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DDL UNLIMITED:
DYNAMIC DOXASTIC LOGIC FOR INTROSPECTIVE AGENTS*

Sten Lindström and Wlodek Rabinowicz

The theories of belief change developed within the AGM-tradition are not logics in the proper

sense, but rather informal axiomatic theories of belief change.  Instead of characterizing the

models of belief and belief change in a formalized object language, the AGM-approach uses a

natural language — ordinary mathematical English — to characterize the mathematical structures

that are under study.  Recently, however, various authors such as Johan van Benthem and

Maarten de Rijke have suggested representing doxastic change within a formal logical language:

a dynamic modal logic.1  Inspired by these suggestions Krister Segerberg has developed a very

general logical framework for reasoning about doxastic change: dynamic doxastic logic (DDL).2

This framework may be seen as an extension of standard Hintikka-style doxastic logic (Hintikka

1962) with dynamic operators representing various kinds of transformations of the agent's

doxastic state.

Basic DDL describes an agent that has opinions about the external world and an ability to

change these opinions in the light of new information.  Such an agent is non-introspective in the

sense that he lacks opinions about his own belief states.  Here we are going to discuss various

possibilities for developing a dynamic doxastic logic for introspective agents: full DDL or DDL

unlimited.  The project of constructing such a logic is faced with difficulties due to the fact that

the agent’s own doxastic state now becomes a part of the reality that he is trying to explore:

when an introspective agent learns more about the world, then the reality he holds beliefs about
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undergoes a change.  But then his introspective (higher-order) beliefs have to be adjusted

accordingly.  In the paper we shall consider various ways of solving this problem.

1.  Background: AGM  and LR

In a doxastic logic of Hintikka-type, with a modal operator B standing for “the agent believes

that”, it is possible to represent and reason about the static aspects of an agent’s beliefs about

the world.  Such a logic studies various constraints that a rational agent or a set of rational agents

should satisfy.  A Hintikka-type logic cannot, however, be used to reason about doxastic change,

i.e., various kinds of doxastic actions that an agent may perform.  The agent may, for instance,

revise his beliefs by adding a new piece of information, while at the same time making

adjustments to his stock of beliefs in order to preserve consistency.  Or he may contract his

beliefs by giving up a proposition that he formerly believed.  Such operations of doxastic change

are studied in the theories of rational belief change that started with the work of Alchourrón,

Gärdenfors and Makinson in the 80’s: the so-called AGM-approach.3  According to AGM,

there are three basic types of doxastic actions:

Expansion:  The agent adds a new belief α to his stock of old beliefs without giving up

any old beliefs.  If G is the set of old beliefs, then G+α  denotes the set of beliefs that

results from expanding G with α.  To expand is dangerous, since G+α might very well be

logically inconsistent; and inconsistency is something that we should try to avoid in our

beliefs.

Contraction:  The agent gives up a proposition α that was formerly believed. This requires

that he also gives up other propositions that logically imply the proposition α.  We use

G–α to denote the result of contracting α from the old set G of beliefs.

Revision:  The revision G∗α  of the set G with the new information α is the result of

adding α to G in such a way that consistency is preserved whenever possible.  The idea is

that G∗α  should be a set of beliefs that preserves as much as possible of the information

that is contained in G and still contains α.  G∗α  should be a minimal change of G that

incorporates α.

The following is an important guiding principle when revising and contracting belief sets:

The Principle of Conservatism:  Try not to give up or add information to your original

belief set unnecessarily.

                                                
3 Cf. Alchourrón, Gärdenfors, Makinson (1985) and Gärdenfors (1988).
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Within the AGM approach, the agent’s belief state is represented by his belief set, i.e., the set G

of all sentences α such that the agent believes that α.  An underlying classical consequence

operation Cn is assumed and the operation of expansion + is defined by

G+α = Cn(G ∪  {α}).

By contrast, the operations of contraction and revision are characterized only axiomatically.

Thus, the operation of revision is assumed to satisfy the axioms:

(R1) Cn(G) = G (Logical Closure)

(R2)  α ∈  G∗α (Success)

(R3) G∗α  ⊆  G+α (Inclusion)

(R4)  if ¬α  ∉  G, then G ⊆  G∗α (Preservation)

(R5)  if ⊥  ∉  Cn({α}), then ⊥  ∉  G∗α  (Consistency)

(R6)  if Cn({α}) = Cn({β}), then G∗α  = G∗β (Congruence)

(R7) G∗ (α ∧  β) ⊆  (G ∗  α)+β
(R8) if ¬  β ∉  G∗α , then (G ∗  α) ⊆  G∗ (α ∧  β).

The first four axioms imply:

if ¬α  ∉  G, then G∗α  = G+α, (Expansion)

i.e., if the new information α is consistent with G, then G∗α  is simply the expansion of G with

α.  Consistency says that if α is consistent, then G∗α  is also consistent.  According to Congru-

ence, if α and β are logically equivalent, then revising G with α yields the same result as revising

G with β.  In view of (R1) and (R2), the last two axioms yield:

¬  β ∉  G∗α , then G∗ (α ∧  β) = (G∗α )+β (Revision by Conjunction)

i.e., if β is consistent with G∗α , then revising G with (α ∧  β) yields the same result as first

revising G with α and then expanding the result with β.

AGM also contains axioms for contraction (omitted here) as well as the following bridging

principles:

G∗α  = (G–¬α )+α (The Levi identity)

G–α = (G∗α ) ∩ (G∗¬α ) (The Harper identity)

The Levi identity says that the result of revising the belief set G by the sentence α equals the

result of first making room for α by (if necessary) contracting G with ¬α  and then expanding

the result with α.  The Harper identity says that the result of contracting α from G is the com-

mon part of G revised with α and G revised with ¬α .

In his (1988) paper, Grove presents two closely related possible worlds modellings of AGM-

type belief revision, one in terms of a family of “spheres” around the agent’s belief set (or



4

theory) G and the other in terms of an epistemic entrenchment ordering of propositions.4

Intuitively, a proposition α is at least as entrenched in the agent’s belief set as another proposi-

tion β if and only if the following holds: provided the agent would have to revise his beliefs so

as to falsify the conjunction α ∧  β, he should do it in such a way as to allow for the falsity of β.

Grove’s spheres may be thought of as possible “fallback” theories relative to the agent’s

original theory: theories that he may reach by deleting propositions that are not “sufficiently”

entrenched (according to standards of sufficient entrenchment of varying stringency).  To put it

differently, fallbacks are theories that are closed upwards under entrenchment: if T is a fallback,

α belongs to T, and β is at least as entrenched as α, then β also belongs to T.  The entrenchment

ordering can be recovered from the family of fallbacks by the definition: α is at least as

entrenched as β if and only if α belongs to every fallback to which β belongs.

Representing propositions as sets of possible worlds, and also representing theories as such

sets (rather than as sets of propositions), the following picture illustrates Grove’s family of

spheres around a given theory G and his definition of revision.  Notice that the spheres around a

theory are “nested”, i.e., linearly ordered. For any two spheres, one is included in the other.

Grove’s family of spheres closely resembles Lewis’ sphere semantics for counterfactuals, the

main difference being that Lewis’ spheres are “centered” around a single world instead of a

theory (a set of worlds).

