there are no exceptions—does not
seem to be the most adequate solution. As an example, when reasoning about a domain containing
hundreds of wrestlers, the assumption that they are all typical ones being fit, without exceptions,
seems to be too strong and counter-intuitive.

In several application domains, it could be useful to reason about scenarios being plausible but,
in some sense surprising, containing exceptions to typical properties. Furthermore, one could need
to express probabilities about typicality inclusions, in order to also reason about the probability of
inferred information as well as to restrict reasoning to scenarios whose probabilities belong to a
given and fixed range.

In this work, we tackle this limitations of the DL of typicality by introducing a new DL
called ALCTP, which extends ALC by means of typicality inclusions equipped by probabilities
of exceptions of the form T(C) �p D, where p ∈ (0.5, 1), whose intuitive meaning is:

‘normally, Cs are Ds and the probability of having exceptional Cs – not being Ds – is 1 − p’.

intending probabilities as proportions, more precisely capturing the fact that we have a p% of
elements belonging to the class/concept C being exceptional, i.e. not belonging to D, with respect
to the set of all members of C. In other words, all the typical instances of the concept C are also
instances of the concept D, and the probability that a C element is not also a D element with respect
to the cardinality of the set of C elements is 1 − p. For instance, we can have

T(Student) �0.6 SportLover
T(Student) �0.9 SocialNetworkUser

whose intuitive meaning is that being sport lovers and social network users are both typical properties
of students, however the probability of having exceptional students not loving sport is higher
than the one of finding students not using social networks, in particular we have the evidence
that the probability of having exceptions is 40% and 10%, respectively. From a semantic point of
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view, as in the underlying DL of typicality ALC + TRACL
R , standard DLs models are enriched with

a preference relation < among domain elements, whose intuitive meaning is that x < y means
that the element x is ‘more normal’ than the element y. Typical elements of a concept C are then
those elements belonging to the extension of C that are minimal with respect to the preference
relation <. Given a knowledge base, we then restrict our attention only to models satisfying it, in
particular probabilities/proportions of typicality inclusions. In order to perform useful nonmonotonic
inferences, the resulting semantics is further strengthened by a minimal models semantics: we
introduce a preference relation among models—intuitively, a model is preferred to another one if it
contains fewer exceptional individuals—then we restrict entailment to minimal models with respect
to such a preference relation.

We show that the novel proposed logic ALCTP is essentially inexpensive, in the sense that
reasoning in them is EXPTIME-complete as for the underlying standard DL ALC. Furthermore,
we show that such logic is a promising candidate to tackle the problem of typicality-based
concept combination by using a different interpretation of the probabilistic statement if compared
to other formalisms like TCL. In particular, the problem of commonsense compositionality under
focus consists in handling the harmonization of two conflicting requirements that are hardly
accommodated in symbolic systems, namely the need of a syntactic and semantic compositionality
(typical of logical systems) and that one concerning the exhibition of typicality effects. The problem
can be summarized by using a well-known argument in the context of formal and cognitive semantics
[31], namely the fact that prototypes (i.e. typical representations of concepts) are not compositional.
Consider, for example, a concept like pet fish. It results from the composition of the concept pet
and of the concept fish. However, the prototype of pet fish cannot result from the composition of the
prototypes of a pet and a fish, e.g. a typical pet is furry and warm, a typical fish is grayish, but a
typical pet fish is neither furry and warm nor grayish (typically, it is red).

The plan of the paper is as follows. In Section 2 we recall the DL of typicality called TCL,
representing the first logic proposing a solution to the pet fish problem, where probabilities are
intended as degrees of belief. In Section 3 we present the novel DL of typicality called ALCTP,
where probabilities are intended as proportions. In Section 5 we show that both the logics are suitable
for accounting a specific aspect of commonsense reasoning, namely the problem of typicality-based
concept combination. We conclude with a discussion, a comparison with related approaches as well
as with some pointers to plausible future developments in Section 6.

2 Probabilities as degree of belief: the logic TCL

Before introducing the novel proposed probabilistic DL (and in order to better understand the
differences from a semantic view point of our novel proposed approach), we recall in this chapter
the logic TCL (introduced in [23, 24]) that has been the first one to propose a solution for the
commonsense compositionality problem entailed by the pet fish phenomenon [10]. It combines the
semantics based on the rational closure of ALC + TR [12, 13, 15] with the DISPONTE semantics
[35, 36] of probabilistic DLs.

By taking inspiration from the heterogeneous proxytypes hypothesis [22], in our representational
assumptions we consider two types of properties associated to a given concept: rigid and typical.
Rigid properties are those defining a concept, e.g. C � D (all Cs are Ds). Typical properties are
represented by inclusions equipped by a degree of belief expressed through probabilities with their
epistemic meaning, like in the DISPONTE semantics. Before providing a formal presentation of the
logic TCL, we provide an example extending the knowledge base of the Introduction.
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Let us consider a knowledge base containing the following inclusion relations and facts about
individuals:

SumoWrestler � Athlete (1)
Athlete � HumanBeing (2)
0.8 : T(Athlete) � Fit (3)
0.8 : T(SumoWrestler) � ¬Fit (4)
0.95 : T(Athlete) � YoungPerson (5)
Athlete(roberto) (6)
SumoWrestler(hiroyuki) (7)

Inclusions (1) and (2) are intended as usual in standard ALC: all sumo wrestlers are athletes, and
all athletes are human beings. Typicality properties (3), (4) and (5) represent the following facts,
respectively:

• usually, athletes are fit, and this is believed with a probability of 80%;
• typical sumo wrestlers are not fit, and this is believed with a probability of 80%; and
• we believe with a probability/degree of 95% that, normally, athletes are young persons.

The ABox facts (6) and (7) are used to represent that Roberto is an athlete, whereas Hiroyuky is a
sumo wrestler.

