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Abstract

This article reviews and develops an epistemological tradition in philos-

ophy of science, called convergentism, which holds that inference meth-

ods should be assessed in terms of their abilities to converge to the

truth. This tradition is compared with three competing ones: (1) ex-

planationism, which holds that theory choice should be guided by a

theory’s overall balance of explanatory virtues, such as simplicity and

fit with data; (2) instrumentalism, according to which scientific infer-

ence should be driven by the goal of obtaining useful models, rather

than true theories; (3) Bayesianism, which features a shift of focus from

all-or-nothing beliefs to degrees of belief.
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1 Introduction

The epistemology of scientific inference has a rich history. According to the

explanationist tradition, theory choice should be guided by a theory’s over-

all balance of explanatory virtues, such as simplicity, fit with data, and/or

unification (Russell 1912). The instrumentalist tradition urges, instead, that

scientific inference should be driven by the goal of obtaining useful models,

rather than true theories or even approximately true ones (Duhem 1906). A

third tradition is Bayesianism, which features a shift of focus from all-or-

nothing beliefs to degrees of belief (Bayes 1763). It may be fair to say that

these traditions are the big three in contemporary epistemology of scientific

inference.

There is, in fact, a fourth tradition. I am tempted to call it convergen-

tism, although it does not yet have a widely recognized name, as this tradition

is nearly lost in contemporary philosophy despite its prominence in statistics

and machine learning. The central idea, traceable to Peirce (1878), is that the

concept of convergence to the truth should play a significant role in evaluating

inference methods. This idea was further developed by Reichenbach (1938)

and Putnam (1965), together with more recent contributors from statistics,

machine learning, and formal epistemology. That is the story I will unfold

below. Toward the end, the convergentist tradition will be briefly compared

with the big three—you can expect to see not just competition, but also co-

operation.

2 Peirce on Enumerative Induction

Peirce imagined a Greek tackling a certain empirical problem—testing the

hypothesis that the tide would never cease to rise every half-day:

[The Greek] had seen the tide rise just often enough to suggest to

him that it would rise every half-day forever, and had proposed

then to make observations to test this hypothesis, had done so,

and finding the predictions successful, had provisionally accepted
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the theory that the tide would never cease to rise every half-day,

... . (CP 7.215)

But what justifies the Greek’s acceptance of the inductive hypothesis? Peirce’s

answer is that the inference method in use, enumerative induction, meets a

nice standard:

The only justification for this would be that it is the result of a

method that, persisted in, must eventually correct any error that

it leads us into. (CP 7.215)

This evaluative standard requires a guarantee of eventual correction of errors.

Some important Peircean elements may not be immediately apparent from

those quotes. Let me make them explicit.

A key Peircean element is, in a sense, internalist. That is, when inference

methods are evaluated, the kind of evaluation in question can, in principle,

be carried out from a first-person perspective, by the very agent tackling the

empirical problem in question, such as the Greek in Peirce’s example. Indeed,

Peirce was not interested in an inference method that happens to converge

to the truth in the actual world; he employed the modality ‘must’ to set

an evaluative standard. By ‘must’, he had in mind a guarantee from the

agent’s first-person perspective, one that quantifies over the possible worlds

compatible with the background assumptions or beliefs that the agent does not

doubt when pursuing an empirical problem. This internalist stance is central to

Peirce’s objection to Cartesian skepticism (CP 5.438-52) and Peirce’s praise of

self-controlled, rational evaluation of one’s own acts, thoughts, and reasoning

(CP 1.591-611, 5.333-7).

Another Peircean element is nicely captured by a slogan from James (1896):

Believe truth! Shun error! The idea is that an inference method should be

evaluated on the basis of its connection to the correction of error or, better

yet, the attainment of truth:

The ... warrant for [induction] is that this method, persistently

applied to the problem, must in the long run produce a convergence

(though irregular) to the truth. (CP 2.775)
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Thus, Peirce’s view is a combination rarely seen in today’s epistemology: that

inference methods should be evaluated in an internalist way that makes explicit

their connections to truth finding (cf. [add cross references]).

To clarify: It is often said that Peirce defines truth as whatever the scientific

method converges to; however, if that definition were correct, it would trivialize

Peirce’s use of convergence to the truth in epistemology. There is strong

textual evidence, though, that Peirce actually embraces a realist account of

truth instead (Hookway 2000: chapter 2). Anyway, my focus will be on Peirce’s

epistemology, separate from his view on the nature of truth.

