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Abstract

There has long been an impression that reliabilism implies externalism and that

frequentist statistics is considered externalist due to its reliabilist nature. I ar-

gue, however, that frequentist statistics can be plausibly understood as a form

of internalist reliabilism—internalist in the conventional sense but reliabilist in

certain unconventional yet intriguing ways. Crucially, I develop the thesis that

reliabilism does not imply externalism, not by stretching the meaning of ‘reliabil-

ism’ merely to break the implication, but in order to gain a deeper understanding

of frequentist statistics, which represents one of the most sustained attempts by

scientists to develop an epistemology for their own use.

1 Introduction

The internalism-externalism divide was originally formulated as a debate concerning

the justification of belief, rather than of inference. According to internalism, the factors

that determine whether an agent’s belief is justified must be, in some sense, internal

to that agent. Putative examples of internal factors include the beliefs one has, the

background assumptions one takes for granted, the propositions one adduces as reasons

for some beliefs, and the deductive or evidential relations among the propositions in-

volved in these attitudes (such as believing, taking for granted, adducing as a reason).

Although it is difficult to draw a precise boundary around the internal factors, inter-

nalists generally make this point: one’s belief is justified exactly when, in a sense, it is

possible, in principle, for one to articulate, from within one’s first-person perspective,

a justification for holding that belief (BonJour 2005). It is this “from within” that
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requires the factors of justification to be, in a sense, internal to the agent. However,

externalists disagree; they hold that justification is not subject to such a stringent

requirement, and hence that at least one factor of justification is, in a corresponding

sense, external to the agent. A paradigm example of an external factor is the actual

reliability of one’s belief-producing process—the reliability for producing true beliefs

(Goodman 1972).

Although the disagreement between internalists and externalists largely focuses

on the justification of belief, it naturally extends to other concerns. The objects of

evaluation can include beliefs, acts, or inference methods. It makes sense to ask whether

an agent’s adoption of a particular inference method is justified, or whether an inference

method is justified in an agent’s context of inquiry. Such questions are common in

philosophy of science, as Hume’s problem is often framed as a problem about the

possibility of justifying induction. It is the justification of inference methods that will

be the focus here.1

I will not discuss whether internalism or externalism is correct, and will only touch

on which versions of them are more plausible. My goal here is modest: to develop an

example of an internalist theory—an intriguing one. Let me explain.

I will show that frequentist statistics is, or can plausibly be interpreted as, a form of

internalist reliabilism about the justification of inference methods—despite the some-

what tacit but widespread belief that reliabilism implies externalism.2 The reason is

simple: strictly speaking, reliabilism does not necessarily lead to externalism. Exter-

nalism is implied only by the conventional version of reliabilism, which holds that jus-

tification depends on the actual reliability of the inference method or belief-producing

process in question (Goodman 1972). However, frequentist statistics can be interpreted

as an unconventional version of reliabilism: whether an inference method M is justified

depends not on the actual reliability of M , but on the reliability of M in each possible

scenario across a certain range—the scenarios compatible with the background assump-

tions that one takes for granted in one’s context of inquiry. Such an unconventional

version of reliabilism does not conflict with internalism, as will be made clear below.

As a warm-up, I will begin by briefly explaining why there has long been a largely

externalist impression of frequentist statistics (section 2). Then, upon closer exam-

1We can vary not only the objects of evaluation, but also the evaluative concept in question. It
does not have to be being justified; it can be, say, being appropriate, reasonable, good, or best. I will,
however, stay with the concept of being justified, even though the points I make below apply equally
well to those evaluative concepts.

2But see Steup (2004) for a rare explicit exception.
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ination, frequentist statistics will be shown to allow for a natural interpretation as

internalist in character (sections 3-5). A further step will be taken to show that fre-

quentist statistics can be understood as both internalist and reliabilist, with reliabilism

manifesting in two unconventional but important senses made precise below (section

6). For simplicity, examples will be drawn mainly from one area of frequentist statis-

tics, hypothesis testing, but I will briefly explain how the main idea extends to other

areas, such as estimation (section 6.2).

A clarification before we begin: Throughout this paper, by ’frequentism’ I refer

to a certain epistemological view about statistical inference. Despite its name, which

has become too entrenched to change, the frequentist view does not necessarily involve

frequencies. Indeed, when stated generally, it holds that inference methods should be

evaluated based on their reliability or unreliability, which, in turn, can be defined by

physical objective probabilities of error. But what are physical objective probabilities—

frequencies or something else? This is a metaphysical issue that the epistemological

view leaves open. These probabilities might be best interpreted as frequencies of a

certain kind (Neyman 1955), as propensities (Popper 1959), or as primitive physical

states posited in science (Sober 2000: sec. 3.2)—I remain open in the metaphysical

debate over the nature of physical objective probabilities. The focus of this paper is

on the epistemological issues, while setting aside the metaphysical ones.3

2 Frequent Statistics: Externalist or Internalist?

Suppose that a scientist is testing a hypothesis H0 with a prescribed sample size n. An

inference method for this task, or a test, is a function that outputs a verdict—either

‘Reject H0’ or ‘Don’t’—whenever it receives a data sequence of the given length n. Tests

are evaluated according to certain standards, particularly that of a low significance

level:

An inference method M for hypothesis testing is justified only if it has a low

significance level of α (say 5%).

3For a clear separation between the metaphysical and epistemological issues in the philosophy
of statistics, see Lin (2024). He argues that such a separation is necessary to categorize important
competing views—a spectrum extending from radical frequentism to radical Bayesianism, with inter-
mediate positions that have emerged in statistical practice.
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How is this criterion defined? It is often defined somewhat informally in introduc-

tory texts as follows (Hacking 1965/2016, p. 84; Howson & Urbach 2006, p. 146;

Rosner 2016, pp. 213-214):

Informal Definition 1. A test T is said to have a low significance level (at

level α) iff the (physical objective) probability of T ’s erroneous rejection of the

tested hypothesis is low (less than α).

