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Abstract
This paper presents a uniform semantic treatment of nonmonotonic inference operations that allow
for inferences froninfinite sets of premisses. The semantics is formulated in termsalaxdtion
functionsand is a generalization of thmeferential semanticef Shoham (1987), (1988), Kraus,
Lehman, and Magidor (1990) and Makinson (1989), (1993). A selection function picks out from a
given set of possible states (worlds, situations, models) a subset consisting of those states that are,
in some sense, the most preferred ones. A propositisranonmonotonic consequenoéa set
of propositionsl” iff a holds in all the most preferrdd-states. In the literature on revealed
preference theory, there are a number of well-known theorems concerning the representability of
selection functions, satisfying certain properties, in terms of underlying preference relations. Such
theorems are utilized here to give corresponding representation theorems for nonmonotonic
inference operations. At the end of the paper, the connection between nonmonotonic inference and
belief revision, in the sense of Alchourrén, Gardenfors, and Makinson, is explored. In this
connection,nfinitary belief revision operationshat allow for the revision of a theory with a
possibly infinite set of propositions, are introduced and characterized axiomatically. Several
semantic representation theorems are proved for operations of this kind.

1. Introduction

In standard deductive logic, a propositoiis a logical consequence of a set of propositions
(in symbols, F a) just in casex holds (or is true) in every possible state (situation, world)
in which all the propositions if hold. In other words, we have the following semantic char-
acterization of logical consequence:

NFtoaiff [F]O[al,
where[a] and[I'] are the sets of all possible states in which, respectivedpd the set of

all propositions i hold. If I O A, then, of course[A] O [I']. It follows, that standard
deductive logic is monotonic, that is:

if T'Foaandl OA, thenAF a. (Monotonicity)

Notions ofplausible inferencer default reasoninglo not in general satisfy monotonicity.
From the information that x is a quaker, we may plausibly infer that x is a pacifist. However,



from the information that x is a quaker and a Republican, it is not a plausible inference to
conclude that x is a pacifist. Of course, the phenomenawnrm@honotonicitys familiar also
from probabilistic contexts: fromx being highly probable givefi, we may not conclude in
general thatt is highly probable givef [y.

A common idea in the literature on nonmonotonic reasoning is the followirgga non-
monotonic consequence bf(in symbols[ k a) just in case holds in all thosd -states that
are maximally plausible (from the viewpoint of some agent). Or more abstria¢tyy ob-
tains if a holds in all thebestpreferredrl -states, namely in thogestates to which no other
I-state is strictly preferred (or better).

Formally we represent this idea by introducingetection functiors which given a set X
of possible states picks out the set S(X) of all the “best” elements in X. The rdlatibn
nonmonotonic consequence (or plausible inference) is then defined in terms of S in the fol-
lowing way:

Faiff S(Cr]) O Lal.

This definition will in general lead tl being honmonotonic, since there is no guarantee that

SAIrd d Lol willimply that SCr O AT O [a].
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Clearly, one of the best preferréd] A-states may fail to be a best preferred member of the
more inclusive class of -states. Therefore, it need not be the case tHaE S(A]) O
S([r'D). Neither does it follow that § O AT) O [a 1.

Different choices of underlying language, different conceptions of possible states, and dif-
ferent formal requirements on the selection function will give rise to different nonmonotonic
logics. In this paper we shall explore some of the possibilities that ensue. In particular, we
are going to study correspondences between various conditions on the selection function S —
many of which are well-known from the literature on preference and choice — and conditions
on the inference relatior. In this connection it is often more natural to look at nonmono-
tonic inference as a Tarski-style infererageerationC on sets of propositions rather than as
an inferenceelationk-. The two notions are simply related by the equatiof) E{a: I' k-

a}.



The essential idea behind our semantic modelling of nonmonotonic inference goes back to
McCarthy’s classical paper (McCarthy, 1980) on circumscription. McCarthy presents circum-
scription as a formalized rule of nonmonotonic inference (he callsuteaof conjecture)
which is used in conjunction with the rules of standard logic. There are many versions of cir-
cumscription, but the essential model-theoretic idea is the same: among all the models of a
formulaa some are singled out as beimgnimal Minimality here can mean various things,
for instance: (i)Domain Circumscriptionthe minimal models ofi are those that have no
proper submodels that are also modela;dii) Predicate Circumscriptionthe extensions of
some designated predicates are minimized, while the domain together with the extensions of
all other predicates are kept fixed; (ifarameterizedPredicate Circumscriptionthis case is
like (ii), except that the extensions of some predicates (the parameters) are allowed to vary
freely; (iv) Prioritized Circumscription there is a priority ordering of the predicates to be
minimized: minimizing a predicate with higher priority is always preferred to minimizing a
predicate with lower priority.

Given some notion of a minimal model, one can define a corresponding notioniofal
entailment:a minimally entails iff all minimal a-models arg3-models: In order to single
out the minimal models af, and thereby the sentences that are minimally entailea, lay
new sentence, called tloercumscriptionof a, is associated witlh . This new sentence has
as its models just the minimal modelsoof Thus,a minimally entailsf just in case3 is a
logical consequence of the circumscriptioncof It should be noted, however, that the
circumscription of is in general a sentence of second-order logic.

To make all this a little more concrete, let us look at a special case — predicate circum-
scription (McCarthy, 1980). Let(P) be a sentence involving the predicate P (for simplicity,
we let P be unary). Th@redicate) Circumscriptionf a with P is the second-order sentence
Circum(, P) defined a$:

a(P)OQ(Q <P -a(Q)),
where Q < P is an abbreviation for the senténg@(x) — P(x)) O [X(P(x) O-Q(x)). Next,
we introduce a strict partial orderinigp on models of the language under consideration:
M Cp N iff M and N have the same domain, all predicate symbols in the language besides P
have the same extension in M and N but the extension of P in M is a proper subset of its ex-
tension in N. We say that a model M i®-aminimal modebf a, if M E a (M is a model of
o) and there is no model N such thatly M and NEF a. Now, the models of Circurm( P)
are exactly the P-minimal modelsaf Following McCarthy (1980), we say thl@mtminimally
entails3 with respect to P (in symbolsy k-p B) if all P-minimal models otx are models of
B. Thus,a kp 3 holds just in cas@ is a logical consequence of Circum(P). Since a P-
minimal model ofa (I3 may not be a P-minimal model of minimal entailment with respect
to P is nonmonotonic.



Example 11ieta be the conjunction of the sentenées:

(1) bird(tweety);

(2) Ox(bird(x) O-aby(x) - canfly(x));

(3) Ox(penguin(x) - bird(x));

4) Ox(penguin(x) - aby(x));

(5) Ox(penguin(x)d - akp(x) — - canfly(x)).
saying that (1) Tweety is a bird, (2) birds that are not abngroaal fly, (3) all penguins are
birds, (4) penguins are abnormahnd (5) all penguins, except those that are abnorcaal
not fly. Applying predicate circumscription to the abnormality predicatesath ab (i.e.,
minimizing the extension of these two predicates while keeping the extensions of the other
predicates fixed) we infer from that Tweety can fly. We cannot make this inference from
o Openguin(tweety). Since Tweety is a penguin, she is abnerntaénce, (2) cannot be
used to infer that she can fly. On the other hand, it follows by minimality that Tweety is not
abnormad. Therefore, it follows by (5) that she cannot fly.

Example 2: Prioritized CircumscriptionLet 3 be the conjunction of

(1) bird(tweety);

(2) Ox(bird(x) O-aby(x) - canfly(x));

(3) Ox(penguin(x) - bird(x));

(5) Ox(penguin(x)d-abp(x) - - canfly(x)).
That is,3 is like a, except for not containing the so-calleghcellation of inheritancaxiom
(4). Using ordinary predicate circumscription, we can only infer ffompenguin(tweety)
that one of the following cases obtains:

0] Tweety is an abnormabird that cannot fly;
(i) Tweety is an abnormalpenguin that can fly.

Nothing follows concerning Tweety’s ability to fly. Intuitively, however, it seems reason-
able to conjecture frord O penguin(tweety) that Tweety cannot fly. The cases (i) and (ii) are
not symmetrical: the information that Tweety is a penguimase specifithan the informa-
tion that she is a bird. It seems reasonable to give higher priority to minimizing abnormality
with respect to the more specific predicate. In the choice between minimizing abnarmality
and abnormality, we choose the latter. Hence, we conclude that Tweety is not abmpormal
Then, it follows by (5) that she cannot fly.

Shoham (1987) and (1988) generalized the concept of circumscription, or minimal entail-
ment, to a more abstract notigmeferential entailmentShoham’s idea was to start from any
ordinary model-theoretic semantics for a formal languagad add a new primitive notion to
it: a strict partial orderind- of all the models of. Intuitively, M C N means that the model
M is preferred ovethe model N. Then, M is defined to ber@ferred modebf a iff (i) M E



a; and (i) there is no model N such thatsNa and NC M. Finally, a is the said tgrefer-
entially entail3 (in symbolsa k- B) just in case every preferred modebois a model of3.

Shoham (1988) emphasizes three ways in which his own approach generalizes that of
McCarthy's: (i) Preferential entailment can be defined relative to any logic having a model-
theoretic semantics, not just to standard first-order logic. Starting, for instance, with a modal
logic and a preference relation over its Kripke-models, one can define the corresponding
nonmonotonic modal logic. (ii) A notion of preferential entailment can be defined in terms of
any partial ordering of models. That is, one is not limited to those orderings that correspond
to circumscription axioms. (iii) There is a shift of emphasis from syntax — circumscription
axioms — to semantics — partial orderings of models.

In the work of Kraus, Lehman and Magidor (1990), Shoham’s approach is generalized fur-
ther: A new primitive is introduced into the semantics: the notionstéte Each state is la-
beled by ssetof models of the underlying nonmonotonic logic and the states, not the models,
are ordered by a binary relatidh. In general, it is not assumed tilatsatisfies any of the
usual properties like irreflexivity or transitivity. A formutaholdsin a state u (u is aa-
state) iffa is true at every model that is labeled by the state. A state prefexreda-state
iff (i) u is ana-state and there is no-state v such that € u. o preferentially entail$, in
symbols,a k3, if all preferreda-states ard-states. The main objective of Kraus, Lehman
and Magidor (1990) is to study nonmonotonic inference relattohsth in terms of abstract
proof-theoretic properties and semantically in terms of preferential models. Several important
classes of inference relations are characterized semantically by means of representation theo-
rems.