The language of the logic TCL extends the basic DL ALC by typicality inclusions of the form
T(C) � D equipped by a real number p ∈ (0.5, 1], representing its probability with its epistemic
meaning, that is to say “we believe with a degree/probability p that, normally, Cs are also D” 1.

DEFINITION 1 (Language of TCL).
We consider an alphabet of concept names C, of role names R, and of individual constants O. Given
A ∈ C and R ∈ R, we define:

C, D := A | � | ⊥ | ¬C | C � C | C � C | ∀R.C | ∃R.C
We define a knowledge base K = 〈R, T ,A〉 where:

• R is a finite set of rigid properties of the form C � D;
• T is a finite set of typicality properties of the form

p : T(C) � D

where p ∈ (0.5, 1] ⊆ R is the probability/degree of belief of the typicality inclusion; and
• A is the ABox, i.e. a finite set of formulas of the form either C(a) or R(a, b), where a, b ∈ O

and R ∈ R.

Following from the DISPONTE semantics, each axiom is independent from each other. This
avoids the problem of dealing with probabilities of inconsistent inclusions. Let us consider the
following knowledge base:

WorkingStudent � Student
(i) 0.8 : T(Student) � ¬WorkingTaxesPayer
(ii) 0.9 : T(WorkingStudent) � WorkingTaxesPayer

1The reason why we only allow typicality inclusions equipped with probabilities p > 0.5 is detailed in Section 4.
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Also, in the scenarios where both the conflicting typical inclusions (i) and (ii) are considered, the
two probabilities describe, respectively, the degree of belief 0.8 in that typical students do not pay
working taxes, and that we believe with degree 0.9 that, normally, working students do pay working
taxes, and those probabilistic inclusions are both acceptable due to the independence assumption.
The two probabilities will contribute to a definition of probability of such scenario (as we will
describe in Definition 6). It is worth noticing that the underlying logic of typicality allows us to get
for free the correct way of reasoning in this case, namely if the ABox contains the information that
Mark is a working student, we obtain that he pays working taxes, i.e. WorkingTaxesPayer(mark).

A model M in the logic TCL extends standard ALC models by a preference relation among domain
elements as in the logic of typicality [15, 16]. In this respect, x < y means that x is ‘more normal’
than y, and that the typical members of a concept C are the minimal elements of C with respect to
this relation2 . An element x ∈ ΔI is a typical instance of some concept C if x ∈ CI and there is no
C-element in ΔI more normal than x. Formally:

DEFINITION 2 (Model of TCL).
A model M is any structure

〈ΔI , <, .I〉
where:

• ΔI is a nonempty set of items called the domain;
• < is an irref lexive, transitive, well-founded and modular (for all x, y, z in ΔI , if x < y then

either x < z or z < y) relation over ΔI ; and
• .I is the extension function that maps each atomic concept C to CI ⊆ ΔI , and each role R to

RI ⊆ ΔI × ΔI , and is extended to complex concepts as follows:

– (¬C)I = ΔI \ CI

– (C � D)I = CI ∩ DI

– (C � D)I = CI ∪ DI

– (∃R.C)I = {x ∈ ΔI | ∃(x, y) ∈ RI such that y ∈ CI}
– (∀R.C)I = {x ∈ ΔI | ∀(x, y) ∈ RI we have y ∈ CI}
– (T(C))I = Min<(CI), where Min<(CI) = {x ∈ CI |� ∃y ∈ CI s.t. y < x}.

A model M can be equivalently defined by postulating the existence of a function kM : ΔI �−→
N, where kM assigns a finite rank to each domain element [15]: the rank of x is the length of
the longest chain x0 < · · · < x from x to a minimal x0, i.e. such that there is no x′ such that
x′ < x0. The rank function kM and < can be defined from each other by letting x < y if and only if
kM(x) < kM(y).

2It could be possible to consider an alternative semantics whose models are equipped with multiple preference relations,
whence with multiple typicality operators. In this case, it should be possible to distinguish different aspects of exceptionality,
however the approach based on a single preference relation in [15] ensures good computational properties (reasoning in
the resulting nonmonotonic logic ALC + TR has the same complexity of the standard ALC), whereas adopting multiple
preference relations could lead to higher complexities.
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DEFINITION 3 (Model satisfying a knowledge base in TCL).
Let K = 〈R, T ,A〉 be a KB as above. Given a model M = 〈ΔI , <, .I〉, we assume that .I is
extended to assign a domain element aI of ΔI to each individual constant a of O. We say that:

• M satisfies R if, for all C � D ∈ R, we have CI ⊆ DI ;
• M satisfies T if, for all q : T(C) � D ∈ T , we have T(C)I ⊆ DI , i.e. Min<(CI) ⊆ DI ; and
• M satisfies A if, for all assertion F ∈ A, if F = C(a) then aI ∈ CI , otherwise if F = R(a, b)

then (aI , bI) ∈ RI .

Let us now define the notion of scenario. Intuitively, a scenario is a knowledge base obtained by
adding to all rigid properties in R and to all ABox facts in A only some typicality properties. More
in detail, we define an atomic choice on each typicality inclusion, then we define a selection as a set
of atomic choices in order to select which typicality inclusions have to be considered in a scenario.

DEFINITION 4 (Atomic choice).
Given K = 〈R, T ,A〉, where T = {E1 = q1 : T(C1) � D1, . . . , En = qn : T(Cn) � Dn} we define
(Ei, ki) an atomic choice, where ki ∈ {0, 1}.

DEFINITION 5 (Selection).
Given K = 〈R, T ,A〉, where T = {E1 = q1 : T(C1) � D1, . . . , En = qn : T(Cn) � Dn} and a
set of atomic choices ν, we say that ν is a selection if, for each Ei, one decision is taken, i.e. either
(Ei, 0) ∈ ν and (Ei, 1) �∈ ν or (Ei, 1) ∈ ν and (Ei, 0) �∈ ν for i = 1, 2, . . . , n. The probability of ν is
P(ν) = ∏

(Ei,1)∈ν

qi
∏

(Ei,0)∈ν

(1 − qi).