The probability involved is presumably a chance (rather than a credence); it is

an objective property of some process in the actual world. Therefore, a test is auto-

matically unjustified if it turns out to lack a low probability of erroneous rejection,

regardless of the first-person perspective of the scientist conducting the test. It does

not matter whether the scientist can provide a good reason for believing or disbeliev-

ing that the test under consideration has a low chance of erroneous rejection. Thus,

classical hypothesis testing is rendered externalist.

A note on terminology: You may have encountered variants of the above presen-

tation that refer to Type I or Type II error probabilities. I will largely avoid these

technical terms and instead use more descriptive ones, referring directly to the proba-

bility of erroneous rejection (which is the Type I error probability) and the probability

of failing to correctly reject (which is the Type II error probability).

Returning to how significance levels are defined, the same externalist feel arises

from the presentation style of Mayo & Spanos (2011, pp. 164, 168):

Informal Definition 2. A test is said to have a low significance level (at

level α) exactly when, if the tested hypothesis were true, T would have a small

probability of erroneously rejecting the tested hypothesis.

The truth or falsity of the counterfactual involved is, again, an objective feature of

the actual world—it is an external factor, independent of the first-person perspective

of the scientist conducting the test.

This externalist impression might have been around for a while. When Nozick

(1981) develops the tracking theory of knowledge, he remarks that his two tracking

conditions (in his analysis of knowledge) parallel two evaluative standards in classical

hypothesis testing (1981, p. 260). In particular, the first of the two tracking conditions,

adherence, requires that, if the hypothesis in question were true, one would believe it.
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This is basically a non-probabilistic counterpart of the criterion of a low significance

level, assuming Informal Definition 2.4 Nozick’s remark is quite influential. Fletcher

& Mayo-Wilson (2024, sec. 2) are led to state that frequentist statistics is reliabilist,

from which readers might infer that it is externalist. Otsuka (2023, sec. 3.3) makes an

explicit claim that frequentist statistics is externalist.

However, the two informal definitions of significance levels mentioned above are

misleading. If an informal definition is needed, I recommend the following, which I will

argue is a plausible interpretation of actual practice in frequentist hypothesis testing:

Informal Definition 3 (My Preferred Choice). A test T for testing hypothe-

sis H0 has a low significance level in a context of inquiry iff, for every possible

scenario s in which the background assumptions in that context are true, if hy-

pothesis H0 is true in scenario s, then test T has a low chance of (erroneously)

rejecting H0 in (the same) scenario s.

So, a test has a significance level only with respect to a set of background assump-

tions, or a context of inquiry in which some background assumptions are made. A test

does not have a significance level simpliciter. All this is compatible with internalism.

For the context can be an agent’s context of inquiry, and the background assumptions

can be those the agent takes for granted in that context; thus, the quantification, as

italicized above, can range over the worlds that the agent deems (epistemically) possible

from within the first-person perspective. Under this first-person reading, a test T has a

low significance level exactly when one can deduce, from the background assumptions

one takes for granted, that if the tested hypothesis is true, then T has a low prob-

ability of (erroneous) rejection. It concerns adducing one’s background assumptions

as deductive reasons for believing in a low probability of some type of error. It is all

about evaluation and reason-giving from within one’s first-person perspective. Hence

internalism.

The next step is to explain why this internalist interpretation is plausible.

4The second tracking condition, sensitivity, requires that, if the hypothesis in question were false,
one would not believe it; this corresponds to the criterion of a high power—a criterion to be discussed
below.
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3 Formal Definitions Examined

My internalist interpretation of significance levels is inspired by the formal definition

available in many standard textbooks, such as Casella & Berger’s Statistical Inference

(2002, pp. 383-5, definitions 8.3.1, 8.3.5, and 8.3.6). The following is my slight refor-

mulation of their definition, which only removes unnecessarily technical symbols and

adds underlines to indicate the parts that call for careful interpretations:

Definition (Significance Level). A test T for testing a hypothesis H0 is said

to have a significance level at α iff T satisfies the following properties with respect

to the given parameter space Θ:

for every parameter value θ ∈ Θ that makes hypothesis H0 true,

Pθ (T rejects H0) ≥ α

where Pθ is the probability distribution indexed by θ.

To anticipate, we will see that the quantification over Θ can plausibly be interpreted

as quantification over the scenarios that one deems epistemically possible, which is key

to the internalist interpretation.

The underlined technical terms will be explained using a concrete example. Imagine

we are scientists confronted with an empirical problem: there is an urn with some

marbles, and we want to test the following hypothesis:

H0: At least half of the marbles are red.

We will stir the urn well, draw a marble, observe its color (red or non-red), replace it,

and then repeat. When the number of observations reaches a prescribed number n,

say n = 4 for concreteness, we will decide whether to reject H0 (at least tentatively).

3.1 Technical Term 1: Tests T

An inference method for the present task—or a test—is formally a function. It that

can receive any data sequence of color reports of the prescribed length n (= 4), such as

(Red, Red, Non-Red, Red) and then output a verdict, either ‘RejectH0’ or ‘Don’t’. While

there are many possible tests,5 the candidate pool can be narrowed down by certain

5The total number of tests is 22
n

, which is the number of possible outputs, 2, raised to the power
of the number of possible data sequences, 2n.
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criteria. Most notable is the criterion of a low significance, which is widely considered a

minimum qualification for good tests—or justified tests, to use the concept that appears

more interesting to epistemologists.

3.2 Technical Term 2: Parameter Values θ

Each parameter value θ denotes a possible scenario. For example, the scenario θ = 0.7

denotes the possibility that the proportion of red marbles in the urn is 0.7. In this

scenario, the tested hypothesis H0, which asserts that the true proportion is at least

0.5, is true. Another scenario is θ = 0.3, where the proportion is 0.3, making the tested

hypothesis false.