The study of abstract non-monotonic inference relations was initiated by Gabbay (1985)
who tookhk- to be a relation betweenfmite setl’ of premises and a single conclusion
Gabbay (1985) definedrmonmonotonic logi@as a relation of the described sort satisfying the
following conditions:

if a O, thenl b a; (Reflexivity)
if 'k aandl,abk B, thenl k~f3; (Finitary Cut)
if 'k aandl (3, thenl", a k3. (Finitary Cautious Monotony)

He argued that these requirements should be satisfied by any reasonable inference relation.
As we have seen, Shoham (1987, 1988) and Kraus, Lehman and Magidor (1990b-define

a relation taking only single propositions as premises. In the presence of conjunction in the
object language, this is essentially equivalent to allowing finite sets of propositions as
premises. An more general treatment is proposed in Makinson (1988),iwiseaiowed to
takeinfinite sets of premises. This generalization makes it possible for Makinson to redefine
nonmonotonic consequence as a Tarski-style operation C on arbitrary sets of sentences. Gen-



eralizing Gabbay’s conditions to the infinitary case and and expressing them in terms of C
rather thart~, Makinson (1988) obtains the following conditions:

roce), (Inclusion)
FrOAOC()implies CQ) O C(N); (Infinitary Cut)
FrOADOC(T) implies C() O CQ). (Cautious Monotony)

An operation on sets of sentences satisfying these conditions is called by Makuusoula-

tive inference operation Makinson (1993) is a comprehensive survey — from an abstract
logical point of view — of systems of honmonotonic logic: its focuses on properties of the in-
ference relations (or operations) that are associated with the various systems.

In the present paper, we follow Makinson — and differ from Kraus, Lehman and Magidor
— in viewing nhon-monotonic consequence as an operation C on arbitrary sets of sentences (or
equivalently, as a relatidn b o, wherel is allowed to be infinite). In addition, we modify
the preferential semantics of Shoham and Kraus-Lehman-Magidor by defining C, in the way
previously described, in terms okalection functiors on sets of states rather than in terms of
apreference relatioon states. This treatment is more general, since a given selection func-
tion may not be definable in terms of any preference relation.

Utilizing various well-known results from preference theory on the rationalizability of a
selection function by an underlying preference ordering (cf., Moulin 1985), we are able to
prove a series afepresentation theorenfer nonmonotonic inference. The general strategy
in proving these results is the following: First, it is shown that any inference operation C that
satisfies some sat of conditions may be defined in terms of a selection function S on sets of
states satisfying a corresponding set of conditionsNext, it is shown that if S satisfies the
conditionsx*, then S is based on a preference relation P between states (read: xPy as state x is
preferred over state y) satisfying some suitable conditions like asymmetry, transitivity, etc.
Finally, the two steps are combined to yield a representation theorem for the inference opera-
tion C in terms of the preference relation P. The connection between C and P is given by:

a0 iff Ox[xOIr] 00y OIr] - -yPx)) - xO [al],

that is,a is a nonmonotonic consequencd aff every P-maximal member ¢l ] is also a
member off a].

At the end of the paper, we shall also briefly consigadicinference operation<,
where G\(") is the set of all nonmonotonic consequences of the ggenfisse$ relative to
the background assumptiods Dyadic inference operations may be defined fayadic se-
lection functionson sets of state's:

o OCaAN)iff S(CAT, ITD)C [al.



The notion of a dyadic nonmonotonic inference operation is, of course, closely related
Gardenfors’ concept dheory revision If KE is the revision of a theory K with the proposi-
tion a, then we have the following natural connection:

BOKg iff B0 Ck({ad),
or more briefly:

Ka = (o).
That is, the revision of K witkx is identified with the theory consisting of all the nonmono-
tonic consequences af relative to the background theory°K.Conversely, a dyadic non-
monotonic inference relation may be viewed as a generalization of ordinary theory revision:
Ca(") may be thought of as the result of revisgith thesetr .

2. Deductive Logics

This section consists essentially of a review of selected, but well-known, material about con-
sequence relations and consequence operations, some of it going back to the work of Tarski in
the 1920’s and 1930’s. The concepts introduced here are basic to the development of non-
monotonic logic in the rest of the paper.

We assume that a fixed object language given. The details of are left open, except
that we assumeg to contain the standard connectivés(falsity), — (the material condi-
tional), [J (conjunction) and] (disjunction). Hence, the sét of sentencesf £ is closed un-
der the rules: (i)J O ®; (i) if a, B O &, then @ - B), (a OP), (a OP) O P. -a is taken as a
metalinguistic abbreviation ob(- ).

If I is a set of sentencesinanda is a sentence in, then we writd” ¢ o just in casex
is atautological consequenad ' (that is, ifa follows from T in classical propositional
logic). We also write Cg{I") = {a: I k¢ a}, that is, Cry(I") is theclosureof I' under tauto-
logical consequence.

By aconsequence relatiowe shall understand a binary relatibnwhich takes sets of
sentences (im) as its first argument and single sentencesg)(ias its second and which satis-
fies the following conditions:

(F1) ifaOT,thenl F q; (Reflexivity)
(F2) ifr'Faandl OA, thenAF a; (Monotonicity)
(F3) ifrdAF pBandforeactm A, T'F a,thenl F (. (Cut)

Here,I" andA are any sets of sentences anfl are any sentences.
By adeductive logid- we shall understand a finitary consequence relation, i.e., a conse-
guence relatiorr|_ that satisfies:

(F4) ifT k| a, then for soméinite AOT, Ak Q. (Finiteness)



We say that a deductive logic L i§{[(]}-normalif it satisfies the standard natural deduction
rules for conjunction and disjunction, i.e.,

(an Mo BrFoadp

(OE) T,a0BFLa;andl o OB kL B;

()] MakLadB;andlLBFLaOB;

(OE) ifr,akLyandl,BFLy thenl,a OB FLY.

By aclassical logicwe understand a deductive logic that satisfies the following two condi-
tions:

(F5) ifT Foa,thenl i a; (Supraclassicality)
(F6) ifr,akLB,thenl FLa - B. (Deduction Theorem)

That is, a classical logic is a deductive logic which extends the classical propositional calculus
and satisfies the deduction theorem. Every classical logic is, of couy$éd: fiormal
A deductive logic L can equivalently be presented dimitary consequence operation
Cn, that is, an operation that takes sets of sentencesiio sets of sentences inand sat-
isfies the following conditions:

(Cnl) rocCn(N); (Inclusion)
(Cn2) if T OA, thenCn(M) O Cn_(Q); (Monotonicity)
(Cn3) Cn(Cn (M) OCn.(MN); (Iteration)

(Cn4) Cn(MH)O D{Cn L(A): AOT andA is finite}.  (Finiteness)
In the presence of (Cnl) and (Cn2), (Cn3) is equivalent to the cut rule:

(Cn3) IfADCn (), then Cp (I OA) O Cn (IN). (Cut)

Lemma 2.1. If Cn is a consequence operation, i.e., satisfies (Cnl) - (Cn3), then it also satis-
fies:
() I O Cn@) iff Cn(M) O Cn);
(i) Cn(r O A) =Cnf O Cn@)) =Cn(Cn[) O Cn@)).
This lemma, like several of the theorems and lemmas below, is proved in the Appendix.
Of course, L is a classical logic if, in addition to (Cnl) - (Cn4), it satisfies the following
two conditions:
(Cnb) Crp(N) O Cn_(N); (Supraclassicality)
(Cnb) If 0 Cn(Md{a}),thena - B0 Cn (IN). (Deduction Theorem)
The two presentations of a deductive logic L are related by the following conditions:
Cn (N ={a:T kL a}
and

ML aiffa OCn ().



If a OCn ('), we say thatr is anL-consequencef . We say thatt is anL-theoremif a [
Cn(0).

Lemma 2.2. If L is a classical logic, then it satisfies the following conditions:

(F7) foralla,dFL a; (Falsity)
(F8) ifrkFLa - Bandl k| a, thenl F B; (Modus Ponens)
(F9) iflr,a - Ok 0 thenl k| a. (Reductio Ad Absurdum)

We omit the straightforward proof of Lemma 2.2.

Let L be a deductive logic. L is (absolutelgyonsistentf [ F | O andconsistentother-
wise. A sef of sentences is said to benconsistentf ' | [ T is L-consistenif it is not
L-inconsistent. A sentenae is said to be L-consistent iti} is L-consistent. T is anL-the-
oryiff T =Cn (). A setl is L-maximaliff I is L-consistent and for evety if ' 0 A andA
is L-consistent, theh =A.

In view of the next lemma, we may speak of L-maximal sets as L-matmaties. Ob-
serve the use of Iteration (i.e., Cut) in the proof of the lemma.

Lemma 2.3. Let L be a deductive logic. Then every L-maximal set is an L-theory.

The proof of the following lemma uses Inclusion, Cut, Monotonicity, Finiteness and the
Axiom of Choice in the form of Zorn’'s Lemma.

Lemma 2.4.(Lindenbaum’s Lemmal.et L be a deductive logic.

(a) Every L-consistent set is included in an L-maximal theory.

(b) If a O Cn ("), then there exists an L-maximal theory m such that(OnJ m and
o m.

If L is a deductive logic, then we writé| , 7 for the set of all L-maximal theories and the
set of all L-theories, respectively. m, m’, m”,... are variables ranging over L-maximal
theories and G, H, K, T, T',... range over L-theories. We also introduce the following
notation:

foranyl D@, M ={mOa: T Om};

fora O, jal. =KoL ={m O :am}
In what follows, we shall often suppress the subscript L in contexts where the logic is as-
sumed to be fixed.

Lemma2.5. Let L be a deductive logic. Then, @h) = N(|l|.). Thatisa is an L-conse-
guence of iff a belongs to every L-maximal extensionlof

Proof: () Suppose that [0 Cn_ (") and that m is an L-maximal set such that m. It
follows by Monotonicity thatt 0 Cn (m). Since m = Gn(m) (Lemma 2.1)¢ [ m.
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(O0) Suppose that O Cn_(I'). By Lemma 2.4, there exists an L-maximal theory m such
that Cn_(I") 0 m anda 0O m. O

Lemma 2.6. Let L be a {J, [}-normal deductive logic. Then, every L-maximal set m satis-
fies the conditions:

(1) a OO miffa dmandp O m;
(i) aUOB0OmiffaldmorpB O m;

Lemma 2.7. Let L be a classical logic. Then,
(@) T is an L-theory iff
0] Cn () OT (i.e., all L-theorems are in);
(i) ifaldlanda - BOT, thenBOT (i.e., I is closed under modus ponens).

(b) T is an L-maximal set iff it satisfies the conditions:
(i) Cn (M) 0T,
(i) oor;
(iii) o -BOrMffaOrandBOT.

3. Nonmonotonic Inference

We assume that a fixed consistent deductive logic L is given. We are next going to introduce
the notion of annference relatiorbased on the underlying deductive logic L. We shall as-
sume that all relations of nonmonotonic inference that we are going to study are inference re-
lations in the sense defined below. In addition, we introduce the notionifiea@nce oper-

ation which is just a notational variant of that of an inference relation.

