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Abstract. Evaluative studies of inductive inferences have been pursued extensively with
mathematical rigor in many disciplines, such as statistics, econometrics, computer science,
and formal epistemology. Attempts have been made in those disciplines to justify many different
kinds of inductive inferences, to varying extents. But somehow those disciplines have said almost
nothing to justify a most familiar kind of induction, an example of which is this: “We’ve seen this
many ravens and they all are black, so all ravens are black.” This is enumerative induction in its
full strength. For it does not settle with a weaker conclusion (such as “the ravens observed in the
future will all be black”); nor does it proceed with any additional premise (such as the statistical
IID assumption). The goal of this paper is to take some initial steps toward a justification for
the full version of enumerative induction, against counterinduction, and against the skeptical
policy. The idea is to explore various epistemic ideals, mathematically defined as different modes
of convergence to the truth, and look for one that is weak enough to be achievable and strong
enough to justify a norm that governs both the long run and the short run. So the proposal is
learning-theoretic in essence, but a Bayesian version is developed as well.

§1. Introduction. The general problem of induction may be taken as the problem
of addressing this task: for each type of inductive inference, determine whether we
can justify it with explicit reasons or arguments and, if so, identify the extent to
which we can do that. Under the general problem there are several subproblems.
There is, for example, the subproblem of how it is possible to reliably infer causal
relations solely from observational data without experimentation—a problem that
has attracted many scientists and philosophers.1 And there is the more general
subproblem of whether it is possible to escape Hume’s dilemma—a dilemma that aims
to undermine any justification of any kind of inductive inference.2 This paper addresses
another subproblem of induction, one that should be familiar but is somehow seldom
addressed.

Here is the background. Evaluative studies of inductive inferences are pursued
with mathematical rigor in many disciplines, such as formal epistemology, statistics,
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inference.

1 For book-length treatments of this problem, see [18, 31, 40].
2 See Hume ([17, Section IV]) for his formulation of the dilemma, and Reichenbach ([36,

Section 38]) for an influential version of the dilemma. A classic list of attempted solutions
is provided in Salmon (1966, ch. 2); for an updated list, see the survey by Henderson [14].
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econometrics, and computer science. But somewhat curiously, they all have said little
about a very familiar kind of inductive inference, of which an instance is this:

We have observed this many ravens and they all are black.
So, all ravens are black.

This is a version of enumerative induction, which may be called the full version. Other
versions weaken the conclusion or strengthen the premise. To be sure, much work
has been done for enumerative induction, but the attention has been mostly directed
to the less-than-full versions. For example, sometimes the conclusion is weakened to
“the ravens observed in the future will all be black,” as is often the case in learning
theory3 and Bayesian confirmation theory.4 Sometimes the inference is weakened with
an additional premise such as “if there are nonblack ravens then we will observe one
sooner or later,” as is often the case in learning theory.5 Sometimes the inference is
weakened with an additional premise typical in statistics, the IID assumption, which
says that data are generated independently according to an identical distribution of
objective chances.

All those theories have so far set aside a serious evaluative study of full enumerative
induction. But why? The reason for statisticians is obvious: their primary job is to
study inductive inferences under the IID assumption or the like. The reasons for
formal epistemologists such as Bayesians and learning theorists seem to run deeper,
as I will explain in Section 2. That will help me formulate a subproblem of induction,
which I call the Cartesian problem of induction. Then I will propose a solution in
Section 3, focusing on the philosophical ideas. The mathematical details will then be
developed in Sections 4–8. My positive account is learning-theoretic in nature, but it
has a Bayesian version that employs considerations about possible futures to impose a
norm on the Bayesian priors, to be presented in Section 9.

§2. The Cartesian problem of induction. Recall the following instance of full
enumerative induction:

We have observed this many ravens and they all are black.
So, all ravens are black.

Note that, even if the ravens observed in the past, present, and future are all black,
it still leaves open whether all ravens are black—the true answer might be “yes” and,
unfortunately, it might be “no.” This latter possibility may be called the Cartesian

3 See, for example, [21], [22], and [39].
4 See, for example, [5, 15, 16]. Their works are concerned with the (probabilistic) inference

from evidence F (a1) ∧ ··· ∧ F (an) to the countable conjunctionH =
∧∞
i=1 F (ai ), where ai

means the i-th individual (or raven) observed in a certain agent’s inquiry. So the inductive
conclusion H talks about, not all ravens, but all ravens that the agent will observe in the
future. What about assuming, further, that i enumerates all ravens in the world—so that
the agent’s first observation, second observation, ad infinitum, will exhaust all ravens in the
world? Adding this assumption amounts to switching from full enumerative induction to a
weaker version, because it in effect strengthens the premise by adding that all ravens in the
world are countable in number and each of them will be observed by the agent sooner or
later.

5 See, for example, [21, 22 39].
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Fig. 1. A Bayesian prior over some possibilities.

scenario of induction, for it can be materialized dramatically by a Cartesian-like demon
who always hides a white raven behind the inquirer. In the other possibility, the inquirer
still sees only black ravens without a counterexample—and fortunately all ravens are
black. This is the normal counterpart to the Cartesian scenario of induction. Those
two scenarios, the Cartesian and the normal, are empirically indistinguishable for the
inquirer (but perhaps not for the demon), and the hypothesis “all ravens are black” is
underdetermined in that it is true in one of the two scenarios and false in the other. As
we will see very soon, that causes trouble for many formal epistemologists, including
both Bayesians and learning theorists.

For Bayesians, any justification of full enumerative induction requires justifying a
prior probability distribution of credences that disfavors the Cartesian scenario of
induction and favors its normal counterpart. To see why, consider the tree depicted in
Figure 1. Branches represent possible worlds, or possible histories of inquiry. Moving
straight up means observing a black raven; veering to the right means observing a
nonblack raven. Let Yes denote the hypothesis that all ravens are black, which is true in
the branch marked with ‘Yes’. Let No denote the hypothesis that not all ravens are black,
which is true in the branches marked with ‘No’. The two vertical branches represent
the Cartesian scenario and its normal counterpart, respectively; the Cartesian one is
marked with ‘No’ and its normal counterpart is marked with ‘Yes’. Now, construct
a Bayesian prior by distributing probabilistic credences p1, p2, ... , pnormal, pcartesian to
the branches in the way depicted in Figure 1, while making sure that those credences
are nonnegative and sum to one. With that Bayesian prior, the inquirer updates her
credences as follows. When she moves straight up in the tree, she observes more and
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more black ravens and thereby rules out more and more branches that veer to the right.
Then, with successive updates by conditionalization, the ratio of her posterior credence
in Yes to that in No converges to the prior ratio of pnormal to pcartesian. If this ratio is
much greater than 1, the prior is inductive; much smaller than 1, counterinductive;
close to 1, skeptical.

So, to justify the full version of enumerative induction, a Bayesian needs to provide
some reason for having a prior that is inductive rather than counterinductive or
skeptical. But Bayesians seldom, if ever, try to do so. Possible reasons are not hard
to see. Think about objective Bayesians first, who think that a probabilistic prior is
epistemically permissible just in case, roughly, it is flat or somehow flat enough to guard
against a certain kind of unwarranted bias (which they specify). Objective Bayesians
seem to have never mentioned the Cartesian scenario of induction and the inductive
priors; see, for example, [4, 19, 43]. It might be simply because they were already too
busy with justifying some less-than-full versions of enumerative induction. Or it might
be because they did not find a way to justify an inductive prior as a sufficiently flat
prior, for a naı̈ve view of sufficient flatness appears to require that the prior ratio of
pnormal to pcartesian be close to 1, leading to a skeptical prior.

On the other hand, subjective Bayesians (such as [6]) would say, roughly, that an
inductive prior, if probabilistic, is epistemically permissible—but only because they
think that any probabilistic prior is epistemically permissible.6 So they are committed
to the thesis that the counterinductive priors and the skeptical ones are epistemically
permissible, too, as long as they are probabilistic. To make this commitment explicit
is to invite the usual worry that “anything goes” on the subjective Bayesian account.
This worry, which is all too familiar, has already arisen from many other case studies of
inductive inferences. So subjective Bayesians seem to have no motivation to mention
the case of full enumerative induction because this case does little to assuage (or
aggravate) the familiar worry.

Learning theorists fare no better. When the adoption of an inductive principle is
justified in formal learning theory, it is typically justified as a necessary condition
for achieving a certain epistemic ideal: the ideal of finding the truth at least in the
long run (and possibly as fast as possible) in every possible history of inquiry under
consideration. This epistemic ideal is often called identification in the limit [12, 35].
When applied to the problem of whether all ravens are black, the ideal of identification
in the limit sets an extremely high standard: finding the truth both in the Cartesian
scenario and in its normal counterpart. But to find the truth in one of those two
scenarios is to fail to do so in the other. So the epistemic standard in question is too
high to be achievable and thus too demanding to serve as an evaluative standard. That
is, formal learning theorists lose their evaluative standard in this case.

6 This presentation of subjective Bayesianism is quite simplistic; see [20] for a survey of
varieties of subjective Bayesianism. But the point I made here generalizes to a more precise
picture of subjective Bayesianism, which is the general view that one’s prior is epistemically
permissible as long as it is coherent—pending an account that says what coherence amounts
to. The coherence of a prior is generally taken to require at least that the prior be probabilistic.
Does that exhausts what coherence requires? Yes, according to the most radical subjective
Bayesians. No, according to other subjective Bayesians, who think that coherence requires
more, such as so-called regularity, or countable additivity, or the principal principle, to name
just a few that are most relevant to scientific inquiries.
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Those seem to be some of the reasons why so little has been done to justify
enumerative induction in its full version. So we are still left with the problem of
how we may develop an explicit argument for full enumerative induction, against
counterinduction, and against the skeptical policy. I call this problem the Cartesian
problem of induction, because of the role played by Cartesian scenarios of the sort
mentioned above. The point of pursuing this problem is not to respond to every
conceivable kind of inductive skeptic. The point is, rather, to push ourselves to the
limit—to explore the extent to which we can justify various kinds of inductive inferences
with an explicit argument.