DEFINITION 6 (Scenario).
Given K = 〈R, T ,A〉, where T = {E1 = q1 : T(C1) � D1, . . . , En = qn : T(Cn) � Dn} and given
a selection σ , we define a scenario wσ = 〈R, {Ei | (Ei, 1) ∈ σ },A〉. We also define the probability
of a scenario wσ as the probability of the corresponding selection, i.e. P(wσ ) = P(σ ). Last, we say
that a scenario is consistent with respect to K when it admits a model in the logic TCL satisfying K.

We denote with WK the set of all scenarios. It immediately follows that the notion of probability of
a scenario P(wσ ) introduces a probability distribution over scenarios, that is to say

∑

w∈WK

P(w) = 1.

Given a query F, either an inclusion relation or an ABox fact, and a scenario w, we say that
F is entailed by w when F is entailed in the underlying DL of typicality ALC + TRACL

R from the
knowledge base obtained from w by removing probabilities in typicality inclusions. We recall that,
given a knowledge base K, in [15] it is defined that a query F is entailed from K, written K |� F,
if F holds in all minimal canonical models satisfying K. Moreover, we define the probability of F
given a knowledge base K as the sum of the probabilities of scenarios from which F is entailed.

DEFINITION 7
Given a knowledge base K = 〈R, T ,A〉 and a query F, let w be a scenario as in Definition 6. Let w′
be the knowledge base 〈R∪T ′,A〉 in ALC+TRACL

R , where T ′ = {T(C) � D | p : T(C) � D ∈ T }.
We say that F is entailed from w, written w |�TCL F, in the logic TCL if F is entailed from w′ in
ALC + TRACL

R , i.e. w′ |� F.
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DEFINITION 8
Given a knowledge base K and a query F, we say that F is entailed from K with probability p,
written K |�p F, if F is entailed in TCL in scenarios w1, w2, . . . , wn, i.e. w1 |�TCL F, w2 |�TCL F, . . . ,
wn |�TCL F, and P(w1) + P(w2) + · · · + P(wn) = p.

Let us extend the example of the Introduction about wrestlers and sumo wrestlers with the
increased expressive power of the logic TCL:

SumoWrestler � Wrestler
0.6 : T(Wrestler) � Fit (1)
0.9 : T(Wrestler) � Young (2)
0.9 : T(SumoWrestler) � ¬Fit (3)

The three typicality inclusions allow one to describe eight different scenarios. As an example, the
scenario including (1) and (3) has a probability 0.6 × (1 − 0.9) × 0.9 = 0.054: in this scenario, if
the ABox contains the fact that Seth is both a wrestler and a sumo wrestler, i.e. Wrestler(seth) and
SumoWrestler(seth), it is entailed that Seth is not fit, i.e. ¬Fit(seth). In another scenario, where (1)
and (2) are considered whereas (3) is discarded, whose probability is 0.6 × 0.9 × (1 − 0.9) = 0.054,
given the same ABox we infer that Seth is fit, and he is also young (Fit(seth) and Young(seth)). We
can also observe that K |�0.9 ¬Fit(seth); indeed, such a query holds in the four scenarios including
(3), therefore the probability of such a query is 0.054 + 0.324 + 0.486 + 0.036 = 0.9.

In [24] we have provided a proof showing that TCL is computationally inexpensive compared to
ALC in the sense that reasoning remains Exptime complete as in the underlying standard monotonic
version of the logic.

3 Probabilities as proportion: the logic ALCTP

In this section we introduce the second extension of the logic of typicality, where probabilities are
intended as proportions. In this logic, that we call ALCTP, typicality inclusions have the form

T(C) �p D,

where p is a real number between 0.5 and 1 representing the probability of having atypical C-
elements not being D, namely being exceptional with respect to the typical property D. Differently
from the logic TCL, here p does not represent a degree of belief about the inclusion, rather it provides
the proportion between typical and atypical members of a given class/concept with respect to a
specific property. Before introducing the formalism in detail, let us consider the following example.

In the logic ALCTP we can have a knowledge base containing the following inclusions:

Bird � Vertebrate (1)
Penguin � Bird (2)
T(Bird) �0.7 ¬Swim (3)
T(Bird) �0.9 ¬BackwardFlier (4)
T(Penguin) �0.95 Swim (5)

Inclusions (1) and (2) are rigid properties with the usual semantics, representing that all birds
are vertebrate and that penguins are birds, with no exceptions. The typicality inclusions (3) and (4)
represent two typical properties of birds, namely that they usually do not swim and that are not
able to f ly backwards, respectively. In (3) the probability equipping the inclusion is 0.7, whereas in
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(4) it is 0.9: this means that we have a higher probability of having exceptional birds swimming,
30% coming from 0.7, with respect to having exceptional birds able to f ly backwards, and 10%
coming from 0.9. Intuitively, (3) represents that the proportion between the number of atypical birds
swimming (e.g. penguins, ducks) and the cardinality of the set of all birds, is at most 1 − 0.7 =
0.3; similarly, (4) represents that the proportion between the number of atypical birds able to f ly
backwards (e.g. the hummingbirds) and the cardinality of the set of all birds does not exceed 1 −
0.9 = 0.1. As we will formally describe in Definition 11, in ALCTP and differently from TCL, we
restrict our concern to models where such proportions are fulfilled. In the example, for instance, we
discard scenarios/models where the number of exceptional birds swimming is higher than 30%. As
in the underlying logic of typicality ALC + TRACL

R , the inclusion (5) allows one to represent and
reason about defeasible inheritance, by expressing that, normally, penguins are able to swim, and
exceptional penguins not swimming (for instance, because they are ill) are, in proportion, no more
than the 5%.

