
The Hard Problem of Theory Choice:
A Case Study on Causal Inference
and Its Faithfulness Assumption
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The problem of theory choice and model selection is hard but still important when useful
truths are underdetermined, perhaps not by all kinds of data but by the kinds of data we
can have access to ethically or practicably—even if we have an infinity of such data. This
article addresses a crucial instance of that problem: the problem of inferring causal struc-
tures from nonexperimental, nontemporal data without assuming the so-called causal Faith-
fulness condition or the like. A new account of epistemic evaluation is developed to solve
that problem and justify a standard practice of causal inference in data science.
1. Introduction. Useful truths can be underdetermined severely, even by in-
finite data. It is easy to find examples that are causal. In many cases, truths
about causal relations are useful because they tell us what would (likely) hap-
pen if we were to enforce one policy or another. But those truths can be under-
determined severely, not by data of any conceivable kind but by the kinds of
data we can ethically and practicably have in context, even if we have an in-
finity of such data. The underdetermination of useful truths by infinite data is
common for social and medical scientists who work with causal Bayesian net-
works—this is a problem for many people. A more detailed example will be
provided below.

Now, in the face of such severe underdetermination, how should we eval-
uate methods for choosing between competing theories? This is the problem
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I would like to address in this article. It is probably not the hardest problem
of theory choice in philosophy (cf. the challenge from a Cartesian, external-
world skeptic), but it seems to be one of the hardest that many epistemolo-
gists and data scientists have taken seriously. So I will abuse the language and
call it the hard problem of theory choice.

The standard solution in the area of causal inference is to make one as-
sumption or another to rule out some skeptical scenarios and, thereby, lessen
the degree of underdetermination in question. The most famous example of
such assumptions is the so-called (causal) Faithfulness assumption (Spirtes,
Glymour, and Scheines 1993). This solution raises the immediate question of
why we should make the Faithfulness assumption or the like. The standard
reply says roughly that we should not worry too much about making such an
assumption because such an assumption is very weak, so weak that it only
rules out a “negligible” set of possibilities (Spirtes et al. 1993; Meek 1995).
That is in effect the only solution in the existing literature of philosophy and of
data science.

I will explain why the standard solution is unsatisfactory (sec. 3) and de-
velop a new solution (secs. 4–7). If I am right, this is the first solution that can
work without making the Faithfulness assumption or the like, while justifying
the following standard practice in data science: when the accessible data are
nonexperimental and nontemporal, make causal inferences as if the Faithful-
ness condition or the like were accepted as true.

But before I do all this, I would like to start by using pictures to explain
how the problem arises and what the crux is (sec. 2). Throughout, emphasis
is indicated by italics, and terms to be defined are presented in boldface.

2. The Problem Illustrated. Suppose that we are studying a causal sys-
tem with three binary variables: X, Y, and Z. We want to know the causal
structure among them. We somehow already know for sure that the true causal
structure is one of the two depicted in figure 1, where X → Y means that X
is an immediate cause of Y. We also already know for sure that the true (yet
unknown) joint chance distribution of X, Y, Z satisfies all the conditions listed
in the same figure. Those conditions are assumed only to make the case simple
Figure 1. What is known for sure.
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HARD PROBLEM OF THEORY CHOICE 969
and illuminating; no philosophical point hinges on them. It follows from the
chain rule in probability calculus that the true joint distribution is fully deter-
mined by the three parameters p1, p2, and p3, which are the (unknown) con-
ditional chances of Z 5 1 given (X , Y ) 5 (1, 1), (1, 0), and (0, 1), respec-
tively.1 Those three parameters can take any values in the unit interval.

Suppose, further, that we know that the (causal) Markov condition ap-
plies to the causal system under study—namely, that causation and chance
are related to each other in the causal system so that every variable therein is
probabilistically independent of its noneffects therein given all of its imme-
diate causes therein. If a variable has no immediate cause in the system, then
‘given all of its immediate causes therein’ is understood trivially as ‘given the
truth of a tautology’—namely, conditional independence reduces to uncon-
ditional independence. So, if the true causal structure is the one on the right,
the Markov condition implies that X is independent of Z. But if the true causal
structure is on the left, the Markov condition provably imposes no constraint
on parameters p1, p2, and p3.