The emphasis on the long run, however, raises an obvious concern: the

long run might be too long. Or, in Carnap’s (1945) terms, even if a normative

constraint is correctly placed on the long run, it is unhelpful because it says

nothing about what we actually care about: norms governing the short run.

Peirce’s followers have developed a systematic reply to Carnap, to which I now

turn.

3 The Long Run and the Short Run

For concreteness, I will walk you through a case study on a more precisely

defined empirical problem, specified by three components:

(i) The competing hypotheses are ‘Yes, all ravens are black’ and ‘No, not all

are’.

(ii) Pieces of evidence are obtained by collecting ravens and observing their

colors one by one.

(iii) The background assumption is that either all ravens are black or a coun-

terexample would be observed sooner or later if the inquiry were to unfold

indefinitely.

Call this the raven problem. The point I want to make can be equally illustrated

with a different empirical problem that alters any one of the three elements (i)-

(iii), such as weakening the background assumption (Lin 2022); but then the
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mathematics involved would be much more complex. So, for simplicity, let me

continue with the raven problem, which can be represented by the tree in figure

1. The inquiry starts at the bottom, the root of the tree. Moving upward to

Figure 1: The raven problem represented by a tree

the right signifies observing a nonblack raven (i.e., a counterexample); moving

upward to the left, a black raven (or anything other than a counterexample).

So, each node represents a possible body of evidence. Each branch represents

a possible world, with the tip marked by the hypothesis true in that world. To

clarify: although every branch is depicted as an infinite sequence, it does not

represent a world in which the agent is immortal and will observe an infinite

number of ravens. For example, the branch that always grows to the left only

represents a world in which all ravens are black, and thus every raven observed

would be black if the inquiry were to extend indefinitely. Some possible worlds

are not depicted at all, as they are ruled out by the background assumption

of the raven problem.

An inference method is a function such that, whenever it receives a possible

body of evidence (i.e. a node), it outputs one of the competing hypotheses or
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a question mark ‘?’ to represent judgment suspension. The task at hand is to

formulate some standards to evaluate inference methods.

It would be ideal if we could have an inference method that guarantees

when we would obtain the truth—a guarantee of a specific amount of evidence

n that would yield the truth. This is a mode of convergence, which can be

defined more precisely as follows:

Definition. An inference method M for an empirical problem P

is said to achieve uniform convergence to the truth iff there exists an

amount of evidence n such that, in every possible world compatible

with the background assumption of the problem P (i.e., in every

branch of the tree), M would output the truth if the number of

observations were n or larger.

This mode of convergence sets an admirably high standard—an epistemic ideal

that we should strive for whenever it is achievable. Unfortunately, this stan-

dard is provably too high to be met by any inference method in the raven

problem.

A natural reaction is to try lowering the standard and look for what can be

achieved. So, let’s swap the two quantifiers ‘there exists’ and ‘every’ to define

a weaker mode of convergence (and, for brevity, allow me to drop the relativity

to empirical problems):

Definition. An inference method M is said to achieve pointwise

convergence to the truth iff, in every branch of the tree, there exists

an amount of evidence n such that M would output the truth if

the number of observations were n or larger.

The idea is that the amount of evidence needed to find the truth is allowed to

vary from world to world—hence the lack of uniformity, in contrast to uniform

convergence as defined above. This is exactly the mode of convergence that

figures in the quotes from Peirce (whether or not he had the same motivation

as presented here). This lower standard is provably achievable in the raven

problem. It is achieved by, for example, the method of ordinary induction
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depicted at the upper left corner of figure 2, where a ‘Y’ denotes an output of

‘Yes, all ravens are black’, and an ‘N’ stands for ‘No, not all are’.

Figure 2: Four kinds of inference methods for the raven problem

Unfortunately, pointwise convergence only concerns the long run and thus

imposes no constraint on the short run. It allows an inference method to engage

in all sorts of erratic behavior (such as counterinduction) for the first few data

points, before its eventual attainment of the truth. Indeed, it does not rule out

the method of occasional counterinduction depicted in the upper right corner

of figure 2. This is essentially Carnap’s (1945) worry, originally formulated

for Reichenbach’s (1938) convergentist justification of induction, but it applies

equally well to many convergentist justifications, including Peirce’s own.

A strategy of reply began to emerge in the convergentist tradition since

Putnam’s (1965) work. The idea is simple: there is no need to settle for a
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merely achievable standard such as pointwise convergence; we should, instead,

strive for the highest achievable. So, let’s try raising the bar by adding the

following ideal to pointwise convergence:

Definition. An inference method M is said to achieve stability

iff, in every branch, whenever M gets the truth, M would never let

it go if the number of observations were to increase any further.

