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As emphasized in recent articles by Aleonzo Church and David
Kaplan (Church 1874, Kaplan 1975}, the philosophies of lan-
guage of Frege and Russell incorporate quite different methods
of semantic analysis with different basic concepts and differ-
ent ontologies. Accordingly we distinguish between a Fregean
and a Russellian tradition in intensional logic. Semantic
analysis in the tradition which started with Frege's article
'lber Sinn und Bedeutung' (1892) and which makes a distinction
between sense (or intension) and denotation {or extension) will

be referred to as Fregean semantics. Semantic analysis in the
tradition of Russell's articles ‘On Denoting' (1908), 'Mathe-

matical lLogic as based on the Theory of Types' {1908} and

Principia Mathematica we refer to as Russellian semantics.

Both Fregean and Russellian semantics are faced with solv~
ing the following closely related problems:

(i) Frege's puzzle concerning the "cognitive significance"
of identity statements: how can "a = b1, if true, be an infeor-
mative statement differing in cognitive significance from
fa = a?

(ii) The problem of obliqﬁe or nonextensional contexts:
how can two well-formed expressions with the same denotation
ever fail to be be interchangeable salva veritate?

(iii) The problem of providing an adequate truth-conditio-
nal semantics for propositional attitude reports.

Fregean solutions to these problems essentially invelve the
distinction between sense and denotation. The appearance of
oblique contexts in natural languages was interpreted by

Frege to indicate a certain kind of syétematic ambiquity
rather than a failure of extensionality. According to Frege's
doctrine of indirect denbtation, expressions denote in
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(unembedded) obligue contexts what is ordinarily their sense.
Frege's extensional point of view has been advocated and deve-
loped further in this century by Alonzo Church (1951, 1973,
197na).

Carnap and Montague, on the other hand, while still working
within the Fregean tradition, saw the occurrence of oblique
contexts in natural languages as genuine counterexampies to

the principle of extensionality, the principle that the deno-

taticen of a well-formed expression is always a function of the
denotations of its semantically relevant parts (Carnap 1947,
Montague 1874).

According to the Carnap-Montague view, each well-Formed
expression of a language has both an extensicn (corresponding
to Frege's denctation) and an intension {roughly corresponding
to Frege's sense). The intension of an expression is identi-
fied with a function from possible worlds {(or models or state-

descriptions, representing possible worlds) to appropriate
extensions. Hence, the intension of a singular term, an
individual concept, is a function from possible worlds to

(possible} individuals; +the intension of an n-ary predicate
of individuals is a function from possible worlds to sets of
ordered n-tuples of (possibie) individuals; the intension

of a sentence, a (Carnapian) proposition, is a funetion from.

pessible worlds to the truth-values T (true) and T (false),

If I(E) is the intension of the expression E and w is a
possible world, then I(E)(w) is the extension of E in the
world w. Thus, within the Carnap-Montague framework, the
notion of extension is relativized to possible worlds. By

the extension of E, simpliciter, we then understand the exten-
sion of I in the actual world.

The Carnap-Montague program, while rejecting the principle
of extensionality, subscribes instead to the principle of
intensionality, i.e., the principle that the intension of a
complex expression is a function of the intensions of its
semantically relevant parts. Modal contexts, although
apparently nonextensional, satisfy the principle of intensio-
nality. However, as was already pointed out by Carnap in
Meaning and Mecessity (1§H7), §13, the principle seems to fail
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for propositional attitude reports. Consider, for example,
sltatements of elementary number theory. It seems that any
true number-theoretic statement must be true by logical
necessity and hence true in every possible world. Hence, all
true number-thecretic statements have the same intension,
namely the constant function mapping each possible world to
the truth-value T. Now, assume that George, who is a ratio-
nal person and a competent mathematician, has just proved a
certain number-theoretic statement '...'. George, therefore,
holds the statement "...' to be true. It seems that we are
then justified in afficming:

(1) George believes that
We alsc assume that there is another statement ' ' of elemen-
tary number theory which George has failed both %o prove and to
disprove. Now, the statement "' is in fact true, although

George does not think so. He rather suspects that it is false.
Under these circumstances, we seem justified in asserting:

(2) George does not believe that

in inferring (1) and (2), we are presupposing a disquotation
principle connecting the attitude of holding a sentence true
(acceptance) with belief:

(DP) If x is a competent English speaker, then x accepts

(holds true) '---* if and only if he believes that ---.
Here, '---' is to be replaced by any normal English sentence

not containing ambiguities, indexicals or pronominal devices.
Since the two number-theoretic statements '...' and ' '
are both true, they have the same intension, i.e.,

(3) IC'...') = I(" .