Definition 3.1.
(a) By aninference relatiorbased on L we understand a relatienl [ (®) x ® satisfy-
ing the following conditions for all sefsandA of sentences and sentenoef:®

(1) ifaOT,thenl ka; (Reflexivity)
(~2) ifI'ka, foralla OA, andA i B, thenl” b (3; (Closure)
(~3) ifforalla,l Fp aiff Ak a, thenl b B iff Ak B.(Congruence)

According to 1), an element of is a nonmonotonic consequencd of (~2) says that i3

is an L-consequence of a set of nonmonotonic consequentesheihf is itself a nonmono-
tonic consequence 6f. In other words, the set of nonmonotonic consequendessatlosed
under L-consequence. According te3), L-equivalent sets of sentences have the same non-
monotonic consequences.
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(b) Aninference operatiomased on L is an operation G:(®) - O (P) satisfying the
following conditions:

(C1) roce), (Inclusion)
(C2) Cn(Cm)Dcq), (Closure)
(C3) ifCn (N =Cn(4),then C[) =CQ). (Congruence)

Of course, there is a one-to-one correspondence between inference relations based on L
and inference operations based on L. That is, we define the inference operation correspond-
ing to b by:

C(r)={a:T ka}.
Conversely, given C, we defitheby:
Mk aiff aOC).

Lemma 3.2. If C is an inference operation based on L, then fdr:all
C(Cn.(M) = Cn.(C(")) = C(N).

Proof: Since, Cp(') = Cn (Cn(I")), we have by (C3), C() = C(Cn (). But, C{) =
Cn (C(M)), by (Cnl) and (C2). O

Lemma 3.3. If C is an inference operation based on L, then C satisfies the condition:
Cn (M) O C().

In other words,
if M+ a, thenl k+a.

Proof: I 0 C(I"), by (C1). Hence, Gr(I') O Cn.(C(I")), by (Cn2). But Cp(C()) =
C(). Itfollows that Cp(l") O C(I) O

Lemma 3.4. Suppose that L is a classical logic. Thieris an inference relation based on L
iff it satisfies the following conditions:

(1) ifaOT,thenl ka;

(~3) ifCn () =Cn.(4), thenl k- a iff Ak a;
(~4) ifCn.({a}) =CnL({B}), thenT ka iff " k[3;
(~5) ifI'k~a OB, thenl b a andl” k 3;

(r6) if '~ a andl kB, thenl k- a O f;

(7)) T KT.

It is easy to verify that conditior(§-4) and £-5) may be replaced in Lemma 3.4 by the single
condition?

(~7)  If I aanda ki B, thenl k3. (Right Weakening)
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In the next definition, we introduce the notion of an L-maximal theory bEingtimal
with respect to an inference relatibh The L-maximal theories may be thought of as
(descriptions of) thospossible worldghat are allowed by the underlying logic L. We may
think of ' k- a as expressing a (conditional) disposition on the part of an agerpézta to
be true, if she were to be givénas her total new information. The sel C& {a: T k a},
then, consists of all the agerftsexpectationd A possible world ig -optimal if all thel-ex-
pectations of the agent are true in it. In other words, after having received the total informa-
tion I, the agent would not eurprisedat all if any of thd -optimal worlds turned out to be
the actual one.

Definition 3.5. Let L be a deductive logic artd an inference relation based on L. [ebe
any set of sentences and m any L-maximal theory. We say thdt4opismal (with respect
tok-)if for all a, if I b a, thena [0 m. In other words, m iB-optimal iff C(") O m.

Lemma 3.6. Let L be a deductive logic ard an inference relation based on L. Thiethy o
iff for every I'-optimal m,a [0 m.

Proof: () This direction follows immediately from the definitionofoptimality.

(O ) Suppose thatt 0 C(I'). By Lemma 3.2, G{) = Cn_(C(")). Hence,a O
Cn_(C(I")). Then, by Lemma 2.4, there exists an L-maximal theory m such th&CCp) [
m anda 00 m. Hence, () 0 m anda 0 m[]

4. Semantics: Models using Set-Valued Selection Functions

In the following we let L be a deductive logic which we assume tolhélfnormal. The

notion of a model based on L will be introduced in two steps. First, we define the notion of
structure based on L. After having defined the requisite concepts, a model will be defined as
a a structure of a special kind.

Definition 4.1. A structurebased on L is a 4-tupfe =<U, V, [, S>, where

(1) U is a nonempty set, the elements of which are catlates(these might be
thought of as representing the possib&dief statef an agent). We use the
lower case letters x, y, z, u as variables ranging over U. The letters X, Y, Z
will be variables ranging over (U)

(i) V is a non-empty family of subsets of U.

(i) [ (the labeling function)s a function that assigns to every statél W a
nonempty sefu) of L-maximal theories. We may think of the membergwf
as representing thogmssible worldghat are compatible with the agent’s be-
liefs in state u (the agenttloxastically possible worlds state u).
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(iv) Sis a function from V to V such that for everyXV, S(X) 00 X. Such a func-
tion we call aselection function oN'.

Let =<U, V, [, S> be a structure based on L. We say that a sentelnckels ©Oris ac-
cepted)in the state Wl U (relative toar) and writeas Iy a iff for every mO f(u), a O m.
That is, I, a obtains just in cas€u) O |a|.. Intuitively, a sentence is accepted in a
state u just in case is true in all possible worlds that are compatible with the agent’s beliefs
in the state u.

The set of all states in whichholds will be written[ a 1 (or just[a]). Thus,

[al={ud0U:amlFya}l
For a set of sentencéswe write:
[r1=N{[lal:a0r}

that is,[I"] is the set of all states in which all sentencels are accepted.
Given any set X of states m, we may also define the set t(X) of sentences that are ac-
cepted in all the states in X, i.e.,

t(X) ={a: X O [al}.

Notice, that the pair of mappinds...] and t together form &alois connectiorbetween
O (®) andd (V), i.e., they satisfy:

(1) if T OA, then[AT O [T];

(i) if X O, then t(Y)DO t(X);

(iii) royrr;

(iv) X O[tX)].
It follows from (i) - (iv) that these mappings also satisfy:

(V) [rl=0«Irni:

(vi)  t(X) = t([tX)]).

For every set X1 U, we define thelosureof X, CI(X), as the set

(0 [tX)] = N{[al: X O [al}.
A set X of states in/ is said to belosedif X = CI(X). The closure of X is the intersection of
all closed subsets of U that include®X.

Lemma 4.2. Letar =<U, V, [, S> be a structure based on L. Then, the operatar @) —
00 (U), defined by the equation)( above, satisfies the following conditions. For all X[1Y
U,

(CI1) IfX0OY,then CI(X)O CI(Y);

(Cl2) XOCIX);

(CI3) CI(CI(X)) = CI(X);
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(Cl4) cCl@O)=0.
We are now ready to define the notion of a model based on L.

Definition 4.3. Leta = <U, V, [, S> be a structure based on L. We say #ia amodel
(based on L) if the family V satisfies the following conditions:

(1) for every X U, CI(X) O V;
(i) it X, Y OV,thenXOY OV,
(iii) for any non-empty family F of members of V) xppX O V.

That is, a model is a structure in which the domain V of the selection function contains all
closed subsets of U and is closed under finite unions and arbitrary intersections.

For any modeivr =<U, V, £, S> based on L,we define two corresponding relatiopsnd
k-or between sets of sentences and single sentences:

Megeaiff [F] O [a]; and
Mg iff S(CFT) O [al.

That is,I" k4,0 obtains just in case is accepted in all thE-states (i.e., in all the states in
which all sentences ih are accepted). And, k4, a obtains just in case is accepted in all
the most preferred -states.

Lemma 4.4. If M =<U, V, [, S> is a model based on L, thegr, is a consequence relation
which extends L, i.e., such that:

FLOEg

andbk-, is an inference relation based on L.

Proof: The easy verification that,, is a consequence relation extending L is omitted.
We prove that-,, is an inference relation based on L.

Reflexivity: Supposea [0 I'. Then clearly[F'] O [al. However, S{r1) o [r1.
Hence, S[T']) O [al. Thatis[ k0.

Closure: Supposd kya, foralla O A, andA i B. Then, S 0 N{[al:a O
A}, i.e., SCrl]) O [L[A]. Furthermore, sinc& F 3, [AT O [B]. It follows that S[I])
O LR, i.e.,T kq/B.

Congruence: Suppose that for att, ' - a iff A F_a. Then, [|. = |A|L. It follows that
also[F']1 =[Al. Hence, 9[I']) = SCAI). Finally, we have thdt b B iff Abq/B.

O

We speak of- 4, andbk+3, as the consequence relation and the inference relation, respec-
tively, determined byv.
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We say that a modek = <U, V, [, S> is aworld modelif {u) is a unit set for eachd U.
In a world model, the set of sentences accepted in a state is always L-maximal. Since L is as-
sumed to bef{], (}-normal, we have for any model and all sentences andf3:

(i) [a OBIM =Tal™ n [RI™;

(i) [al™ O [RIM O [a ORI,

(iii) if a¢is aworld model[a ORI O [al™ O [RIH;

(iv) if L is classical,Joa ¥ n [-a ¥ =0.

(v) if L is classical andv is a world model[a]?* O [-a J* = U.

A modelaw =<U, V, [, S>is said to b&ull if V = [0 (U).

Theorem 4.5. Let L be a {J, [(}-normal deductive logic and let- be an inference relation
based on L. Then, there existwarld model/ =<U, V, [; S> (based on L) such that:

FL = Egrandk = by,
i.e., kL andk are, respectively, the consequence relation and inference relation determined
by a1.
Proof: Wedefine a structures = <U, V, £, S>, which we shall call theanonical model
for | andk~, as follows:
(1) U =41, i.e., Uis the set of all L-maximal theories;
(i) V={TL:T is aset of sentencesih. That is, V consists of all closed subsets
of U.
(i)  for each ud U, (u) = {u};
(iv)  We define S as follows: For any set XV, considerthe theory(X) determined
by X, namely:
t(X) ={a:OmO X, a O m}=nX.
Now, define:
S(X) = |C(t(X))L ={m O U: for alla, if t(X) b a, thena [ m}.
That is, S(X) is the set of t(X)-optimal L-maximal theories.
Let X V. Then, X = |t(X)]. Since t(X)O C(t(X)), we get that |C(t(X)|T [t(X)|.. That s,
S(X) OO X. Thus, the canonical model fér. andbk- is a structure based on L. In this struc-
ture, we havd[l'] = [I'|, for alll. Hence}| = k4.
We now claim that:

(m) Ik aiff S(C)) O al.
Proof of (): S(I'|) is the set of alh (|l'|)-optimal L-maximal sets. But(|l'|) = Cn.(),

so S(I'|) is the set of all L-maximal sets that are Cn-optimal. However, m is Grl)-
optimal iff m is-optimal (since C(Cri()) = C(")). Hence, S[]|) is the set of all L-maximal
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theories that arEé-optimal. It follows by lemma 3.6 thatk a iff for all m O S([|),a O m.
Q.E.D.
By definition, we have:

() [ kgea iff S(CFT) O Jal.
From (J and([I0) and the fact thafl'] = (|, we get thaf k a iff [ ka0

It only remains to show that the canonical modet <U, V, ; S> for I andk- is indeed
a model, i.e., satisfies conditions (i) - (iii) of Definition 4.3:

Condition (i)is immediate from the definition of V.