That problem might appear to have a simple solution: just adopt the view that
scientists should care about, not the colors of all ravens, but only the colors of the
ravens that are or will actually be observed by us. This solution looks simple, but are
not straightforward to defend. It presupposes a criterion of what scientists should care
about, a quite stringent criterion that rules in only the objects that are or will actually
be observed. A more lenient criterion rules in all objects that are observable, whether or
not they will actually be observed (e.g., [41]).7 An even more lenient criterion rules in
all objects that are physical, whether or not they are observable. It would be interesting
to see how the most stringent criterion of the three might be defended in favor of the
simple solution to the Cartesian problem of induction. But I believe that, before we
can have an overall assessment of the competing solutions, it is important to explore
and develop at least one positive solution for those who adopt the intermediate or
lenient criterion of what scientists should care about. That is what I set out to do in this
paper.

This paper aims to develop the first systematic solution to the Cartesian problem of
induction. My proposal, put in a slogan, is that Bayesians go learning-theoretic and
learning theorists be truly learning-theoretic. The crux is to revisit the spirit by which
learning theory was created in the 1960’s, give it a clear formulation, and use it to
explain how normative considerations about possible futures can impose a significant
constraint on the short run and even the present, including Bayesian priors.

The next section—Section 3—presents my positive solution to the Cartesian problem
of induction, with a focus on the philosophical ideas and a sketch of the supporting
theorems. The mathematical details are then developed in Sections 4–8. The Bayesian
version of my account is presented in Section 9. To declare the style in use: Emphasis

7 Some clarifications are in order. The Cartesian scenario of induction and its normal
counterpart are not empirically equivalent according to the antirealist view defended by
van Fraassen [41]. For him, a theory is empirically adequate in a possible world w just
in case everything it says about the observable objects and their observable properties or
relations is true in w (1980, 12), and two theories are empirically equivalent just in case
they are empirically adequate in exactly the same possible worlds. The Cartesian scenario of
induction and its normal counterpart make different claims about observable objects (i.e.,
ravens) and their observable properties (i.e., their colors). In particular, one of those two
scenarios makes it true that all ravens (as observable objects) have the blackness property
(as an observable property), and the other scenario makes it false. So, those two scenarios
are not empirically equivalent according to van Fraassen’s definition. That said, it would be
interesting to formulate and assess some variants of van Fraassen’s definition under which
those two scenarios become empirically equivalent. But this task has to be reserved for a
paper specifically on the debate between scientific realism and antirealism.
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is indicated by italics, while the terms to be defined are presented in boldface.

§3. A solution. An empirical problem can be understood to have three components:
First, it poses a question with some potential answers as competing hypotheses. Second,
it considers some possible bodies of evidence that the inquirer might receive. Third, it
comes with a presupposition taken for granted by the inquirer. For example, we have:

The Hard Raven Problem.

(i) Competing Hypotheses. The inquirer asks a question, whether
all ravens are black. There are two potential answers, or competing
hypotheses: Yes and No.

(ii) Possible Bodies of Evidence. She plans to collect ravens and
observe their colors. A body of evidence specifies the colors of the
ravens that have been observed.

(iii) Presupposition. She takes for granted that the colors of ravens
do not change in time, so the true answer to the question posed need
not be indexed to any specific time. This is the only presupposition of
the problem that she pursues.

Call this empirical problem the hard raven problem.
The hard raven problem can be represented by the tree in Figure 2. The observation

of a black raven is represented by a datum +; a nonblack raven, -; a nonraven, 0. A
possible state of the world is represented by an entire branch, which is specified by two
items: first, the infinite data stream produced in that state (represented by an infinite
sequence of circular nodes); second, the hypothesis true in that state (as indicated in
the box). The figure also highlights some Cartesian scenarios of induction. To be sure,
each state is associated with an infinite data stream (e1, e2, ... , en, ...), but that does not
really represents a state in which the scientist will be immortal—it represents, rather, a
state in which the scientist would happen to have evidence (e1, e2, ... , en) if the inquiry
were to unfold up to sample size n, for any positive integer n.

A learning method for the hard raven problem is a mapping that sends each of the
finite data sequences under consideration to one of the competing hypotheses, Yes or
No, or to a question mark. Think of such a learning method as an instruction that
receives data and recommends one of the three qualitative attitudes toward the general
hypothesis: belief, disbelief, and suspension of judgment. (The account to be presented
below has a Bayesian version that allows a learning method to output probabilistic
attitudes.)

Which learning methods are the best for tackling the hard raven problem? I would
like to address this issue by revisiting the root of learning theory: Putnam’s [34, 35]
and Gold’s [11, 12] pioneering works. But before that, I would like to go all the way
back to Plato’s Meno.

3.1. Plato’s Meno revisited. Towards the end of his Meno, Plato considers an
epistemic ideal:

True opinions are a fine thing and do all sorts of good so long as
they stay in their place, but they will not stay long. They run away
from a man’s mind; so they are not worth much until you tether them
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Fig. 2. A tree representation of the hard raven problem.

by working out a reason.8 ... Once they are tied down, they become
knowledge, and are stable. That is why knowledge is something more
valuable than right opinion. What distinguishes the one from the
other is the tether. ([32, pp. 381–382], emphasis mine)

For learning theorists, the idea of tethering to the truth can be explicated in terms
of convergence to the truth ([21, ch. 1]; [13, ch. 10]). In a state associated with
an infinite data stream (e1, e2, e3, ...), a learning method M would output opinions
M (e1),M (e1, e2),M (e1, e2, e3), ... if the inquiry were to extend to sample sizes
1, 2, 3, ..., respectively. A learning method M for an empirical problem is said to
converge to the truth in a state/branch by sample size n if, in that state/branch, M
would output the true hypothesis given sample size n and would then always continue
to do so were the inquiry to unfold indefinitely—as if the output of this learning method
were tethered to the true hypothesis from sample size n onwards.

The idea of tethering to the truth sounds good. But how are we to use that idea to
evaluate learning methods? Learning theorists proceed with two guidelines.

3.2. Guidelines. It seems great to acquire tethering to the truth. If so, it would be
even better to be guaranteed, under the presupposition of the considered empirical
problem, that tethering to the truth would be acquired by a finite, fixed sample size—a
single sample size that would suffice to deliver the desired tethering uniformly across for
all states compatible with the presupposition. This is an epistemic ideal that learning

8 Plato thinks that the process of tethering opinions to the truth is what he calls recollection
([32, p. 381]). Learning theorists can embrace the ideal of tethering without a commitment
to Plato’s theory of recollection.

https://doi.org/10.1017/S1755020321000605 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020321000605


284 HANTI LIN

theorists call uniform convergence to the truth. With respect to any empirical problem,
a best learning method must achieve this epistemic ideal if some learning method does.
That is, this epistemic ideal is so good that it ought to be achieved whenever achievable.

Unfortunately, uniform convergence to the truth is too high an epistemic ideal to be
achievable for many interesting empirical problems. Consider, for example, the easy
raven problem, which is the same as the hard version except that it comes with a strong
presupposition that rules out all Cartesian scenarios of induction. Even the easy raven
problem is too hard to allow any learning method to achieve uniform convergence. It
follows that, for the easy raven problem, every learning method must come to have
convergence to the truth arbitrarily late (or even never reach convergence at all) in
some states of the world under consideration. This is a mathematically inescapable
result for the easy raven problem—no epistemology can help us escape it.

So, in that case, it seems inevitable to consider an epistemic ideal that allows
arbitrarily slow convergence in some states under consideration. Accordingly, a
learning method for an empirical problem is said to converge to the truth everywhere if,
in every state of the world considered in that problem, this learning method converges
to the truth by one or another finite sample size. This mode of convergence is often
called pointwise convergence in mathematics; it is also called identification in the limit
in the learning theory literature. This epistemic ideal is achievable for the easy raven
problem and many other problems, studied in the branch of learning theory called
formal learning theory.

If I am right, the above line of thought embodies two guidelines:

Guidelines

1. Look for what can be achieved (in terms of tethering to the
truth).

2. Achieve the best we can have (with respect to the empirical
problem under consideration).

They reflect the spirit with which Putnam [34, 35] and Gold [11, 12] created learning
theory. I take them to be the two guidelines of learning-theoretic epistemology. Different
epistemic ideals about tethering to the truth are different modes of convergence to the
truth. This raises two questions:

Moving Parts

1. Which modes of convergence deserve to be taken as epistemic
ideals about tethering to the truth?

2. As epistemic ideals, which are higher than which others?

These are the two moving parts of learning-theoretic epistemology. Although learning
theorists might have a civil war over those two moving parts, they are (or should be)
united by this thesis:

The Core Thesis. With respect to any empirical problem, the best
learning methods must at least achieve a highest epistemic ideal about
tethering to the truth, if such a highest one exists.9

This finishes my reconstruction of learning theory.

9 For pioneers of this idea, see [21, 36, 39].
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To clarify: This does not mean that modes of convergence to the truth exhaust all
epistemic ideals that we should care about. Feel free to pursue other kinds of epistemic
ideals in addition to convergence to the truth, as you see fit. This freedom is made
explicit in the statement of the core thesis, as highlighted by the occurrence of ‘at least’.
The core thesis only imposes a constraint on the best learning methods, relative to each
empirical problem. It claims that the best ones must satisfy that constraint, and says
nothing about whether there exists a uniquely best one or whether each one within this
constraint is as good as any other.

We will soon see that, once the two moving parts are fixed in the right way, the core
thesis will shed some light on the hard raven problem.