                                                
4 Actually, Grove works with an ordering of epistemic plausibility.  But as Gärdenfors (1988,
sect. 4.8) points out, the notions of plausibility and entrenchment are interdefinable.  Thus, a
proposition α is at least as plausible as a proposition β  given the agent’s beliefs if and only if
non-β is at least as entrenched as non-α in the agent’s belief set.  The notion of epistemic
entrenchment is primarily defined for the propositions that belong to the agent’s belief set: one
adopts the convention that propositions that are not believed by the agent are minimally
entrenched.  On the other hand, the notion of plausibility primarily applies to the propositions
that are incompatible with the agent’s beliefs (the propositions that are compatible with what he
believes are all taken to be equally and maximally plausible).  Thus, this is a notion of condi-
tional plausibility.  α is at least as plausible as β in this sense iff the following holds: on the
condition that I would have to revise my beliefs with α ∨  β, I should change them in such a way
as to allow for α.



5

The shaded area H represents the revision of G with a proposition α.  The revision of G with α
is defined as the strongest α-permitting fallback theory of G expanded with α.  In the possible

worlds representation, this is the intersection of α with the smallest sphere around G that is

compatible with α.  (Any revision has to contain the proposition we revise with.  Therefore, if α
is logically inconsistent, the revision with α is taken to be the inconsistent theory.)

In a series of papers, we have proposed a generalization LR of the AGM approach according

to which belief revision was treated as a relation GRαH between theories (belief sets) rather than

as a function on theories.5  The idea was to allow for there being several equally reasonable

revisions of a theory with a given proposition.  Thus, GRαH means that H is one of those rea-

sonable revisions of the theory G with the new information α.  AGM, of course, assumes that

belief revision is functional (or deterministic), that is,

if GRαH and GRαH’, then H = H’.

Given this assumption, one can define:

G∗α  = the theory H such that GRαH.

The relational notion of belief revision results from weakening epistemic entrenchment by not

assuming it to be connected. In other words, we allow that some propositions may be

incomparable with respect to epistemic entrenchment.  As a result, in LR the family of fallbacks

around a given theory will no longer be nested.  It will no longer be a family of spheres but

rather a family of “ellipses”.  This change opens up for the possibility of several different ways

of revising a theory with a given proposition.

                                                
5 Cf. Lindström and Rabinowicz (1989), (1990), (1992) and Rabinowicz and Lindström (1994).
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In this figure, the two ellipses represent two different fallback theories for G, each of which is a

strongest α-permitting fallback.  Consequently, there are two possible revisions of G with α:

each one of H and K is the intersection of α with a strongest α-permitting fallback.

2.  Hypertheories, topology and the problem of iterated belief change

Above we have assumed that for any consistent proposition α, there always exists at least one

strongest α-permitting fallback.  Without making further assumptions, we have no guarantee,

however, that this will always be the case.  If α is incompatible with G, then for every α-per-

mitting fallback, there may exist a stronger α-permitting fallback in the fallback family for G.

Normally, this possibility is excluded by imposing some form of “limit assumption” on

fallback families.  We shall, however, deal with this problem in another way.

We are using a modelling in which propositions and theories are represented by sets of

points (“possible worlds”) in some underlying space U.  The set Prop of propositions forms a

Boolean set algebra.  Theories are represented by so-called closed  sets, i.e., arbitrary intersec-

tions of propositions.  It is easily shown that any intersection of a family of closed sets is itself

closed; and that the same applies to any finite union of closed sets.  This means that the family

C of all closed sets determines a topology T over U that consists of all the open sets, i.e., the

subsets of U that are complements of the sets in C.  In this topology, the propositions are the

clopen sets, i.e., the sets that are both closed and open.  Since propositions are thought to cor-

respond to sentences in the object language and since the underlying logic is taken to be com-

pact, we impose the corresponding compactness condition on the topology.

Any family of closed sets with an empty intersection includes a finite subfamily that also

has an empty intersection.  (Compactness)

In the following, we refer to families of fallbacks as “hypertheories” (a term introduced by

Segerberg).  Formally, we define a hypertheory as any family H of closed sets such that (i) ∩H
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∈  H; and (ii) U ∈  H.  The set ∩H represents the beliefs of the agent, i.e., he believes a

proposition P if and only if ∩H ⊆  P.

Suppose that the agent wants to revise his beliefs with a non-empty proposition P.  Since, U

∈  H, H contains at least one P-permitting fallback X.  If X includes a strongest P-permitting

fallback Y, then Y ∩ P is a possible result of the revision.  But consider the case when there is an

infinitely descending chain starting with X of stronger and stronger P-permitting fallbacks.

Such a chain can always be extended to a maximal chain K of that kind (by the so-called

Hausdorff’s maximal principle, which is equivalent to the axiom of choice).  It may well be the

case that the “limit” for K, i.e., ∩K, lies outside of H.  Still, it can then be shown, given

Compactness, that this limit is itself P-permitting.  We now propose to use such limits of

maximal P-permitting chains for the purpose of revision even in those cases when they lie out-

side the hypertheory itself.

Let H be a hypertheory with intersection X (representing an agent’s “belief set” G).  Con-

sider any proposition P.  We say that Y is a possible revision of X with P if and only if either (i)

P = ∅  and X = ∅ ; or (ii)  P ≠ ∅  and there exists a maximal chain K of P-permitting fallbacks in

H and Y = (∩K) ∩ P

It is easy to verify that any such possible revision Y is a closed set.  To show that Y is non-

empty if P is non-empty, we need to show that ∩K in the second clause of the definition is P-

permitting.  Suppose that it is not, i.e., that (∩K) ∩ P = ∅ .  Then, by Compactness, there is a

finite subset K’ of K such that (∩K’) ∩ P = ∅ .  But then, let Z be the minimal element of K’.

Since K’ is a chain, Z = ∩K’, so that Z ∩ P = ∅ , contrary to the hypothesis.

This way of constructing revision has an advantage: we don’t need to impose strong limit

assumptions on hypertheories.  Having such a very general notion of a hypertheory, that satis-

fies just a few conditions, is helpful when it comes to constructing new hypertheories out of old

ones.

A belief state of the agent, as given by a hypertheory, specifies both his beliefs and his dis-

positions for belief change.  The construction of revision that we have presented yields for a

given hypertheory and a proposition the new beliefs of the agent, but it does not tell us anything

about his new dispositions for belief change.  We know what his new theory may look like, but

what about his new hypertheory?  Until we have answered this question, we cannot say anything

interesting about iterated belief change.

Segerberg (1997) has made some tentative proposals about how new hypertheories can be

constructed out of old ones.  We get the following recipes for contraction and expansion if we

adjust his proposals to our present construction in which we are allowed to move out of H in the

search for limits for P-permitting chains:

We define a P-permitting limit  with respect to H to be any intersection ∩K of a maximal

chain K of P-permitting fallbacks in H.  As we have seen, such a P-permitting limit is indeed P-

permitting and is, of course, the greatest lower bound for all the P-permitting fallbacks in K.  A
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limit of this kind may sometimes be a member of H itself, in which case it is a genuine fallback,

or it may lie outside.

We can now define contraction and expansion of a hypertheory in such a way that the result

is a new hypertheory:

Contraction of a hypertheory H with P: If P ≠ U, take any minimal –P-permitting limit S

with respect to H and let the new hypertheory consist of S together with all those fallbacks

in H that include S.  If  P = U, let the new hypertheory be H itself (necessary propositions

cannot be given up).

Expansion of a hypertheory H with P: Take as the new hypertheory all the old fallbacks in

H together with all their intersections with P.