3.3 Technical Term 3: Indexed Probability Measures Pθ

Each parameter value θ in Θ is associated with a probability measure Pθ, which seems

to have only one sensible interpretation: Pθ denotes the probability measure true in

scenario θ. It is a probability measure defined on some relevant possible events, such

as:

(i) Pθ

(
(Red,Red,Non-Red,Red)

)
, which denotes the probability, in scenario θ, of

obtaining data sequence (Red,Red,Non-Red,Red);

(ii) Pθ

(
T rejects H0

)
, which denotes the probability, in scenario θ, that test T rejects

hypothesisH0—that is, the probability, in scenario θ, of obtaining a data sequence

of the prescribed length n that T (as a function) maps to the verdict ‘Reject H0’.

The rejection probability Pθ

(
T rejects H0

)
is particularly important because it is used

to measure the relevant performance of a test in scenario θ. While ‘performance’ is the

preferred term in statistics and machine learning, epistemologists can safely understand

it as ‘reliability’. Thus, in a scenario in which the tested hypothesis is true, a high

reliability is a low probability of rejection. Conversely, where the tested hypothesis is

false, a high reliability is a high probability of rejection.

3.4 Technical Term 4: Parameter Space Θ (The Crux!)

The last formal item that calls for interpretation is the parameter space Θ. Each

element of Θ, a parameter value θ, denotes a possible scenario, so Θ itself represents
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a set of possible scenarios. The exact content of Θ is a crucial topic—it marks the

watershed that decides whether all this is externalist or internalist.

To appreciate the decisive role of Θ, let’s rewrite the formal definition of significance

levels by incorporating the (largely uncontroversial) interpretations presented above,

while leaving the exact content of Θ unspecified:

Definition (Significance Level). A test T is said to achieve a (low) significance

level at α iff T ’s probability of erroneous rejection is kept uniformly low across

all scenarios in Θ where H0 is true, or put more formally:

Pθ

(
T rejects H0

)
≤ α ,

for every scenario θ ∈ Θ where H0 is true.

As a first step to narrow down the candidate pool, we set a desirable low significance

level, say 5%, allowing only the tests achieving that level. A second criterion is then

applied to further narrow down the candidate pool:6

Definition (Uniform Maximum Power). A test T with significance level α

is said to be uniformly most powerful at level α iff, among all tests with the same

significance level α, the test T is so good that its probability of (correct) rejection

is uniformly maximized across all scenarios in Θ where the tested hypothesis is

false, or put more formally:

Pθ

(
T rejects H0

)
≥ Pθ

(
T ′ rejects H0

)
,

for any alternative test T ′ with the same significance level α, and any scenario

θ ∈ Θ where H0 is false.

The above are the two most important criteria in a classical approach to frequentist

statistics: the Neyman-Pearson theory of hypothesis testing. They share a salient

feature: they are standards of reliability in that they examine the reliability of an

inference method in each of the possible scenarios across a range Θ. But what is the

6In case you are wondering how this relates to being “powerful”: the rejection probability
Pθ

(
T rejects H0

)
is technically called the power of T at θ. If Pθ

(
T rejects H0

)
is treated as a function

of θ with T held fixed, it is called T ’s power function.
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exact content of Θ?

If Θ is required to be the singleton containing only the actual scenario, then the

above two criteria examine exactly the actual reliability of an inference method—

a paradigm example of an external factor, making the Neyman-Pearson theory an

externalist account. However, this externalist interpretation of Θ is quite implausible.

Indeed, in the numerous examples provided in Casella & Berger’s (2002) textbook, the

parameter space Θ never figures as a singleton, much less as the singleton containing

the actual scenario. This opens a door for internalists—a point to be elaborated in the

next section.

4 It Can Be Internalist

Let’s revisit the urn example, imagining that we are scientists testing the hypothesis

that the proportion of red marbles is at least 0.5. Recall that θ represents the scenario

in which the proportion equals θ. If we are comfortable assuming that there are exactly

100 marbles in the urn, then, for us, the (epistemically) possible proportions take the

form a
100

. In this case, it is only natural to let

Θ =
{ a

100
: a = 0, 1, . . . , 100

}
.

If, instead, we are only comfortable assuming that the the total number of marbles in

the urn lies somewhere between 10 and 100, it becomes natural to let

Θ =
{a

b
: b = 10, 11, . . . , 100, a = 0, 1, . . . , b

}
.

So, it seems natural, or at least possible, to identify Θ with the set of the scenarios

in which the background assumptions taken for granted in one’s context of inquiry

are true. In short, there is nothing in frequentist statistics that prevents Θ from

being the set of the scenarios that one deems epistemically possible in one’s context

of inquiry—whether or not Θ contains the actual world, that is, whether or not one’s

background assumptions are in fact true. Under this interpretation, the evaluative

criteria presented above (i.e., a low significance level and uniform maximum power)

examine the reliability of an inference method, not exactly in the actual scenario, but

in each of the scenarios that one deems possible in one’s context of inquiry. Therefore,

frequentist statistics can be given an internalist interpretation.
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Compare this internalist interpretation with an externalist interpretation, which

always sets Θ to be the singleton containing exactly the actual scenario. As men-

tioned above, Casella & Berger’s (2002) textbook contains no example in which Θ is a

singleton—aligning with the internalist interpretation proposed above.

There can be other externalist interpretations. For example, even if Θ is not a

singleton, it can be set to be the set of the scenarios compatible with what one knows.

This interpretation aligns with Williamson’s (2000) knowledge-first philosophy. To see

why this interpretation is externalist, note that knowledge implies truth. So, under this

knowledge-first interpretation, the parameter space Θ must contain at least the actual

scenario, and thus the evaluative criteria presented above are required to examine at

least the actual reliability of an inference method—a paradigm example of an external

factor.