Condition (ii): We first prove that the closure operation of the canonical model satisfies:

O CI(X O Y) = CI(X) O CI(Y).
First of all, XO X O Y. Hence, t(XO Y) O t(X), and, therefore[t(X)] O [t(X O Y)].
That is, CI(X)J CI(X O Y). In the same way, we get CI(Y) CI(X O Y). Thus, CI(X)O
ClI(y) D CI(XDOY).

In order to prove the other direction, assume that @I(X O Y), i.e., mO [t(X O Y)].
Then, we have: t(X1 Y) O m. But, t(XO Y) =t(X) n t(Y). Hence, t(X)n t(Y) O m. Sup-
pose now, that ml CI(X) O CI(Y). Then, mO CI(X) and mO CI(Y). Hence, there must ex-
ist sentenceaq, (3 such thatr O t(X), a O m; 3 O t(Y) and O m. Consider now the sentence
o OB. Sincea O m andp O m, it follows by the{d, [}-normality of L thata O3 D m. But,
on the other handy OB O t(X) n t(Y). By contradiction, we conclude that mCI(X) [
CI(Y). Thus, CI(XO Y) O CI(X) O CI(Y).

Suppose now that X, Y1 V. By the definition of V, X = CI(X) and Y = CI(Y). Hence, X
0Y = CI(X) O CI(Y) =y () CI(X T Y). But, by the definition of V, cI(XJ Y) O V. Thus,
XaOvyow.

Condition (ii). Let F be a non-empty family of elements in V. By (Cl 2) of Lemma 4.2,
NF O CI(NnF). On the other hand) F O X, for each XO F. Hence, by (Cl 1), Ci{F) O
CI(X) = X, for each XU F. Thus, CIOF) O nF. We have shown thatF = CI(NF). So by
the definition of V,nF O V. O

Remark 4.6. Let ~ be an inference relation based on L. et <U, V, [, S be the corre-
sponding canonical model. Then, we have foF all ® and X[ V:

(i) Cn, (M) =t(r1; and

(i) X # [0 iff t(X) is L-consistent;

(iii) C(MN) =ts@ri); and

(iv) S(X) = [C(t(X)]1.
It follows that for all sets of sentendesnd all XO V,

(v) C(t(X)) = t(S(X)); and
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(vi)  S(ITFI) =[Lc)I,

that is, the following two diagrams commute:

(x) _ ) r o(r)
/] d
X B [rl sl

By a canonical modefor L we understand a mod#l =<U, V, /; S> such that:
(1) U is the set of all maximal L-theories;

(i) V is the set of all closed subsets of U, i.e.,
V= {[t(X)]: X O U} ={CI(X): X O U}.
(i) for each ul U, {u) = {u};

It is easy to see that a canonical model for L is the canonical fowdebndthe inference
operation G, defined by: G = t(SII'])). That is, we also have: S(X)ECa/(t(X))].

The next lemma states that the set V of a canonical model has certain important closure
properties: V is closed under finite unions and arbitrary intersections and contains all single-
ton sets. It follows that V contains &hite subsets of U.

Lemma 4.7. Let & = <U, V, [, S be a canonical model for L. Then, for all X,[YV, and
mQd U,

(1) CI(X O Y) =CI(X) O CI(Y);*

(i) Cl({m}) = {m}, i.e., all singleton sets are closed,;

(iii) All finite subsets of U are members of V.

Proof: We have already proved (i) in the course of proving Theorem 4.5. Observe that in
the proof of (i), we used the fact that L is closed under the standard natural deduction rules for
[ (See the Appendix).

(i) CI{{m}) = [t(m)] = [m1], since t(m) = m. ButIm] ={n O U: mOd n} = {m},
since U is the set of all L-maximal theories. Hence, CI({m}) = {m}.

(ii1) follows immediately from (i) and (ii). U

We shall now consider some natural conditions that we might want to impose on the selec-
tion function in a model. Most of these are taken from the literature on choice functions and
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preference relation$. Some, however, borrow their names from the corresponding condi-
tions on inference operations: for any X[V,

(cp) If X # 0, then S(X)z [ (Consistency Preservation)
(it) S(S(X)) = S(X); (Iteration)

(c) if S(X) O Y O X, then S(X)T S(Y); (Cut)

(d) S(XOY) O S(X)O S(Y) (Distributivity)

(ch) SX)n YO S(XnY); (Chernoff)

(aiz) IFS(X)OY O X, then S(Y)OI S(X); (Aizerman)

(pi) S(S(X)T S(Y)) = S(XOY); (Path Independence)
(9) Letd # FO V such thal_IxgeX O V.

Then, N xgrS(X) O S(D XOFX);

(Gamma)

(s) if S(X) n S(Y)# O, then S(Xn Y) O S(X) n S(Y);(Sen)
(iia) if S(X) n Y #0, then S(Xn Y) =S(X)n Y. (Arrow)
The condition (ch) — originally introduced by Chernoff (1954) — is identical to Sen’s

(1971)Propertya.® The following formulation is easily seen to be equivalent to the one
above:

(@)  IfY OX,then S(X)n Y O S(Y).

Intuitively, if x is a best choice in the set X, then x is still a best choice in any subset of X to
which x belongs.
The conditions Aizerman and Cut together say that:

if S(X) O Y O X, then S(X) = S(Y).
That is, deleting from a set only such members that are not among its best members does not
affect which members are best in the set.

The condition (g) is calle@ropertyy by Sen (1971). It says that if x is a best choice in ev-
ery set X in a family of sets, then x is also a best choice in their union. It has the following
finitary consequence:

S(X) n S(Y)O S(XOY).
The condition Sen may also be formulated as:
if X OY and S(X)n S(Y)#0d, then S(X)O S(Y).
It is calledProperty3 by Sen (1971).
Arrow’s condition (iia) ofindependence of Irrelevant Alternativean be rewritten as:

IfY O X and S(X)n Y # 0, then S(X)n Y = S(Y).

That is, if Y is a subset of X that contains some of the best members of X, then the best mem-
bers of Y are precisely the best member of X that belong to Y.
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The results of the next lemma are either well-known (see Moulin (1985)) or obvious.
Their proofs are included in the Appendix for the sake of completeness and easy reference.

Lemma 4.8.

(1) (c) implies (it);

(i) (ch) implies (c);

(iii) (ch) implies (d);

(iv) (c), (aiz) and (d) together imply (pi). If the model is full, i.e., if VEHU),
then (pi) is equivalent to (ch) and (at2);

(v) (cp) and (iia) together imply (ch), (aiz) and (g);

(vi) (iia) is equivalent to (ch) and (s).

Next we turn to conditions on the inference operation C:

(CP) if00OCn(), then O C(I); (Consistency Preservation)

(It) ccmr)=cq); (Iteration)

© if T OAOC(I), then CQ) O C(N); (Cut)

(D) CIl) n C@)OCCNC) n Cn)); (Distributivity)

(Ch) C oA OCnCr) ), (Chernoff)

(Aiz) froAdcC(),thenCl) O CQ); (Aizerman)

(PD C(CT) n C@) =C(Cn() n CnE)); (Path Independence)

(G) C(NrorCn(n)) O Cn(D rorC(M)), where F is any non-empty family of sets
of sentences; (Gamma)

(S) If C(M) O C(@) is L-consistent, then Cy I CQ) O C(" O A); (Sen)
(IA) if C(IN) O Ais L-consistent, then C(O A) = Cn(QIN) O A). (Arrow)
Notice that Aizerman is the condition that Makinson (1989) €digtious Monotony It is

also worth mentioning that Arrow implies the following generalization of the so-called condi-
tion of Rational Monotony?

If C(I') O Ais L-consistent, then C{ O C(I" T A).

In the presence of (CP), this principle implies Sen, but is not implied by Sen. Rational
monotony is the special case of the principle for wiids a unit set.

Theorem 4.9. Let L be a {J, (}-normal deductive logic and/ = <U, V, £, S> a canonical
model based on L. Let C 5£be the inference operation that is determined/byif (x) is

any of the conditions (cp) - (iia), then S satisfies (x) iff the inference operation C satisfies the
corresponding condition (X) among (CP) - (lIA).

In view of Lemma 4.8 and Theorem 4.9, we have the following result connecting the vari-
ous conditions on C.
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Lemma 4.10.
(1) (C) implies (It);
(i) (Ch) implies (C);
(iii) (Ch) implies (D);
(iv) (C), (Aiz) and (D) together imply (PI);
(v) (CP) and (l1A) together imply (Ch), (Aiz) and (G);
(vi) (I1A) is equivalent to (Ch) and (S).

We conclude this section by discussing some consequences of the conditions above in the
context of L being classical. First of all, L being classical implies that a finite set of premises
may be treated as conjunctions, i.e.,

o OB kvyiff {a, B} k.
Hence, the infinitary conditions (C) and (Aiz) above have — in the classical case — the fol-
lowing finitary consequences:

if a kB anda OB kv, thena kv; (Cut)

if a b 3 anda kv, thena OB k. (Cautious Monotony)

The next Lemma is due to Makinson (1993).

Lemma 4.11. (Makinson) Suppose that C is an inference operation based on a classical logic
L. If C satisfies Distribution, then the following conditions are also satisfied:

(1) if ,ak-yandl, Bk vy, thenl,a OB kv, (Disjunction in the Antecedent)
(i) if ,akyandl,-a by, thenl kvy; (Proof by Cases)
(i) if I',ak B, thenl ~a - B. Conditionalization)

(iv) if 'k aandl, Bk -a, thenl k(3.
Since Chernoff implies Distribution, the assumption of Chernoff yields, in the context of clas-
sical logic, Conditions (i) - (iv).
Condition (iv) would license inferences of the kind:

Q) If Squeaky is a mammal, then it is expected that Squeaky cannot fly.
(2) If Squeaky is a mammal and a bat, then it is expected that Squeaky can fly.
(3) Hence: if Squeaky is a mammal, then it is expected that Squeaky is not a bat.

If L is classical and C satisfies Arrow, then we also have:
If I k yandrl k¢ =3, thenl, 3 b v. (Rational Monotony)
This principle yields inferences of the kind:

(1) If Squeaky is a mammal, then it is expected that Squeaky cannot fly.
(2) If Squeaky is a mammal, then it is not expected that Squeaky is not a dog.
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(3) Hence: if Squeaky is a mammal and a dog, then it is expected that Squeaky
cannot fly.

5. Representation Theorems

In the last section, we proved a series of results connecting properties of the inference opera-
tion C with properties of the selection function S in the canonical model corresponding to C.
In this section we wish to explore under what conditions a given selection function can be de-
fined in terms of an underlying preference relation P on the set U of all states. In order to
make this question precise, we introduce the notion of a choice strifcture:

Definition 5.1. A choice structuras an ordered triplg = <U, V, S>, where U is a non-
empty set, V is a non-empty family of subsets of U, S is a function from V to V, such that:

(1) foreach xOJ U, {x} OV;

(i) 004V,

(iii) if X, Y OV, thenXOY DOV,

(iv) for any non-empty family F of members of Y\ xpeX O V;
(v) for each XO V, S(X) O X.