3.3. Exploring modes of convergence. The hard raven problem is so hard that the
ideal of everywhere convergence is even too high to be achievable. This is because, for
any learning method, if it enjoys convergence to the truth in a Cartesian scenario of
induction, it must fail to do so in its normal, empirically indistinguishable counterpart.
With the impossibility to achieve everywhere convergence for the hard raven problem,
the existing literature of learning theory stops there. But that seems to give up too soon.
If everywhere convergence is unachievable, we should not try to achieve it. We only
need to achieve the best we can have and, before that, we need to look for what can be
achieved—following the two guidelines formulated above, which is what I meant when
I said “be truly learning-theoretic.”

So let’s explore some modes of convergence. Everywhere convergence is only one of
the many convergence criteria that concern the question of where convergence happens.
We can also consider another question, which concerns how convergence happens. Have
a look at Figure 3, in which various modes of convergence to the truth are arranged
by two dimensions. The dimension that stretches to the upper right concerns “where.”
The other dimension, which stretches to the upper left, concerns “how.” I introduce
three modes for each of the two dimensions, so in combination there are nine modes
to be considered in this paper.10 Let me explain those modes of convergence in greater
detail, focusing on their philosophical interpretations and leaving rigorous definitions
to subsequent sections.

Given that no learning method can make it everywhere, let’s see whether there exists
a learning method that can at least make it almost everywhere. The challenge is to
find a good, rigorous explication of the informal concept of “almost everywhere.”
I propose to proceed this way: first motivate a certain closeness relation between states,
which defines a concept of open neighborhoods of a state in a state space, which then

10 Stochastic modes of convergence (such as convergence in probability) will not be considered
in this paper for two reasons. First, stochastic convergence to the truth can mean convergence
in terms of chances (physical, objective probabilities), but the premise of full enumerative
induction is too weak to be committed to the existence of chances. Second, stochastic
convergence to the truth can mean that one is subjectively certain that one’s posteriors
in the truth will converge to full certainty. I am not sure whether this subjective mode of
stochastic convergence is a necessary feature of every good Bayesian prior. But for present
purposes, it suffices to note that the subjective mode of stochastic convergence is too weak
to rule out all counterinductive priors for the hard raven problem: just recall Figure 1 and
let pnormal = 0 and pcartesian > 0.
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Fig. 3. Modes of convergence to the truth, arranged by two dimensions.
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Fig. 4. The empirical topology on a space of data streams or states.

defines what it is for a region to cover almost everywhere in a state space. To be more
specific:

Step 1. Consider an arbitrary state s as a branch depicted on the left
side of Figure 4. An alternative state is said to be empirically closer to
s if more empirical data are needed to distinguish it from s.

Step 2. Given a space of states, X, an open neighborhood of a state s
in X is the set of states in X that are empirically close to s to at least
a certain degree, as depicted on the right side of Figure 4.11

11 This topology is proposed for epistemological purposes by Vickers [42] in computer science
and by Kelly [21] in formal epistemology.
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Step 3. Following the standard treatment in geometry and topology,
a region within a space X is called topologically negligible (also called
nowhere dense) if it can be constructed by removing an open set within
every open neighborhood of every point in space X, and possibly
removing more. Intuitively, we can think of a topologically negligible
region as a slice of “hyper” Swiss cheese that is incredibly full of open
holes. A region is said to cover almost everywhere in X iff it excludes
only a topologically negligible region within X.

Now I can define a new epistemic ideal: Say that a learning method M for an
empirical problem converges to the truth almost everywhere if M converges to the truth
almost everywhere on the space of the states that make h true—for every hypothesis h
considered in the problem. The idea is that we hope to make it almost everywhere—
whichever hypothesis is true.

Here is another mode of convergence that concerns where convergence happens. Say
that a learning method converges to the truth on a maximal domain if there exists no
learning method that converges to the truth in the same states and in more states.

Now let’s consider how convergence might happen. Say that a learning method
achieves perfectly monotonic convergence to the truth if, whenever it outputs one of the
competing hypotheses (rather than suspends judgment), it outputs the truth and would
then continue to have the same true output were the inquiry to unfold indefinitely. That
sounds like a very high ideal. A lower one is this: a learning method is said to achieve
stable convergence to the truth if, whenever it outputs a true competing hypothesis, it
would then continue to have the same true output were the inquiry to unfold indefinitely.
What if it outputs a falsehood? Stable convergence is silent about that case, while
perfectly monotonic convergence rules out that case. So “perfectly monotonic” implies
“stable” but not the other way round. To be stable is to be somewhat monotonic but
not necessarily perfectly so. Plato would probably love stable convergence to the truth,
for it basically requires that, whenever the inquirer forms a belief in the true hypothesis,
this belief is not merely a true opinion but has been “stabilized” or “tethered” to the
truth, attaining the epistemic status that Plato values in Meno.

Finally, by ‘no requirement’ in Figure 3, I mean no requirement on how to converge.
The above finishes the sketch of the three modes of convergence on each of the two

axes in Figure 3. So there are nine “combined” modes of convergence arranged into a
two-dimensional lattice structure, in which some modes are ordered higher than some
others. Here I adopt the convention of the Hasse diagram, according to which a higher
node is one that we can reach by going up along edges without going down. A mode,
if ordered higher, is mathematically stronger; it implies all the modes ordered lower in
the lattice.

3.4. An argument for full enumerative induction. I believe that there are more modes
of convergence as epistemic ideals, but the above are enough for the present purpose—
for developing an explicit argument for full enumerative induction. Here you go:

A Learning-Theoretic Argument

1. (Evaluative Premise) In the lattice depicted in Figure 5, if a mode of
convergence to the truth is ordered higher, it is a higher epistemic ideal. (This
fixes the moving parts of learning-theoretic epistemology.)
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EverywherePerfectly
Monotonic

Almost Everywhere
+ Maximal Domain

Almost EverywhereNo Requirement

Stable
(Sort of Monotonic)

Fig. 5. Modes achievable for the hard raven problem.

2. (Evaluative Premise) For tackling any empirical problem, the best learning
methods must at least achieve, of the nine epistemic ideals in the lattice,
the highest achievable one—when such a highest one exists uniquely. (This
implements the core thesis of learning-theoretic epistemology.)

3. (Mathematical Premise) By Theorem 7.6 of this paper, we have:
3.1 For tackling the hard raven problem, the achievable modes in that lattice

are exactly the four in the shaded area depicted in Figure 5.
3.2 Furthermore, the starred mode—“almost everywhere” + “maximal

domain” + “stable”—is achieved only by learning methods that
implement full enumerative induction rather than counterinduction or
the skeptical policy.

4. (Evaluative Conclusion) So, the best learning methods for tackling the hard
raven problem must have at least the following properties:

4.1 achieving the starred mode of convergence (by premises 1, 2, and 3.1);
4.2 implementing full enumerative induction, rather than counterinduction

or the skeptical policy (by premise 3.2 and the preceding clause 4.1).

This, I believe, is the first explicit argument developed in formal epistemology for full
enumerative induction, against counterinduction, and against the skeptical policy.12

Now let me turn to some applications of the proposed framework.

3.5. Applications: Ockham’s razor and Bayes’ priors. One application leads to
a justification of a kind of Ockham’s razor. A theorem to be presented below,

12 I developed a very similar learning-theoretic argument to solve a problem about causal
inference that parallels the Cartesian problem of induction. For details, see Lin [26], whose
argument relies on a mathematical premise proved in Lin and Zhang [27].
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Theorem 8.3, implies that, for tackling any problem, following Ockham’s razor of
a certain kind is necessary for achieving any mode of convergence to the truth that is
strong enough to imply “almost everywhere” + “stable.” This kind of Ockham’s razor
says roughly this: “Do not accept a competing hypothesis that is more complicated
than necessary for fitting the data you have,” in a sense of complexity made precise in
Section 8. In light of the result just sketched, a learning-theoretic epistemologist can
argue for the following evaluative thesis:

The best learning methods for tackling a problem P must implement
the kind of Ockham’s razor just mentioned if, with respect to P , the
highest achievable mode of convergence to the truth implies “almost
everywhere” + “stable.”

The connection between Ockham’s razor and enumerative induction is that any
instance of counterinductive inference violates the kind of Ockham’s razor in question,
as we will see in Section 8.

Here is a second application. Bayesians can go learning-theoretic, and I propose
that they do so. In fact, the results sketched above all have their Bayesian counterparts,
stated in Section 9. What emerges is a view that is both Bayesian and learning-theoretic.
To be more precise, consider cognitively idealized agents—those who have sharp, real-
valued degrees of belief in propositions closed under certain logical connectives (such
as ‘and’, ‘or’, ‘not’). According to Bayesianism, those agents can be epistemically
evaluated as coherent or not. Versions of Bayesianism may differ in terms of what
counts as coherent—that is quite familiar. What is less familiar is that there can be a
version of Bayesianism that adds the following:

Learning-Theoretic Bayesianism. Cognitively idealized agents can
also be evaluated as good or bad at tackling one or another empirical
problem. The best such agents for tackling an empirical problem P
must have at least the following properties:

(i) having a coherent prior and the plan to update it by
conditionalization on evidence and

(ii) having a prior that, via conditionalization, achieves a highest
achievable mode of convergence to the truth with respect to
P , if such a highest mode exists.

This view, which may be called learning-theoretic Bayesianism, seems to be a view
already implicit in the minds of some Bayesians who care about designing priors that
are good in terms of convergence to the truth [7, 8].13 Clause (i) is a distinctively
Bayesian thesis. Clause (ii) is a learning-theoretic thesis; in fact, it is the Bayesian
version of the core thesis of learning-theoretic epistemology. The epistemological idea
is still learning-theoretic; it is just that, now, the doxastic modeling in use is quantitative
rather than qualitative. I believe that learning-theoretic Bayesianism deserves to be
defended against other varieties of Bayesianism, but that has to be reserved for another
paper. What’s important for now is that learning-theoretic Bayesianism can be used,
together with Theorem 9.4, to argue for the adoption of an inductive prior—rather
than a counterinductive or skeptical prior—for tackling the hard raven problem.