This concept simplifies Putnam’s original proposal and formalizes a truth-

directed ideal that Plato admires in Meno. Now, the combination of conver-

gence and stability hits a sweet spot. It is weak enough to be achievable–

achieved by the method of ordinary induction in the upper left corner of figure

2—yet strong enough to rule out the other three inference methods in the same

figure, such as counterinductions. More generally:

Theorem. In the raven problem, the combined mode of conver-

gence to the truth plus stability is weak enough to be achievable

and strong enough to rule out any inference methods that involve

application of counterinduction.

To recap: We have considered three modes of convergence to the truth. Listed

as evaluative standards from high to low, they are:

- uniform convergence

- pointwise convergence with stability

- pointwise convergence

In the raven problem, the normative requirement to achieve the highest achiev-

able standard selects the middle mode of convergence, which in turn induces a

norm on the short run: never infer counterinductively in the raven problem—

never, ever, including now.

A short-run rabbit is thus pulled out of a long-run hat. The trick has been

mostly buried in technical works, so let me try to reveal it intuitively. Imagine

that someone is deciding whether to drink and whether to drive. She reasons

as follows:

8



I may drink, or drive, but not both.

I must drive.

So, I must not drink.

This reasoning illustrates a pattern: Once a constraint is placed jointly on two

things (whether-to-drink, and whether-to-drive), a constraint imposed directly

on one of the two might induce a constraint on the other. Similarly, if there

is a normative constraint X placed jointly on two things—the long run and

the short run—then a convergentist constraint on the long run might induce a

nontrivial constraint on the short run. Such an X must then be a diachronic

constraint, and that is the trick in reply to Carnap. The mode of stable

convergence defined above is indeed diachronic, for it concerns the retention of

truth as evidence accumulates. Convergentists have explored other diachronic

candidates for X, to be presented below when needed.

4 A Framework for Convergentism

The above case study on the raven problem actually illustrates a framework,

first adumbrated in Putnam (1965) and later developed further by Kelly (1996)

and Schulte (1999) through additional case studies. A clear and general state-

ment of the core thesis was given by Lin (2022):

The Core Thesis. In any empirical problem, a necessary con-

dition for an inference method to qualify as one of the best is

that it achieves the highest achievable mode of convergence to the

truth—pending a specification of the right hierarchy of modes of

convergence as evaluative standards or epistemic ideals.

This thesis sets up what may be called the achievabilist framework for conver-

gentism, for lack of a standard name. This framework encourages the explo-

ration of modes of convergence, such as the mode of stable convergence, which

is used to address Carnap’s worry.

This framework also features a kind of context-sensitivity: the appropri-

ate standard for assessing inference methods should be the highest achievable,
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which is sensitive to a contextual factor: the empirical problem that one tack-

les in one’s context of inquiry. In fact, when one switches to the context of

a statistical problem, the epistemic standards presented above all become un-

achievable, which requires convergentists to explore lower standards—weaker

modes of convergence. To illustrate how that may be done, let’s think about

statistics, which brings us back to Peirce.

5 Peirce on Statistics

Peirce once studied a classic problem in statistics. An urn contains an unknown

number of black and white balls. We ask: what is the true proportion of white

balls in the urn? The three components of this problem are as follows:

(i) Competing hypotheses are rational numbers in the unit interval (i.e., the

possible proportions).

(ii) Evidence is to be collected by randomly drawing balls with replacement.

(iii) The background assumption is that different draws are probabilistically

independent.

Call this the white ball problem. To evaluate inference methods for this prob-

lem, Peirce proposed to employ the following mode of convergence, where, by

probability, he meant physical chance:

Definition. An inference method M for an empirical problem is

said to achieve statistical consistency iff M has the following guar-

antee: (i) in any possible world compatible with the background

assumption, there exists n such that M would highly probably pro-

duce a guess that gets close to the truth if the sample size were

n or larger, and (ii) M has the above property for any threshold

of high probability less than 1 and for any nonzero threshold of

closeness.
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Peirce studied this mode of convergence as an evaluative standard in an 1878

paper titled “The Probability of Induction” (CP 2.669-93). It is unclear

whether Peirce influenced any statisticians of his time, but this stochastic

mode of convergence was popularized by the statistician Fisher (1925: section

I.3). It is now generally regarded in classical statistics as a minimum qualifica-

tion for any permissible statistical methods, with different versions for various

statistical problems, including estimation, hypothesis testing, and regression

(i.e. curve fitting).