U is thedomainof s and the elements of U are here cal¢ates(or pointg. Axioms (ii) -
(iv) say that the elements of V form the closed sets of a topological space over U. Hence, itis
appropriate to refer to the elements of V asdiesed set®f 5. For any X U, we write
CI(X) for the closureof X, i.e., the intersection of all closed sets that include X. CI, of
course, satisfies the axioms (Cl 1) - (Cl 4) of a topological closure operation. A topological
space satisfying condition (i), that all singleton sets are closed, is calledpade. It follows
from (i) and (iii) that all finite sets are members of V. S is dkkection functior(or the
choice functiopof the structures. According to (v), S selects a subset of elements from any
closed subset X of U. Since S is an operation on V, S(X) is always a closed set.

The principal case we are interested in is the following: [A [§-normal deductive logic
L and an inference operation C based on L are gisen<U, V, S> is defined in terms of L
and C as follows: (i) U is the set of all L-maximal theories; (i) V =PU: X = [t(X)1};
(iii) for each X O V, S(X) = [C(t(X))]. In this cases = <U, V, S> is essentially identical to
the canonical modefor L and C.

In this section, we shall think of the set U of states as being provided with a preference re-
lation PO U x U (we read xPy as: x isetter thany). In terms of such a relation, we can de-
fine the selection function S: V4 V as follows: for all X0 V:

() S(X) = {x: x I X & (Oy)(y O X — =(yPx))}.
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That is, S(X) is the set of all P-maximal elements of X. We say thab&exl orthe relation
P — and that PationalizesS — if S is defined from P by means of the equatign § is said
to berationalizableif there is a relation that rationalizes it.
We use the following terminology for preference relations: We use xRy as an abbreviation
for = (yPx). P is said to be:

(1) a strict partial orderingiff P is asymmetric and transitive;

(i) a strict weak orderingff P is asymmetric and
Oxyz(xRy OyPz - xPz).

(iii) a strict linear orderiff P is a strict partial ordering and
Oxy(xRy Ox 2y — xPy).

(iv) neatiff every non-empty element X of V contains a P-maximal element, i.e.,
an x such thafly(y 0 X - = (yPx))."

Lemma 5.2. Let S: V - V be a selection function and P a relation that rationalizes S. Then,
(a) P isirreflexive iff S satisfies the condition:

(ir) S({x}) #0, for each xJ U. (Irreflexivity)

(b) P is neat iff S satisfies Consistency Preservation.
(c) If Pis irreflexive, then P is unique and for all X,J\J,

xPy iff y OO0 S({x, y}).
Proof: (a) and (b) are trivial. We prove (c). By,(we have:
y O S({x, y}) iff and = yPy and- xPy.
The irreflexivity of P, then yields:
xPy iff y 00 S({x, y}).

Lemma 5.3. A selection function S is rationalizable iff it satisfies the condition:
forall X OV, S(X) ={x O X: (Qy)(y O X - xO S{x, y}H}

Proof: Suppose that P rationalizes S. Then, we have forlalVzand all z[J Z,
1) zUS(2) » ([Qy)lyd Z - = (yPz)).
Let X O V and x[J X. We want to show that:
2) x0 S(X) - [@Oy)y O X - xOS({x, y}).

Suppose that Xl S(X) and that y1 X. By (1), we then haves: (yPx) and- (xPx). Hence,
by (1) again, we get: X S({x, y}). To prove the other direction of (2), assume that)(y O
X - x 0O S({x, y}). Suppose also thatx S(X). Then, by (1), there is ay X such that yPx.
Applying (1) again, we get X S({x, y}), i.e., a contradiction.
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To prove the other direction of the lemma, suppose that for @IMX
3 S(X) ={x DO X: (Oy)(y I X - x 0 S({x, yh}-
Define PO U x U by the condition:
4) xPy iff y O S({x, y}).
(3) and (4) then yield:
S(X) = {x 0O X: (Qy)(y U X - =~ (yPx))}.

that is, P rationalizes S. O

In the theory of preference and choice, there are many well-known theorems relating
conditions on the selection function S, like Chernoff, Aizerman, Gamma, etc., to the existence
of an underlying preference relatio®PThe following theorem is a slight strengthening of a
result by Sen (19715.

Theorem 5.4. A selection function S is rationalizable iff it satisfies Chernoff and Gamma
(i.e., Sen’s Propertias andy):
(ch) SX)n YO S(XnY);
(9) LetD # FO V such thal lxgeX O V. Then,N xgeS(X) O SU xoeX);
Proof: We omit the straightforward verification that every rationalizable selection
function satisfies Chernoff and Gamma.
For the other direction, suppose that S satisfies Chernoff and Gamma. By Lemma 5.3, it is
sufficient to prove that for all X1 V and x[1 X,

x O SX) iff (Oy)(y O X - x O S({x, yh}.

Assume first that xJ S(X). Consider any ¥ X. Chernoff, then yields that S(X%) {x, y}
O S({Xx, y}), which implies that XJ S({x, y}).

Next, we assume that x is such thayl(y O X - x O S({x, y})}. This means that: xJ
NyoxSEx, yY). But X = Lyox{x, y}. Gamma, then yield$) yoxS({x, v O S(yoxix,
vy} = S(X). Hence, X1 S(X). O

Lemma 5.5%° Suppose that S is based on P.
(a) If Sis neat and satisfies Aizerman:
(aiz) ifS(X)OY O X, then S(Y)O S(X),
then P is transitive.

(b) If P is transitive and-P is well-founded (i.e., there are no infinitely ascending P-
chains in U), then S satisfies Aizerman.
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Lemma 5.6. Suppose that S is based on a neat and transitive relation P. Then, S satisfies
Sen:

(s) if S(X) n S(Y)# O, then S(Xn Y) O S(X) n S(Y).
iff P satisfies the condition:
Oxyz(xRy OyPz - xPz),

(i.e., iff P is a neat strict weak ordering).
Proof: Cf.Kanger (to appear), Theorem 8.1.

Theorem 5.7.
(a) Sis based on a neat relation P iff S satisfies (cp), Chernoff and Gamma.
(b) If S satisfies (cp), Chernoff, Gamma and Aizerman, then S is based on a neat and tran-
sitive relation (i.e., a neat strict partial ordering)
(c) If any of the following equivalent conditions is satisfied:
(i) S satisfies (cp), Chernoff, Gamma, Aizerman and Sen;
(ii) S satisfies (cp), Chernoff and Sen;
(i) S satisfies (cp) and (iia),
then, S is based on a neat strict weak ordering

Proof: By Lemma 4.8, Lemma 5.2 (b), Theorem 5.4, Lemma 5.5 and Lemma 5.6.

Theorems 4.9, 5.4 and 5.7 together give us:

Theorem 5.8. (Representation Theorem Let C be an inference relation based on the de-
ductive logic L. Leta =<U, V, [, S> be the canonical model for L and C. Then, Lyzand
C =Gy and:

0] C satisfies Chernoff and Gamma iff S is based on a relatiotrup U.

(i) If C satisfies (CP), Chernoff, Gamma and Aizerman, then S is based on a neat
strict partial ordering P1 U x U.

(i) If C satisfies (CP) and Arrow, then S is based on a neat strict weak ordering P
OUxU.

6. Dyadic Inference Operations and Infinitary Belief Revision

In this section we shall explore the connection between nonmonotonic inference and belief
revision in the sense of Alchourrén; Gardenfors and Makiffsdm.doing so, we generalize

the notion of belief revision to allow for the revision of a set of beliefs with a, possibly infi-
nite, setof propositions representing the new informafforA representation theorem is
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proved for the generalized notion of belief revision in terms of systems of spheres of the kind
introduced by Grove (1988).

In Makinson and Gardenfors (1990) a method is described for translating postulates for
belief revision into postulates for nonmonotonic inference, and vice ¥er§ae basic idea
here is to interpred O KE as a claim thaB is a nonmonotonic consequencengfrelative to
thebackgroundor defaul) theory K. That isp [ KE is translated ag kg B, wherek-k is
a nonmonotonic inference relation associated with the theory K. Expressing this equivalence,
in terms of an inferenaeperationCy instead, we get, for a fixed K, the identity:

0
Ka =&({a}).
This idea can be generalized: Thinking of C dsreary operation and allowing K to be re-
placed by an arbitrarsetof sentenceé, we get:

AS = C@, {a}).
In other words, for anyA anda, the revision ofA with a is identified with the set of non-
monotonic consequences @f relative to the default assumptioAs Now, in order to get
completeinterdefinabilitybetween the notions of belief revision and nonmonotonic inference,

we need just another step: we must allow for the possibility of A Being revised with a
possibly infinitesetof propositiond”. Then, for all" andA, we obtain:

AP =@, ).
Conversely, given a a notion of belief revis't(q;\, we may, of course, define the correspond-
ing notion of nonmonotonic inference via the same equality.

In our formal treatment, however, we shall not make a complete identification between the
notions of belief revision and nonmonotonic inference. Instead, we take the former as a spe-
cial case of the latter — in the sense of being characterized by stronger axioms. The axioms
for belief revision presented here are straightforward generalizations to the infinitary case of
Gardenfors’ (1988) basic axioms{K) - (KL6) for finitary belief revisiorf!

Definition 6.1. Let L be a consistent deductive logic.

(a) Adyadicinference operatiobased on L is an operation Q:(®) x [0 (P) - O (D)
satisfying the following conditions. For easy readability, we shall wig Cinstead of C§,
M. We also writd” + A as an abbreviation of ¢ [0 A). We speak df + A as theexpan-
sionof ' with A.

(BC1) CGCa(lN) is an L-theory; (Closure)

(BC2) T OCa(N); (Success

(BC3) ifCn (N =Cn(4) and Cn(X) = Cn_ (M), then G(I') = Cr ().
(Congruence)



26

(b) An (infinitary) belief revision operatiobased on L is a dyadic inference operation C
satisfying — in addition to (BC1) - (BC3) — the following conditions:
(BC4) ifO00OA+T,thenG(lN) =A+T; (Expansion)
(BC5) if 00O Cn (M), then O Ca(lN). (Consistency Preservation)

Here, the preferred reading ofi(C) is: ‘the result of revising the sAtwith the new informa-
tion .

Notice that (BC1) - (BC3) say no more than that, for any fiXxe@a(...) is an inference
operation in the sense of Definition 3.1 (b). The axioms (BC1) - (BC5) should be compared
with the corresponding axioms in Gardenfors (1988), namely:

(KH) KE is an L-theory; (Closure)
(K2) aO KE; (Success)
(KDB) if Cn({a}) = CnL({B)), then Kg =Kg. (Congruence)

The following two axioms correspond Expansion:

(KB) Kg OK+{ak
(K3M) If-a OK, thenK +{o} OKY.