13 Kelly ([21, ch. 13]) can also be interpreted as a pioneer of this view.
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The above summarizes the main mathematical results and the way they are employed
to solve the Cartesian problem of induction, assuming learning-theoretic epistemology.
The rest of this paper is devoted to the mathematical details.

§4. Learning theory: The basics. This section reviews some definitions familiar in
formal learning theory.

Definition 4.1. An (empirical ) problem is a tuple P =
(
H, E ,S

)
consisting of three

components:14

1. a hypothesis space H, which is a set of competing hypotheses;
2. an evidence space E , which is a set of finite data sequences (e1, ... , en); and
3. a state space S, which is a set of possible states of the world taking the form (h, �e),

where
– h, called the true hypothesis in this state, is an element of H;
– �e, called the data stream produced in this state, is an infinite sequence of data,

written �e = (e1, e2, e3, ...), whose finite initial segments (e1, ... , en) are all in E .

The state space S captures the presupposition of the problem—it is the set
of all possible ways for the inquiry to unfold indefinitely without violating the
presupposition.

Definition 4.2. A learning method for a problem
(
H, E ,S

)
is a function

M : E → H ∪ {?} ,
where ? represents suspension of judgment. Given each data sequence (e1, ... , en) ∈ E , the
output of M is writtenM (e1, ... , en).

Example 4.3. The hard raven problem poses this question: “Are all ravens black?” This
problem was already informally represented by the tree structure in Figure 2 and can now
be formally defined as follows.

• The hypothesis space H is {Yes, No}, where:

- Yes means that all ravens are black.
- No means that not all ravens are black.

• The evidence space E consists of all finite sequences of +, 0, and/or -, where:

- datum + denotes the observation of a black raven (a positive instance);
- datum -, a nonblack raven (a negative instance); and
- datum 0, a nonraven (a non-instance).

• The state space S consists of all states in any one of the following three
categories15:

(a) the states (Yes, �e) in which �e is an infinite +/0 sequence (namely, an
infinite sequence whose entries are either + or 0),

14 Note that, although the concept of problems as defined here is enough for present purposes,
it is too narrow to cover the problems that entertain statistical hypotheses.

15 If you wish, there is a fourth category: the states (Yes, �e) in which �e contains an occurrence
of - (a nonblack raven). But such states are logically impossible, so they need not be
considered.
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(b) the states (No, �e) in which �e is an infinite +/0 sequence, and
(c) the states (No, �e) in which �e is an infinite +/0/- sequence that contains at

least one occurrence of -.

The second category (b) contains the states in which there are nonblack ravens but the
inquirer would never observe one even if the inquiry were to extend indefinitely, so they
are the Cartesian scenarios of induction.

Example 4.4. The easy raven problem is basically the same as the hard raven problem
except that its state space consists only of the states in categories (a) and (c), ruling out
the Cartesian scenarios of induction. So the easy raven problem presupposes that the
inquirer is not living in a Cartesian scenario of induction. It poses this question: “Suppose
that you are not living in a Cartesian scenario of induction, then are all ravens black?”

Definition 4.5. Let M be a learning method for a problem P =
(
H, E ,S

)
. M is said to

converge to the truth in a state (h, �e) ∈ S if

lim
n→∞

M (e1, ... , en) = h ,

namely, there exists a positive integer k such that, for each n ≥ k, we have that
M (e1, ... , en) = h. M is said to converge to the truth everywhere for P =

(
H, E ,S

)
if

it converges to the truth in every state in the state space S.

Then it is routine to prove the following negative result:16

Proposition 4.6. Although the easy raven problem has a learning method that
converges to the truth everywhere, the hard raven problem does not.17

§5. A topological conception of “almost everywhere”. When convergence to the
truth cannot be achieved everywhere, let’s see whether it can be achieved at least almost
everywhere. This section explicates the concept of “almost everywhere” in terms of the
concept of open neighborhoods, which is in turn explicated by the concept of closeness.

Consider two data streams �e and �e ′. Suppose that they are identical up until sample
size n, that is, ei = e′i for each i ≤ n but en+1 �= e′n+1. Note that the larger n is, the later
the point of departure is and the more data one needs to distinguish those two data
streams. So, the larger n is, the harder it is to empirically distinguish those two data
streams, and the closer �e is to �e ′—closer in the empirical sense (recall the left side of
Figure 4). Accordingly, we have:

Definition 5.1. If two data streams �e and �e ′ are identical up until sample size n, say
that they are empirically close to degree n.

16 Proof. The first part is a classic, well-known result in learning theory. To prove the second
part, let �e be an infinite +/0 sequence. Consider state s = (Yes, �e) and its Cartesian
counterpart s ′ = (No, �e). Let M be an arbitrary learning method for the hard raven problem.
It suffices to note that M converges to the truth in s iff M fails to do so in s ′ (because these
two states are empirically equivalent).

17 This impossibility result remains even if we resort to partial identification in the limit, a
weakening of identification in the limit due to [29], which requires that, in each possible way
for the inquiry to unfold indefinitely, the true hypothesis is output infinitely often and each
false hypothesis is output at most finitely often.
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This allows us to define the empirical closeness between states, which can then be
used to define open neighborhoods of states, as follows:

Definition 5.2. Consider a set of states, denoted by X. Two states in X are empirically
close to at least degree n iff their associated data streams are empirically close to at
least n. Consider an arbitrary set X of states. Given a state s ∈ X and a sample size n, we
can construct the set of the states in X that are empirically close to s to at least degree n
(recall the right side of Figure 4). Such a set is called a basic open neighborhood of state s,
also called a basic open set in space X. The basic open sets in X form a collection called
the empirical topological base of X.

It is routine to verify that the empirical topological base of any state space is indeed
a topological base as standardly defined.18

Of particular interest is the case in which the set of states in question, X, is the set
of states that make a fixed hypothesis true. Consider an arbitrary hypothesis h in a
problem P =

(
H, E ,S

)
. Let |h| be the set of states that make h true; or formally:

|h| = {(h′, �e ′) ∈ S : h′ = h}.
Let me introduce a convenient way to express the basic open neighborhoods in |h|.
Choose a finite data sequence (e1, ... , en). Construct the set of the states in |h|
whose data stream extends (e1, ... , en). If this set is nonempty, we have a basic open
neighborhood. All basic open neighborhoods in |h| can be constructed that way. More
formally, define

|(e1, ... , en)| = {(h′, �e ′) ∈ S : �e ′ extends (e1, ... , en)}.
We can understand |h| and |(e1, ... , en)| as the propositions expressed by a hypothesis
and a body of evidence, respectively (conditional on the presupposition of the
problem).19 It is routine to verify that the basic open neighborhoods in |h| are exactly
the nonempty sets taking this form: |h| ∩ |(e1, ... , en)|, which is the set of the states that
make h true and have a data stream that extends (e1, ... , en).

Once we have a criterion of what counts as a basic open neighborhood in a space
X, it can be used to define a topological conception of “negligible.” The idea, put
informally, is that a subset of a space X is said to be negligible if it can be constructed
from what may be called a hyper hole-punching procedure:

1. Start from the entire topological space X in question.
2. For any point x ∈ X , and any open neighborhood N of x (however small N

may be), punch a hole by removing a basic open set within N.
3. If you wish, remove some more points.

Examples of topologically negligible sets include straight lines in the two-dimensional
Euclidean space (for a straight line can be constructed by removing an appropriate
open disc from every open disc). This idea can be put formally as follows:

18 Given a set X of points, a family B of subsets of X is called a topological base if, first, every
point in X is contained in some set in B and, second, for any B1, B2 ∈ B and any point
x ∈ B1 ∩ B2, there exists B3 ∈ B such that x ∈ B3 ⊆ B1 ∩ B2.

19 If you wish, the concept of problems and other learning-theoretic concepts can be defined
purely in terms of propositions, as done in Baltag et al. [1] and Kelly et al. [24].
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Definition 5.3. Let X be a (topological ) space equipped with a topological base BX.
A negligible (or nowhere dense) region within X is a subset X ′ of X such that every
nonempty basic open set in BX includes a nonempty basic open set in BX that is disjoint
from X ′. If a subset of X can be expressed as X \ X ′ for some negligible region X ′, say
that it covers almost everywhere in X, and that it contains almost all points in X.20

With the above definitions, we have:

Lemma 5.4. Consider the hard raven problem. The set of the Cartesian scenarios of
induction is one of the (many) negligible regions within the space |No| equipped with the
empirical topological base.

Proof. Recall that a Cartesian scenario of induction is a state (No, �e) with �e being
a +/0 sequence, which contains no occurrence of - (nonblack raven). So any set of
the form |No| ∩ |(e1, ... , en, -)| is disjoint from the set of the Cartesian scenarios of
induction. To finish the proof, it suffices to note that each nonempty basic open set
in the topological space |No|, say N = |No| ∩ |(e1, ... , en)|, includes a nonempty basic
open set, namelyN ′ = |No| ∩ |(e1, ... , en, -)|, which excludes all Cartesian scenarios of
induction.

This is a lemma for proving the main result of this paper. Note that I do not wish to
infer from “that is topologically negligible” to “we should ignore that.” To infer that
way is to ignore all possible states of the world, because every state forms a singleton
that is topologically negligible. And it is absurd to ignore all states. A good justification
for full enumerative induction has to be formulated in a more careful way, such as the
learning-theoretic argument in Section 3.4.

§6. Mode of convergence: “Almost everywhere”. The preceding section is purely
explicatory: it provides an explication of the concept of “almost everywhere,” and gives
no epistemology at all. Epistemology starts from here: using the above explication of
“almost everywhere” to define an epistemic ideal.