In case we doubt that any two trus number-theoretic statements
have the game intension, we may make the stronger assumption
that '...' and ' ' are provably equivalent in elementary

number-theory or even in first-order logic. We may, for
example, assume that '...' is a simple number-theoretic state-
ment and that ' ' is a logically equivalent statement of
considerably higher quantifier complexity. It still seems
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possible that George should hold '...' tyue while denying or
doubting the truth of ' ', Presumably, it could even be the

case that a rational person would accept one statement while
not accepting or even rejecting a tautologically equivalent
statement.

Now, from (1) and {(2), we may conclude

{(4) I{'George believes that ...') # I{'George believes
‘that ).

However, (3) and (%) are in apparent contradiction with the
principle of intensionality.

One may object to the above argument that the principle (DP)
is unreasonably strong. Perhaps we only have the weaker

principle:

(WDP) 1If x is a competent English speaker and x accepts

(holds true) '---', then x believes that ---.

This principle corresponds to the weaker of Kripke's (197%)
principles connecting sincere assent (rather than acceptance)
and belief. Using (WDP), we cannot infer (2} from George's
faiiure to accept *__ '. fiowever, it seems quite plausible
that there should be some number-theoretic statement '__ !
such that:

(i) '..." and '"___ ' have the same intension;

(ii) George has good reasons to reject ' ', i.e., to
accept 'not-__ '. We may imagine that George has
constructed a "proef" of 'not-__ ' containing some

subtle error;
(iii) George accepts 'not- r.

Using (WDP) we can then conclude:
(5) George believes that not-____

From (3) and (5) we get by the principlie of intensienality:
(6) George believes that not-...

Hence, we describe George as both believing that ... and
believing that not-... , i.e., as holding explicitly contra-
dictory beliefs. To do so seems to misrepresent Georpge's

frame of mind.
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Furthermore, since George accepts both '...' and 'not- ',
it is quite likely that he alsc accepts '... and not- '

Hlowever, then we may apply (WDP) to infer:
(7) George believes that (... and not- ).

Using (7), (3) and the principle of intensicnality, we then
conglude:

(8) George believes that (... and not-...),

i.e., we are describing George as believing an explicit contra-
diction. This seems to contradict the assumption that George
is a rational person. The semantic analysis of propesitional
attitude reports thus presents an apparent obstacle to the
Carnap-Montague program.

The purpose of this paper is to pursue the Russellian altep-
native in intensional logic, where a sense/denotation distinc-
tion is avoided. Russellian semantics in contrast to Fregean
semantics assigns only one kind of semantic value, most natup-
ally thought of as denotation, te the well-formed expressions
of a language. Following Quine (1869), Church (1974), and
Kaplan (1975}, we interpret Russell's logical doctrines in
the first edition of Principia Mathematica ¢1910) and in the
early writings {(Russell 1903, 1905, 1908) intensionally. The
values of the prepositiocnal variables of Russellian type theory

are taken to be abstract propositions rather than sentences
or truth-values. Sentences, being substitutable for propo-
sitional variables, are taken to denote propositions. Predi-

cate terms are assigned propositional functions, i.e., func-

tions from entities of the appropriate kind %o propositions,
as their semantic values. Individual terms, finally, refer
to individuals.
Russellian semantics is not extensional in the usual sense,

since the principles:

(1Y (A ++B) » (...A... ++ ...B...)
and

(2 in...Vxn(Fxl...xn = Gxi...xn) + (...F.., =+ (..G...

fail, for example, in propositional attitude contexts.
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Instead of (1) and (2}, we have the principles:
(3) (A = B) = (A <= B)
(4) (A = BY = (...A...

B..u)

(5} Vxl...Vxn(Fxl...xn = le...xn} - (...F... = ...G...},

'=! stands for the relation of identity between propo-

where
sitions. Hence, Rugssellian semantics is extensional in the
following nonstandard sense: the Russellian denotation of an
expression is always a function of the Russellian denctations
of its semantically relevant parts.

It seems natural, both on a Fregean and on a Russellian
approach, to interpret propositional attitudes, like beliefs,
fears, and desires, as relations between a person and a propo-
sition {or between a person, a time, and a proposition). The
two approaches. differ, however, in their methods of semantic
analysis and in their views of the nature of propositions.