Finally, there is:
(KEB) if a is L-consistent, then % is L-consisten{Consistency Preservation)

To the basic axioms (BC1) - (BC5) for belief revision, we might want to add some of the
following supplementary axioms:

(BC6) Cq(r OA)OCH() +4; (Chernoff)

(BC7) Ch(NroeCn(M)) O Cn(D rorCn()), where F is any non-empty family of
sets of sentences; (Gamma)

(BC8) ifr oA OCH(IN), then G(MN) O Cn(d); (Aizerman)

(BCY) if 00 Ch(N) +A, then Gi(F 0 A)=Cr(N) +A.  (Arrow)

Provided that Cn.({a O B}) = Cn.({a, B), (BC6) yields the following supplementary
axiom of Gardenfors:

(KT7)  Kop OKg +B.
Under the same provision, (BC9) yielsvision by Conjunction
if KE + is L-consistent, then%} = Ko(D +3,
which is equivalent to (K7) together with the other of Gardenfors’ supplementary axioms:
(K®) if -B OKg +B, then kg =Kg +B.
It is straightforward to modify the notion of a modél=<U, V, /, S> based on L, that was

introduced in Section 4, in such a way as to get a semantics for dyadic inference operations.
The only difference occurs in clause (iif) of Definition 4.1, which has to be changed to:
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(i) S is a function from V V to V such that for all X, Y1V, S(X,Y) O Y. Such
a function we call alyadic selection functioan V.

Each modeds =<U, V, £, S>, of the new kind, determines two operations:

cri(r) = ([T'1) and G() =«SCAL, [F 1)),
where the first operation is a consequence operation that extends L and the second is a dyadic
inference operation based on L (cf. Lemma 4.4). Now, for ahi/lfnormal deductive logic
L and any dyadic inference operation C, we may define the corresparadingical modei
=<U, V, [ S>, where:

(1) U =, i.e., Uis the set of all L-maximal theories;

(i) Vs the set of all closed subsets of U.

(i)  for each uld U, (u) = {u};

(i)  for any sets X, YO V,

S(X, Y) = [C(t(X)), t(Y))L ={m O U: C(t(X), t(Y)) O m}.
The proof of Theorem 4.5 carries over unchanged, so we have that Cn and for alll",
A, Cp(N) = CX[(F) . Thatis, Cp and C are, respectively, the consequence operation and the
dyadic inference operation that are determined by the canonical model
In addition to letting the selection functions take an extra argument, we apply the same

procedure to the preference relations. That is, we wrijg/ xdd read it as: s preferred
over (or better than y, relative toX. Intuitively, xPxy means that x is closer to the optimal
alternatives in X than y. We shall refer to ternary relationsUPx [ (U) x U as ¢elativized
preference relations Properties of relations like reflexivity, transitivity, being a weak order-
ing, etc. carries over to relativized preference relations as follows: a given property is said to
apply to P iff for each X, § has the property in question. A dyadic selection function &: V
V - Vis said to bévased ora given preference relation if for all X,[Y V,

SK,Y)={x:xOY&@Oy)(yOY - = (yPxx)}.

We have now introduced the concepts that are required in order to state the following repre-
sentation theorem.

Theorem 6.2. (Representation Theorem et C be a belief revision operation based on the
deductive logic L. Leta = <U, V, £, S> be the canonical model for L and C. Then, €n
Cr, for allT, A, Ca(") = CT) and for all X, YO V:

(1) if Y #0, then S(X, Y} U; (Consistency Preservation)

(i) if X nY#£0,then S(X, Y)=XnY. (Expansion)

Moreover,
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(a) If C, in addition to the basic axioms (BC1) - (BC5), also satisfies axioms (BC6)
(Chernoff) and (BC7) (Gamma), then there exists a (relativized) preference relatibh=P
[0 (U) x U such that P is neat and S is based on P.

(b) If C satisfies the conditions (BC1) - (BC8), then there exists a relatiby [0 (U)
x U such that P is neat and transitive and S is based on P.

(c) If C satisfies (BC1) - (BC5) together with (BC9) (Arrow), then there exists a relation P
0 U x O (U) x U such that P is neat strict weak ordering and S is based on P.

Proof: (to be written)

We are next going to prove that any (infinitary) belief revision operation C that satisfies
(BC1) - (BC5) together with (BC9) can be defined in terms of “systems of spheres” of the
kind defined in Grove (1988). Theorems 6.4 and 6.5 below for infinitary belief revision op-
erations should be compared with Grove’s (1988) Theorems 1 and 2 for finitary belief revi-
sion operations. In the following, we let L be a fixed deductive logic and U thé seftall
L-maximal theories. V is the set of all closed subsets of U.

Definition 6.3.
(@) Afamily of spheresentered on X1V is a collection % of elements in V satisfying

the condition®

($1) %« is totally ordered by, that is, if Y, ZO $x, then YO Zor Z0O Y;

($1) X is the-minimum of $, that is X Sx and for all YO $x, X O Y;

($3) UOS

($4) if Y OV, then there exists an element Z qf, $uch that Yn Z # 0 and for all
Z 0%k, ifY nZ #£0, then ZO Z'. In other words, for every closed setlY
V, there exists a smallest sphere jyifitersecting Y.

(b) A system of spherés a function $ that associates a family of spheres with any Set X
V.

Let PO U x U be a neat strict weak ordering of U. As usual xRy is defined/Bg. We
say that X is &-spheréaff X 0V and ({x, y)(xO X and xRy - y [0 X). The set $ of all P-
spheres is then a family of spheres centered ar6ufid

With any system of spheresc$we may associate a dyadic selection function 8:W
- Vin the following way: for all X, YO V, () if Y # 0, we let S(X, Y) =4 n Y, where 4§
is the smallest sphere irx $hat intersects Y; and (ii) S(XJ) = I

Theorem 6.4. Let $ be any system of spheres and let S be the associated dyadic selection
function. For allr andA, let Ca(") = t(S[ AT, I[T'])). Then C is a belief revision operation,
satisfying axioms (BC1) - (BC5), (BC9).
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Theorem 6.5.(Representation Theorem llet C be any belief revision operation satisfying
axioms (BC1) - (BC5) and (BC9). Then, there exists a system of spheres $ such théat, for all
A,

Ca(M) = (SEAL LT 1)),

where S is the dyadic selection function associated with $.

(Proofs will be added)

APPENDIX: PROOFS OF LEMMAS AND THEOREMS

Proof of Lemma 2.1:We omit the easy verification of (i) and proceed to prove (ii). By
(Cnl),r OADOr OCNnQA). (Cn2) then yields:

Cn(C OA)OCn[ OCn@Q)).
We also have, by (Cnl) and (Cn2), that:

Cn( O Cn@)) O Cn(Cn() O Cn@)).
It remains to prove that Cn(An( Cn@)) O Cn(" O A). By Monotonicity we get:

rgcCn( OA)andAOCn([ O A).
() then yields:

Cn(M) O Cn( OA)and Cnd) Cn( OA4).
Hence,

Cn(M) O Cn@)OCn( OA).
Monotonicity then yields:

Cn(Cn() O Cn@)) O Cn(Cn( O 4)).
Finally, using (Cn3), we get:

CnCn(OHOCn@)OCnC O4). O

Proof of Lemma 2.3Supposd is L-maximal. We prove that ¢(") O I'. By (Cnl),l O
Cn_(I"). Suppose that @) is not L-consistent. Then, €() F O, i.e., O O
Cn_(Cn_(IN)). By (Cn3),00 Cn_ ("), which is impossible. Hence, i) is an L-consistent
superset of . It follows by the L-maximality of thatl" = Cn_(I"). O

Proof of Lemma 2.4:First we notice that (a) follows from (b). Substitutindor a in (a)
we get: Ifl" is L-consistent, then Qi) is included in an L-maximal theory. (a) the follows,
by Inclusion.

Next, we prove (b). Supposell Cn (). Let
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X ={A: Ais L-consistent, Gn[") O A anda [ A}.

X'is non-empty, since Qiil") O X (the claim that Cn(I") is L-consistent presupposes ltera-
tion (i.e., Cut)). Let Y be any non-empty chain in X. Conskderl]Y. Clearly Cn (") O Z.
We claim that is L-consistent. Indirect proof: Suppose not. Then_ [J. By Finiteness,
there is a finitex” 0 X such tha’ k| 0. But then, since is simply ordered by inclusion
and’ is finite, there must exist some ] Y such tha’ [0 A. It follows, by Monotonicity,
thatA is L-inconsistent. Contradiction. It remains to prove that >. But this is clear,
since otherwise [J A, for someA [0'Y, which is impossible. Thug, satisfies the necessary
conditions for being a member of X. It follows by Zorn’s Lemma that X has a maximal ele-
ment.

O

Proof of Lemma 3.4:(J) Suppose that L is a classical logic and th& an inference
relation based on L. We verify thiatsatisfies conditions+4) - (+7).

(k-4) Suppose that @{a}) =Cn_({B}). Then,a F BandBFL a. ' ~a anda k| B
yield via (~2) thatl" k3. Similarly, froml" k3 and I a, one obtain$ k a. Thus,l" b
o iff k.

(k5) Suppose thdi ~ o OB. Since L is classicaty 0B F a anda OB F B. Hence,
by ¢2),I k- a andl k3.

(k-6) Suppose thdt i~ a andl” 3. L being classical yields, B . a 0. Hence, by
(~2), I ka Op.

(k7) LettingA =0 andB =T in (+~2), we get:

if r'k~a, foralla OO, andd kT, thenl  T.

I b a, for alla O O holds vacuously and . T holds because L is classical. Hence,
rkT.

(O0) Suppose that L is a classical logic and thaatisfies (1), (~3) - ¢~7). We must
prove that~ then also satisfies2).

Suppose that k- qa, for alla O A, andA i 3. We wish to prove thdt | 3.

We first consider the case whAr¢ [1. Then there arBy,...,n O A (n= 0) such thaf k-
B1,...,T B and {B1,..., Bn} FL B. Using ¢4) and 6), we get thal (31 O ... O Bp.
Furthermorefy O...0OBn Fr B. Thisimplies thatl F (B2 0...0Bp) OP) - B10... O P
Using (~4), we get” k| (31 0...0Bn) OB. This yields by §5) thatl” k 3.

We now consider the case wher[]. We need to prove thatlf | (3, thenl” k3. But
if O kLB, thend kL (B ~T). We havd kT, by ¢~7). Hence| k[, by (~4).

Proof of Lemma 4.8:
() Suppose that S satisfies condition (c). By the definition of a model S(S(X}§X) O
X. Hence, by condition (c), SO S(S(X)). Thus, S(S(X)) = S(X).
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(i) Assume that S(X)1 Y O X. By Chernoff:
SX)n YOSMXnY).
By the assumption: S(X) Y = S(X) and Xn Y =Y. Hence, S(X)1 S(Y).