According to the definitions, expansion is functional while contraction is relational.  Revision  is

defined via the Levi-identity: a revision of H with P is any hypertheory obtained by first con-

tracting H with –P and then expanding with P.

3.  Dynamic doxastic logic

Up to now we have been concerned with the semantic modelling of belief change.  Let us now

turn our attention to the object language and its logic.  Segerberg’s basic DDL consists of a

static part – the logic for the belief operator B – and a dynamic part: the logic for the dynamic

doxastic operators.  The latter represent various kinds of transformations of the agent's doxastic

state.  Segerberg writes +α, ∗α , and –α, respectively, for the doxastic actions of expanding,

revising and contracting the agent’s beliefs with the sentence α.  To different doxastic actions

correspond different doxastic operators:

[+α]β “If the agent were to expand his beliefs with α, then it would be the case that

β” .
[∗α ]β “If the agent were to revise his beliefs with α, then it would be the case that

β” .
[–α]β “If the agent were to contract his beliefs with α, then it would be the case that

β” .

In basic DDL the points in the space U represent different states of the (external) world,

where the agent’s beliefs and doxastic dispositions are not considered to belong the world that

he has beliefs about.  Consequently, doxastic actions of the agent do not affect the world.  Thus,

if β expresses a worldly proposition, i.e., a proposition that only concerns the (external) world,

then a doxastic action does not influence its truth-value.  In basic DDL it is assumed that atomic

sentences express worldly propositions  Consequently, the same applies to all Boolean formulas
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(i.e., formulas that are built up from atomic sentences by means of the standard Boolean

connectives).  Therefore, we have

[τ]β ↔ β,

for every Boolean formula β and every doxastic action τ.

So the interesting case is the one in which β contains doxastic operators.  In particular, we are

interested in statements of the forms: [τ]Bβ.

For example,

[∗α ]Bβ

means: if the agent were to revise his beliefs with α, he would believe β.

DDL allows for the possibility of belief change being nondeterministic: in accordance with

the LR-approach, there may be many different ways for the agent of revising his beliefs with α .
Hence, we must distinguish between:

[∗α ]Bβ “If the agent were to revise his beliefs with α, he would believe that β”.

<∗α >Bβ “If the agent were to revise his beliefs with α, he might believe that β”.

<∗α > is definable in terms of [∗α ] in the standard way:

<∗α >β = ¬ [∗α ]¬β .

In the same way, one can define <τ> for any doxastic operator [τ].  For theories like the original

AGM-theory in which belief change is deterministic, one would have <∗α >β ↔ [∗α ]β, and

similarly for contraction.  Expansion, is of course always deterministic, i.e., <+α>β ↔ [+α]β.
The object language for basic DDL can be described as follows.  We define the sets Term,

BForm and Form of terms, Boolean formulas and formulas to be the smallest sets satisfying

the following conditions:

(i) for any n < ω, the propositional letter Pn belongs to BForm

(ii) ⊥  ∈  BForm

(iii) if α, β ∈  BForm, then (α → β) ∈  BForm

(iv) if α, β ∈  Form, then (α → β) ∈  Form

(v) if α ∈  BForm, then α ∈  Form

(vi) if α ∈  BForm, then Bα ∈ Form.

(vii) if α ∈  BForm, then +α, –α, ∗α  ∈  Term.

(viii) if τ ∈  Term and α ∈ Form, then [τ]α ∈  Form.

The Boolean connectives ¬α , (α ∧  β), etc. are defined from ⊥  and → in the usual way.

As is easily seen, basic DDL is severely limited in its expressive power.  To begin with, the

belief operator B only operates on Boolean formulas.  Thus introspection is disallowed, i.e.,

formulas such as B¬ Bα or B[∗α ]β are not well-formed.  Secondly, the formula α that we
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contract, revise, or expand with, must always be Boolean.  Thus, formulas such as [∗¬ Bα]β are

not well-formed either.  The reason for these limitations is obvious.  Since the agent only holds

beliefs about the world that his doxastic state is not a part of, he has no “higher order” beliefs.

And since he only receives information that concerns the external world, he cannot revise his

beliefs with propositions about his own doxastic state.

What happens if we remove these limitations?  What if we let B and the dynamic doxastic

operators operate on arbitrary formulas, without restriction?

Now our object language can be defined in a much simpler way:

We define the sets Term and Form of terms and formulas to be the smallest sets satisfying the

conditions:

(i) For any n < ω, the propositional letter Pn belongs to Form.

(ii) ⊥  ∈  Form.

(iii) If α, β ∈  Form, then (α → β) ∈  Form.

(iv) If α ∈  Form, then Bα ∈ Form.

(v) If α ∈  Form, then +α, –α, ∗α  ∈  Term.

(vi) If τ ∈  Term and α ∈ Form, then [τ]α ∈  Form.

What would the semantics for such an unlimited DDL look like?

4.  General semantics for unlimited DDL

When giving a semantic interpretation for unlimited DDL, we distinguish between:

(i) The total state (a “possible world”) comprehending both the state of the agent

and the state of the (external) world.

(ii) The state of the (external) world.  We also use the term world-state for this com-

ponent.

(iii ) The doxastic state of the agent.

Let U be the set of all total states.  We refer to the elements of U as x, y, z,... .  We let w and

d be two functions that to each state x in U assign a world state w(x) and a doxastic state d(x) of

the agent.  We let

W = {w(x): x ∈ U}

be the set of all world-states and

D = {d(x): x ∈  U}

be the set of all doxastic states.  We refer to the elements of W as w, w’,... and to the elements of

D as d, d’,... .

We make the following assumptions:
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(1) For all x, y ∈  U, x = y iff w(x) = w(y) and d(x) = d(y).

(2) For any combination of a world state w and a doxastic state d, there exists a

(unique) x ∈  U such that w(x) = w and d(x) = d.  We use the notation (w, d) for

this total state x.

Even though we use the pair notation (w, d) for total states, the reader should not identify total

states with ordered pairs built up from world states and doxastic states.  Such an identification

would be inappropriate because in more specialized versions of the semantics for DDL, doxastic

states will be identified with hypertheories interpreted as set-theoretic constructs built up from

total states in U.  Given such a construction, reduction of states to ordered pairs of world-states

and doxastic states becomes impossible, unless we allow sets to be non-well-founded.  The

notation (w, d) is simply a shorthand for “the total state having w and d as its world state and its

doxastic state, respectively”.

We say that two points x = (w, d) and x’ = (w’, d’) are world-equivalent if their worldly

components w and w’ are identical.  They are doxastically equivalent if and only if d = d’.

Certain subsets of U are called propositions.  We assume that the set of all propositions

forms a Boolean set algebra with domain U.  We say that a proposition P is worldly if and only

if it is closed under world-equivalence:

whenever x ∈  P and w(x) = w(y), then y ∈  P.

Analogously, P is doxastic if and only if it is closed under doxastic equivalence:

whenever x ∈  P and d(x) = d(y), then y ∈ P.

The worldly propositions are the ones whose truth-values are independent of the agent’s

doxastic state.  The doxastic propositions are independent of the state of the world.

In addition to the elements that have already been mentioned, a model should contain special

components that correspond to the different doxastic operators: either accessibility relations

between (total) states, or – what amounts to the same thing – functions from states to sets of

states.  These components should be made dependent on the d-function.  Thus, if we let b be the

function that to each state x assigns the set of states that are compatible with what is believed in x

(i.e., if b is to be the component of the model that corresponds to the operator B), then we

should impose the following restriction on b:

(i) If d(x) = d(y), then b(x) = b(y).