Definition 6.1. A learning method M for a problem P =
(
H, E ,S

)
is said to converge

to the truth almost everywhere if, for each hypothesis h ∈ H, M converges to the truth
almost everywhere on the topological space |h|, with respect to the empirical topology.

I propose this definition as an explication of the (informal) epistemic ideal of
convergence to the truth in almost all possible states. Perhaps there are other good
explications of “almost all”—they should be explored. If we can develop a better
explication than the present one, we should use it instead. But I tend to think that the
present proposal is at least a natural starting point. If the present explication turns
out to be only one of many good standards of “almost all,” then we should try to see
whether it is possible to meet all of those standards simultaneously.21 The reason is
learning-theoretic: let’s achieve them all, if the best possible is to achieve them all.

20 For a survey of various conceptions of “almost everywhere” developed in topology and
measure theory, see [30].

21 For example, instead of requiring convergence to happen almost everywhere on the space
|h| ⊆ S for each hypothesis h ∈ H, we can require convergence to happen almost everywhere
on the entire state space S, with respect to the empirical topology. So we have two definitions
of almost everywhere convergence: one considers the entire state space, and the other
considers each hypothesis. But we do not have to choose between those two definitions.
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The above definition makes possible a series of positive results. Here is the first one:

Proposition 6.2. The hard raven problem has a learning method that converges to the
truth almost everywhere.

Proof. By Lemma 5.4, the topological space |No| has the following negligible region:

C = {(No, �e) : �e is a +/0 sequence},
which consists of the Cartesian scenarios of induction. So it suffices to give an example
of a learning method that converges to the truth in

every state in |Yes| and
every state in |No| \ C .

The following learning method does the job:

M ∗: “Output hypothesis Yes if you haven’t seen a nonblack raven
(-); otherwise output No.”

This finishes the proof.

It should be noted that the above is only a first step toward justifying full enumerative
induction. For there remains a subproblem, which may be called the problem of
counterinduction. Let me illustrate with an example.

Example 6.3. Almost everywhere convergence to the truth, alone, imposes only a weak
constraint, too weak to rule out certain counterinductive methods, such as this one:

M †: “Output hypothesis No if everything you have seen is a black raven
(+); otherwise output whateverM ∗ outputs.”

This counterinductive method also converges to the truth almost everywhere for the hard
raven problem. To see why, define the following pair of a Cartesian scenario and its normal
counterpart:

snormal = (Yes, the constant sequence of +),
scartesian = (No, the constant sequence of +).

It is not hard to verify that the counterinductive method defined above,M †, converges to
the truth in

every state in |Yes| \ {snormal},
every state in |No| \ (C \ {scartesian}).

{snormal} is negligible within |Yes|, because every singleton within |Yes| is. C \ {scartesian}
is negligible within |No|, because the larger set C is (by Lemma 5.4).

The above example suggests that, to rule out every counterinductive method, we
need to look for additional modes of convergence.

If both are good explications of “almost everywhere,” then we should view them as two
distinct epistemic ideals for us to strive for where possible. When we can achieve both at
the same time, we should do it. It turns out that, if we were to consider both versions of
almost everywhere convergence, the main theorems of this paper would remain the same. I
am indebted to Alan Hájek for discussion of this idea.
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§7. Modes of convergence: “Stable” and “maximal”. Before one’s opinion con-
verges to the truth, it might be false, or it might be true but to be retracted as evidence
accumulates. But when one’s opinion has converged to the truth, it is “tied” to the
truth and will not “run away,” which seems to be epistemically valuable. Hence the
following definition:

Definition 7.1. A learning method M is said to have converged to the truth by the n-th
stage of inquiry in a state s = (h, �e) if

M (e1, ... , ei) = h for each i ≥ n.
Then we can distinguish the following two epistemic ideals:

Definition 7.2. A learning method M for a problem P =
(
H, E ,S

)
is said to converge

to the truth with perfect monotonicity if

for any state s = (h, �e) and any stage n such thatM (e1, ... , en) �= ?, M
has converged to the truth by stage n in state s.22

Say that M converges to the truth with stability if the following (weaker) condition holds:

for any state s = (h, �e) and any stage n such that M (e1, ... , en) = h
(i.e., the truth in s), M has converged to the truth by stage n in state s.23

Stable convergence is sort of monotonic but not necessarily perfectly so, while perfect
monotonicity is quite demanding. Indeed, when a learning method for a problem
achieves everywhere convergence to the truth with perfect monotonicity, it is basically
what a computability theorist would call an effective procedure for solving that problem
if we ignore whether the learning method in question is a computable function. That
combination of modes, “everywhere” + “perfectly monotonic,” is a great thing to have
whenever achievable. But it is too demanding to be achievable for any problem that is
inductive in nature, such as the hard raven problem. In fact, we have a stronger negative
result:

Proposition 7.3. For the hard raven problem, it is impossible to simultaneously achieve
the following two modes of convergence to the truth: “almost everywhere” and “perfectly
monotonic.”

Here is another desirable mode of convergence:

22 Everywhere convergence plus perfect monotonicity is equivalent to what’s called finite
identifiability, studied by Mukouchi [28] and Lange and Zeugman [25].

23 The concept of stable convergence to the truth is independently developed by Genin [10],
who also develops a stochastic version of it, called progressiveness. Stable convergence to
the truth is closely related to—but significantly different from—some properties that have
been studied in learning theory: Putnam’s [35] and Schulte’s [39] “mind-change”; Kelly and
Glymour’s [23] “retraction”; Kelly et al.’s [24] “opinion cycle.” Those properties penalize
every retraction of a hypothesis. But not every retraction is bad: the retraction of a falsehood
is good. In contrast, stable convergence to the truth only penalizes the retraction of a truth,
and rightly so. Closely related is the “no U-shaped learning” condition studied in Carlucci
et al. [2, 3], but it penalizes the retraction of a truth only when one returns to the truth
afterwards (forming a U-turn). Stable convergence to the truth penalizes the retraction of a
truth whether or not there will be U-turn, and rightly so.
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Definition 7.4. A learning method M for a problem is said to converge to the truth on
a maximal domain if there is no learning method for the same problem that converges to
the truth in all states where M does and in more states.

Then we have:

Proposition 7.5. The hard raven problem has a learning method that converges to the
truth (i) almost everywhere, (ii) on a maximal domain, and (iii) with stability. Every such
learning method M has the following properties:

1. M is never counterinductive in that, for any data sequence (e1, ... , en) that has not
witnessed a nonblack raven,M (e1, ... , en) �= No;24

2. M is enumeratively inductive (and thus non-skeptical ) in that, for any data stream
�e that never witnesses a nonblack raven,M (e1, ... , en) converges to Yes as n → ∞.

The idea of proof is explained in Appendix A.1, which I have tried to make as
instructive as possible for those new to learning theory. The results of this section are
proved in Appendix A.2.

Given Propositions 4.6, 7.3, and 7.5, the first main result follows immediately:

Theorem 7.6 (Hard Raven Theorem). Consider the modes of convergence to the truth
arranged in the lattice in Figure 5. The four modes in the shaded area are exactly those
achievable for the hard raven problem. For a learning method to achieve the strongest of
those four, namely “almost everywhere” + “maximal” + “stable,” a necessary condition
is to implement full enumerative induction, rather than counterinduction or the skeptical
policy.

The above result is the mathematical premise of the learning-theoretic argument for
full enumerative induction, as formulated above in Section 3.4. The impossibility of
everywhere convergence to the truth implies that convergence to the truth has to be
sacrificed in some possible states, preferably only on some negligible domain. Some, but
which? The above result gives an answer: to achieve all those three modes of convergence
to the truth (i)–(iii), we have no alternative but to sacrifice convergence to the truth
in exactly the Cartesian scenarios of induction, at least when we are tackling the hard
raven problem.

It should be noted that, like many results in learning theory, the above result is
sensitive to the problem under discussion. If we turn to a problem that is even harder
than the hard raven problem—too hard to allow the achievement of almost everywhere
convergence—then the account I propose here will be silent on that problem. See
Appendix A.5 for an example. Learning-theoretic epistemology provides evaluations
that are sensitive to the empirical problem under discussion.

The rest of this paper is devoted to two interesting extensions of the above account:
First, my argument against counterinduction can be generalized to a justification for
a kind of Ockham’s razor. Second, every important result in the above can be easily
modified to obtain a Bayesian counterpart.

24 It is worth mentioning that the proof of this clause (as provided in Appendix A.2) gives a
stronger result: setting aside “maximal domain,” the achievement of the two modes “almost
everywhere” and “stable” is already sufficient for being never counterinductive.
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§8. “Almost everywhere” + “stable” ⇒ “Ockham”. One of the results in the above
(clause 1 of Proposition 7.5) has been used to justify a norm that says when to follow
this methodological principle:

Do not accept a counterinductive hypothesis.

When to follow that principle? At least when tackling the hard raven problem. This
section presents a strengthened result, which can be used to justify a norm that says
when one ought to follow a certain version of Ockham’s razor, whose informal idea
can be expressed as follows:

Do not accept a hypothesis if it is more complicated than necessary for
fitting data, where being more complicated means, roughly, having a
higher capacity for fitting data.25

Let me start by defining the version of Ockham’s razor I have in mind.

Definition 8.1. Let a problem P =
(
H, E ,S

)
be given. A data sequence (e1, ... , en) and

a hypothesis h are said to be compatible if the propositions they express have a nonempty
overlap, which means that there exists a state in S that makes hypothesis h true and
produces data sequence (e1, ... , en). For each hypothesis h ∈ H, let E(h) denote the set
of data sequences in E that are compatible with h (so E(h) captures the data-fitting
capacity of h). The empirical simplicity order, written ≺, is defined on H as follows: for
all hypotheses h and h′ ∈ H,

h ≺ h′ iff E(h) ⊂ E(h′).