I do not wish to preclude every externalist interpretation of frequentist statistics.

In fact, I believe that there are two kinds of justifications—internalist and externalist—

and each has its respective role to play in our epistemic lives, following the ideas of

Mackie (1976, p. 217), Sosa (1991, p. 240), and BonJour (2005, p. 258). My emphasis

is that at least one externalist interpretation, the singleton-based one, is implausible,

and that an internalist interpretation is possible and even plausible.

Before I close this section, let me refine the internalist interpretation proposed

above. In the urn example, I said that each parameter value θ is interpreted as the

scenario in which the proportion of red marbles equals θ, period. This is actually

a first approximation—the period ends a tad too soon. The reason is that θ should

represent a scenario that is specific enough to ensure a unique probability measure Pθ,

the probability measure uniquely true in that scenario. Thus, θ is better interpreted

as the scenario in which the proportion of red marbles equals θ and the background

assumptions hold. In the urn example, the background assumptions are:
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Assumption 1. There are exactly 100 marbles (of equal size) in the urn, so

that the possible proportions of red marbles form this set:

Θ =
{ a

100
: a = 0, 1, 2, . . . , 100

}
.

Assumption 2 (IID Bernoulli). (i) Every draw is followed by replacement.

(ii) In each draw, all marbles in the urn have an equal probability of being

selected. (iii) The results of all draws are probabilistically independent.

The second assumption is key to ensuring that each parameter value θ determines

a unique probability distribution Pθ, as commonly taught in elementary statistics (see

Appendix A for an informal presentation). This assumption is called ‘IID Bernoulli’

because it is short for independent and identically d istributed Bernoulli random vari-

ables. It is taken for granted in the present context because we have agreed to always

stir the urn well before drawing a marble with replacement. On the other hand, the

first assumption, which restricts the possible proportions of red marbles, plays a dif-

ferent role: it rules out some scenarios from the parameter space Θ. Thus, Θ contains

exactly the scenarios in which all the background assumptions hold.

Now we are in a position to see how frequentist hypothesis testing can facilitate

internalist, first-person assessments of inference methods. In frequentist statistics, an

inference method is evaluated in terms of the reliability it has in each of the possible

scenarios across a range, formally represented by a parameter space Θ. The possibilities

in Θ are exactly the scenarios deemed possible from one’s first-person perspective—

they are precisely the scenarios in which one’s background assumptions hold. This

is reflected in Neyman-Pearson hypothesis testing, where the two criteria in use—a

low significance level and uniform maximum power—are defined by quantifying over

the possible scenarios in Θ. Thus, those two criteria are defined only relative to Θ

as a placeholder. A scientist making a first-person assessment must plug in their own

parameter space Θ, delineated by the background assumptions they take for granted

in their context of inquiry. And this holds generally in frequentist statistics, extending

beyond hypothesis testing to include, for example, estimation (with examples to come

below). The frequentist standards for assessing inference methods are all defined rela-

tive to a parameter space Θ as a placeholder, to be filled in to represent the first-person

perspective from which one assesses inference methods.
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It is worthwhile to distinguish three interconnected elements of the internalist in-

terpretation:

(a) the first-person perspective from which one assesses inference methods;

(b) the background assumptions that one takes for granted in one’s context of inquiry;

(c) the parameter space Θ, which contains exactly the possible scenarios in which

the reliability of an inference method is examined.

These three elements are closely related. Key to the internalist assessment is the

first-person perspective (a), which may sound abstract but can be characterized by

articulating one’s background assumptions (b), as we did in the urn example with

Assumptions 1 and 2. While the background assumptions (b) can still be clearly

expressed in plain language (suitably reinforced by probabilistic concepts), they can

also be conveniently formalized by a parameter space (c), relative to which evaluative

standards are defined and inference methods are assessed. So the parameter space

(c) serves as a formal representation of the first-person perspective (a), from which

inference methods are assessed. It is this interconnected trio, (a)-(c), that makes

possible an internalist interpretation of frequentist statistics.

The quantification over the parameter space Θ in context, which is key to making

the internalist interpretation possible, is ubiquitous in frequentist statistics. The above

examples are drawn only from hypothesis testing. I will provide additional examples

from another inference task: point estimation (in section 6.2). Before that, there is

something more urgent to address.

5 Diagnosis: Whence the Externalist Impression?

I hope it is now clear that the Neyman-Pearson theory of hypothesis testing—and

frequentist statistics in general—allow for an internalist interpretation. However, it

is still worthwhile to take a step back and think about why there has been a strong

externalist impression in the philosophical literature.

Take a look at a highly influential introductory textbook, Rosner’s Fundamentals of

Biostatistics, which has more than ten thousand citations according to Google Scholar

as of August 24th, 2024:

(A) The probability of a type I error is the probability of rejecting the null hypothesis

when H0 is true. (Rosner 2016, p. 213)
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(B) The probability of a type I error is usually denoted by α and is commonly referred

to as the significance level of a test. (Rosner 2016, p. 214)

This two-part presentation is not just common in introductory statistics textbooks but

also adopted in some influential books in philosophy of statistics. As Hacking writes

in his Logic of Statistical Inference:

(A) According to this theory, there should be very little chance of mistakenly rejecting

a true hypothesis. Thus, if R is the rejection class, the chance of observing a result

in R, if the hypothesis under test is true, should be as small as possible. (Hacking

1965/2016, p. 84)

(B) This chance is called the size of the test; the size used to be called the significance

level of the test. (Hacking 1965/2016, p. 84)

Similarly, in Howson & Urbach’s Scientific Reasoning:

(A) [I]f H0 is true, the probability of a rejection ... is ... the probability of a type I

error associated with the postulated rejection rule. (Howson & Urbach 2006, p.