Consider the example:
(1) Othellc believes that Desdemona loves Cassio.

On the Fregean analysis, propositional attitude verbs, like
‘believes' apply syntactically to noun phrases which are
interpreted o dencte propositions. Hence, the logical form
of (1) can on the Fregean analysis be symbelized as:

(2) Believes (0Othello, that Desdemona loves Cassio),
where the that~clause denotes the proposition that Desdemona
loves Cassio. According to Frege's doctrine of indirect
denotation, the expressions 'Desdemona', 'loves', 'Cassio’,

will in the context:
(3) that Desdemona loves Cassio

refer not te their ordinary denotations but rather to their
ordinary senses., The Fregean proposition denoted by the
that-clause (3) seems to be a complex built up Ffrom the (ordi-
nary} senses of the expressions 'Desdemona’, 'loves', and
'Cassio'. In general, propositions for Frege appear to have
been sentence-like structures having senses as their consti-
tuents.

On the Russellian approach, propositional attitude verbs
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are analyzed as sentential operators that apply syntactically
to sentences rather than to noun phrases. Assuming that
'Othello’, 'Desdemona’, and 'Cassio' are genuine proper names
and not abbreviations of definite descriptions, the logical
form of (1) ecan on the Russellian analysis be represented as:

(4) Believes (Othello, Desdemona loves Cassio).

Belief is still analyzed as a relation between a person'and a
proposition, since the Russellian denotation of a sentence is

a proposition rather than a truth-value. However, within the
Russellian framework there are no senses available and Russell-
ian propositions are not like Fregean propositions constructed
out of senses. Atomic Russellian propositions are instead
complexes built up from properties (or relations) and objects.
Assuming that ‘'Desdemona loves Cassio’ refers to an atomic

Russellian proposition, this proposition is a complex:
(5) [loves; Desdemona, Cassio] ,

having as its constituents the loving-relation and the two
persons Desdemona and Cassio. - In general, an atomic Russell-
ian proposition has the form [R; al,...,an], where R is an
n-ary relation {in intension) and 815 &y,-..,a, are any
entities (of appropriate logical types). The propesition

[R; al,.l.,an] is true iff the objects ay,...,a, stand in
the relation R to each other. 1In Principia Mathematieca,

complex propositions are constructed from atomic ones by

logical operations:

(i if p is a proposition, then there is a proposition ~p
{the negation of p) which is true iff p is not true;

(ii) if p and q are propositions, then there is a proposi-
tion (p & q) (the conjunction of p and q) which is
true iff p and q are both true;

(iii) if f is a propositional function having as its domain
the collection D of all entities of a certain logical
type, then there is a proposition (vx)f{x) (the uni-
versal generalization of £} which is true iff £(a)

is a true proposition for every entity a in D.
Russellian semantics differs from Fregean semantics in
not viewing definite deseriptions "the + common noun phrase"
as genuine singular terms. Instead they are treated syntactically



and semantically as quantifier phrases on the analogy of phrases
like "a + common noun phrase" and "every # common noun phrase".
Within & Russellian framework, quantifier expressions (or
determiners) like "all®, "most", "many", "no", "some®, etc.,

may be viewed as denoting relations between properties.l)
In other words, gquantifier expressions dencte higher-order
propositicnal functions. Consider, for example, the senten-

ces:
(1)} All kings of France are spies.
(2) Some kings of France are spiles.

These sentences may be analyzed as being of the forms:
(3) Al1I(F,S)
(4) Some(F,S),

where F and S dencte the properties (propositional functions)
of being a king of France and being a spy, respectively.

All and some denote binary propositional funetions taking
;;;positional functions of individuals as arguments. Simi-

larly, on the Russellian view,
{5) The king of France is a spy.

may be analyzed as having the logical form
(6 The(F,8),

where the quantifier expression the denctes a relaticn
(propositional funetion) Q such that Q(X,Y) holds if and
only if

(i) +there is precisely one individual x such that
X{x) is a true proposition; and

(ii) for every individual x, if X(x) is true, then

¥Y(x} is also true.

Hence, the following is a logical truth:

(7Y The(X,Y) «+ (3 [{yy) Xy +> vy = x) & ¥Yx].