Let us now formally introduce the logic ALCTP. The language of ALCTP extends the basic DL
ALC by typicality inclusions of the form T(C) �p D, where p is a real number p ∈ (0.5, 1),
representing its probability, whose meaning is that ‘typical Cs are also Ds, and the probability of
finding atypical Cs not being Ds is 1 − p’. Observe that, as a difference with the logic TCL, the
probability p is chosen in an open interval (0.5, 1). Indeed, if the right extreme 1 were allowed, as we
will see, the typicality inclusion T(C) �1 D would collapse into a classic inclusion C � D. It is also
worth noticing that, in ALCTP, all typical Cs are Ds: i.e. we do not allow the presence of a typical
C not being D.

DEFINITION 9 (Language of TCL).
We consider an alphabet of concept names C, of role names R, and of individual constants O. Given
A ∈ C and R ∈ R, we define:

C, D := A | � | ⊥ | ¬C | C � C | C � C | ∀R.C | ∃R.C
We define a knowledge base K = 〈R, T ,A〉 where:

• R is a finite set of rigid properties of the form C � D;
• T is a finite set of typicality properties of the form

T(C) �p D

where p ∈ (0.5, 1) ⊆ R is the probability of not finding exceptions to the typicality
inclusion; and

• A is the ABox, i.e. a finite set of formulas of the form either C(a) or R(a, b), where a, b ∈ O
and R ∈ R.

A model M in the logic ALCTP is similar to the one of the logic TCL, since it extends standard
ALC models by a preference relation among domain elements as in the logic of typicality [15].
Again, x < y means that x is ‘more normal’ than y, and that the typical members of a concept C are
the minimal elements of C with respect to this relation. An element x ∈ ΔI is a typical instance of
some concept C if x ∈ CI and there is no C-element in ΔI more normal than x.

DEFINITION 10 (Model of ALCTP).
A model M is any structure (interpretation) ( 〈ΔI , <, .I〉 where ΔI is a nonempty set of items called
the domain; < is an irref lexive, transitive, well-founded and modular relation over ΔI ; .I is the
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extension function that maps each atomic concept C to CI ⊆ ΔI , and each role R to RI ⊆ ΔI ×ΔI

and is extended to complex concepts as in Definition 2, in particular for the typicality operator:

(T(C))I = Min<(CI), where Min<(CI) = {x ∈ CI |� ∃y ∈ CI s.t. y < x}.

As in the logic TCL, a model M can be equivalently defined by postulating the existence of a
function kM : ΔI �−→ N, where kM assigns a finite rank to each domain element [15]: the rank
of x is the length of the longest chain x0 < · · · < x from x to a minimal x0, i.e. such that there is
no x′ such that x′ < x0. The rank function kM and < can be defined from each other by letting
x < y if and only if kM(x) < kM(y). As a difference with TCL, a model so defined is a model of
a given knowledge base only if proportions defined by probabilities equipping typicality inclusions
are satisfied. This is formally stated as follows:

DEFINITION 11 (Model satisfying a knowledge base in ALCTP).
Let K = 〈R, T ,A〉 be a KB. Given a model M = 〈ΔI , <, .I〉, we assume that .I is extended to
assign a domain element aI of ΔI to each individual constant a of O. We say that:

• M satisfies R if, for all C � D ∈ R, we have CI ⊆ DI ;
• M satisfies T if, for all T(C) �p D ∈ T , we have that:

1. T(C)I ⊆ DI , i.e. Min<(CI) ⊆ DI

2.

| {x ∈ CI | x �∈ (T(C))I and x ∈ (¬D)I} |
| CI | ≤ 1 − p;

• M satisfies A if, for all assertion F ∈ A, if F = C(a) then aI ∈ CI , otherwise if F = R(a, b)

then (aI , bI) ∈ RI .

As mentioned before, in ALCTP we do not allow inclusions equipped with the probability 1,
otherwise such inclusions would correspond to a rigid one, as stated by the following proposition3 .

PROPOSITION 1
Given a model M = 〈ΔI , <, .I〉, we have that M satisfies T(C) �1 D if and only if M satisfies
C � D.

PROOF. By Definition 11, since M satisfies T(C) �1 D we have that

| {x ∈ CI | x �∈ (T(C))I and x ∈ (¬D)I} |
| CI | ≤ 1 − 1 = 0

that is to say, | {x ∈ CI | x �∈ (T(C))I and x ∈ (¬D)I} |= 0, in other words the set α = {x ∈
CI | x �∈ (T(C))I and x ∈ (¬D)I} of elements not belonging to (T(C))I but belonging to (¬D)I is
empty. For each y ∈ CI , we distinguish two cases: (i) y is a typical C, i.e. y ∈ (T(C))I : in this case,
by Definition 10, it follows that y ∈ DI ; (ii) y is an atypical C, i.e. y �∈ (T(C))I : since the set α is
empty, we have that necessarily y ∈ DI . Therefore, for each y ∈ CI , we have y ∈ DI , that is to say
M satisfies C � D.

3In other words: in this case we have that every inclusion of the form T(C) �1 D is replaced by (C) � D as shown
possible by the following proposition.
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For the other direction, we have that, if M satisfies C � D, this means that all elements of CI

also belong to DI , therefore: (i) condition 1 in Definition 11 holds, since (T(C))I ⊆ CI ⊆ DI ; (ii)
condition 2 in Definition 11 holds, since the set α of elements of C that are not D is empty, therefore
| {x ∈ CI | x �∈ (T(C))I and x ∈ (¬D)I} |= 0. �

In order to perform useful nonmonotonic inferences like those described in the Introduction,
capturing specificity and some forms of irrelevance, as in [15], we describe a true nonmonotonic
reasoning machinery on top of the semantics introduced here above, corresponding to an extension
to DLs of the well-established mechanism of rational closure introduced in [21]. The nonmonotonic
semantics relies on minimal rational models that minimize the rank of domain elements. Informally,
given two models M1 and M2 of KB, the first one in which a given domain element x has rank
kM1(x) = 2 (because for instance z < y < x), with kM1(y) = 1 and kM1(z) = 0, and the other one
in which kM2(x) = 1 (because only y < x with kM2(y) = 0), we prefer M2, as in this model the
element x is assumed to be ‘more typical’ than in the former.