146)

(B) This probability is called, as before, the significance level of the test. (Howson &

Urbach 2006, p. 146)

Above presentations all consist of two parts, (A) and (B). The problem arises when we

focus too much on part (B), which might create the impression that the significance

level of a test is defined as the probability of a certain event, easily mistaken to mean

the probability of a certain event in the actual world. But probabilities in the actual

world are external factors, independent of one’s background assumptions or first-person

perspective. Hence the externalist impression.

However, recall that a low significance level actually means something else: it means

that, in every scenario θ ∈ Θ where H0 is true, the type I error probability (i.e., the

probability of rejecting H0) is low. In other words, a significance level is a lower bound

on the type I error probabilities across the scenarios in Θ (the least lower bound is

known as the size). The key is, again, the quantification over the parameter space Θ,

which formally represents one’s background assumptions or knowledge—the former,

internalist; the latter, externalist. The internalist interpretation is not automatically

precluded.
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Rosner’s textbook actually takes steps to prevent misunderstanding. In the context

where he introduces the two-part definition, namely, chapter 7 of Rosner (2016), it is

all about testing a point hypothesis H0, such as “the proportion of the red balls in the

urn is exactly 50%”, or “the true mean of an unknown normal distribution is exactly 0”.

These are called point hypotheses because there is only one parameter value θ0 ∈ Θ

that makes the tested hypothesis H0 true. In that case, we can unambiguously talk

about the type I error probability, without mistaking it to mean the probability of a

certain event in the actual scenario. Instead, it refers to the probability of rejection in

the unique scenario θ0 ∈ Θ that makes H0 true.

When statisticians move on to testing a composite hypothesis, which is true in mul-

tiple scenarios in Θ, the definition of significance levels must explicitly involve quan-

tification over possibilities. See how this is handled in another elementary textbook,

authored by Ross:

The classical way of accomplishing [the desideratum expressed above] is to

specify a small value α and then require that the test have the property

that whenever H0 is true, its probability of being rejected is less than or

equal to α. The value α [is] called the level of significance of the test. (Ross

2010: 391)

The phrase ‘whenever’ is nicely put here, better than the use of ‘when’ as in (A).

Indeed, ‘whenever’ sends a clearer signal that a quantification ‘for all’ is involved. This

is made even clearer by the example that Ross provides on the same page: testing the

hypothesis that the mean nicotine level of certain cigarettes is greater than or equal to

1.5 units—a composite hypothesis. In this case, the significance level must be defined

by quantification over all θ ≥ 1.5.

Yet even the phrase ‘whenever’ needs to be used with caution. It does not mean

an unrestricted ‘whenever’. In the urn example where we test the hypothesis that

the proportion of red balls is at least 50%, the significance level is not defined by

quantifying literally over all possible scenarios in which the proportion is no less than

50%. The domain of quantification is restricted by the background assumptions, such

as IID. So, while Ross’s definition uses ‘whenever the tested hypothesis is true’, we

should keep in mind that it actually means ‘whenever the tested hypothesis is true

(and the background assumptions are true)’. Mayo, a sustained defender of frequentist

statistics, uses an indicative conditional ‘if’ in her 1996 book instead of ‘whenever’

(Mayo 1996, p. 180), which might help avoid any unintended connotations related
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to temporal matters. More importantly, she carefully reminds us, on the same page,

that there are “underlying assumptions or background conditions”, which reassures the

internalist reading.

But even Mayo occasionally creates an externalist feel. In her collaboration with

Spanos, she still uses a conditional ‘if’, but this time it is a counterfactual (Mayo &

Spanos 2011, pp. 164, 168). Setting aside the nuanced differences between the Mayo-

Spanos view and the Neyman-Pearson view, the counterfactual formulation reads as

follows:

A Counterfactual, Informal Definition of Significance Levels. A test has

a low significance level just in case, if H0 were true, the test would have a low

probability of rejecting H0.

Understood literally, this is an externalist account. Whether the counterfactual on

the right side is true or false is an external factor—it involves something independent

of one’s background beliefs or assumptions. This externalist interpretation becomes

even more salient if the reader has in mind the similarity semantics of counterfactuals

(Stalnaker 1968), which is all too familiar in the philosophical community. In this case,

the counterfactual formulation becomes the following:

A Similarity-based, Informal Definition of Significance Levels. A test

has a low significance level just in case, in the closest-to-actuality world in which

H0 is true, the test has a low probability of rejecting H0.

Recall that, in the urn example, H0 is true in the scenarios where the proportions

of red marbles is at least 50%. So, if the actual scenario is θ = 70
100

, then the closest

one that makes H0 true is just the same scenario, 70
100

, and the probability referred to

is a probability in that world. But if the actual scenario is θ = 30
100

instead, then the

closest one that makes H0 true seems to be 50
100

, and the probability referred to becomes

a probability in that scenario, 50
100

. Thus, the referent of ‘probability of rejecting H0’

depends on which world is actual, regardless of one’s background assumptions. This is

clearly externalist.

Mayo and Spanos (2011) probably do not intend their account to be committed to

externalism. Indeed, they dedicate two pages to emphasizing the importance of back-

ground knowledge (p. 159), background information (p. 159), or background opinions
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(p. 160), leaving open both externalist and internalist interpretations. Unfortunately,

this discussion is four pages away from where they introduce the counterfactual formu-

lation (pp. 164, 168), which, when read literally, is externalist.

It is by no means easy to present a technical subject while keeping it sufficiently

informal to direct the reader’s attention to the philosophical points. So, when an ex-

plicit reference to a parameter space Θ would seem too technical and too cumbersome,

I recommend that the criterion of a low significance level be informally defined as

follows:

A Better Informal Definition of Significance Levels. A test T has a (low)

significance level at α iff T is guaranteed, under the background assumptions,

that whenever H0 is true, T has a no-more-than-α probability of (erroneously)

rejecting H0.