(i) We assume that Chernoff holds. It follows that:

SXOY)n XOS((XDOY)n X); and
SXOY)nYDOS((XOY)nY).
However, (XO Y) n X=Xand (XO Y)n Y =Y. So,
S(XOY)n XDOS(X); and
SXOY) n Y OS(Y).
Since S(XO Y) O X O, we get:
S(XOY) O S(X) O S(Y).

(iv) Suppose that S satisfies Cut, Aizerman and Distributivity. By Distribution and the

definition of a selection function:
S(XOY)OS(X)Os(yY)oxoy.

From this we get, using Cut and Aizerman:
S(S(X)O S(Y)) = S(XO Y)

which is Path Independence.

We next prove that for full models, Path Independence is equivalent to Chernoff and
Aizerman. Since Chernoff implies Cut and Distribution, we have in general that Chernoff
and Aizerman imply Path Independence.

In order to prove the other direction, suppose that S is the selection function of a full model
which satisfies Path Independence. First, we prove Chernoff in the formulation:

(a) if Y O X, then S(X)n Y O S(Y).
Suppose Y X. Applying Path Independence to the sets Y and X - Y we get:
(1) S(X) =S(YO (X -Y)) =S(S(Y)O S(X -Y)).
Here, we need the assumption of fulness in order to be sure that X\~ YBut,
(2) S(S(Y)O S(X-Y)OS(Y)DO S(X-Y)OS(Y)O (X-Y).
(1) and (2) yield:
SX)OS(Y)O (X-Y).
Hence,
SKX)nYOSKY)OX-Y))nY.
That is,
S(X) n Y O S(Y).

To prove that Path Independence, in the presence of fulness, implies Aizerman, suppose
that S(X)OO Y O X. Cut (which follows from Chernoff) then yields S(X) S(Y). Path Inde-
pendence yields:

S(X) = S(XO Y) = S(S(X)T S(Y)) = S(S(Y)).
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Since Chernoff yields Iteration, we also have S(S(Y)) = S(Y). Thus, S(X) = S(Y). We have
shown:
(aiz) ifS(X)OY O X, then S(Y)O S(X).

(v) Suppose that S satisfies Consistency Preservation and Arrow. Suppdse, Yf
S(X) n Y =0, then clearly S(Xn Y 0O S(Y). However, if S(X)n Y # [, we have S(Xn
Y O S(Y), by Arrow. Hence, we have derivedl) (which is equivalent to Chernoff. (Notice,
that we did not use (cp) in this derivation.)

In order to prove Aizerman, assume that SOXY 00 X. If S(X) n Y =0, then S(X) =0.
Consistency Preservation then yields XI=and Y =0. Hence,d] = S(Y) O S(X), in this
case. Hence, we may assume that $(X) # 0. Arrow then yields:

S(X) n Y = S(Y).
But since S(XII Y, we get S(XE S(Y).

Finally, we prove Gamma. Lét #F [0V such thathm:X OV. IfX=10, forall X O
F, then Gamma holds trivially. We therefore suppose that for someé=XX # [0. Then,
DXDFX # [0. By Consistency PreservationBQDFX) #z 0. Hence, for some YI F,
S(D xOFX) n Y £ 0. Arrow then yields:

1fY 0 UxoeX and SUxoeX) n Y 20, then S xoeX) n Y = S(Y).
Thus, SUxgeX) n Y = S(Y). It follows that S(Y)J S(LxgeX). Since N xgeS(X) O
S(Y), we obtain:
N xoeS(X) 0 SU xoex).
(vi) We first assume that S satisfies Arrow. As we have already shown (v) above), S then
satisfies Chernoff. To prove Sen, assume that X and S(X)n S(Y) #[. By Arrow, we
than get:
S(Y n S(X)) = S(Y)n S(X).

But, S(X)[O X O Y. Hence, Yn S(X) = S(X). We get:
S(S(X)) = S(Y)n S(X).

But Arrow implies Chernoff which in turn implies iteration: S(S(X)) = S(X). Hence,
S(X) = S(Y)n S(X),

i.e., S(X)O S(Y).

For the other direction, assume that S satisfies Chernoff and Sen. We prove Arrow in the
form: If Y O X and S(X)n Y # [, then S(X)n Y = S(Y). Thus, assume that ¥ X and
S(X) n Y #£0. By Chernoff, we have: S(X) Y 00 S(X n Y) = S(Y). It follows that
S(X)n'Y O S(X) n S(Y) and that S(Xn S(Y) # . Sen then yields S(M) S(X). Hence,
S(Y) O S(X) n Y. Butwe already have S(X) Y O S(Y). Thus, S(X)n Y = S(Y). O

Proof of Theorem 4.91 ety = <U, V, [, S> be a canonical model based on thé [{J}-
normal deductive logic L and let C 5 Then, we have: €C) = t(SII1)) and S(X) =

[CX)I.
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Consistency PreservationWe assume (cp) and prove (CP). Suppose [dhat Cn().
Then[F'] #0d, so by (cp), A1) #0d. But SCrl) =Lt(SCri)l =LC@)]. Thus,
[C(M] # O. It follows that C[) is L-consistent.

For the other direction, assume that C satisfies (CP). Also assume#Hat Xhen, t(X)
is L-consistent, so it follows by (CP) that C(t(X)) is L-consistent. Hep&t(X))] # O,
i.e., S(X)# O.

lteration: We assume (it) and prove (It). (= t(SEI 1)) =vy (it (S(SATI))) =
t(SEHSAErIND) = CESArin) = CCr)).

Next, we assume (It). Then, S(X)[FEC(t(X))] = LC(CE(X))T = [C(Cn(CEON =
CCE@CE(XNIND = STCE(X)NI) = S(S(X)).

Cut: First, we assume (c) and prove (C). Suppo&eA O C(IN). It follows that:[ C(")]
O[ATOC[Irl. Hence[t(SArI O [AT O Irl. But SEri) =Lt(sLrii, so
SIrHOMTATO[Irl. Condition (c) now yields: $ 1) O S(TAT). Hence, t(S[A]))
Ot(SAr1)). Finally, we get Q) O C(I).

In order to prove the converse, assume (C) and that[3(X)1 X. Then we get: (X1
t(Y) O t(S(X)). But, S(X) = S[t(X)1), so it follows that t(X)O t(Y) O t(St(X)1])).
t(S[t(X) 1)) = C(t(X)). Hence, t(X)J t(Y) O C(t(X)). Condition (C) now yields, C(t(Y))
C(t(X)). Thus,[C(t(X))] O [C(t(Y))]. Finally, we obtain S(X)J S(Y).

Distributivity: First, we prove (D) from (d). By (d), we get:

S(Irl1oranos@ribsIal.
However, t['] O [A]) = Cn{) n Cn@). Hence,
[Y(Irl 0 [ADI =ICn{) n Cn@)T.
It follows that:
S(r10 [AD =SOuIrl o [ADD =S@Cn) n Cn@)D).
Hence, we have:
SECn) n Cn@)I) B SAT1) O S@AD.
However, this in turn implies:
[CHICn(@) n Cn@INI O [CE@rINT O [CMTAINT.
That is,
[C(Cn() n Cn@))I U [C(M)I T [C@)I.
But, [C(MI O [C@®)] O [C() n CQ)], so
[C(CnT) n Cn@))I O [C(") n CA)].
It follows that:

t(ICr) n CAI) T (IC(Cn) n Cn@)NI).
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That is:
CI) n C@)OC(Cn() n Cn)).
In order to prove the converse, assume (D). Then, we have:
C(t(X)) n C(t(Y)) O CUICX)D) n (L))
That is,
C(t(X)) n C(t(Y)) O C(t(X) n t(Y)).
But, t(X) n t(Y) =t(X O Y), so:
C(t(X)) n C(t(Y)) O C(t(X O Y)).
In other words,
t((S(X)) n t(S(Y)) O t((S(X O Y)).
Since t(S(X))n t(S(Y)) = t(S(X)T S(Y)),
t((S(X) O S(Y)) O t(S(X O Y)).
This in turn yields:
CI(S(X T Y)) O CI(S(X) O S(Y)).

But according to Lemma 4.2, CI(S(X) S(Y)) = CI(S(X))O CI(S(Y)) = S(X)O S(Y). Thus,
finally, we get:

S(XO'Y) O S(X) O S(Y).
Chernoff: First, we prove (C) from (c). By (c), we have:
S(rl) n [ATOSErI n [AD).
That is:
CCAOrINI n [AT D LCMITT n TAINI.
Hence,
t(CCE@rl n [AIND O YICEETTINT n TAD).
But, [C((IT 1)1 n [AT =[C(IrI) & Al so:
t(ICHIrI n [AIND O «ICHITI)) O AL.
That is,
CHIrI n [A)) O Cn(CC) O Q).
t(Ir] n [AT) =Cn{ OA), and C(Cni{ O A)) =C( OA), so
C(r O A)TCn(C) T A).
For the other direction, assume (Ch). Then, we have for anylXVY
C(t(X) O t(Y)) O Cn(C(t(X)) O t(Y)).
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Hence,

C(t(X nY) O Cn(t(S(X)) O t(Y)).
That is,

t((SX nY)) Jt(S(X) n Y).
Hence,

[t(S(X) n VI O [HSX n Y) 1.
But, S(X)n Y O [t(S(X) n Y)] and[t(S(X n Y))] = S(Xn Y). Thus, it follows that:
SX)nYOSKXnY).

Aizerman: First, we assume (aiz) and prove (Aiz). Supposelthat (1 C("). It follows
that[C(M)] O [ATI O [r]. Hence, Ir]) O [A] O [r]. Condition (aiz), then, yields
S([AT]) O S@rI). Thisinturnimplies: (1)) O t(S([AD)), i.e., C() O C@A).

In order to prove the converse, assume (Aiz) and S(X)J X. Then we get: t(X t(Y)
O t(S(X)), i.e., t(X)T t(Y) O C(t(X)). (Aiz), then, yields: C(t(X)J C(t(Y)). This, in turn,
implies: t(S(X))d t(S(Y)). Hence[t(S(Y)] O [t(S(X)1, that is, S(Y)J S(X).