DEFINITION 12
Given M = 〈ΔI , <, .I〉 and M′ = 〈ΔI ′

, <′, .I
′ 〉 we say that M is preferred to M′, written M <

M′, if: (i) ΔI = ΔI ′
; (ii) CI = CI ′

for all concepts C; (iii) for all x ∈ ΔI , it holds that kM(x) ≤
kM′(x) whereas there exists y ∈ ΔI such that kM(y) < kM′(y). Given a KB K, we say that M
is a minimal model of K with respect to < if it is a model satisfying K and there is no M′ model
satisfying K such that M′ < M.

Exactly as in [15], we restrict our attention to canonical models. The intuition is that a canonical
model contains all the individuals that enjoy properties that are consistent with the knowledge base.
This is needed when reasoning about the rank of the concepts: it is important to have them all
represented. We consider all the sets of concepts {C1, C2, . . . , Cn} that are consistent with K:

DEFINITION 13
Given a knowledge base K = 〈R, T ,A〉, a model M = 〈ΔI , <, .I〉 satisfying K is canonical if, for
each set of concepts {C1, C2, . . . , Cn} consistent with K, we have (C1 � C2 � · · · � Cn)

I �= ∅, where
C1, C2, . . . , Cn belong to the the set of all the concepts and subconcepts occurring in K together with
their complements.

DEFINITION 14
Given a knowledge base K = 〈R, T ,A〉, a model M = 〈ΔI , <, .I〉 satisfying K is a minimal
canonical model of K if it is minimal with respect to Definition 12 and it is canonical according to
Definition 13.

DEFINITION 15
Given a knowledge base K = 〈R, T ,A〉, let M = 〈ΔI , <, .I〉 and M′ = 〈ΔI ′

, <′, .I
′ 〉 be two

canonical models of K that are minimal with respect to Definition 14. We say that M is preferred to
M′ with respect to the ABox, written M <A M′, if, for all individual constants a occurring in A,
it holds that kM(aI) ≤ kM′(aI

′
) and there is at least one individual constant b occurring in A such

that kM(bI) < kM′(bI
′
).

The following property holds:
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THEOREM 1
Given a knowledge base K = 〈R, T ,A〉, if it admits a model, then there exists a finite minimal
canonical model of KB minimally satisfying the ABox.

PROOF. We proceed exactly as in Theorem 10 in [15]. �
A query F is minimally entailed from a KB K, written K |�ALCTP F, if it holds in all minimal

canonical models of K.
It is worth observing that the semantics in Definition 11 strengthens the monotonic semantics

underlying ALC + TRACL
R , in the sense that here we restrict reasoning to models satisfying the

restrictions on the proportions defined by probabilities, differently from models in ALC + TRACL
R

where probabilities are not considered. We provide an example witnessing such a difference:
Let us consider another extension of the knowledge base of the Introduction about wrestlers and

sumo wrestlers:

SumoWrestler � Wrestler
T(Wrestler) �0.6 Fit
T(SumoWrestler) �0.9 ¬Fit
T(Wrestler) �0.95 ∀hasSon.(Fit � Wrestler)
T(Wrestler) �0.95 ∃hasSon.(WrestlingLover)
T(Wrestler) �0.95 ∃hasSon.(¬WrestlingLover)

Concerning TBox reasoning, it can be shown that K |�ALCTP T(SumoWrestler � Wrestler) �0.9

¬Fit. Concerning ABox reasoning, suppose to have the following facts about wrestlers and sumo
wrestlers:

Wrestler(hulk)
Fit(hulk)
¬SumoWrestler(hulk)

SumoWrestler(paolo)

¬Fit(paolo)

Wrestler(gino)

Wrestler(franco)

Fit(gino)

Fit(franco)

Let us consider the following models M1 and M2:

• in M1, Hulk is the only typical wrestler, he is fit and he is not a sumo wrestler. Paolo is the
only sumo wrestler, therefore he is a typical one and he is not fit. Gino and Franco are wrestlers,
they are fit but they are neither typical wrestlers nor sumo wrestlers: in particular, we have that
hulk <1 paolo, hulk <1 franco, franco <1 gino;

• in M2, again Hulk is the only typical wrestler, he is fit and he is not a sumo wrestler, as well as
Paolo is the only sumo wrestler, therefore he is a typical one and he is not fit. Gino and Franco
here are wrestlers, they are fit but they are also sumo wrestlers, in particular atypical sumo
wrestlers being fit. As in M1, we have that hulk <2 paolo, hulk <2 franco, franco <2 gino,
paolo <2 franco.

We can observe that both M1 and M2 are models of KB in the logic ALC + TR, whereas M1 is
also a model of KB in the logic ALCTP but M2 is not. Indeed, in M2 the fact that both Gino and
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Franco belong to the extension of SumoWrestler does not respect the probability 0.9 with respect to
the inclusion T(SumoWrestler) �0.9 ¬Fit, that would allow one to have at most the 10% of sumo
wrestlers being fit: if we had a model with 100 sumo wrestlers, models satisfying KB contain at
most 10 of them being fit; in this example, where the model M2 contains only 3 sumo wrestlers,
only models not containing sumo wrestlers being also fit are allowed. The following fact:

(∗) (¬∃hasSon.SumoWrestler)(hulk)

stating that Hulk does not have a son being a sumo wrestler, does not hold in M2, therefore it
cannot be inferred in the logic ALC + TR, whereas it holds in M1, as well as in all models of KB
in the logic ALCTP, therefore we can conclude that (∗) can be inferred in ALCTP from KB, i.e.
K |�ALCTP (¬∃hasSon.SumoWrestler)(hulk).