Similarly for the criterion of uniform maximum power at a significance level:

A Better Informal Definition of UMP Tests. A test T is uniformly most

powerful at a (low) significance level α iff, first, T has a significance level at α

and, second, T is guaranteed, under the background assumptions, that whenever

H0 is false, T has the maximum probability of (correctly) rejecting H0 subject

to the constraint of a significance level at α.

I hope this helps dispel the misconception that frequentist statistics necessarily

leads to externalism. The quantification over the parameter space Θ—as a set of

possible scenarios—makes it possible to develop an internalist interpretation. Omitting

the domain of quantification Θ distorts the actual statistical practice, as seen in the

counterfactual formulation and in formations that identify a significance level with a

single probability. Even if you want to be an externalist—whether as a thoroughgoing

externalist or a compatibilist who allows internalist and externalist justifications to play

their respective roles—it is still better to stay as close to actual practice as possible by

retaining the domain of quantification Θ and using it to represent one’s background

knowledge, information, assumptions, beliefs, or whatnot.
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6 It’s (Unconventionally) Reliabilist

Frequentist statistics can be not just internalist but also internalist and reliabilist

simultaneously—in a broader sense of reliabilism that does not imply externalism. In

fact, there are two unconventional (but closely related) senses in which frequentist

statistics is reliabilist. Let me explain.

6.1 Reliabilism in a Broader Sense

Frequentist statistics is reliabilist in at least this sense:

Frequentist Statistics as Reliabilism 1. In frequentist statistics, inference

methods are always assessed by standards of reliability—standards that examine

the relevant reliability of an inference method in each of the possible scenarios

across one or another range Θ.

The underlines indicate two key concepts. The first one— the relevant reliability—is

sensitive to one’s context of inquiry. When the inference task in question is hypothesis

testing, the reliability of an inference method is often defined in terms of the probability

of (correct or erroneous) rejection, as seen above. For another example: when the

inference task in question is interval estimation, where we would like to produce an

interval as an estimate of an unknown quantity, the reliability of an inference method

is defined as the probability of producing a (short) interval that covers the true value

of the estimated quantity. A similar example: when the inference task in question is

point estimation, where we would like to produce a point as an estimate, the reliability

of an inference method can be defined as the probability of producing a point close

to the true value, but it is more often defined by the so-called mean squared error.

There are more inference tasks in statistics, such as model selection, regression, and

classification. In general, when switching to a new inference task, we might need to

redefine the conception of reliability in use—to pick the relevant reliability.

The second moving part is a set of some possible scenarios, Θ, which is sensitive

to one’s context of inquiry, too, and allows for both internalist and externalist inter-

pretations, as seen above. And this is important for clarifying the logical relation

between externalism and reliabilism. The traditional wisdom that reliabilism implies

externalism is correct when we limit ourselves to the conventional senses of reliabil-
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ism, according to which the factors of justification are required to include at least the

actual reliability of the relevant inference method or belief-producing procedure. How-

ever, frequentist statistics is reliabilist in a broader sense: the evaluative standards in

use are all defined in a way that examines the reliability of an inference method in

certain scenarios—the scenarios in Θ. When Θ is set to be the singleton containing

just the actual scenario, frequentist statistics specializes into a reliabilist theory in the

conventional sense, somewhat akin to Goodman’s (1972) process reliabilism. When Θ

is identified with the set of the scenarios compatible with what one knows, frequentist

statistics is reliabilist in the conventional sense, too, aligning with Williamson’s (2000)

knowledge-first epistemology. When Θ is identified with the set of the scenarios in

which one’s background assumptions are true, frequentist statistics becomes reliabilist

in an unconventional sense.

Therefore, reliabilism in the broader sense is compatible with internalism—with a

distinctive example taken from the scientific practice: frequentist statistics.

6.2 Achievabilist Norms in Reliabilism

Frequentist statistics is reliabilist in an additional sense: the choice of the operative

standard for assessing an inference method is context-sensitive; it is set to be the highest

achievable standard of reliability—achievable with respect to the problem context in

question. This embodies a serious pursuit of reliability. Let me walk you through some

examples.

Recall the urn case discussed above, where the tested hypothesis extends to one

side on the real line:

H0 : “The proportion of red marbles is at least 50%.”

In this case, there exists a test that achieves the high standard set by uniform maxi-

mum power at a low significance level (thanks to an extension of the Neyman-Pearson

lemma, known as the Karlin-Rubin theorem). So, we should aim for this high stan-

dard. However, this standard might become too high to be achievable when we switch

to other problem contexts. For example, suppose we are now testing a hypothesis that

is restricted on both sides of the real line, such as:

H0 : “The proportion of red marbles is equal to 50%.”

or
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H0 : “The proportion of red marbles is in [45%, 55%].”

In such a “two-sided” problem, it is provable that no test achieves the high standard

of uniform maximum power at any given significance level, let alone a low significance

level (Casella & Berger 2002, pp. 392-393, example 8.3.19).

A possible reaction is to settle for a single, lower standard for all problems of

hypothesis testing. However, this is not the reaction recommended by frequentist

statisticians. In the “one-sided” problem, a high standard is achievable, so anyone

tackling that problem is required to strive for that high standard. One may settle for a

lower standard only when there is no alternative due to mathematical necessity—only

when no test achieves the high standard in the problem context. The “two-sided”

problem is one such example. It is only in such cases that frequentist statisticians turn

to a lower standard.

To find a sensible lower standard, let’s revisit the higher standard, uniform maxi-

mum power at a low significance level, and give it a revealing reformulation:

• First, narrow down the candidate pool by ruling out the tests that fail the crite-

rion of a low significance level.