Or in words, h is simpler then h′ iff h “fits” strictly less data sequences than h′ does. Say
that h is no more complex than h′ if h′ ⊀ h.

In the hard raven problem, for example, the inductive hypothesis Yes is simpler than
the counterinductive hypothesis No.

The version of Ockham’s razor I have in mind asks one to accept a hypothesis h
only if, first, h is no more complex than necessary for fitting the available data and,
second, h will continue to be accepted until it is refuted by the accumulated data. More
formally, we have:

Definition 8.2. A learning method M for a problem P =
(
H, E ,S

)
is said to follow

Ockham’s tenacious razor just in case it satisfies the following two conditions:

1. (Razor Condition) A hypothesis h is the output of M given a data sequence
(e1, ... , en) only if h is no more complex than any hypothesis inH that is compatible
with (e1, ... , en).

2. (Tenacity Condition) A hypothesis h is the output of M given a data sequence
(e1, ... , en) only if h continues to be the output of M given any data sequence in E
that extends (e1, ... , en) and stays compatible with h.

25 This informal idea of Ockham’s razor is quite general and admits of different implementa-
tions. The implementation below proceeds by defining the fitting relation in terms of logical
compatibility. This basically follows Popper’s [33] account of Ockham’s razor, according to
which the easier it is to falsify a hypothesis, the simpler that hypothesis is. In the statistical
context, the more standard implementation defines the complexity of a hypothesis/model
by the number of adjustable parameters. See ([9, Sections 2 and 7]) for discussion of the
relevant references in the statistical literature.
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In the hard raven problem, to comply with the razor condition is exactly to be never
counterinductive.

Then we have the second main result, which I call the Ockham stability theorem:26

Theorem 8.3 (Ockham Stability Theorem). Let M be a learning method for a problem.
Suppose that M converges to the truth almost everywhere. Then the following two
conditions are equivalent:

1. M converges to the truth with stability.
2. M follows Ockham’s tenacious razor.

So, given almost everywhere convergence, stable convergence is the weakest normative
standard that is strong enough to enforce Ockham’s tenacious razor—strong enough,
thanks to the 1 ⇒ 2 side; weakest, thanks to the 2 ⇒ 1 side.

The 1 ⇒ 2 side of the Ockham stability theorem has an application: it can
be used to prove, as an immediate corollary, the “never be counterinductive”
part of Proposition 7.5. For, when tackling the hard raven problem, to be never
counterinductive is exactly to comply with the razor condition.

The result of this section is proved in Appendix A.3.

§9. Learning-theoretic Bayes. Instead of tethering one’s qualitative beliefs to the
truth, learning-theoretic epistemology can talk about tethering one’s probabilistic
degrees of belief to high accuracy. The epistemological idea is the same; it is just
a change of the doxastic modeling in use. So it should not be surprising that the
important results presented above all have their Bayesian counterparts, as the following
shows.

Definition 9.1. Let a problem P =
(
H, E ,S

)
be given. Recall that |h| is the set of

states in S that make hypothesis h true, and |(e1, ... , en)| is the set of states in S that
produce data sequence (e1, ... , en). Let AP denote the smallest �-algebra that contains
the above propositions for all h ∈ H and all (e1, ... , en) ∈ E . Given a probability function
P defined on that algebra, I will write P(h) as a shorthand for P(|h|). Similarly, I will
write P(e1, ... , en) and P(h | e1, ... , en), where the latter stands for conditional probability
as standardly defined.27

Definition 9.2. A probabilistic prior for a problem P =
(
H, E ,S

)
is a probability

function P defined on �-algebra AP with P(e1, ... , en) > 0 for each data sequence
(e1, ... , en) ∈ E . P is said to (have its posteriors) converge to the truth in a state
s = (h, �e) ∈ S if

lim
n→∞

P(h | e1, ... , en) = 1,

that is, for any � > 0, there exists a positive integer k such that, for each n ≥ k,
P(h | e1, ... , en) > 1 – �.P is said to converge to the truth everywhere for problem

(
H, E ,S

)
if it converges to the truth in each state in S. P is said to converge to the truth almost

26 This theorem extends and strengthens some aspects of my earlier work with co-authors [24]
in order to address the hard raven problem and the like. But this theorem also simplifies
and weakens other aspects in order to highlight the core idea; in particular, the concept of
Ockham’s razor used here is simpler and weaker (but strong enough for present purposes).

27 Namely, P(A |B) = P(A ∩ B)/P(B), if P(B) �= 0.
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everywhere for a problem P =
(
H, E ,S

)
if, for each hypothesis h ∈ H, P converges to the

truth almost everywhere on the topological space |h|.
Definition 9.3. Let P be a probabilistic prior for a problem P =

(
H, E ,S

)
. P is said to

have started to stably converge to the truth by stage n in state s = (h, �e) ∈ S if

1. P(h | e1, ... , en, ... , en+i) is monotonically increasing as a function of i defined onN.
2. P(h | e1, ... , en, ... , en+i) converges to 1 as i → ∞.

P is said to converge to the truth with stability if, for each hypothesis h ∈ H, for each
state s = (h, �e) ∈ S that makes h true, and for each stage n as a positive integer, if
P(h | e1, ... , en) > 1/2, then P has started to stably converge to the truth by stage n in
state s.

In the above definition of stable convergence, you can replace the occurrence of
1/2 by any threshold you take to stand for high probability, and do the same for the
Bayesian results below. But for concreteness, let me stay with the threshold 1/2 in this
paper.

Theorem 9.4. The hard raven problem has a probabilistic prior that converges to the
truth (i) almost everywhere, (ii) on a maximal domain, and (iii) with stability. Every such
probabilistic prior P has the following properties:

1. P is never counterinductive in that, for any data sequence (e1, ... , en) that has not
witnessed a nonblack raven, P(No | e1, ... , en) ≤ 1/2.

2. P is enumeratively inductive in that, for any data stream �e that never witnesses a
nonblack raven, P(Yes | e1, ... , en) converges to 1 as n → ∞.

Definition 9.5. A probabilistic priorP for a problem
(
H, E ,S

)
is said to follow Ockham’s

tenacious razor just in case the following two conditions hold:

1. (Razor Condition) P(h | e1, ... , en) > 1/2 only if h is no more complex than any
hypothesis in H that is compatible with the given data sequence (e1, ... , en).

2. (Tenacity Condition) P(h | e1, ... , en) > 1/2 only if, for any data sequence
(e1, ... , en, ... , en+n′) in E that extends (e1, ... , en) and stays compatible with h,
P(h | e1, ... , en+i) is monotonically increasing as a function of i ∈ {0, ... , n′}.

Theorem 9.6 (Ockham Stability Theorem, Bayesian Version). Let P be a probabilistic
prior for a problem that converges to the truth almost everywhere. Then, condition 1 below
implies condition 2 below (but the converse does not hold ):

1. P converges to the truth with stability.
2. P follows Ockham’s tenacious razor.

Although the converse does not hold,28 we might be able to formulate a stronger
version of tenacity or a weaker version of stability in Bayesian terms in order to restore
the equivalence between conditions 1 and 2. But that will not be attempted here. For
there is no loss in application to epistemology: to justify Ockham’s razor, what is really
needed is just the implication relation from the epistemic ideal expressed by 1 to the

28 Here is the reason why the converse does not hold: the tenacity condition—as defined in the
Bayesian framework—only requires the posterior probability to remain the same or go up
as data accumulate, but does not require it to go up high enough to ensure convergence to
1, let alone convergence with stability.
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methodological principle expressed by 2, which shows that the latter is necessary for
achieving the former. The converse does no justificatory work. Showing that Ockham’s
razor achieves a certain epistemic ideal does not suffice to argue that one has to follow
Ockham’s razor, for there might be other ways to achieve that ideal.

The results of this section are proved in Appendix A.4.

§10. Conclusion. For tackling the problem of whether all ravens are black, the
highest achievable epistemic ideal (among the ideals considered in this paper) is the
combination of three modes of convergence to the truth: “almost everywhere” +
“maximal domain” + “stable,” as depicted in the lattice in Figure 5. A necessary
condition for achieving that is to follow full enumerative induction rather than
counterinduction or the skeptical policy. And this holds regardless whether the doxastic
modeling in use is qualitative or Bayesian.

I believe that learning-theoretic epistemology is a promising approach to the
evaluative studies of inductive inferences, but a defense of this philosophical claim has
to be reserved for future works. The goal of this paper is, instead, to clearly identify the
core thesis of learning-theoretic epistemology and use it to develop the first systematic
and mathematically rigorous solution to the Cartesian problem of induction.

§A. Appendix.

A.1. The idea of proof of Proposition 7.5. Proposition 7.5 has three parts. The
existential claim is easy to prove, and so is the universal claim about “be enumeratively
inductive.” The crucial part is the universal claim about “never be counterinductive.”
The reason why it is crucial is two-fold: first, it is an instructive special case of the 1 ⇒ 2
side of the Ockham stability Theorem 8.3; second, it serves as a lemma for proving the
part about “be enumeratively inductive.” So let me separate the crucial part for close
examination:

Proposition A.1 (Never Be Counterinductive). Let M be a learning method for the
hard raven problem that converges to the truth almost everywhere with stability. Then M
is never counterinductive.

Note that this proposition does not rely on convergence on a maximal domain. It
will be convenient to have the following concept:

Definition A.2. Given a problem
(
H, E ,S

)
, a data sequence (e1, ... , en) ∈ E is said to

be compatible with a hypothesis h ∈ H if the propositions they express have a nonempty
overlap, namely:

|h| ∩ |(e1, ... , en)| �= ∅ ,

which also means that (e1, ... , en) can be extended into a data stream �e such that (h, �e) is
a state in S.