It can be shown that the nonmonotonic semantics of the logic ALCTP corresponds to an extension
of the rational closure for DLs introduced in [15]. Therefore, by proceeding as in Theorem 9 and
Theorem 13 in [15], as in the case of the logic TCL, we can prove that reasoning in the logic ALCTP

is in the same complexity class of the underlying standard ALC:

THEOREM 2
The problem of checking whether a query F is minimally entailed from a KB K |�ALCTP F is
EXPTIME-complete.

4 Allowed values of probabilities

In both the semantics TCL and ALCTP, we only allow typicality inclusions equipped with probabili-
ties p > 0.5. The reasons guiding this choice are the following:

• The very cognitive notion of typicality derives from that one of probability distribution [37],
in particular typical properties attributed to entities are those characterizing the majority
of instances involved. In addition, the notion of probability distribution is also intrinsically
connected to the one concerning the level of uncertainty/degree of belief associated to typicality
inclusions (i.e. typical knowledge is known to come with a low degree of uncertainty [19]); and

• In our effort of integrating two different semantics – DISPONTE and typicality logic in TCL

and a proportional interpretation of probabilities with typicality in ALCTP – the choice of
having probabilities higher than 0.5 for typicality inclusions seems to be the only one compliant
with both the formalisms. In fact, in the first case, despite the DISPONTE semantics allows
one to assign also low probabilities/degrees of belief to standard inclusions, in the logic TCL,
for what explained above, it would be at least counter-intuitive to also allow low degrees of
belief for typicality inclusions (simply because typicality inclusions with high uncertainty do
not describe any typical knowledge). For example, the logic TCL does not allow an inclusion
like 0.3 : T(Student) � YoungPerson, that could be interpreted as ‘we have a low degree of
belief that typical students are young people’. Such interpretation would not have sense since,
by definition, typical information is a statistically relevant one and is a carrier of trust and belief
attribution. Please, note that this is not a limitation of the expressivity of the logic TCL: we can
in fact represent properties not holding for typical members of a category, for instance if one
needs to represent that typical students are not married, we can have that 0.8 : T(Student) �
¬Married, rather than 0.2 : T(Student) � Married.

• Also, in the case of ALCTP, on the other hand, it is not possible to represent inclusions of the
form T(Student) �0.3 YoungPerson. This statement, in fact, would be interpreted in such logic
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as ‘we have many exceptions to the fact that typical students are young people’, violating also in
this case the probabilistic assumptions from which the notion of typicality derives (since ‘being
young’ is a typical property associated to the class of students). As in the case of the logic TCL,
this does not affect the expressivity of the language, since we can represent such information
by using the negation of the involved property, in the example, for instance, with an inclusion
T(Student) �0.7 ¬YoungPerson.

Concerning the upper limit of the interval, we remind that, in the logic TCL the value 1 is allowed.
Indeed, an inclusion 1 : T(C) � D can be used in order to capture the fact that there is no uncertainty
about the fact that, normally, Cs are also Ds. The semantics of the logic TCL will consider scenarios
either including or not including such properties, but obviously scenarios not containing them will
have a probability of 0. As already mentioned, as a difference with the logic TCL, the upper extreme
1 is not allowed in the logic ALCTP in order to avoid the collapse of Proposition 1. Indeed, in this
latter semantics, a typicality inclusion T(C) �1 D would correspond to a classical, ‘rigid’ inclusion
C � D, where no uncertain information—and therefore no typicality—is involved.

It is worth noticing that this is one of the main differences between the two proposed semantics:
on the one hand, in the logic TCL, the independence between axioms—coming from the DISPONTE
semantics—allows one to consider scenarios with different epistemic interpretations on typicality
inclusions (also having a degree 1). On the other hand, in the logic ALCTP, the independence among
inclusions is no longer imposed, therefore we don’t have different scenarios, but only one knowledge
base containing all inclusions. As a consequence, we need to avoid the above mentioned collapse by
excluding inclusions with probability 1.

5 A case study on concept combination with probabilities

In this section we exploit the DL ALCTP in order to tackle a well-known problem in the field
of common-sense reasoning, namely the problem of typicality-based concept combination. This
generative phenomenon highlights some crucial aspects of the knowledge processing capabilities
in human cognition and concerns high-level capacities associated to creative thinking and problem
solving. Still, it represents an open challenge in the field of artificial intelligence where other
formalisms, such as fuzzy logics, have failed to model the phenomenon [17, 31]. As mentioned
in the Introduction, dealing with this problem requires, from an AI perspective, the harmonization of
two conflicting requirements that are hardly accommodated in symbolic systems (including formal
ontologies): the need of a syntactic and semantic compositionality (typical of logical systems) and
that one concerning the exhibition of typicality effects [11]. A formal solution for the mentioned
problem has been proposed, for the first time in TCL [24]. In the following, however, we show that
also the semantics based on nonepistemic interpretation of the probability values assumed in ALCTP

can be another formal framework able to account for this phenomenon.

5.1 Concept combination with the novel ALCTP

As in the case of TCL, we consider the distinction between rigid and prototypical properties, the latter
ones considered the interpretation of probabilities as proportion provided in Section 3. Differently
from TCL, as we will see, ALCTP provides a built-in procedure to deal with the phenomenon
of common-sense concept combination (i.e. it does not require to adopt the HEAD-MODIFIER
heuristics [30]). Here we first exploit the nonmonotonic semantics of ALCTP in order to check which
properties of the concepts to be composed are inherited by the combined concept. We fix the average
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of the probabilities pi as a threshold, then we ascribe to the combined concept all properties Di such
that pi is above or equal to the average. As in the case of the logic TCL, the overall output of this
mechanism corresponds to a revised knowledge base including typical properties of the combined
concept.