The sentence
(8) Ralph believes that the king of France is a spy.

has, on the Russellian analysis, two readings, namely, one

wide scope or de re reading:

- 89 -

(2) Thel(F, ()Ax.Ralph believes that Sx));
and one narrow scope or de dicto reading:

(10) Ralph believes that the(F,S).
From (8) and

(11) The king of France is Ortcutt.
we may conclude

(12) Ralph believes that Ortcutt is a spy.

only in case (8) is given the wide scope reading. Hence,

failure at the level of surface syntax of the principle:

a = b+ (ACa/x) <> Alb/x))

is easily explained, on the Russellian approach, for those
cases in which either a or b is a definite description or
can be analyzed as standing for cne.

Apparent failures of substitutivity of genuine singular
terms are difficult teo handle on the Russellian approach.
The linguistic function of a meaningful expression is, on
the Russellian view, entirely exhausted by the Fact that it
has a certain denotation. Accordingly, substitution of
coreferential singular terms in a sentence can never change
its content, i.e., the proposition it expresses. Russell
writes in 'The Phileosophy of Logical Atomism®' (1918):
"...if one thing has two names, you make exactly the same
assertion whichever of the two names you use...“.z)

It follows that if a and b are genuine singular terms
denoting the same object, then the two sentences Ta = &
and "a = b express the same Russellian proposition.
However, we are reluctant to describe someone who accepts
the sentence not a = b', where a and b are coreferential
singular terms, as believing that not a = a.

Failures of substitutivity of coextensional sentences and
predicate terms are explained by Russell's doectrine that
sentences and predicate terms denote propositions and propo-
sitional functions, respectively. Also logically equivalent
sentences may fail to correspond to the same Russellian pro-

position and hence fail to be substitutable salva veritate,
for example, in propositional attitude contexts.
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1l. Simple versus Ramified Types

Type distinctions were introduced into the Russellian onto-
logy in order to avoid antinomies. In this paper, we shall
modify Russell’s approach by considering the simple theory
of types rather than Russell's ramified theory. The simple
theory is gsufficient for avoiding Russell's paradox of pre-
dication, i.e., the contradiction resulting from the assump-
tion:
(BEM{¥Yx)}(Ex ++ (3g)(g = x & ~glg))),

where 'f' and 'g' range over predicates {propositional func-
tions) and the variable 'x' ranges over any entities whatso-

ever (including predicates), For the resolution of semantic
paradoxes involving notions like satigfaction, truth, and

definition, we rely on Tarski's levels of language doctrine.
The division of propesitions and propositional functions into
levels (or orders) which is involved in the ramified theory
of types seems to be useful for the analysis of those self-
referential paradoxes that involve propositional attitudes
like assertion, belief, and knowledge. For example, if we
add a primitive predicate symbol 'A' ("asserts") to the
simple theory of types, we can reproduce the Liar antinomy,
applied to propositions rather than to sentences. To derive
this version of the Liar antinomy, we simply have to make the

intuitively coherent assumption:
(¥p) (Ale,p) ++ p = (¥YQ)(A(e,q) + ~q)),

i.e., that Epimenides makes precisely one assertion (a cer-
tain day} namely thet all assertions made by Epimenides (on
that day} are false. One possible way of avoiding the para-
dox is to separate the notion of an assertion inte an in-
finite hierarchy of predicate symbols 1A™ of levels 1, 2,
3,... However, this type of solution, although syntacti-
cally simpler than Russell's, seems to presuppose a division
of propositions and propositional funetions into levels
which is similar to Russell's ramified type hierarchy.
According to the indicated resoclution of the Liar anti-
nomy, we can let An(x,p) be a proposition of level n which
is true iff p is a proposition of level ¢ n and x asserts p.

i e e A e b - i

Thus, if p is a proposition of level > n, then An(x,p) is
simply false. Assume now:

(1) (vp)(A"(e,p) «> p = (v@){A"(e,q) + ~q))

and let 'PO' abbreviate '(Vq)(Am(e,q) + ~q)'. In order for
(1) to be true, we must have n > m. Next, we attempt to
derive a contradiction. Hence, we assume PU’ i.e.,

(2) (vq) (A" (e,q) - ~q) (by definition of P)

(3) ae,py) (from (1))
However, from {(2) and (3) we cannot derive NPG’ since Am(e,PO)
is false. In fact, PD will be true in the described situation.