The proof of the above proposition proceeds as follows. Let M be a learning method
for the hard raven problem that converges to the truth almost everywhere. Suppose
that M is sometimes counterinductive. That is, for some +/0 sequence (e1, ... , en), we
have that:

M (e1, ... , en) = No . (1)
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Since (e1, ... , en) is a +/0 sequence, it is compatible with Yes. To summarize, we have
had:

• M converges to the truth almost everywhere.
• (e1, ... , en) is compatible with Yes.

Given these two conditions, we can apply the so-called forcing lemma (to be stated
soon) in order to “force” M to output Yes by extending (e1, ... , en) into another +/0
sequence (e1, ... , en, ... , en′). So,

M (e1, ... , en, ... , en′) = Yes. (2)

Now, choose a state s such that

s ∈ |No| ∩ |(e1, ... , en, ... , en′)| . (3)

We can always make this choice because every data sequence is compatible with No.
By (1)–(3), we have: in state s, M outputs the truth No at stage n and then retracts
it at stage n′. So it fails to stably converge to the truth. This finishes the proof of the
part “never be counterinductive” in Proposition 7.5—as soon as the forcing lemma is
stated and established.

Here is the forcing lemma:

Lemma A.3 (Forcing Lemma). Let
(
H, E ,S

)
be an arbitrary problem. Suppose that

M is a learning method for it that converges to the truth almost everywhere, and that
(e1, ... , en) ∈ E is compatible with h ∈ H. Then the above data sequence can be extended
into a data sequence (e1, ... , en, ... , en′) ∈ E such that:

1. (e1, ... , en, ... , en′) is still compatible with h and
2. M (e1, ... , en, ... , en′) = h.

Proof. Suppose that (e1, ... , en) is compatible with h. So, |h| ∩ |(e1, ... , en)| is a
nonempty basic open set of topological space |h|. We are going to make use of the
following characterization of “almost everywhere” in general topology:

A property applies almost everywhere on a topological space (with a
distinguished topological base) if, and only if, each nonempty (basic) open
set U has a nonempty (basic) open subset U ′ such that the property applies
everywhere on U ′.

So, by the “only if” side and the hypothesis that M converges to the truth almost
everywhere, it follows that the basic open set |h| ∩ |(e1, ... , en)| has a nonempty basic
open subset, |h| ∩ |(e1, ... , en, ... , ek)| on which M converges to the truth everywhere.
Now, within this nonempty set, choose an arbitrary state (h, �e). So, in that state, M
converges to the truth, and hence there exists a positive integer n′ ≥ k such that M
outputs the truth h at the n′-th stage along data stream �e. That is:

M (e1, ... , en, ... , ek, ... , en′) = h.

To finish the proof, it suffices to note that the above input (e1, ... , en, ... , ek, ... , en′)
is compatible with h because it is an initial segment of the data stream �e in
state (h, �e).

The above proves the “never be counterinductive” part of Proposition 7.5; now I
proceed to sketch the proof of the part “be enumeratively inductive.” Suppose that a
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learning method M converges to the truth almost everywhere with stability (and I will
suppose that M converges on a maximal domain right when I really need to). Then,
by the preceding result, M is never counterinductive, and hence it fails to converge
to the truth in every Cartesian scenario of induction, say (No, �e), where �e contains
no occurrence of a nonblack raven. This failure of convergence in the Cartesian state
(No, �e) opens the possibility for M to converge to the truth in its normal counterpart
(Yes, �e). To turn this possibility into a reality, introduce the last supposition of the
theorem, that M converges to the truth on a maximal domain. It can be shown that, in
order for M to converge to the truth on a maximal domain, the domain of convergence
of M has to be so expansive that it covers all states that make hypothesis Yes true,
which implies that M is enumeratively inductive.

Finally, the existential part of Proposition 7.5 is witnessed by the method M ∗

constructed in Section 6, which says: “Output hypothesis Yes if you haven’t seen a
nonblack raven (-); otherwise output No.”

This finishes the proof sketch of Proposition 7.5.

A.2. Proofs for Section 7: Enumerative induction.

Proof of Proposition 7.3. Suppose, for reudctio, that a learning method M for the
hard raven problem converges to the truth everywhere with perfect monotonicity. By
almost everywhere convergence, M outputs Yes on some data sequence (e1, ... , en).
But any data sequence is compatible with |No|. So choose a state s = (No, �e) ∈ |No| ∩
|(e1, ... , en)|. It follows that, in that state (No, �e), M outputs a falsehood (namely, Yes)
at some stage (namely n), which contradicts perfect monotonic convergence.

Proof of Proposition 7.5. To establish the existential claim, it suffices to show that it
is witnessed by the learning methodM ∗ defined in Section 6: “Output hypothesis Yes
if you haven’t seen a nonblack raven (-); otherwise output No.” It has been established
thatM ∗ converges to the truth almost everywhere (by Proposition 6.2). It is routine to
verify thatM ∗ converges to the truth with stability. To show thatM ∗ has a maximal
domain of convergence, note that it converges to the truth in all states in |Yes| and
in all states in |No| except the Cartesian scenarios of induction. No learning method
converges to the truth in strictly more states. For to do so is to converge to the truth in
some normal state (Yes, �e) and its Cartesian counterpart (No, �e), which is impossible.
This establishes thatM ∗ has a maximal domain of convergence, and finishes the proof
of the existential claim.

To establish the first part of the universal claim “never be counterinductive,” it
suffices to note that it has been proved (with all the details) in Appendix A.1, or that it
follows immediately from the Ockham stability Theorem 8.3, to be proved in the next
appendix.

To establish the second part of the universal claim “be enumeratively inductive,”
suppose that M is a learning method for the hard raven problem that converges to
the truth almost everywhere with stability. So M is never counterinductive, thanks to
the first part “never be counterinductive,” which has been established. Suppose further
that M converges to the truth on a maximal domain. Argue as follows that M is
enumeratively inductive. Since M is never counterinductive, M fails to converge to the
truth in each Cartesian scenario of induction, and hence its domain of convergence
must be included in the domain of convergence of M ∗, which has been proved to
have a maximal domain of convergence. But M converges on a maximal domain, too,
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so it must have the same domain of convergence as M ∗ does. In particular, M must
converge to the truth in every state (Yes, �e) contained in |Yes|. It follows that M is
enumeratively inductive, as desired.

Theorem 7.6 follows immediately from Propositions 4.6, 7.3, and 7.5.

A.3. Proofs for Section 8: Ockham’s Razor. The proof of the Ockham stability
theorem relies on the forcing lemma proved in Appendix A.1 and the following lemma:

Lemma A.4. The tenacity condition in Ockham’s tenacious razor is equivalent to stable
convergence to the truth.29

Proof. To argue from tenacity to stability, suppose that M has the tenacity property,
and that M outputs the truth h by stage n in state s = (h, �e). It suffices to show that
M has converged to the truth by the same stage n in the same state s. Note that, for
any natural number i, the data sequence (e1, ... , en+i) extends (e1, ... , en) and is still
compatible with h. So, by the tenacity condition,M (e1, ... , en+i) = h, for all i ≥ 0. It
follows that, by stage n in state s, M has converged to the truth, h, as desired.

Argue as follows that stability implies tenacity, by contraposition. Sup-
pose that M violates the tenacity condition. That is, M (e1, ... , en) = h and
M (e1, ... , en, ... , en′) �= h, where (e1, ... , en, ... , en′) is compatible with h. By that
compatibility, choose a state s in the nonempty set |h| ∩ |(e1, ... , en, ... , en′)|. It follows
that, by stage n in state s, M outputs the truth h but has not converged to the truth. So
M fails to converge to the truth with stability, as desired.

Proof of Theorem 8.3. Suppose that learning method M converges to the truth
almost everywhere for problem

(
H, E ,S

)
. The side 2 ⇒ 1 follows immediately from

Lemma A.4. To prove the side 1 ⇒ 2 by contraposition, suppose that M does not
follow Ockham’s tenacious razor. So M violates either the tenacity condition or the
razor condition. In the former case (violation of tenacity), M fails to stably converge
to the truth, thanks to Lemma A.4. It remains to discuss the latter case (violation of
the razor condition), which is the only part of the proof that relies on the hypothesis
of almost everywhere convergence.

Suppose that M violates the razor condition, with the goal of showing the failure of
stable convergence. Since the razor condition is violated,M (e1, ... , en) = h, for some
(e1, ... , en) ∈ E and some h ∈ H, and there exists another hypothesis h′ ∈ H that is
simpler than h and compatible with (e1, ... , en). Since (e1, ... , en) is compatible with
h′, by the forcing Lemma A.3 and the almost everywhere convergence of M, we have:
(e1, ... , en) can be extended into a data sequence (e1, ... , en, ... , en′) ∈ E such that, first,
M (e1, ... , en, ... , en′) = h′ and, second, (e1, ... , en, ... , en′) is compatible with h′. Since
(e1, ... , en, ... , en′) is compatible with h′ and since h′ is simpler than h, it follows that
(e1, ... , en, ... , en′) is also compatible with the more complex hypothesis h. By that
compatibility, choose a state s ∈ |h| ∩ |(e1, ... , en, ... , en′)|. So, in state s, M outputs
the truth h at the earlier stage n and then retracts it at or before the later stage n′,
becauseM (e1, ... , en, ... , en′) = h′ �= h. It follows that M fails to stably converge to the
truth.

29 I thank Gordon Belot for helping me identify this lemma.
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A.4. Proofs for Section 9: Learning-theoretic Bayes.

Lemma A.5 (Forcing Lemma, Bayesian Version). Let
(
H, E ,S

)
be an arbitrary

problem. Suppose that P is a probabilistic prior for it that converges to the truth almost
everywhere, and that (e1, ... , en) ∈ E is compatible with h ∈ H. Then the above data
sequence can be extended into a data sequence (e1, ... , en, ... , en′) ∈ E such that:

1. (e1, ... , en, ... , en′) is still compatible with h and
2. P(h | e1, ... , en, ... , en′) > 1/2.