Gamma: First, we assume (g) and prove (G). Condition (g) yields:

NrorSArD) o sUxp IrD),
where F is a non-empty family of sets of sentences. Now, forleaSfiI"']) = [C(M)].
We also have: @xm [ril = S(Cld]xm [r1)). Thus,
1) NrorlcO)I 0 sEiUxar [r1).
However, thm [rl) = NrgrCn(), so Cldjxm [IrH=0NrgeCn(™1. (1) then
yields:
NrorlC(M)1 0 SA N rorCn() 1.
This, in turn, yields:
NrorlCM)1 O [C(N rorCn() 1.
Hence,
t(IC(N rorCn) 1) O (N rorlCO)1).
But, tLC(N rorCn(M))1) = C(N roeCn()) and tO rorlCM)) = SnUrorC)).
Hence, we get:
C(N roren() O CnUrorC()).
Next, we assume (G) and prove (g). By (G), we have:
C(N xorCn(e(X)) 0 CnxarCx))),

where F is any non-empty family of elements in V such Ba@px 0 V. Simplifying and
using: C(t(X)) = t(S(X)), we get:
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C(N xort(X)) O el xort(S(X).
But, C(N xort(X)) = (S N xort(X) 1)), so:
t(SE N xort()1) 0 Cnxar(SX))).
Hence,
[Cn(xortSEONT O [HST N xorte) 1)1
It follows that:
[ xor(SEO)T 0 ST N xortX)1).
But, [LIxort(S(X)T = N xor[t(S(X))T, so we get:
N xorlt(S))D O ST N xort(X)1).
However, N xoet(X) = t(LxoeX). Hence, [ N xoet(X) 1 = Cl(U xgeX). We get:
N xor[(SEO)T O SECIUxorX)).
But, [t(S(X)] = S(X) and S(CIdxeX)) = SU xaeX), so we finally get:
N xoeS(X) 0 SU xoex).
Sen: We first assume (s) and prove (S). Suppose thB) G(CQ) = t(SCr1)) o
t(S([A])) is L-consistent. It follows that B[ 1) n S(CAT) # 0. Hence, by (s),
SIrln [AD)DSArD n SEAD.
It follows that,
t(SErl) n SCAI) O «SEr1 n LAD)).
That is,
Cnt(SErD) O (S@AD)) O «S@r o Al).
In other words:
Cn(ChHOCQ)UOcCr Oa).
But C(M) U C@A) U Cn(C() U C()), so we get:
CMHuocyocr ua).

In order to prove the other direction, we assume that S(&(Y) # 0. Hence t(S(X)n
S(Y)) is L-consistent. But, t((S(X) S(Y)) = Cn(t(S(X))T t(S(Y))) = Cn(C(t(X))d C(t(Y))).
Thus, C(t(X))O C(t(Y)) is L-consistent. It follows, by (S), that:

C(t(X)) O C(t(Y)) O C(t(X) T t(Y)).
But, t(X) O t(Y) = t(X n Y). Hence,
C(t(X)) O C(t(Y)) O C(t(X n Y)).

This, however, means that:
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t(S(X)) O t(S(Y)) O t(S(X n Y)).
But, t(S(X)) O t(S(Y)) = t(S(X)n S(Y)), so:
t((S(X) n S(Y)) O t(S(X n Y)).
Hence,
CI(S(X n Y)) O CI(S(X) n S(Y)).
But, CI(S(Xn Y)) = S(X n Y) and the intersection of two closed sets is closed, so CI{&(X)
S(Y)) = S(X)n S(Y). Hence,
S(Xn Y) O S(X) n S(Y).

Arrow: We first assume (11A) and prove (iia). Suppose that S{XY # [O. That is,
[Ct(X)] n Y # O, which means thaB(t(X)) O t(Y) is L-consistent. It follows by (lIA)
that:

C(t(X) O t(Y)) = Cn(C(t(X)) O t(Y)).
This implies:
[Ct(X) O t(Y)I = [C(t(X)) O (V)] = [CE(X)NT n [t(V)].
But C(t(X) O t(Y)) = C(Cn(t(X)O t(Y))) = C(t(X n Y)). Hence,
[CHX n Y)T = [C(XNT n [t(Y)].
This means that:
S(XnY)=S(X)n CI(Y).
But Y OV, so CI(Y) =Y. Hence,
SXnY)=SX)n Y.

(Add proof of the other direction)

Proof of Lemma 5.5:
(a) Suppose that S is based on P and that P is neat. Then, we have that:

xPy iff S{x, y}) = {x}.
Now, assume that S satisfies Aizerman and that xPy and yPz. We want to show that xPz.
Since, S is rationalizable, it satisfies Cut, so we have:
if S(X) O Y O X, then S(Y) = S(X).
Now, let X = {x, y, z} and Y = {x, z}. Since xPy and yPz, we have that $(X) and zE[
S(X). Since P is neat, S satisfies (cp). Thus, $(X). It follows that S(X) = {x}. Thus,
we have S(XIJ Y O X. So by Aizerman (and Cut), S(Y) = S(X), i.e., S({x, z}) = {x}. We
conclude that xPz.
(b) Assume that ? is well-founded and that P is transitive. In order to prove Aizerman,
assume that SO Y O X. Let xo O S(Y). In order to derive a contradiction, we assume that
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xo 00 S(X). It follows that there exists someX X such that xPxg. If x1 O S(X), then there

exists some x[J X such that ¥Px1, and so on. For any n, if,x] S(X), we choose 1 in

such a way that1Px, and %+1 0 X; and if x, 0 S(X), we terminate the process. Sinck P

is well-founded, this process must terminate after a finite number of steps. Thus, we get a fi-
nite sequence (with at least two termg) x,..., %, of elements in X such thapx] S(X) and

Xn O S(X) and xPxn-1P...xaPXg. By the transitivity of P, @PXx. Since S(X)O Y, we get

that x, 0 Y. Thus, we have: xO0 S(Y) (by assumption),?Pxg and O VY, i.e., a
contradiction. Hence, we have proved that S(Ng(X). O

NOTES

" This paper has existed in its present form since August 1991. It was presentédrantieenational congress

of Logic, Methodology and Philosophy of Scieritd4 augusti, 1991, Uppsala and at a conferendeeaent
Advances in Philosophy of Scieratethe University of Amsterdam in August 1991. | started to work on the
paper while being a visitor at the Institute for Mathematical Studies in the Social Sciences at Stanford University
in the Spring of 1990. | am grateful to the director of the institute, Patrick Suppes, for his great hospitality. At
Stanford | learned from Yoav Shoham’s lectures and from discussions with Michael Webster — on choice
functions — and David Israel — on nonmonotonic reasoning. | also wish to thank Peter Gardenfors, David
Makinson — who saved me from an embarrasing mistake — and Wlodzimierz Rabinowicz for stimulating
suggestions and criticisms of earlier versions.

! Cf. McCarthy (1980).

2 In McCarthy (1980), the circumscription of a sentence is a first-order schema instead of a second-order
sentence (cf. the difference between the induction schema of first-order Peano arithmetic and the induction
axiom of second order Peano arithmetic). In later work by John McCarthy and Vladimir Lifschitz (cf.
McCarthy, 1986 and Lifschitz 1985, 1987) the circumscription of a sentence is defined as a single second-order
sentence. In general, a first-order schema is weaker than the corresponding second order sentence and is not
strong enough to characterize the minimal models (example: the existerae sthndard modelsf first-order

Peano arithmetic). In certain cases, though, the second order formulation may be equivalent to a first-order
sentence or a set of first-order sentences.

® This is a shortened version of an example in McCarthy (1986).

4 Binary selection functions were studied by Stig Kanger (to appear). However Kanger’s interpretation of S(V,
X), where X, V are subsets of some grand domain U, differs from the one employed here. Kanger took S(V, X)
to be “the set of those alternatives ohVX which, compared with alternatives of V, are regarded as not being
worse than any alternative of ¥X.” Here, on the other hand, S(V, X) is interpreted as the set of all those
alternatives of X which are not farther removed from the set V than any alternatives in X. Thus, we think of the
elements of V as the ‘ideal’ alternatives; and the elements of S(V, X) are the elements of X that are as close to

being ideal as possible.
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® This method of translating back and forth betwéweaories of belief revision and nonmonotoonic inference
(with single propositions as premises) was suggested by Makinson and Gardenfors (1990).

¢ For any set A, we Idfl (A) be thepower sebf A.

" Cf. Gardenfors and Makinson (1991).

8 This way of talking about an agent’s expectations is inspired by Gardenfors and Makinson (1991).

® The notion of a Galois Connection and its use in model theory is discussed, for example, in Cohn (1965).

1 In order to be fully explicit, we should write IX) rather than CI(X) and speak of it as the L-closure of X.
Similarly, we should say that X is L-closed, if X =.€K). In most cases, however, the reference to L can be

left implicit.

1 Together with (Cl 1) - (CL 4), this condition implies that the closure operation of a canonical model is a
topological closure operatioim the sense of Kuratowski (see, for instance, Kelley (1955), p. 43).

12 Cf. for example Moulin (1985).

13 See Moulin (1985) for additional references and details about the origin of some of the conditions.

14 David Makinson (personal communication) has proved that (pi) does not in general imply (ch).

15 Cf. Makinson (1989) and Kraus, Lehman and Magidor (1990).

1 The term choice structure is borrowed from Hansson (1968), although his notion of a choice structure is not
exactly the one defined here: Hansson'’s choice structures satisfy weaker structural conditions on the set V, but
stronger conditions on the selection function S.

" Our terminology here, differs from Kanger (to appear) who uses “neat” to refer to the stronger prop'é-rty of P
(the converse of P) being well-founded. Thus, P is neat in Kanger’s sense, just in case every nonempty subset of
U has a P-maximal element, i.e., iff there are no infinitely ascending P-chains in U. Neatness in our sense only
requires every non-emptjosedsubset of U to contain a P-maximal element. Neatness is analogousiratthe
assumptiorof Lewis (1973).

18 Cf. Hansson (1968), Sen (1971), Moulin (1985), Kanger (to appear).

1 Sen proved that a selection function that satisfies Consistency Preservation is rationalizable iff it satisfies
Chernoff and Gamma. Theorem 2 of Moulin (1985) is Sen’s theorem for the case when U is finite.

20 Moulin (1985) proves a finitary version of this lemma which may be formulated as follows: Suppose that S is
based on P and that the set U of all alternativégiie. Then, S satisfies Aizerman iff P is transitive. This is, of
course, a consequence of Lemma 5.5.

2L Cf. Alchourrén, Gardenfors and Makinson (1985) and Gardenfors (1988).

2 Infinitary belief revision has been studied before in the literature. Fuhrmann (1988) considers both infinitary
belief contraction operations and infinitary belief revision operations. He refers to these kinds of operations as
multiple contraction and multiple revision, respectively. Via a generalization of the so-called Levi identity,
Fuhrmann defines infinitary belief revision in terms of infinitary belief contraction . He also formulates a set of
postulates for infinitary belief revision which is equivalent to (BC1) - (BC4) together with (BC9). (Fuhrmann
1988, p. 159). S. O. Hansson (1989) contains a theory of infinitary belief contraction.

Z See also the discussion in Gardenfors (1990).
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% The reader should perhaps also be remainded that we make weaker assumptions concerning the underlying
logic than Géardenfors does. We assume only that it is a deductive logic, i.e., a finitary Tarski-style consequence
relation. He assumes, in addition, that it is classical, i.e., is closed under the axioms and rules (including the
deduction theorem) of classical propositional logic.

%5 ($4) is a strengthening of Grove’s (198B)it assumption.For a discussion of the limit assumption in the

context of possible worlds semantics for counterfactuals, see Lewis .(1973)
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