As was noted already by Russell in The Principles of
Mathematics, appendix B (1903) and also by Myhill (1958), the

simple theory of types is not sufficient to avoid antinomies if

we assume very strict principles of individuation for propo-
sitions. 1In fact, the following principle is sufficient to
generate a contradiction in the simple theory of types:

(P) (VEX(vg)([(¥PIE(D) = (vplg(p)] » £ = g),

where 'f' and 'g' range over propesitional functions taking
propositions as arguments. This principle seems intuitively
plausible. If £ # g, then it seems possible to assert
(¥p)E(p) without asserting (¥plg(p) and vice versa. Hence,
(¥p)f(p) and (¥p)g(p) appear to be different propositions.
Let us now see how to derive a contradiction from the
principle (P} within simple type theory. The argument is
a formalized version of Russell's argumentation in appendix
B of Russell (1903). It also has a formal similarity to the
semantical antinomy of Tarski (194%), note 11.
We say that a proposition p is self-applicable if

A3E)([p = (vQIFLq)] & £(p))

and non-self-applicable if

(A6)([p = (vqQ)f(q)] & ~F(p))..

By the comprehension principle of simple type theory there
is a propositional function h such that

(1) (vp){h{p) ++ (af)([p = (vq)f{q)] & ~f(p))).
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That is, h is the property of being non-self-applicable.
Consider now the propositicen (¥p)h(p), i.e., the propesition
that all propositions are non-self-applicable. Let Pg be this
proposition. Assume that the propesition Py is non-gself-
appiicable, i.e.,

— (2} h(pﬂ) {assumption)
(3)  @30lpy = (VOIE(Q)] & ~f(py))  (From (1),(2))
(%) [pD = (Vq)f(qQ)] & ~f(py) ((3) ES)
(5)  (¥p)h(p) = (VQ)F(q) (from (%))
(6} h = f (from (5} by (P))
(7 ~h(p0) (from (4),(6))
(8) ~h(py) (¢2),(7) RAA)
(9 [py = tvpIh(p)] & ~h(py) (from (8))

(10) (Hf)([po = (vp)E(p)] & ~f(py))  ((9) EG)
(11> hipy) ((10) Df. of po)
(12) h(pg) & ~h(py) (from (8),(11))

Thus, we have shown that too strict principles of individua-
tion for propositions are incompatible with the simple theory
of types. We leave it to the reader to verify that the above
argument cannot be carried through within the ramified theory
of types.

2. The Language of Simple Type Theory

In the rest of this paper we shall focus on a system STT of
Russellian simple type theory, First, we shall give a detail-
ed presentation of the syntax and semantics of STT. Then,

we provide STT with a natural axiomatization and finally we
state the appropriate Henkin-type generalized completeness
theorem for the system STT.

Simple Types. ‘Let i be any object which is not a finite
sequence. The set ST of simple types (s-types) is the inter-
section of all sets T satisfying the conditicons:

(i) 1€ T

{ii} if m> 0 and t ..,tm € T, then the finite sequence

1"
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<t1,...,tm> belongs to T.
That is, ST is the smallest set which contains i and is closed
under the formation of arbitrary finite sequences. It follows
from the definition that the empty sequence @ is in 8%. i and

@ are the basic s-types. Types of the form <t

1,...,tm> for

m > 1 are called functional s-types.

The intuitive interpretation of the simple types is this:
The objects of type i are individuals and objects of type @
are propesitions. Objects of type <tl""’tm>’ where m > 1,
are functions f such that the kth domain of £ (1 < k < m) is
the collection of all entities of type tk and the range of f
is included in the collection of all propositions. Such
functions are called propositional functions of type

<tl,...,tm>.

We shall usually write 0 instead of @ and (tl""’tm) in-
stead of <tl,...,tm>.

Primitive Symbols. The language of S$TT contains (primi-
tive) symbols of the following kinds:

(i) for each s-type t, a denumerable sequence xg, x%,... of
variables of type t;
(ii) for each s-type t, a denumerable sequence cg, ci,... of

{non-logical) constants of type t;

(iii) truth-functiocnal connectives L and -
(iv) the wuniversal quantification symbol M;

(v) the logical necessity symbol oj;

(vi) the identity symbol =;

(vii) the lambda operator i;

(viii) parentheses and the comma sign.

Terms. We define inductively the set Tm, of terms of STT
of type t, as follows:
(1) every variable of type t belongs to Tmt;
(ii) every constant of type t belongs to Tm
{iii) if A € Tm

g
€ ?mt yee-y B € Tm, ,

and B
tl 1 t t

(tyseeest)

then A(B, ,...B, ) € Tm.;
tl tn G

(iv) if A, B € Tmo, then oA € Tm0 and (A - B) € Tmo;
(v L € Tmg;
(vi) if A € Tm then TMA € Tm

(t)° o’
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(vii) if A, B € Tmt, then (A = B) € Tmo;

(viii) 4if A € TmO and i seeny X, are distinct variables of
1 n
respective types tl,..., tn’ then
(Ax,_ ...x, AY € Tm .
tl tn (tl,...,tn)

A closed term is & term that does not contain any free variables.