For doxastic dynamic operators, the dependence relationships are somewhat more complex.

Let Rτ be the accessibility relation on states that corresponds to the operator [τ].  Since we take τ
to be a doxastic action, that only modifies the doxastic state but does not ”touch” the (external)

world, we must assume that:

(ii) If R τ(x, y), then w(x) = w(y).
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Furthermore,

(iii) If d(x) = d(x’), d(y) = d(y’), w(x) = w(y) and w(x’) = w(y’), then Rτ(x, y) iff

Rτ(x’, y’),

i.e., doxastic actions are dependent only on the doxastic components of the states involved.

The above assumptions seem to be sufficient as far as a general semantics for DDL is con-

cerned.  Thus, we define a model M to be a structure <U, Prop, w, d, b, R, ‚>, where U, w, d, b

are as described above.

Prop is a Boolean set-algebra with domain U, the elements of which are called propositions.

In terms of Prop, we define a topology T in which the closed sets are the intersections of the

subsets of Prop.   We assume that T is compact.

R is a function that for every term τ yields an accessibility relation Rτ ⊆  U × U.  ‚ is a rela-

tion between elements of U and formulas that satisfies the conditions:

(i) If α is a formula, then the set œα“ = {x ∈  U: x ‚ α} belongs to Prop.  Moreover, we

assume that if α  is atomic, then œα“ is a worldly proposition.  It follows that all

Boolean formulas express worldly propositions.

(ii) It is not the case that x ‚ ⊥.

(iii) x ‚ (α → β) iff it is either the case that not: x ‚ α or it is the case that x ‚ β.

(iv) x ‚ Bα iff b(x) ⊆  œα“).

(v) If τ is a term, then

x ‚ [τ]α iff for all y such that Rτ(x, y), y ‚ α.

Here we have suppressed the reference to the model M.  When we need to be fully explicit, we

write M, x ‚ α instead of x ‚ α.

Let X be a class of models.  We then define the notions of X-consequence and X-validity in

the expected way.  α is an X-consequence of a set of formulas Γ (in symbols, Γ ‚X α) if and

only if, for any model M in X and any state x in M, if M, x ‚ β for every β in Γ, then M, x ‚

α.  α is X-valid (in symbols, ‚X α) if and only if, for every model M in X and every state x in

M, M, x ‚ α.

5.  Segerberg-style semantics for unlimited DDL

In a Segerberg-style semantics, we let doxastic states be hypertheories.  While Segerberg in his

semantics for basic DDL took hypertheories to be families of sets of world-states, we take them

to be families of sets of total states that have both a worldly and a doxastic component.  This
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change is necessary when we provide semantics for unlimited DDL.  To be more precise, we let

a hypertheory be any family H of closed sets of U that contains U and ∩H.

For each x, we let d(x) be a hypertheory.  We then identify b(x) — the set of states that are

compatible with what is believed in x — with ∩d(x), the intersection of all the subsets of U that

belong to d(x).  That is, we have:

x ‚ Bα iff ∩d(x) ⊆  œα“.

In accordance with the recipes provided in Section 2 above, we define the accessibility rela-

tions corresponding to the operators of expansion and contraction  ([+α ] and [–α], with α
being an arbitrary formula) as follows.

Let us first define two operations on hypertheories.  For any hypertheory H and any

proposition P, let us define the expansion of H with P as:

H + P = H ∪  {X ∩ P: X ∈  H}.

The restriction of H to a set Z is defined as:

H Z = {X ∈  H: Z ⊆  X}.

A hypertheory H’ is a contraction of H with P if and only if either (i) P = U and H’ = H; or

(ii) P ≠ U and there is some (U–P)-permitting limit Z with respect to H such that H’ = {Z} ∪
H Z.

We can now define the two accessibility relations between total states corresponding to

expansion and contraction:

R+α(x, y) iff

(i) w(x) = w(y), and

(ii) d(y) = d(x) + œα“.

R–α(x, y) iff

(i)  w(x) = w(y), and

(ii) d(y) is a contraction of d(x) with œα“.

Given these definitions, it might seem straightforward to specify the accessibility relation

corresponding to the revision operator [∗α ]:

R∗α (x, y) iff for some z, R–(¬α )(x, z) and R+α(z, y).

Since R∗α  is defined as the relative product of R–(¬α ) and R+α, the operator [∗α ] is explicitly

definable as [–(¬α )][+α].  However, as we shall argue, this Levi-style definition of ∗  might have

to be given up in view of the problem that will be presented next.
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6.  Paradoxes

Whether we choose to accept this particular Segerberg-style modelling for unlimited DDL or

prefer to work with the general model, we encounter the following difficulty.  Since an intro-

spective agent’s own doxastic state is itself a part of the reality that he has views about, when

such an agent learns more about the world, then the reality that he confronts undergoes a change.

This feature of introspective reasoning leads to difficulties for the theory of belief revision.

Let us say that revision ∗  is strongly paradoxical, if for every state x and every formula α, the

following formula is true in x:

(Strong Paradox) ¬ B¬α  ∧  B¬ Bα → [∗α ]B⊥ .

The opposite of strong paradoxicality just requires that there should be a state x and a formula α
such that ¬ B¬α  ∧  B¬ Bα ∧  ¬ [∗α ]B⊥  holds in x.  This seems to be a very reasonable

requirement on any belief revision operation.

Suppose for example that (α) it is actually raining in Lund, but I don’t believe it (α ∧  ¬Bα),

nor do I believe the opposite (¬B¬α).   As a matter of fact, I also correctly believe that I don’t

believe that it is raining in Lund (B¬Bα).  Now, someone informs me that it is in fact raining in

Lund.  Surely, we would expect that ¬ [∗α ]B⊥ .  It does not seem reasonable to assume that after

receiving the information α, I will acquire inconsistent beliefs.  However, it can be shown that the

following holds:

Lemma 1.  Suppose that ∗  satisfies Preservation and Success, while B satisfies Positive

Introspection:

(P) ¬ B¬α  → (Bβ → [∗α ]Bβ) (Preservation)

(S) [∗α ]Bα (Success)

(PI) Bα → BBα. (Positive Introspection)

Then, if the operator [∗α ] satisfies closure under logical implication:

if ‚ β → γ, then ‚ [∗α ]β →[∗α ] γ,

and both [∗α ] and B satisfy closure under conjunction, ∗  is strongly paradoxical.6

Proof:  Suppose that ¬B¬α  ∧  B¬Bα holds in x.  Then, by (P),

(1) [∗α ]B¬ Bα

is true in x.  But by Success it is also true in x that:

(2) [∗α ] Bα.

                                                
6 This lemma is closely related to Fuhrmann’s (1989) “paradox of serious possibility”.  In pre-
sent terms, Fuhrmann proves ¬ B¬α  ∧  ¬ Bα → [∗α ]B⊥, but he relies on Negative Introspec-
tion in addition to the positive one.  Cf. also Levi (1988).
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If [ ∗α ] is closed under logical implication, (2) and (PI) imply that:

(3) [∗α ] BBα.

If, in addition, [∗α ] and B are closed under conjunction, (3) and (1) imply:

(4) [∗α ]B(Bα ∧ ¬ Bα),

which in turn yields the result: [∗α ]B⊥ . Q. E. D.