Now, all the possible states of the causal world can be visually represented
in figure 2. To be more specific:
1. Th

All 
Case 1. Suppose that the graph on the left, Gleft, represents the true causal
structure. Then the Markov condition does not rule out any parameter set-
ting. So the possible states can be one-to-one identified with the ordered
pairs (Gleft, ( p1, p2, p3)) that satisfy the inequality 0 ≤ p1, p2, p3 ≤ 1. Those
possible states form the unit cube depicted on the left.

Case 2. Suppose that the graph on the right, Gright, represents the true causal
structure. Then, as noted above, the Markov condition implies that X and Z
are independent, which provably translates to this constraint: p3 5 (1=4)p11
p2. So, in this case, the possible states can be one-to-one identified with the
ordered pairs (Gright, ( p1, p2, p3)) that satisfy the inequality 0 ≤ p1, p2, p3 ≤ 1
and the equation p3 5 (1=4)p1 1 p2. Those possible states form the trape-
zoidal zone depicted on the right.
Each possible state represented here is a causal Bayesian network, although
we do not really need to give it a formal definition before we proceed further.

Now we turn to assumptions about data. As is usually the case when data
scientists infer causal structures, assume that, for ethical or practical reasons,
we can only have access to data that are nonexperimental and nontemporal.
Specifically, a nonexperimental, nontemporal data set of sample size n is
a data set obtained by observing n instances of the causal system under study,
keeping track of all the values of the variables realized in those instances, without
e chain rule is as follows: P(A ∧ B) 5 P(A ∣ B) � P(B), if P(A ∣ B) exists.
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experimentation and without information about which variable comes to take
a value earlier than which other variable does. Such data sets are also assumed
to be generated by observations that are independent and identically distrib-
uted—distributed according to the true (but unknown) joint chance distribu-
tion. This is known as the IID assumption.

The above fully specifies a causal learning problem, or a problem of choos-
ingbetweencausal structures.To seehowhard this problem is, let ushave a look
at the two possible states indicated infigure 3: s0 5 (Gleft, (1=2, 3=4, 7=8)) and
s1 5 (Gright, ( 1=2, 3=4, 7=8 )). Those two states disagree on what the true
causal structure is. But they are empirically indistinguishable in terms of the
kind of data we have access to, even if we have an infinity of such data. For
they posit the same joint distribution and, hence, the same sampling distribu-
tion over nonexperimental, nontemporal data. Those two possible states, s0
and s1, areCartesian-like skeptical scenarios for each other. Now, think of an
arbitrary method that chooses between the two competing causal structures in
light of accessible data, or a learning method for short. If a learning method
is reliable in one of the two states s0 and s1—reliable in the sense of having a
high chance of choosing the true causal structure (at a certain sample size)—
then it must have an equally high chance of choosing the false one in the other
state (at the same sample size). So reliability has to be sacrificed in some states
between the Cartesian-like pair s0 and s1 and between any other similar pair.
The question is which: Which states are those in which reliability should be
sacrificed?

The standard practice in data science sacrifices reliability in state s0; in fact,
it sacrifices reliability on the entire trapezoidal plane inscribed in the cube on
Figure 2. Spaces of possible states.
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HARD PROBLEM OF THEORY CHOICE 971
the left side of figure 3. The question is how we can justify this standard prac-
tice. If this practice can be said to follow a kind of Ockham’s razor (because it
favors the causal structure on the right, which seems to be simpler than the one
on the left), then the question becomes how we can justify this kind of Ock-
ham’s razor.

The above question will not be very interesting unless the underdeter-
mined truths are useful. But causal truths are useful when, for example, we
are thinking about making a policy to change the chance of Z 5 0. It makes
sense to adopt a policy to manipulate Y in order to change the chance of Z 5 0
only if Y is a cause of Z—that is, only if the true causal structure is on the left.
For example, consider the policy that forces Y 5 0. On the standard account
of causal Bayesian networks, this policy would have very different results in
the two Cartesian-like states s0 and s1. It would increase the chance of Z 5 0
from 30% to 62.5% in the state on the left, s0, but it would let the chance of
Z 5 0 remain at 30% in the state on the right, s1.