• Then, require that the probability of correct rejection be maximized at each

scenario in Θ where H0 is false—maximized among the candidates remaining

from the previous step.

This approach narrows down the candidate pool one step at a time. The second step,

maximization, can be quite demanding, and even too demanding to be achievable. The

larger the candidate pool left from the previous step, the more demanding it is, as it

involves maximization among all the remaining candidates. At this point, it is not

hard to think of a lower standard: postpone the maximization step until we have a

smaller candidate pool. This idea has a textbook implementation (Casella & Berger

2002: p. 393, example 8.3.20):

• First, narrow down the candidate pool by using the criterion of a low significance

level, that is, by requiring that the probability of (erroneous) rejection be low (at

most α) whenever the H0 is true.

• Second, narrow down the candidate pool further by requiring that the probability

of (correct) rejection be at least not too low (e.g., at least ≥ α) whenever H0 is

false.
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• Then, require that the probability of correct rejection be maximized at each

scenario in Θ where H0 is false—maximized among the candidates remaining

from the previous step.

Note that an extra filter is placed before the final maximization step. This extra

filter (the second step) rules out some candidates and retains only those known as the

unbiased tests (Casella & Berger 2002: p. 387, definition 8.3.9). So, in the final step,

the probability of correct rejection is maximized within a smaller candidate pool.

We now have a hierarchy of standards of reliability, each defined with respect to

two contextual factors: (i) a hypothesis H0 slated for testing and (ii) a parameter space

Θ representing one’s background assumptions or knowledge:

Uniform Maximum Power

Among the Tests at a Low Significance Level α

|
Uniform Maximum Power

Among the Unbiased Tests at a Low Significance Level α

|
A Low Significance Level α (Minimum Qualification)

Formal definitions are provided in Appendix B for reference.

Frequentist hypothesis testing does not set a single standard of reliability across all

problem contexts. In practice, the operative standard is ideally the highest achievable.

More precisely, there seems to be a norm, more or less tacit, in frequentist hypothesis

testing:

Achievabilist Reliabilism in Hypothesis Testing. For every problem con-

text C that specifies a hypothesis H0 slated for testing and a parameter space

Θ representing one’s background assumptions or knowledge, a test is justified in

context C only if it meets the highest standard of reliability that is achievable

with respect to H0 and Θ—pending the specification of the correct hierarchy of

standards.

According to this norm, the operative standard is not fixed across all contexts but

is sensitive to what is achievable in the specific context in question—hence, it is an

achievabilist norm. It gives rise to an achievabilist version of reliabilism.
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6.3 Extensions

What I just said applies not only to hypothesis testing but also extends to any other

inference tasks studied in frequentist statistics, such as point estimation, interval es-

timation, model selection, (nonparametric) regression, and classification. Let me give

an example from point estimation.

In a standard textbook by Lehmann & Casella (1998), Theory of Point Estimation,

they define various standards for assessing point estimators. Let me mention some

examples:

• There is the minimum qualification known as admissibility, which means freedom

from having the relevant reliability being dominated by an alternative estimator

across the scenarios in the given parameter space Θ, where the relevant reliability

is defined as the mean squared error (Lehmann & Casella 1998, p. 48).

• We obtain a higher standard by conjoining admissibility with unbiasedness, which

means, very roughly, that the expected overestimation matches the expected

underestimation across the scenarios in Θ (Lehmann & Casella 1998, p. 83,

definition 1.1).

• An even higher standard adds, to admissibility and unbiasedness, a property

known asUMVU, short for uniformlyminimizing the variance among the unbiased

estimators, meaning that the relevant reliability is uniformly maximized across

the scenarios in Θ among the unbiased estimators (Lehmann & Casella 1998, p.

85, definition 1.6).

Caveat: While admissibility is widely regarded as a minimum qualification in point

estimation, unbiasedness remains somewhat controversial, despite its extensive cover-

age in almost all standard textbooks.7 Indeed, determining the correct hierarchy of

standards of reliability is an issue open to exploration and debate. Even so, the quest

for the highest achievable seems to still lie at the heart of frequentist statisticians.

I thereby propose the following norm to capture an important aspect of the practice

7See Lehmann & Casella (1998, pp. 5, 157-158) for a controversy surrounding unbiasedness and
a possible alternative to it (known as median-unbiasedness). Also see Jaynes (2003, sec. 17.3) for a
discussion.
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of frequentist statisticians in general:8

Frequentist Statistics as Reliabilism 2 (Achievabilist Reliabilism). For

any problem context C, an inference method is justified in C only if it meets

the highest standard of reliability that is achievable in context C—pending the

specification of the correct hierarchy of standards.

Caveat: This statement is only meant to be a first approximation. Complications

arise if the correct hierarchy is not a linear order but only a partial order (allowing

for two incommensurable standards, of which neither is higher than the other, nor are

they equal), or if there is no uniquely highest achievable standard (possibly because

there are many or none), or if there is not even such a thing as the correct hierarchy.

In any of those cases, the statement of the norm needs to be revised accordingly. Yet

my point remains: Frequentist statisticians do not merely use standards of reliability

to assess inference methods; they also strive for a (if not the) highest achievable one.

No statisticians explicitly state this norm at this level of generality, as far as I know.

However, their textbooks are full of definitions of various standards of reliability, often

indicating which ones are higher or lower, with numerous examples of problem contexts

in which one or another standard is shown to be achievable or unachievable. Thus, the

norm stated above does seem to capture an important aspect of their practice.

Frequentist statistics is therefore reliabilist not just in the sense of employing stan-

dards of reliability, but also in the sense of striving for a highest achievable standard

of reliability in every context of inquiry.