Note that even in the absence of Positive Introspection, Preservation plus Success will yield

unacceptable results.  Say that ∗  is paradoxical if  and only if, for every x and α, the following

formula is true in x:

(Paradox) ¬ B¬α  ∧  B¬ Bα → [∗α ](Bα ∧ B¬ Bα).

This means, in particular, that if the agent holds no opinion as regards α and correctly believes

that he does not believe α, then, upon revision with α, he will believe that α and, at the same time,

believe that he does not believe α. But then he has at least one false belief, namely that he does

not believe α.  The requirement that ∗  should not be paradoxical in this sense seems eminently

plausible.

Lemma 2.  Suppose that the ∗  satisfies Preservation and Success.  Then if [∗α ] is closed under

conjunction, ∗  is paradoxical.

Proof: Suppose that ¬B¬α  ∧  B¬Bα holds in x.  Then, by (P) and (S), respectively,

(1) [∗α ]B¬ Bα

and

(2) [∗α ] Bα,

are true in x.  But then, if [∗α ] is closed under conjunction,

(3) [∗α ](Bα ∧  B¬ Bα)

is true in x. Q. E. D.

A natural conclusion is that we should give up Preservation for ∗ : If I originally neither

believe nor disbelieve α and am aware of this fact and if I then learn that α is true, some of my

original beliefs must be given up.  In particular, I have to give up my original belief that I do not

believe α.
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As we have seen, it is Preservation that leads to the paradoxical results.7  This does not mean,

however, that Introspection, neither Positive nor Negative, is an unproblematic requirement.  It

seems to us that Positive and Negative Introspection (Bα → BBα and ¬ Bα → B¬Bα, respec-

tively) should also be given up, but for a different reason, having to do with contraction rather

than with revision.  Let us first consider why Negative Introspection is inappropriate as a general

requirement.  When we originally do not believe α and then contract with ¬ Bα (i.e., stop

believing that we do not believe α), then ¬ Bα should still be true in the contracted state

(contracting with ¬ Bα should not make us believe α) but it won’t be believed any longer:

B¬Bα will be false.  Thus, in this contracted state, Negative Introspection will be violated.

That Positive introspection will also sometimes be violated is less obvious, but think of an

agent who originally believes α and believes that he does believe α.  Suppose he is invited to

contract his beliefs with Bα (i.e., stop believing that he believes α).  In the contracted state, it is

no longer true that BBα, but we would like to allow that it is still true that Bα.  This is, however,

impossible unless positive introspection is violated after the contraction.  If we insisted on

positive introspection being valid, we would have to stop believing α just because we stop

believing that we believe α.  This seems wrong.

While Positive and Negative Introspection should probably be given up, it seems that we

instead might still insist on their converses: we might insist that an (ideal) agent’s beliefs con-

cerning his own beliefs are never mistaken:

(VPI) BBα → Bα (Veridicality of Positive Introspection)

(VNI) ¬ B⊥  → (B¬ Bα → ¬Bα). (Veridicality of Negative Introspection)

(The latter requirement is a slightly qualified converse of Negative Introspection: the qualifica-

tion in the antecedent is added in order to allow states in which the agent holds inconsistent

beliefs.)  In our general semantic framework, these requirements are validated by the following

conditions:

                                                
7 Lemmas 1 and 2 point to an analogy between higher order beliefs and acceptance of so-called
Ramsey conditionals, i.e., conditionals > that satisfy the Ramsey test: ¬ B⊥  → (B(α > β) ↔
[∗α ]Bβ).  Gärdenfors’ impossibility result (1988), proved for DDL in Lindström and
Rabinowicz (1997), shows that one cannot accommodate Ramsey conditionals within an AGM-
type theory of belief revision without giving up Preservation.  Thus, Ramsey conditionals and
higher-order beliefs are alike in that they should sometimes be given up when we add new
information to our stock of beliefs.  It is not surprising that Ramsey conditionals behave like
beliefs about beliefs in this respect.  After all, what the Ramsey test says is that the agent should
accept the conditional “If α, then β” just in case he is disposed to believe β, if  he were to learn
α.  That is, the agent’s belief in conditionals should reflect  his conditional dispositions to
believe.  In the light of new information compatible with what the agent believes, it might very
well be rational to relinquish some of these conditional dispositions.  But then, according to the
Ramsey test, the agent should also cease to believe the corresponding conditionals.

   In Lindström and Rabinowicz (1997), Gärdenfors’ impossibility theorem is discussed in the
context of DDL.  For a more comprehensive discussion of the Ramsey test, see Lindström and
Rabinowicz (1995).



17

If y ∈  b(x), there is some z ∈  b(x) such that y ∈  b(z).

If b(x) ≠ ∅ , there is some y ∈  b(x) such that b(y) ⊆  b(x).

Note that both conditions would follow from the following restriction on the model:

If b(x) ≠ ∅ , there is some y ∈  b(x) such that b(y) = b(x).

According to this condition, the agent is never mistaken about his beliefs.

For future reference, we may also mention an even stronger condition according to which an

agent is never mistaken about his doxastic state.  Thus, he does not make mistakes – neither

about his beliefs nor about his policies for belief change.  He might not be fully informed about

his doxastic state (in particular, he might violate positive and negative introspection) but the

beliefs he holds about it are never false:

Full Veridicality of Introspection

If b(x) ≠ ∅ , there is some y ∈  b(x) such that d(y) = d(x).

Let us now return to our problem with revision.  If revision is not to be paradoxical, it should

not be fully preservative: in particular, certain beliefs about one’s own beliefs need to be given

up when one receives new information.  In particular, when receiving the information α, the

agent should give up his original belief that he does not believe α.  How can we achieve this

result?  Here is a suggestion.  

Levi-style revision with α consists in two steps: we first contract with ¬α  and then expand

with α.  In some cases, the first step is vacuous, ¬α  is not believed to begin with.  Then revision

reduces to expansion.  These are precisely the cases for which Preservation is meant to hold:

revision has been supposed to be preservative simply because expansion is cumulative: all the

old beliefs are kept when we expand with a new belief.  Our suggestion is to replace the

expansion step in the process of revision with what might be called cautious expansion: before

we expand with α, we should first make sure that we give up the belief that we do not believe α.

Clearly, this belief should not survive our coming to believe that α.  Thus, unlike standard

expansion, cautious expansion is not fully cumulative: certain beliefs have to be given up when

new beliefs are added.  This suggests the following definition of the cautious expansion opera-

tor [⊕α ]:

[⊕α ]β =df [–(¬ Bα)][+α]β.

Thus, cautious expansion with α is itself a two-step process: we first contract with ¬ Bα and

only then expand with α.

We can then define revision with α in a new way – as contraction with ¬α  followed by cau-

tious expansion with α:

[∗α ]β =df [–(¬α )][ ⊕α ]β.
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How does this relate to the Segerberg-style semantics for unlimited DDL? The definitions of the

accessibility relations that correspond to contraction and (standard) expansion may be kept

unchanged.  But the accessibility relation that corresponds to revision will have to be modified.

R∗α  will now be interpreted as the relative product of R–(¬α ) and R⊕α , where R⊕α  will  itself be

the relative product of R–(¬Bα) and R+α.