Proof. The proof is the same as the proof of (the qualitative version of) the forcing
Lemma A.3, except that, first, the only occurrence ofM (e1, ... , en, ... , ek, ... , en′) = h
is replaced by P(h | e1, ... , en, ... , ek, ... , en′) > 1/2 and, second, each occurrence of M
is replaced by P.

Let me prove Theorem 9.6 first before turning to Theorem 9.4.

Proof of Theorem 9.6. In fact, stability alone (without assuming almost everywhere
convergence) already implies tenacity. The proof of this claim in the Bayesian setting
is basically the same as the proof of the corresponding claim in the qualitative setting.
To be more precise, edit the second paragraph of the proof of Lemma A.4 with the
following replacements:

• First, replace M (e1, ... , en) = h and M (e1, ... , en, ... , en′) �= h by 1/2 <
P(h | e1, ... , en) > P(h | e1, ... , en, ... , en′).

• And then replace each occurrence of M by P.

It remains to show that almost everywhere convergence with stability implies the razor
condition. The proof is basically the same as the proof of the corresponding claim in
the qualitative setting. To be more precise, edit the second paragraph of the proof of
Theorem 8.3 with the following replacements:

• First, replaceM (e1, ... , en) = h
by P(h | e1, ... , en) > 1/2.

• Then replaceM (e1, ... , en, ... , en′) = h′ �= h
by P(h′ | e1, ... , en, ... , en′) > 1/2 and P(h | e1, ... , en, ... , en′) < 1/2.

• As the last step, replace each occurrence of M by P.

This finishes the proof of the 1 ⇒ 2 side.
To prove that the converse 2 ⇒ 1 does not hold, construct a problem P =

(
H, E ,S

)
as follows. Consider only the following (infinite) data streams, where m and n are
arbitrary natural numbers:

s� = 0� ,

sm = 0m1� ,

smn = 0m1n2� .

Their initial segments form the evidence space E . The hypothesis space H consists of

• h = “The actual sequence will not end with occurrences of 2.”
• h′ = “It will.”

The state space S consists of (h, s�), (h, sm), and (h′, smn), for all natural numbers m
and n. Construct a countably additive probability function P that assigns the following
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probabilities to singletons of states:

P{s�} = 0 ,

P{sm} =
(

1
2

)m+1

× 60% ,

P{smn} =
(

1
2

)m+1

× 40% ×
(

1
2

)n+1

.

Those assignments of probabilities are designed to ensure the following:

P{sm} =
(

1
2

)m+1

× 60% ,

P{sm0, sm1, sm2, ...} =
(

1
2

)m+1

× 40% ,

P{sm, sm0, sm1, sm2, ...} =
(

1
2

)m+1

,

∞∑
m=0

P{sm, sm0, sm1, sm2, ...} = 1 .

It follows that, for each natural number m, we have:

P(h | 0m) = 60% .

So P fails to converge to the truth H in state s� = (h, 0�). It is routine to verify that P
converges to the truth in all the other states. SoP enjoys almost everywhere convergence.
It is also routine to verify that P follows Ockham’s tenacious razor. To see that stable
convergence does not hold, note that, in state s� = (h, 0�) and given evidence 0m, P
assigns a probability greater than 1/2 (namely 60%) to the truth (namely h) but fails
to have started to stably converge to the truth, because it even fails to converge to the
truth in that state. So P fails to converge to the truth with stability. This finishes the
proof.

Proof of Theorem 9.4. To prove the existential claim, construct a witness P∗ as a
mixture of two other probabilistic priors:

P∗ =
1
2
P0 +

1
2
P1 ,

where P0 and P1 are defined as follows. Let P0 be the probability function generated
by assuming that Yes is true and that observations of +, 0, - are IID (independent and
identically distributed) random variables, with equal probabilities 1/2 for + and 0, and
with probability 0 for -. So:

P0(Yes) = 1 ,

P0(e1, ... , en) =

{(
1
2

)n
, if ei �= - for each i ≤ n,

0, otherwise.

Similarly, let P1 be the probability function generated by assuming that No is true and
observations of +, 0, - are IID random variables with equal probabilities 1/3 for +, 0,
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and -. So:

P1(No) = 1 ,

P1(e1, ... , en) =
(

1
3

)n
.

It suffices to show that P∗, defined as the half-and-half mixture of P0 and P1, converges
to the truth with all the three modes mentioned in the existential claim. By the
construction of P∗, we have:

P∗(Yes) = 1/2 ,

P∗(No) = 1/2 ,

P∗(e1, ... , en | Yes) = P0(e1, ... , en) =

{(
1
2

)n
, if ei �= - for each i ≤ n,

0, otherwise,

P∗(e1, ... , en | No) = P1(e1, ... , en) =
(

1
3

)n
.

Now, calculate conditional probability P∗(Yes | e1, ... , en) by plugging the above
probability values into the following instance of Bayes’ theorem:

P∗(Yes | e1, ... , en)

=
P∗(e1, ... , en | Yes)P∗(Yes)

P∗(e1, ... , en | Yes)P∗(Yes) + P∗(e1, ... , en | No)P∗(No)
.

Then we have:

P∗(Yes | e1, ... , en) =

{
1

1+(2/3)n , if ei �= - for each i ≤ n,
0, otherwise,

(4)

P∗(No | e1, ... , en) = 1 – P∗(Yes | e1, ... , en) , (5)

lim
n→∞

1
1 + (2/3)n

= 1 . (6)

By the above three equations, (4)–(6), it follows that P∗ converges to the truth in all
states in |Yes|, and in all states in |No| except the Cartesian scenarios of induction. But
recall that, by Lemma 5.4, the set of the Cartesian scenarios of induction is negligible
within the topological space |No|. So P∗ converges to the truth almost everywhere. To
establish thatP∗’s has a maximal domain of convergence, suppose for reductio that there
is a probability function P that has a strictly more inclusive domain of convergence
than P∗ does. But P∗ converges to the truth in all states except the Cartesian scenarios
of induction. So P must converge to the truth in a certain normal state and in its
Cartesian counterpart, which is impossible and finishes the reductio argument. Finally,
it is routine to verify that P∗ enjoys stable convergence. The existential claim is thus
established.

The proof of the universal claim is basically the same as the proof of the
corresponding claim in the qualitative setting. To be more precise, part 1 “never
be counterinductive” follows immediately from the Bayesian version of the Ockham
stability Theorem 9.6. To prove part 2 “be enumeratively inductive,” it suffices to edit
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the last paragraph of the proof of Proposition 7.5 with the following replacements:

• First, replace M by P.
• Second, replace ‘learning method’ by ‘probabilistic prior’.
• As the last step, replaceM∗ by P∗, which is the probabilistic prior constructed

above for proving the existential claim.

This finishes the proof.

A.5. The very hard raven problem. Here is an example of a problem that is even
harder than the hard raven problem:

Example A.6. The very hard raven problem poses the following joint questions:

Are all ravens black? If not, will all the ravens observed in the future be
black?

So there are three potential answers:

Yes: “Yes, all ravens are black.”
NoYes: “No, not all ravens are black; yes, all ravens to be observed will
be black.”
NoNo, which denies the above two hypotheses.

NoYes is a Cartesian skeptical hypothesis, a hypothesis that is akin to (but not as terrible
as) the proposition that one is a brain in a vat. Hypotheses Yes and NoYes are empirically
equivalent—they are compatible with exactly the same data sequences.

Proposition A.7. For the very hard raven problem, it is impossible to achieve almost
everywhere convergence to the truth.

Proof. Suppose for reductio that some learning method M converges to the truth
almost everywhere for the very hard raven problem. By almost everywhere convergence
on the space |Yes|, there exists a +/0 sequence (e1, ... , en) such that M converges to
the truth everywhere on |Yes| ∩ |(e1, ... , en)|. By almost everywhere convergence on the
space |NoYes|, (e1, ... , en) can be extended to some +/0 sequence (e1, ... , en, ... , e′n) such
that M converges to the truth everywhere on |NoYes| ∩ |(e1, ... , en, ... , e′n)|. Choose an
(infinite) data stream �e ∈ |(e1, ... , en, ... , e′n)| ⊆ |(e1, ... , en)|. So,

(Yes, �e) ∈ |Yes| ∩ |(e1, ... , en)| ,
(NoYes, �e) ∈ |NoYes| ∩ |(e1, ... , en, ... , e′n)| .

It follows that M converges to the truth in both state (Yes, �e) and state (NoYes, �e),
which is impossible.

That is a negative result, but I believe that a learning-theoretic epistemologist does
not need to apologize for that. Although a serious defense of this view has to be reserved
for another paper, let me briefly sketch why I think so. The very hard raven problem
embodies not just the philosophical problem of responding to the inductive skeptic, but
also the problem of responding to the Cartesian external world skeptic, as highlighted
by the empirical equivalence between these two hypotheses on the table: Yes and NoYes.
Learning-theoretic epistemology as an epistemology of inductive inference is not, and
has never been, designed to respond to the Cartesian external world skeptic. We may
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conjoin it with a good, independent reply to the Cartesian external world skeptic, if
there is one.

What a learning-theoretic epistemologist can do, and should do, is to insist that
when an inquirer tackles the hard raven problem rather than the very hard one,
she ought to be inductive rather than counterinductive or skeptical, thanks to the
learning-theoretic argument formulated in Section 3.4. Indeed, the core thesis of
learning-theoretic epistemology, as formulated in Section 3.2, concerns the best
learning methods for tackling this or that problem; it does not talk about such
things as the best learning methods simpliciter. So learning-theoretic epistemology
makes normative recommendations of this form: “If one tackles such and such a
problem, one ought to follow a learning method having such and such properties.”
Such a normative recommendation is sensitive to the problem pursued by the
inquirer.
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