Before providing the formal definitions, let us exploit the previous example of the pet fish in the
light of the new logic ALCTP presented here. Let K = 〈R, T ,A〉 be a KB, where the ABox A is
empty, the set of rigid inclusions is R = {Fish � ∀livesIn.Water} and the set of typicality properties
T is as follows:

1. T(Pet) �0.9 ∀livesIn.(¬Water)
2. T(Pet) �0.8 Affectionate
3. T(Pet) �0.8 Warm
4. T(Fish) �0.7 ¬Affectionate
5. T(Fish) �0.7 Greyish
6. T(Fish) �0.9 Scaly
7. T(Fish) �0.8 ¬Warm

As for the logic TCL, the semantics underlying the typicality operator T allows us to capture useful
nonmonotonic inferences, as well as to let the combined concept inherit all rigid properties, for
instance we have that T(Pet � Fish) � ∀livesIn.Water.

First of all, we compute the average of the probabilities of all inclusions involving the concepts to
combine. The underlying rationale for this choice is that we only want to let the combined concept
inherit not all properties of the compound concepts, but those showing a ‘stronger’ typicality effect.
In the example, the average is avg = 0.9 × 0.8 × 0.8 × 0.7 × 0.7 × 0.9 × 0.8 = 0.8. For each
property of either Pet or Fish, we check whether it can be inherited from K in the logic ALCTP.
We have:

1. K �|� T(Pet � Fish) �0.9 ∀livesIn.(¬Water) (as mentioned, a rigid property blocks this one)
2. K �|� T(Pet � Fish) �0.8 Affectionate
3. K �|� T(Pet � Fish) �0.8 Warm
4. K �|� T(Pet � Fish) �0.7 ¬Affectionate, furthermore the probability is below the average
5. K |� T(Pet � Fish) �0.7 Greyish, but here again the probability is below the average
6. K |� T(Pet � Fish) �0.9 Scaly
7. K �|� T(Pet � Fish) �0.8 ¬Warm

Properties in 4 and 5 are not inherited since the probabilities are lower than the fixed threshold.
It is also worth noticing that conflicting properties Affectionate and Warm are not entailed for the
combined concept Pet � Fish: indeed, the underlying logic of typicality ALC + TR allows one to
skeptically conclude nothing about a conflicting property in absence of further information (it is
an instance of the classic example of the Nixon diamond [38]). The other side of the coin is that,
as mentioned at the very beginning of the section, in combining concepts by exploiting the logic
ALCTP, we do not have to resort to the HEAD/MODIFIER heuristics. The resulting (Pet � Fish)-
revised knowledge base extends T with the inclusion T(Pet � Fish) �0.9 Scaly. Also, in this
case, we can say that the logic ALCTP is able to tackle the problem of defining a prototype of a
combined concept: only some properties are inherited from the initial concepts C1 and C2 involved
in the combination, and we could still be able to extend the knowledge base, for instance, with
the information that a typical pet fish is red. By the nonmonotonicity of the logic ALC + TRACL

R
underlying this approach, also adding a typicality property contradicting the same property in (at
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least) one of the initial concepts would not be problematic; as an example, we could add a further
inclusion T(Pet � Fish) �0.7 ¬Affectionate.

It is worth noticing that the resulting revised knowledge is different with respect to the one
obtained by means of the logic TCL. Here we exploit the semantics of the logic ALCTP in order to
restrict the attention only to models satisfying the probabilities as proportions equipping typicality
inclusions, then only inclusions having a probability higher than the average contribute to the
inheritance of typical properties for the combined concept. It is also worth noticing that, as the
example shows, ALCTP proposes a more conservative solution: intuitively, the logic ALCTP inherits
reasoning capabilities of the underlying ALC + TR, but restricted to allowed models satisfying
proportions. In this respect, conflicting properties are systematically discarded: indeed, as already
mentioned, the logic does not take any decision in case of a Nixon diamond, whereas in the logic TCL

this decision is taken by considering the HEAD/MODIFIER heuristics.
Formally, the mechanism for concept combination in ALCTP is as follows:

DEFINITION 16 (Average of probabilities).
Given a KB K = 〈R, T ,A〉 and given two concepts C1 and C2 occurring in K, we define
the average of probabilities equipping inclusions of C1 and C2. Let T(C1) �p1 D1, T(C1) �p2

D2, . . . , T(C1) �pm Dm, T(C2) �pm+1 Dm+1, T(C2) �pm+2 Dm+2, . . . , T(C2) �pn Dn be all
typicality inclusions in T involving concepts C1 and C2, we define:

avg =

∑

i=1,2,...,n
pi

n

DEFINITION 17 (Candidate properties).
Given a KB K = 〈R, T ,A〉 and given two concepts C1 and C2 occurring in K, let avg be as in
Definition 16. We define the set SC of candidate properties for the combined concept C1 � C2 as

SC = {D | K |� T(C1 � C2) �p D and p ≥ avg, for all T(C) �p D},
where C is either C1 or C2.

Last, we define the set of typicality inclusions of the form T(C1 � C2) �p Di, for Di belonging to
the set of candidate properties:

DEFINITION 18 (C-revised knowledge base).
Given a KB K = 〈R, T ,A〉 and given two concepts C1 and C2 occurring in K, let SC be the set of
candidate properties for the combined concept C = C1 � C2 as in Definition 17. We define the set
T ′ of typicality inclusions as T ′ = {T(C1 � C2) �p Di | Di ∈ SC}. The C-revised knowledge base
is defined as KC = 〈R, T ∪ T ′,A〉.

Since we directly exploit the semantics underlying the logic, we have that concept combination in
ALCTP remains ExpTime complete:

THEOREM 3
Concept combination in ALCTP is EXPTIME-complete.

PROOF. In order to combine concepts C1 and C2 we need to:
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• check whether each T(C1) � Di (respectively, T(C2) � Dj), for all typical properties of
C1 (respectively C2) is entailed from the KB in the logic ALC + TRACL

R , which is EXPTIME-
complete [15]; and

• compute the average of probabilities as in Definition 16, in order to select only those inferred
inclusions whose probability is higher than such an average: given that the number of properties
and of typicality inclusions is polynomial in the size of the KB, we have that this operation has
polynomial complexity.