One might wonder, however, if our cautious expansion is sufficiently cautious.  It is easy to

see that the suggested definition of cautious expansion would not be cautious enough if intro-

spection weren’t assumed to be veridical.  When we prepare the ground for the expansion with

α, we give up the second-order belief that we do not believe α.  But couldn’t there be some

higher-order beliefs that should also be given up?  Suppose that in the original state in which the

agent does not believe that α, he is fully reflective, so that ¬Bα, B¬Bα, BB¬Bα, etc., are all

true in that state.  If he then contracts with ¬Bα, as the first step in cautious expansion with α,

will then these higher-order beliefs automatically disappear?  This would be desirable, but to

make them disappear we need introspection to be veridical.  When the agent contracts with ¬Bα,

then – given the veridicality of introspection – he will lose not just his belief in ¬ Bα but also all

his higher-order beliefs: not just B¬Bα, but also BB¬Bα, etc., will all be false.  Otherwise, if he

kept one of these higher-order beliefs, some of his introspective beliefs would not be veridical.

Proof: Suppose that n (n > 1) is the lowest number such that Bn¬ Bα is still true after

contraction.  Then the agent has a false introspective belief that Bn-1¬ Bα.  And he would hold

on to that false belief after the second step of the cautious expansion.  This would clearly be an

unwanted result.

In fact, it seems desirable  to accept Full Veridicality of Introspection.  Otherwise, when

contracting with ¬Bα, we might not get rid of some of the original beliefs concerning outcomes

of potential belief change — beliefs that are dependent on our belief in ¬ Bα and that would

become false when belief in ¬ Bα is removed.  As long as we demand Full Veridicality of

Introspection, this possibility need not worry us.

Still, what is worrying is that the proposal we have just sketched is so dependent on the

assumption of veridicality.  This gives it an air of ad hocness and suggests that the cautious

expansion approach does not really go to the heart of the problem.  In fact, it can be shown that

imposing veridicality is a rather dangerous medicine: while veridicality solves some of the

problems of the cautious approach, it creates at the same time new problems, at least as devas-

tating.

Consider the following story: as in our previous example, the agent has no opinion about α,

but now we assume that α happens to be true.  In particular, then, it is true that

(1) α ∧  ¬ Bα.

The agent is now informed that (1) holds; he has received true information. Since (1) is true, it is

clearly a consistent proposition. We would therefore expect that revision with (1) will not lead
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the agent to an inconsistent belief state. That the revision of a consistent doxastic state with a

consistent proposition always leads to a consistent doxastic is, in fact, one of the fundamental

principles of any reasonable theory of belief revision. In particular, then, it should be the case

that

(2) [∗ (α ∧  ¬ Bα)]¬ B⊥ .

By Veridicality of Negative Introspection, (2) implies that, after revision with (1), all the agent’s

beliefs to the effect that he does not believe some β must be veridical. In particular:

(3) [∗ (α ∧  ¬ Bα)]B¬ Bα → [∗ (α ∧  ¬ Bα)]¬ Bα.

But we also know that revision, whether cautious or not, is supposed to satisfy Success.  Thus,

upon the revision with (1), the agent must believe that (1) holds:

(4) [∗ (α ∧  ¬ Bα)]B(α ∧  ¬ Bα).

Given that * is closed under logical consequence and B distributes over conjunction, (4) implies

that

(5) [∗ (α ∧  ¬ Bα)]Bα ∧  B¬ Bα.

(3) and (5), taken together, imply

(6) [∗ (α ∧  ¬ Bα)]Bα ∧  ¬ Bα,

which implies

(7) [∗ (α ∧  ¬ Bα)]⊥ .

Contrary to what we should expect, revision with a true proposition such as (1) turns out to

be impossible!

The puzzles that we were discussing earlier (cf. Lemmas 1 and 2) – that the cautious expan-

sion approach was designed to solve – concerned the fact that in unlimited DDL we are studying

agents that have beliefs about their own beliefs.  The problem was how these higher-order

beliefs should be adjusted when an agent receives new information.  The cautious expansion

approach would then, perhaps, be satisfactory as long as we were only considering what happens

when an agent receives new information about the world.   But in unlimited DDL, an agent can

revise his belief state not only with worldly propositions, but also with propositions that concern

his own doxastic state.  As we saw, the possibility of revising ones beliefs with doxastic

propositions, for example of the form  α ∧  ¬Bα, lead to difficulties that the cautious expansion

approach is unable to handle.  In order to focus on these problems more sharply, we state the

following lemma:

Lemma 3.  Suppose that B and [∗α ] are normal modal operators in unlimited DDL that satisfy

the following principles:
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(S) [∗α ]Bα (Success)

(PR) ¬ [∗α ]⊥ (Possibility of Revision)

(C) α → [∗α ]¬ B⊥. (Consistency Principle)

Then:

(a)  If the operator B satisfies:

(VPI) BBα → Bα (Veridicality of Positive Introspection)

then all the agent’s beliefs must be true, i.e.,

Bα → α.

(b)  If the operator B satisfies:

(VNI) ¬ B⊥  → (B¬ Bα → ¬Bα), (Veridicality of Negative Introspection)

then the agent believes every true proposition, i.e.,

α → Bα,

which in turn implies that the agent is either inconsistent or completely accurate in his beliefs,

i.e.,

¬ B⊥  → (Bα ↔ α).

Proof:  We first notice that if B is a normal modal operator satisfying VPI then it satisfies:

(a) B(Bα ∧  ¬α ) → B⊥ ,

i.e., only an inconsistent agent satisfying VPI can believe Bα ∧  ¬α .  Similarly, if B is a normal

modal operator satisfying (VNI), then it satisfies:

(b) B(α ∧  ¬ Bα) → B⊥.

Suppose now that B satisfies (VPI).  By Success, we have:

(1) [∗ (Bα ∧  ¬α )]B(Bα ∧  ¬α ).

In view of (a), he will then also satisfy:

(2) [∗ (Bα ∧  ¬α )]B⊥

for every α.  Suppose now that for some particular α, it is true that:

(3) Bα ∧  ¬α  (i.e., ¬ (Bα → α))

Then, by the Consistency Principle (C), it is also true that:

(4) [∗ (Bα ∧  ¬α )]¬ B⊥.

From (2) and (4) we get:

(5) [∗ (Bα ∧  ¬α )]⊥ ,
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which contradicts (PR).  Hence, by reductio, we get:

(6) Bα → α.

The proof of (b) is parallel:

We first use (VNI) and Success to prove:

(7) [∗ (α ∧  ¬ Bα)]B⊥.

But now, if α ∧  ¬Bα, then by the (C),

(8) [∗ (α ∧  ¬ Bα)]¬ B⊥ .

But (7) and (8) together with (PR) yield a contradiction.

Hence, for all α,

(9) α → Bα.

Q.E.D.

(S), (PR) and (C) appear to be valid principles on any reasonable view of belief revision.  The

cautious expansion approach does not touch these principles.  Moreover, this  approach is based

on VNI.  Thus, as long as we do not put any restrictions on the formulas that we revise with, the

cautious expansion approach also leads to paradoxical results.

Clearly, then, the cautious approach does not solve all our problems. We need a more com-

prehensive solution.  The next section delineates a rather radical proposal that might give us a

way out of our difficulties.

7.  The two-dimensional approach

When an introspective agent gets new information, his doxastic state undergoes a change.

Thereby the total state changes as well.  What are then his beliefs about?  The original state or

the new one?  One would like to say that he has beliefs about the old state as well as about the

new one.  In general, therefore, we have to distinguish between the state in which beliefs are held

(the point of evaluation) and the state about which certain things are believed (the point of

reference).8  This means that our semantics has to be made much more powerful.  