A formula is a term of type 0. A sentence is a closed formula.
We introduce the following metalinguistic abbreviations:

(th)A = H(lxtA)

df.

~f Saf. (A - 1),

(Ext), &, v, ++ are defined in the usual way.

Let Au and Bt be terms of type u and t, respectively., We
say that Bt is free for the variable Xy in Au if there is no
term (Axl...xnC) such that:

(i) some free occurrence of Xy in Au lies within an oceurrence
of (lxl...xnc); and

(ii) one or several of the variables Xpseens X, oceur free
in Bt'
We write At[Bt ,...,Bt /xt e Xy I: for the result of
1 n 1 n
(simultaneously) substitutin B, ,w..4+ B for all free
g t t
n
occurrences of the variables x yee -y X in A_. Whenever
tl ‘t:n| t
this notation is used, Xp aeeea Xy are assumed to Be distirct
1 n
variables.

Semantics for Simple Type Theory

3.
A frame is d structure

E = <W,Dt,E,_{,imp,nec,uqt,idt>t € ST

where

(1) W is a non-empty set (of Dossible worlds).

(2) Di is a non-empty set (of individuals).

(3 Dy is a set having at Ieast two elements. The elements

of DO are called propositions.

(&) For all s—typeé tl,..., tn,

...95_

(Dt X L. ox Dt j
® # D, ) 1 n
(Ll,...,tn) < DO J,
i.e., D is a non-empty set of functions from
! (tl""’t )
(D * ... x D_ ) into D.. The elements of D
t) t, 0 Ctysennst )

are called propositional functions of type (tl,...,tn).

(5) E: Dy * W — [0,1). For each proposition p € D, and

each world w € W, E(p,w} is the truth-value {(or extension)

of p in the world w. @ and 1 represent the truth-values
false and true, respectively. We define the intension
I(p) of a propositien p as the set of all worlds in which
p is true, i.e.,

I(p) = {w € W: E{p,w) = 1}.
(6) f ¢ DO’ imp: DO x D0 — DO’ nec: D0 — DO’ uq,, D(t) — DO,

1dt: St x Dt — DO'

(7} The function E satisfieé the following conditions:
(a)} E(f,w) = 0, for all w € W;
(b) for all p, g € DO’ w € W, E{imp{p.,q),w) = 1 iff either
E{p,w) = 0 or E(q,w) = 1;
(c) for all p € Dyy w € W, El(nec(p),w) = 1 iff for all
w! € W, E{p,w') = 1;
(d) for all f € D(t)’ wE W, E(uqt(f),w) = 1 iff for

all x € Dt, E(f(x),w) = 1;
(e) for all x, v € Dt’ w e W, E(idt(x,y),w) =1 iff x = y.

It follows from clauses (7),.(a) - {(e) that:
(i) I(E) = @;
(ii)  Tlimp(p,ql) = (W - T{p)) U I{q);
(iii) W, if I(p) = W
I{nec(p)) =

@, 1if I(p) ¢ W;

(iv) I(uqt(f)) = {w € W: (v¥x € DO(E(L(x),w) = 1)}

v) W, if x = y
I(idt(x,y)) =
D, if x # vy.
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A structure for STT is an ordered triple Y = <£,w0,V>,
whepre

(i) F = <W,Dt,E,£,imp,nec,uqt,idt>t € st is a frame;
(ii) Wy € W (the actual world);

(iii} V is a function which assigns a value V(c ) € D, to
every (non-logical) constant of type t in STT

Let M = <F,wy,V> Be a structure for STT. An M-assignment
is a function g from the set of all variables such that for
¢ of type t, g(xt) € Dt
Given an assignment g, a variable Xy of type t, and an element

avery t ¢ 8T and every variable x

a € Dt’ we define the assignment:
g(a/xt} = (g - {<Xt:g(xt)>}) U {(Xt,a>}.

The assignment g{al, .,an/xl,...,xn), where x Xx_ are

preces X
distinct variables of respective types tl,..., tn and ay € Dt
1
«» @ € D, is defined analogously.
n tn

General versus Standard Models for STT. The distinection

between general and standard models was introduced by Leon
Henkin in (1950).
system of extensional simple type theory with respect to

There he proved the completeness of a
general models. OQur goal here is to prove the corresponding
result for Russellian simple type theory.