This provides an exponential upper bound complexity. Concerning a lower bound, just consider
that the logic extends the basic DL ALC, in which reasoning is EXPTIME-complete [2]. Therefore,
we conclude that computing concept combination in the logic ALCTP is EXPTIME-complete. �

6 Related and future works

In this work we have introduced two extensions of the DL of typicality, which is able to represent and
reason about prototypical properties and defeasible inheritance, by means of probabilities. On the
one hand, we have proposed the logic TCL, where typicality inclusions are equipped by probabilities
representing a degree of belief in such inclusions. On the other hand, we have introduced the logic
ALCTP, where probabilities are used to capture the proportion of exceptions to typicality properties.
We have shown that the proposed DLs seem to be promising from both a computational and a
practical point of view: indeed, we have proved that reasoning in the two proposed extensions remains
EXPTIME-complete as in the underlying standard DL ALC; furthermore, we have shown that both
DLs are suitable for accounting for the phenomenon of typicality-based concept combination, which
turns out to be hardly accommodated in symbolic systems.

Several approaches have been introduced in the recent literature in order to deal with reasoning
under probabilistic uncertainty in DL. In this section we will brief ly recall the approaches that are
close to the logics TCL and ALCTP introduced in this work, by emphasizing the main differences
between such proposals and ours. In [33, 34], it is introduced a nonmonotonic extension of the
logic of typicality ALC + TR by inclusions of the form T(C) �p D with a probability p. This
work inspired the logic ALCTP that we propose here, but there is a very significant difference
between the two proposals: in the works [33, 34], probabilities are essentially used in order to
define a syntactic completion of an ABox containing only some typicality assertions; a notion of
entailment restricted to those extensions whose probabilities belong to a given and fixed range
is then defined. However, such ABox extension does not have a semantical counterpart, in other
words the semantics do not consider probabilities, whereas in the logic ALCTP models satisfying
a knowledge base have to fulfill all the constraints defined by probabilities as proportions. In [29]
the author introduces two probabilistic extensions of expressive DLs SHIF(D) and SHOIN (D).
These extensions are semantically based on the notion of probabilistic lexicographic entailment [20]
and allow one to represent and reason about prototypical properties of classes that are semantically
interpreted as lexicographic entailment introduced by Lehmann from conditional knowledge bases.
Intuitively, the basic idea is to interpret inclusions of the TBox and facts in the ABox as probabilistic
knowledge about random and concrete instances of concepts. In this logic, an expression of the
form (SocialNetworkUser | Student)[0.8, 1] represents that ‘typically, a randomly chosen student
makes use of social networks with a probability of at least 80%’, whereas default knowledge
can be expressed as (Young | Student)[1, 1] whose meaning is that prototypical students are
young people (but we have no information about the probability of having or not exceptions).
As the logic ALC + TRACL

R , the lexicographic entailment defined in [29] inherits interesting
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and useful nonmonotonic properties from lexicographic entailment in [20], such as specificity,
rational monotonicity and some forms of irrelevance. The logic ALC + TRACL

R inherits, however,
the main drawback of rational closure, namely the ‘all or nothing’ behavior, whereas the notion
of lexicographic entailment allows one to deal with overriding less specific properties without
inheritance blocking. These extensions are more related to the logic ALC + TRACL

R , rather than to
the logics TCL and ALCTP defined here, in the sense that it could be of interest to evaluate the
alternative of having the system of [29] as the one for underlying TCL and ALCTP in order to reason
about defeasible inheritance in DLs.

Several other nonmonotonic extensions of DLs have been proposed in the literature in order to
reason about inheritance with exceptions, essentially based on the integration of DLs with well-
established nonmonotonic reasoning mechanisms [1, 3, 5–7, 9, 13], ranging from Reiter’s defaults
to minimal knowledge and negation as failure (see [5, 12] for details). To the best of our knowledge,
none of them consider probability of exceptions in concept inclusions. Probabilistic extensions of
DLs, allowing one to label inclusions (and facts) with probabilities, have been introduced in the
DISPONTE semantics [35, 36] inspiring the logic TCL. The main difference between the logic
TCL and probabilistic DLs is that, in TCL, probabilities are restricted to typicality inclusions and,
therefore, only values higher than 0.5 are allowed. On the contrary, in DISPONTE probabilities can
be associated to concept inclusions as well as to ABox facts. In [32] a nonmonotonic procedure for
reasoning about surprising scenarios in DLs has been proposed. In this approach, the logic ALC+TR
is extended by inclusions of the form T(C) �d D, where d is a degree of expectedness. The main
difference with the logic ALCTP is that, in this proposal, the degree of expectedness is not intended
as a proportion, but it is essentially a rank used in order to define a notion of a syntactical extension
of the ABox by means of typicality assertions about individuals. Degrees of expectedness are then
used in order to define a preference relation among extended ABoxes: entailment of queries is then
restricted to ABoxes that are minimal with respect to such preference relations and that represent
surprising scenarios.

In future research we aim at extending our approaches to more expressive DLs, such as those
underlying the standard OWL language. Starting from the work of [14], applying the logic with
the typicality operator and the rational closure to SHIQ, we intend to study whether and how our
extensions, and in particular the logic ALCTP, could provide an alternative solution to the problem
of the ‘all or nothing’ behavior of rational closure with respect to property inheritance.

Concerning the application to the combination of prototypes of concepts, we envision for the
novel framework proposed different areas of application where the problem of concept combination
is crucial. Such areas range from computational creativity and generative AI, to intelligent
recommendations of novel categories to the new area of autonomic computing concerning the
problem of the automatic generation of novel knowledge in a cognitive artificial agent, starting from
an initial commonsense knowledge base [8, 25–28]. Finally, as a short-term future work, we aim at
investigating the use of both formalisms for the generation of metaphors obtained via common-sense
conceptual combination.
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