As before we assume that each total state x has both a worldly component w(x) and a doxas-

tic component d(x).  But now d(x) is a function that to each possible point of reference y

                                                
8 The first general treatment of two-dimensional modal logic occurred in Segerberg (1973).
Both authors have previously adopted two-dimensional approaches to epistemic logic in con-
nection with the so-called Paradox of Knowability (Cf., Rabinowicz and Segerberg (1994) and
Lindström (1997)).  The reader who would like to compare these different approaches should
be warned that, apart from some differences of substance, the terminology differs between our
earlier papers and the present one.
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assigns a doxastic state d(x)(y) that specifies the agent’s views in the evaluation point x about

the reference point y.  Instead of d(x)(y), we shall write dy(x).  We may speak of  dy(x) the

agent’s doxastic state in x about  y.  In a Segerberg-style semantics, we can identify each such

dy(x) with a hypertheory.  In the same way, we relativize b(x) to various reference points y and

write by(x) for each such relativization.  Intuitively, by(x) is the set of points that are compatible

with the agent’s beliefs in x about y.  In a Segerberg-style semantics, we have by(x) = ∩dy(x).

In addition, the accessibility relations that correspond to different dynamic doxastic operators

should be made sensitive to different points of reference.  The idea is that a doxastic action in x

is always supposed to consist in a transformation of some definite belief state dy(x) about some

point of reference y.  Hence, we associate an accessibility relation R(τ, y) with every doxastic

action τ and every point of reference y.  Intuitively, R(τ, y)(x, z) holds if and only if z is a pos-

sible result of performing τ on the doxastic state dy(x) (which in its turn may necessitate some

adjustments in other parts of d(x)).  One might say that y is the point of reference of the acces-

sibility relation R(τ, y).

Formally, we define a model M to be a structure:

M  = <U, W, D, Prop, w, d, b, R, ‚>

such that:

(1)  U, W and D are non-empty sets of total states, world-states and doxastic states, respec-

tively.

(2)  Prop is, as before, a Boolean set algebra with the set U as its domain.  In terms of Prop,

we define a topology T in which the closed sets are the intersections of the subsets of Prop.  

We assume that T is compact.

(3)  w is a function from U onto W.

(4)  d is a function from U × U onto D.  We usually write dy(x) for d(x, y) and let d(x) be

the function (λy ∈  U)dy(x).

(5)  b is a function from U × U to ℘ (U).  Usually we write by(x) instead of b(x, y).  Thus,

for all x, y, by(x) ⊆  U.

(6)  For each doxastic action term τ and every x ∈  U, R(τ, x) ⊆  U × U.

(7)  w, d, b and R satisfy the conditions:

(i) x = y iff w(x) = w(y) and d(x) = d(y).

(ii) for any w ∈  W and any x ∈  U, there is a z ∈  U such that w(z) = w and d(z) =

d(x).  Hence, we can write U on the form {(w, d): w ∈  W and d = d(x), for some

x ∈  U}.

(iii) If dz(x) = dz(y), then bz(x) = bz(y).

(iv) If R(τ, z)(x, y), then w(x) = w(y).



23

(v) If d(x) = d(x’), d(y) = d(y’), w(x) = w(y) and w(x’) = w(y’), then R(τ, z)(x, y)

iff R(τ, z)(x’, y’).

These conditions should be compared to the corresponding conditions for the one-dimensional

models that we defined earlier.

(8)  The formulas of the language are no longer assigned truth-values at single points but

rather at ordered pairs <x, y> of points, where x is the point of evaluation and y the point of

reference.  The truth-relation ‚  satisfies the following requirements (we write x, y ‚ α for <x,

y> ‚ α):

(i) If α is a formula, then the set œα“y = {x ∈  U: x, y ‚ α} belongs to Prop.

Moreover, we assume that if α is atomic, then α expresses one and the same

worldly proposition œα“y relative to every point of reference y.

(ii) It is not the case that x, y ‚ ⊥.

(iii) x, y ‚ (α → β) iff it is either the case that not: x, y ‚ α or it is the case that x, y

‚ β.

(iv) x, y ‚ Bα iff by(x) ⊆  œα“y

(v) If τ is a term, then

x, y ‚ [τ]α iff for all z such that R(τ, y)(x, z), z, y ‚ α.

We read x, y ‚ α as: α is true at the point x with reference to the point y.

(9)  We also extend the language with a new operator † that takes the current point of evalua-

tion and makes it the point of reference:9

(vi) x, y ‚ †α iff x, x ‚ α.

We introduce † in order to be able to distinguish between an agent’s posterior beliefs about

his original state (the one he is in before performing a doxastic action):

(1) x, x ‚ [τ]Bα

and his posterior beliefs about the posterior state (the one he is in after the action):

(2) x, x ‚ [τ]†Bα.

(1) is equivalent to:

(1’) for all z such that R(τ, x)(x, z), z, x ‚ Bα,

while (2) can be written as:

(2’) for all z such that R(τ, x)(x, z), z, z ‚ Bα.

                                                
9 The †-operator is discussed in Lewis (1973), Section 2.8.  See also Segerberg (1973).
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We say that a formula α is ordinary if its truth or falsity does not depend on the point of ref-

erence, i.e., if for all x, y, z:

x, y ‚ α iff x, z ‚ α.

A formula is special, if it is not ordinary.  

An ordinary formula α expresses one and the same proposition (written, œα“) with refer-

ence to every point of reference.  It is easily seen that:

(a) Boolean formulas are ordinary.

(b) For any formula α, †α is ordinary.

If α is ordinary, then

x, y ‚ †α iff x, y ‚ α.

Thus, for ordinary α,

œ†α“ = œα“.

The proposition

œ†α“ = {x ∈  U: x, x ‚ α},

we call the diagonal proposition  corresponding to α.

We say that a formula α, when interpreted in M, is true at the point x if and only if x, x ‚ α.

In other words, α is true at x if and only if the proposition œα“x expressed by α with reference

to x is true at the point x itself.

We say that a formula α is valid  (or weakly valid) in the model M (in symbols, M ‚ α) if

and only if α is true at every point in M.  

Let us say that a pair <x, y> of points in U is normal  if  x = y.  We have defined truth at a

point x as truth relative to the normal pair <x, x>, and we have defined validity in a model M as

truth relative to all normal pairs in M.

There is another notion of validity in a model:  We say that α is strongly valid in the model

M if and only if, for every pair of points <x, y> in M, <x, y> ‚ α.  Of course, if α is strongly

valid in M, then α is valid in M.  The converse does not hold in general.  Consider, for

example,

α ↔ †α.

Every instance of this schema is weakly valid in every model.  However, if α is a special formula,

then α ↔ †α is not strongly valid.
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Notice, however, that for every model M, α is weakly valid in M if  and only if †α is

strongly valid in M.

Let K be a class of models.  We say that α is K-valid (strongly K-valid) if α is valid

(strongly valid) in every model in K.

Let us now define a two-dimensional Segerberg-style semantics in which the doxastic states

are hypertheories.  As before, we let a hypertheory be a family H of closed sets of U that con-

tains U and ∩H.

For each x, y ∈  U, we let dy(x) be a hypertheory.  We then let by(x) = ∩dy(x).  That is, we

have:

x, y ‚ Bα iff ∩dy(x) ⊆  œα“y.

This means that Bα is true relative to a pair <x, y>, consisting of a point of evaluation x and a

point of reference y, if and only if the proposition expressed by α with respect to y is true in

every point z that is compatible with everything that the agent believes in x about the point y.