Peirce never explained why he employed different evaluative standards in

two different empirical problems, the white ball problem and the Greek’s tide

problem (which is equivalent to the raven problem). From an achievabilist’s

hindsight, he had to employ different standards. The Greek’s tide problem is

easy enough to allow for a guarantee of getting exactly the true answer (at

least when the amount of evidence is arbitrarily large). But this standard is

too high to be achievable in the white ball problem. So, let’s try lowering

the bar for that problem: “getting exactly the truth” can be downgraded to

“highly probably getting exactly the truth”, which can be further downgraded

to “highly probably getting close to the truth”. This line of thought motivates

statistical consistency as a lower standard, and Peirce did show how it can be

achieved in the white ball problem (by using the law of large numbers).

Carnap’s worry still needs to be addressed for statistical problems. The

diachronic trick presented above still applies; an example will be provided in

a broader context when I wrap up.

6 Closing: Comparison with the Big Three

How does the convergentist tradition fare against the big three mentioned in

the introduction?

First of all, the Bayesian tradition need not be a rival to convergentism.

A union has been proposed in statistics as a partial solution to Bayesians’

perennial problem of the priors—the problem of identifying the correct norms

to constrain the pool of the permissible distributions of prior credences (see
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[add cross references]). A convergentist constraint on priors was proposed by

the statistician Freedman (1963):

Definition. A prior is said to achieve Bayesian consistency in an

empirical problem iff it is guaranteed (under just the background

assumption of that problem) that this prior, when guided by the

diachronic rule of conditionalization, would have a high chance

of its posterior credences converging to the truth among the con-

sidered hypotheses if the amount of evidence were to accumulate

indefinitely—for any threshold of high chance less than 1.

Freedman did not recognize that this is another implementation of the di-

achronic trick in reply to Carnap: a combination of long-run convergence with

a diachronic constraint, which in this case is conditionalization. The resulting

constraint on the priors—and hence on the short run—turns out to be sur-

prisingly strong in some interesting empirical problems, stronger than what

traditional Bayesians have to offer. This constraint implies a particular ver-

sion of Ockham’s razor in statistical problems of curve-fitting (Diaconis &

Freedman 1998); it also implies another version of Ockham’s razor in prob-

lems of testing deterministic hypotheses (Lin 2022). It remains to be seen

whether convergentist Bayesianism is better than more traditional varieties of

Bayesianism.

The explanationist tradition can benefit from convergentism, too. Accord-

ing to explanationism, theory choice should be based on a theory’s overall

balance of explanatory virtues, so it should be based on Ockham’s razor if

simplicity is among these virtues. But which version of Ockham’s razor? That

is, which particular trade-off between simplicity and other virtues such as fit

with data, under which conception of simplicity, and under which concep-

tion of fit? Explanationists often think that the choice is to be justified by

intuition alone (Swinburne 1997). However, in complex empirical problems,

working scientists often find that they lack the intuition needed to justify one

version of Ockham’s razor over another—and this is where convergentists can

assist. The previous paragraph already referred to two examples of conver-

gentist justifications of versions of Ockham’s razor, in curve-fitting problems
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and in problems of testing deterministic hypotheses. Let me add one more

example: in problems of testing statistical hypotheses, Genin (2018) justifies

another version of Ockham’s razor by combining a mode of convergence with

a stochastic version of stability (which he calls progressiveness, a guarantee

that the chance of finding the truth would never drop too much if the sample

size were increased by any finite amount).

Now, let’s turn to the instrumentalist tradition. Due to their emphasis on

pursuit of usefulness instead of truth, instrumentalists might appear to have

to dismiss the significance of convergence to the truth. However, this is merely

an appearance, I submit. The usefulness of a scientific model is often taken

to include at least predictive accuracy, but predictive accuracy is a contingent

matter, depending on what the actual world is like. Thus, choosing a useful

model is no trivial task. The foundation of machine learning, known as learning

theory, addresses this with certain modes of convergence: modes in which

a learning algorithm or inference method is guaranteed to converge to the

most useful of the predictive devices under consideration, where usefulness is

identified with the chance of accurate prediction (Shalev-Shwartz et al. 2014).

To be sure, this does not sound like convergence to the truth. But let’s be

careful: convergence to the most useful one is still convergence to a certain

truth, the true answer to this practical question: Which one is the most useful?

Instrumentalists can find a home in machine learning—a convergentist home.

The comparison just made is quite rudimentary due to the lack of an estab-

lished literature. Much work is still needed to determine how convergentism

competes with the other three traditions, as well as to explore opportunities

for their cooperation.
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