To summarize: Useful truths can be underdetermined by the kinds of data
we can have access to, even if we have an infinity of such data. The above
gives a causal example. Now, there are many learning methods for choosing
between those two causal structures in light of nonexperimental, nontempo-
ral data. Which learning methods are the best? Every learning method has to
sacrifice reliability in some possible states. Why should we favor the learning
methods that sacrifice reliability in the way that follows the standard practice
in data science? Those are the questions I would like to address.

3. The Old Solution. The standard solution to the present problem tries to
secure reliability in every possible state on the table, but it does so by remov-
ing some possible states from the table. That is, it makes an assumption to
Figure 3. Cartesian-like pair of possible states.
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rule out some possible states and, thereby, narrow down the range of possible
states on the table (Spirtes et al. 1993; Meek 1995). The most famous such
assumption is the (causal) Faithfulness assumption. A precise definition of
Faithfulness will be provided when we really need it. What is important for
now is the job it does. It basically works in the present case by ruling out the
possible states in the trapezoidal plane inscribed in the cube on the left of fig-
ure 3—namely, it assumes that the true possible state is not in that trapezoidal
plane. That trapezoidal plane will be called the Unfaithful Plane, as indicated
in the same figure.

The standard solution makes use of the Faithfulness assumption as fol-
lows. It would be great to have a learning method that is reliable uniformly
across all possible states on the table at a fixed sample size. Unfortunately, that
epistemic ideal is too high to be achievable even with the Faithfulness assump-
tion (Robins et al. 2003). But, under that assumption, it becomes at least pos-
sible to design a learning method that would become reliable as the sample size
increases indefinitely in each possible state on the table (Spirtes et al. 1993).
To be more precise, a learning methodM is said to converge stochastically
to the truth in a possible state s if, with respect to the sampling distribution
generated by the joint chance distribution in s and the IID assumption, the
chance forM to identify the truth approaches 1 as the sample size increases
indefinitely. A learning method M is said to be statistically consistent with
respect to a learning problem P if M converges stochastically to the truth in
every possible state compatible with what is assumed or taken for granted in
learning problem P. When the range of possible states on the table is narrowed
down by adding the Faithfulness assumption—that is, when the Unfaithful Plane
is ruled out, there provably exist learning methods that are statistically consis-
tent—statistical consistency is provably achievable.

To be sure, statistical consistency alone does not make a good learning
method. The textbook criterion regarding the value of statistical consistency
seems, rather, to be as follows:
se sub
(The Value of Statistical Consistency) A good learning method for tack-
ling a problem P must achieve some epistemic ideals, including at least sta-
tistical consistency as a minimal qualification regarding reliability, if it would
be great to find the truth among the alternative theories considered in P and
if statistical consistency is achievable under the assumptions made in P.
The last “if ” clause indicates that, like any epistemic ideal, statistical consistency
must be achievable to beworth pursuing. On the standard solution to the present
problem, it is the Faithfulness assumption that makes statistical consistency
achievable.

So the above is the standard solution. It raises an immediate question: Why
should we make the Faithfulness assumption? The standard reply is that we
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do not need to worry about making the Faithfulness assumption because it is
a fairly weak assumption, ruling out only a mathematically negligible set
of possible states (Spirtes et al. 1993; Meek 1995). To see that it does so, we
do not really need a rigorous definition of mathematical negligibility. Indeed,
Faithfulness only rules out the Unfaithful Plane, which is a two-dimensional
cross-section of the three-dimensional cubic state space on the left of figure 3.