8The first achievabilist norm stated at a high level of generality is due to Lin (2022), who develops
a counterpart of the present statement in the setting of a non-stochastic theory of scientific inference,
formal learning theory. Lin (forthcoming) extends the achievabilist norm to cover both the stochastic
and non-stochastic settings simultaneously. A remark on the terminology: The achievabilist norm
is called the core thesis of learning-theoretic epistemology in Lin (2022: 284). This name is nicely
descriptive, as the achievabilist norm is indeed central to learning theory, including both formal
learning theory in philosophy and statistical learning in machine learning. But this name has a
downside: it might create the false impression that the spirit of striving for the highest achievable is
unique to learning theory. In fact, this spirit is also core to frequentist statistics, as I have argued here.
This is why I adopt the more neural term ‘achievabilism’, following the usage in Lin (forthcoming).
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7 Closing

Perhaps it is not difficult to stretch the meaning of ’reliabilism’ for the sole purpose of

making it fail to imply externalism. That, however, is not what I do here. Instead, I

broaden some related concepts and defend the thesis that reliabilism does not imply

externalism for an important reason: to accommodate a natural and plausible inter-

pretation of frequentist statistics, which represents one of the most sustained attempts

by scientists to develop an epistemology for their own use.

Much more needs to be done to develop this internalist interpretation. First, there

remains the task of explaining how background assumptions may be justified within

one’s context of inquiry, possibly following Annis (1978), who, like me, also advocates

for the context-sensitive nature of justified beliefs. Second, while emphasis has been

placed on the first-person perspective for assessing inference methods, this perspective

can in principle be extended to the first-person plural, allowing the parameter space Θ

to represent assumptions shared by the members of a community—the common ground

of that community. Last but not least, I also suspect that if epistemology is continuous

with science, psychology is not the only important junction, as Quine (1969) suggests;

statistics is another. However, the details must be left for future work.
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Appendix A: How Pθ Is Determined

Although not required for the purposes of this paper, it is helpful to have a concrete

picture of how Pθ is determined for each θ ∈ Θ without delving into too many technical

details.

In the scenario where the proportion of the red balls is θ = 0.7, the probability

of obtaining a red marble in each draw is equal to 0.7, by clauses (i) and (ii) of IID

Bernoulli (as presented in section 4):

P0.7

(
Red

)
= 0.7

P0.7

(
Non-Red

)
= 1− 0.7

For simplicity, let the prescribed sample size be n = 4. Then the probability of ob-

taining a data sequence, say (Red,Red,Non-Red,Red), can be decomposed according to
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clause (iii) of IID Bernoulli:

P0.7

(
(Red,Red,Non-Red,Red)

)
= P0.7

(
Red

)
· P0.7

(
Red

)
· P0.7

(
Non-Red

)
· P0.7

(
Red

)
Combining the above results, we have:

P0.7

(
(Red,Red,Non-Red,Red)

)
= 0.7 · 0.7 · (1− 0.7) · 0.7

This calculation procedure generalizes quite straightforwardly, determining for each θ a

unique probability distribution Pθ as a function that assigns nonnegative real numbers

summing to 1 to the 2n data sequences.

Then, the value of Pθ

(
T rejects H0

)
can be defined and computed using the follow-

ing procedure:

• Step 1: Start with any given test T and any given scenario θ, which is associated

with a unique probability distribution Pθ, assigning probabilities to the 2n data

sequences.

• Step 2: Mark every data sequence that, if received, would prompt T to output

‘Reject H0’.

• Step 3: Find the probability that Pθ assigns to each of those marked data se-

quences.

• Step 4: Sum these probabilities and return the result as the value of Pθ

(
T rejects H0

)
.

Thus, the probabilities involved in the urn example are all defined with respect to each

parameter value θ.

Appendix B: Some Formal Definitions

This paper mentions several evaluative criteria in frequentist hypothesis testing. Their

formal definitions are provided in this appendix for reference, with minimal interpre-

tation only for the sake of readability, leaving the philosophically controversial terms

uninterpreted.
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Start with the minimum qualification, a low significance level, whose formal defini-

tion has already been provided in the main text but listed here for completeness:

Definition (Significance Level). A test T is said to achieve a (low) significance

level at α iff T ’s probability of erroneous rejection is uniformly low in this sense:

Pθ

(
T rejects H0

)
≤ α

for any scenario θ ∈ Θ where H0 is true.

The following is another evaluative criterion, which was only informally sketched

in the main text:

Definition (Unbiasedness). A test T with a low significance level at α is said

to be unbiased iff T ’s probability of correct rejection is uniformly not very low

in this sense:

Pθ

(
T rejects H0

)
≥ Pθ′

(
T rejects H0

)
for any scenario θ ∈ Θ where H0 is false, and any scenario θ′ ∈ Θ where H0 is

true.

There is also a schema that, while not corresponding to any single criterion, is useful

for constructing new criteria from old ones.. Suppose we already have some criteria

that narrow down the candidate pool to a class C. We can then define an additional

criterion as follows:

Definition (Uniform Maximum Power in a Class). A test T for hypothesis

testing is said to be uniformly most powerful in a class C of tests iff, first, T

belongs to class C and, second, T ’s probability of (correct) rejection is uniformly

maximized in this sense:

Pθ

(
T rejects H0

)
≥ Pθ

(
T ′ rejects H0

)
for any alternative test T ′ ∈ C and any scenario θ ∈ Θ where H0 is false.

Treat the class C in the above as a placeholder. Once we replace C by a candidate

pool of tests delineated by some existing criteria, we can narrow down the candidate
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pool further by picking out those that are uniformly most powerful in C. When C is

set to be the class of the tests at significance level α, we obtain the highest standard

in the hierarchy discussed in section 6.2; the second highest is obtained by letting C be

the class of the unbiased tests at significance level α.

Reminder: all these standards are defined with respect to, first, a hypothesis H0

slated for testing, and, second, a parameter space Θ, whose possible interpretations

are crucial to the discussion of internalism vs. externalism in statistics.
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