A general model (G-model) for STT is a structure M = «F, wo,
for S8TT such that there exists a function {(the value function)

which assigns, to each M-assignment g and each term A € Tmt
a value ]A [g]| 3 Dt’ in such a way as to satisfy the
conditions (i) to (ix) below:

(i3 if c, is a.constant of type t, then lct[g]|M = V(ct);
(ii) if Xy is a variable of type t, then lxt[g]]E & g(xt);
(iii) irf A € Tm(tl""’tn) and B1 € Tmtl,..., Bn € Tmtn, then

[ACBy5...,B )]} [alglj([B [glf,...
(we often omil the superscript H);

(ivy  |rlgl]|

»|B [g}])

bl
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(v) lia - mylglf = impC|Alglt, |BIg)|);

(vi) lealgl] = nec{|Algl]);

{vii) IHAt{g]| = th(IAtIEJI)Q

(viii) fea, = B (glf = id Catgt I8 tgl]);

(ix) if A is a formula and Xyseens x  are distinct variables
of types tl""’ t » respectively, then [(Ax .ﬁnﬂ)lp3i
equals the functzon F from D LI Dt to DC sucl

1 n
that for all 2 € Dt poees Ay € Dt N
1 n
F(al,...,an) z lA[g(al,...,an/xl,...,xn)II-

A standard model for STT is a structure H = <£,wU,V> for

STT such that for all types tl,..., tn’

(D X ... ¥ D )-
t t
D = |D 1 .
(tphenst) [0 n
Clearly, if M ig a standard model, then it is also a general
medel. Later we shall see that there exist general models
that are not standard models.

Truth in a Hodel.

Let M = <F, »¥g:V> be a general model for
STT, where F = <u Dt’E fiimp,nec, uqt,ld t € 8T We say that

the formula A is true at the world w € W relative to the

model M and the M-assignment g (in symbols: N #: Algly iff
E(]Atg]l—,wJ = 1.

The formula A is true in the model M relative to the M-

assignment g (in symbols: M | Algl) iff E(IA[g]|—,w0} = 1.

We have the following consequences of theése definitions:

(1) o #:w A(B, s+« -3B Mgl iff
1 n
E(|A[g]|(|8t [g]l,...,IBt [gl]),w) = 1.
1 n
(ii) M f#, Llgl. _
(iii) M k:w (A - B)lgl iff i k#w Alg] or M k:w Blgl.

(iv) M = ~Algl iff M ., Alel.
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(v)

=

=, nA ;ylel iff for all a € D, E(|A(t)[g]|(a),w) = 1.
B, (b, = BOMe] iff [A(al] = |B (8.
(vii) ¥ =, oA[g] iff for all w' € W, M [=w, Algl.

=

(vi)

Logical Truth and Logical Conseguence. There are two

notions of legical truth corresponding to the two concepts
of a model. Hence, we define:

A formula A is G-valid in STT (in symbols: k:G A) iff for
each general model M and each M-assignment g, M = Algl.
A is S-valid (in symbols: k=8 A) iff for each standard model
M and each M-assignment g, M = Alg].

Similarly, we have two notions of logical consequence:

A formula A is a G-semantic conseguence of a set [ of

formulas (in symbels: T F=G A) iff for each general model H
and each M-assignment g, if M |= B[g} for every B € T', then
4 = A{g]l. A is an S-semantic consequence of [' {in symbols:

r F:S A) 1ff for every standard model M and every M-assignment
g, if M = Blg) for every 8 € T, then K |= Alg].

We have, of course, the following connections between the
G-notions and the S-notions:
(i) FG A =3 ¥=S A.

(ii)I‘}IGA :oI’[=SA.

4. The Theory STT

YWe specify a recursive set of axioms and inference rules for

the system STT of Russellian simple type theory. We then

define a theorem ¢f STT to be any formula obtainable from

the axioms by repeated application of the rules of inference.
Axioms of STT. An axiom of STT is any instance of one of

the following schemata:

Al. Any formula A which is a tautolegy in 1 and -,

AZ. K = Xy

A3, (xt = yt) - (Atl[xt/ZtJ = Atl[yt/zt])’ where Xy and Ve

are free for z_ in A

t tl
Ay (wx DL O D0EQx, S L ,x. ) = gl 5.0y, )Y » (F = g).
tl tn tl tn tl tn
A5, (Ax, ...x, A (B, ,...,8, ) = A [B, ,...,B, /%, .....%_ 1,
tl tn 0 tl tn 0 tl tn tl tn
where B, (1 < i < n) is free for x, in Age

1 1

_99._

AB. HA(t)"‘# A('t)B‘t'

A7. (th)(AD~» B(t)(xt)) -+ (AO-» HB(t)), provided that Xy

is not a free variable of AO or B(t)‘

AB. DA+ A.
A9, o(A- B) > (A~ oB).
AlD. ~poA -+ o~DA.