The accessibili ty relations corresponding to the operations of expansion and contraction are

now characterized in the following way:

If R(+α, z)(x, y), then

(i) w(x) = w(y), and

(ii) dz(y) = dz(x) + œα“z.

If R(–α, z)(x, y), then

(i)  w(x) = w(y), and

(ii) dz(y) is a contraction of dz(x) with œα“z,

where the notion of a contraction of a hypertheory with a proposition is defined in exactly the

same way as in Section 5.10

We then define the accessibility relation that corresponds to revision by means of the follow-

ing Levi-style condition:

R(∗α , z)(x, y) iff for some u, R(–(¬α ), z)(x, u) and R(+α, z)(u, y).

Let us now see how the two-dimensional semantics handles the paradoxes of the previous

section.  The two-dimensional Segerberg-style semantics that we have just outlined, strongly

validates the following conditions:

                                                
10 Notice that we no longer provide full definitions of the accessibility relations that correspond
to expansion and contraction.  Instead, these relations are constrained by the above Segerberg-
style conditions.  By not providing full definitions, we leave room for the possibility of the
agent making adjustments in other parts of d(x) when he performs some doxastic action on
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(P) ¬ B¬α  → (Bβ → [∗α ]Bβ) (Preservation)

(S) [∗α ]Bα (Success)

From these two conditions, we proved, in Section 6 (Lemma 2), the condition:

(1) ¬ B¬α  ∧  B¬ Bα → [∗α ](Bα ∧  B¬ Bα),

which we called Paradox.  This formula also follows in the present framework.  That is, it is

strongly valid.  So for every x, y ∈  U in every model, we have:

x, y ‚ ¬ B¬α  ∧  B¬ Bα → [∗α ](Bα ∧  B¬ Bα).

However, the meaning of the formula (1) has changed from the old semantics to the new one: it

is no longer paradoxical.  To see this, one should compare (1) with:

(2) ¬ B¬α  ∧  B¬ Bα → [∗α ]†(Bα ∧  B¬ Bα),

which is indeed paradoxical.  However, (2) is, of course, not even weakly valid.  While (1) is

about what the agent, after having learned α, would believe about the state prior to the revision,

(2) is about what he then would believe about the state obtaining after the revision.  There is no

reason to suppose that (2) would hold.

Consider now Lemma 1 of Section 6.  Every two-dimensional model strongly validating

Preservation, Success and

(PI) Bα → BBα (Positive Introspection)

will indeed also satisfy:

¬ B¬α  ∧  B¬ Bα → [∗α ]B⊥ (Strong Paradox)

But here the way out of the Paradox has to do with the assumption of PI.  This principle is only

plausible for normal pairs <x, x>, where the point of evaluation and point of reference are the

same.11  So we can only assume this principle to be weakly valid in a given model.  But weak

validity is not closed under the principle:

if ‚ β → γ, then ‚ [∗α ]β → [∗α ]γ.

Hence, we cannot infer from the weak validity of Bα → BBα in a model, to the weak validity of

[∗α ]Bα → [∗α ]BBα in the same model.  But this step is needed for the proof of Lemma 1 to

go through in the new setting.

Finally, consider the case in which:

                                                                                                                                                       

dz(x).  We return to this possibility of making adjustments when we speak about transfer prin-
ciples below.

11 Suppose the two points are different and that x, y ‚ Bα.  Then, if we intuitively assume that
the agent  in x is aware of his beliefs, then, in x, he believes about x that he there believes α
about y.  This is not the same as  x, y ‚ BBα, which would mean that he in x believes about y
that he there believes α about y.
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(1) x, x ‚ α ∧  ¬Bα,

The agent then learns (1) and revises his beliefs about the point x with this information.  By

Success:

(2) x, x ‚ [∗ (α ∧  ¬Bα)]B(α ∧  ¬Bα),

but there is nothing paradoxical about (2), since the beliefs that are referred to in the formula

following the revision operator are all about the prior state x and not about the one posterior to

the revision.  In contrast to (2), the following situation would be paradoxical:

(3) x, x ‚ [∗ (α ∧  ¬ Bα)]†B(α ∧  ¬ Bα).

But the formula occurring in (3) is of course not (even weakly) valid.

But what about the following formula?

[∗ †(α ∧  ¬ Bα)]B†(α ∧  ¬ Bα).

Isn’t this formula valid, by Success?  Yes, indeed it is.  What it says, is that if one revises one’s

original beliefs with the diagonal proposition †(α ∧  ¬Bα), then, in the posterior state, one will

have the belief about the prior state that †(α ∧  ¬ Bα) was true then.  In our example, however,

this posterior belief about the prior state is in fact true.  Hence, there is nothing paradoxical

about it.  

The last formula may be contrasted with:

[∗ †(α ∧  ¬ Bα)]†B(α ∧  ¬ Bα),

which says that the agent after revision with †(α ∧  ¬ Bα) would believe α ∧  ¬ Bα about his

posterior state.  This would indeed be paradoxical.  But this formula is not even weakly valid, so

no paradox is forthcoming.

In the two-dimensional semantics, we can impose various introspection principles, like (PI),

(NI), (VPI), (VNI).  These principles do not lead to trouble as long as we only assume them to

be weakly, rather than strongly, valid.

Our conclusion is that the two-dimensional semantics avoids the original paradoxes, without

– as far as we can see – creating new ones.  This semantics has one serious drawback, however:

it only determines the agent’s posterior beliefs about the prior state:

(1) [∗α ]Bβ

What we would like to infer, however, are posterior beliefs about the posterior state:

(2) [∗α ]†Bβ.

Thus, we would like to have some transfer principles: at least for all the Boolean formulas β, we

would like it to be valid that

(3) [∗α ](Bβ → †Bβ),
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(4) [∗α ](¬ Bβ → †¬ Bβ).

Such principles would allow us to infer from one of [∗α ]Bβ, <∗α >Bβ, [∗α ]¬Bβ, <∗α >¬Bβ, to

the corresponding statements about the posterior state: [∗α ]†Bβ, <∗α >†Bβ, [∗α ]†¬Bβ,

<∗α >†¬Bβ, respectively.  

In fact, we want such transfer principles for posterior beliefs in worldly propositions to be

weakly valid not just for all revisions ∗α  but for all doxastic actions τ: if β is a Boolean formula,

then

(3’) [τ](Bβ → †Bβ),

(4’) [τ](¬ Bβ → †¬ Bβ).

In order to validate these principles, however, we need to impose appropriate conditions on the

accessibility relations. Thus, for all doxastic actions τ and all worldly propositions P, we should

require that

if R(τ, x)(x, y), then bx(y) ⊆  P iff by(y) ⊆  P.

In fact, even with respect to beliefs in doxastic propositions, there should be a large measure of

agreement between posterior beliefs of this kind regarding the prior and the posterior state. If I

initially believe that I believe the earth to be round, then after the revision with some information

about, say, the weather in Sweden, I will keep my beliefs about what I believe to be the shape of

the earth both with regard to my prior state and with regard to the posterior state. But transfer

principles for posterior beliefs in doxastic propositions are much more difficult to formulate:

many posterior beliefs about doxastic propositions are not transferable, as we have seen.

This shows that there is work that remains to be done. Still, we have at least made some first

steps towards the development of a two-dimensional semantics for unlimited DDL. It is to be

hoped that this project can be further developed.
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