ALl. (AO = BO) + o{A > B).

Rules of Inference.
R1. From AO and (AO-» BOJ to infer B

o

(xt) to infer nA(t), if x, is not free in A(t)'

R2. TFrom A +

(t)
R3. From A to infer pA.
We obtain a system of pormal intensional type theory, if

we add the schema
NI. of{A «» B) - {(A = B)

to the system STT. 1If we add instead
E. (A« B)=> (A =B),

we obtain a system of extensional simple type theory. In this

system we have as a theorem:
oA = A,

i.e., the operator o becomes superflucus.

Semantically, NI means that propositions having the same
intension are identical. Hence, NI is equivalent to the
assumption that propositions may be represented by sets of
possible worlds. E means semantically that there are exactly
two propositions which may be identified with the truth-
values true and false. '

A proof in SIT is a finite sequence of formulas each of
which is either an axiom or else is obtainable from earlier
formulas by one of the inference rules Rl - R3. A formula
A is provable in STT, or a theorem of STT, and we write

|~ A (or to be more exact: |-gpp A),

if it is the last line of a proof in STT. A derivation in
STT of a formula A from a set of formulas T is & finite
sequence of formulas Al,...,An (n > 1) such that An is the
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formula A and for each i (1 < 1 < n) either:

(i) Ay is an axiom of STT; or

(ii) Ai € Iy or

{(iii) A; may be inferred from twe previous members of the
sequence by rule Rl (modus ponens); or

(iv} for some k < i, Ak is the last member of a subsequence
of Al""’An which is a proof of Ak in STT and Ai may
be inferred from Ay, either by rule R? (generalization)
or by rule R3 (necessitation}.

We say that A is derivable from I' in STT (in symbols:

I' b-gpp 8) if there exists a derivation in STT of A from r.

We state without proof:

Theorem. (Deduction Thecrem for STT)
If 'y A lgpp B, then T Fgrp A~ B.

5. Soundness and Generalized Completeness of the System STT

In this section we shall state the appropriate soundness and
completeness theorems for the system STT. First, however,

we introduce some terminology. A set of formulas I is S8TT-
consistent iff T F#STT 1.
[S-satisfiable] iff there exists a general [standard] model

M and an M-assignment g such that M = Algl for all A € T.
Theorem. {Soundness Theorem for STT)

(i) F—STT A implies F=G A

(ii) T }—STT A implies T F=G A

(iii) if T is G-satisfiable, then T is STT-consistent.

Froef: (i} - (iii) are equivalent. We sketch the proof
of (i). The axioms of STT are easily seen to be G-valid and
the rules of inference clearly preserve G-validity. Hence,
all theorems of SIT are @-valid. Q.E.D,

It follows from classical results of Gbdel (1931) that
the set of S§-valid formulas is not recursively enumerable.
Hence, there is no hope of proving a completeness theorem
with respect to S-validity. However, we have the following

result with respect to the general semantics:

A set of formulas ' is G-satisfiable

LY
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(Generalized Completeness Theorem for STT)
(i) l=G A implies FHSTT Aj
(ii) [ |=g A implies T

Theorem.

grp A5

(iii) if T is an STT-consistent set of formulas, then T is
G-satisfiable.

We omit the long and fairly standard Henkin-type proof of
this theorem. Our proof uses the same general techniques as
Gallin's (1975, pp. 25-37) proof of strong completeness for
Montague's higher-order intensional logic.

NOTES

*) Previous versions of this paper have been presented to the
seminar in Theoretical Philosophy at Uppsala University.
I am grateful to the participants, especially Thorild
Dahlquist, Stig Kanger, Jan Odelstad, Wlodzimierz Rabinowicz
and Richard Sliwinski, for criticism and valuable suggestions.

1) Compare the treatment of quantifiers in van Benthem (1984).

2} Marsh (ed.), Logie and Knowledge (1956), p. 245,
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