But the appeal to negligibility alone does not suffice to explain why we
should make the Faithfulness assumption—or why we should rule out the
Unfaithful Plane. For there are many alternative assumptions that also rule
out only mathematically negligible sets in the two state spaces. For exam-
ple, consider the gerrymandered assumption that rules out (i) the state s1 5
(Gright, (1=2, 3=4, 7=8)) on the right and (ii) the trapezoidal plane on the left,
except for the state s0 5 (Gleft, (1=2, 3=4, 7=8)). This gerrymandered as-
sumption rulesout something less than a cross-sectionof the three-dimensional,
cubic state spaceon the left, and it rules out only apoint in the two-dimensional,
planar state space on the right. So this gerrymandered assumption is weak
enough to rule out only mathematically negligible sets in the two state spaces,
although it is already strong enough to make statistical consistency achieva-
ble. Then why should we make the Faithfulness assumption rather than the
gerrymandered one, or any of the infinitely many alternatives?

Let me paraphrase the question just raised. The decision to design a learn-
ing method under the assumption that rules out the Unfaithful Plane amounts
to the decision to sacrifice reliability on that plane. But why should we sacri-
fice reliability on that plane rather than any of the infinitely many alternative
negligible regions? The hard problem of theory choice remains unaddressed.
We need a new solution.

4. A New Approach. In the absence of the Faithfulness assumption or the
like, the underdetermination of truths by data is so severe that even statistical
consistency is too high an epistemic ideal to be achievable. Then how should
we proceed to evaluate learning methods? My solution is simple: We should
not achieve what is unachievable; we only need to, and ought to, achieve the
best we can have. Let me explain how to do that.

Statistical consistency means having stochastic convergence to the truth
everywhere on the state spaces under consideration, and it is only one of the
many epistemic ideals regarding reliability. If it is impossible to make it ev-
erywhere, we should see whether it is possible to make it at least almost ev-
erywhere—pending a good definition of ‘almost everywhere’. If it is possible
to achieve at least that much, let us see whether it is possible to achieve more.
The guideline, I propose, is to look for what can be achieved and achieve the
best we can have.

To implement this idea, have a look at the two-dimensional lattice de-
picted in figure 4. The two dimensions concern, respectively, the questions
This content downloaded from 128.120.234.045 on January 24, 2020 15:34:35 PM
All use subject to University of Chicago Press Terms and Conditions (http://www.journals.uchicago.edu/t-and-c).



974 HANTI LIN

All u
of where convergence to the truth happens and how it happens. Each dimen-
sion has three modes of convergence to the truth in order of ascending epi-
stemic value, so in combination there are nine joint modes—nine epistemic
ideals regarding reliability. To anticipate, “almost everywhere” will be defined
quite standardly as in geometry and topology. And “adherently locally uni-
form convergence”will be defined as a kind of locally uniform convergence
that serves as a statistical variant of Nozick’s (1981) adherence condition for
knowledge.

The modes of convergence mentioned above will be defined soon. Once
that is done, we can prove the following result:
se sub
Theorem 1. Consider the above causal learning problem, with the IID
assumption; the assumption that only nonexperimental, nontemporal data
are accessible; and the simplifying assumptions stated in figure 1 (without
the causal Faithfulness assumption or the like). Then:
T
ject t
1. Of the nine modes of stochastic convergence to the truth, the ones
that are achievable with respect to the present learning problem are
exactly those in the shaded area in figure 4. (So the highest achiev-
able epistemic ideal of the nine is the starred mode in the middle.)

2. For every learning methodM that tackles the present learning prob-
lem, if M achieves the starred mode—“almost everywhere” plus
“on a maximal domain” plus “adherently locally uniform”—then
Figure 4. Modes of stochastic convergence to the truth.
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M converges stochastically to the truth only in possible states out-
side of the Unfaithful Plane; that is, M sacrifices convergence to
the truth on the entire Unfaithful Plane.
Note that the second part of this result makes a strong claim, applicable to
all learning methods tackling the present learning problem. This has an im-
portant consequence: to achieve at least the starred mode, which is the best
mode of convergence we can have for the present learning problem, it is nec-
essary to sacrifice convergence to the truth on the entire Unfaithful Plane—
it is necessary, not a mere option. This result answers the question left by the
standard solution.

The way I propose to solve the hard problem of theory choice, or at least
the causal instance of this problem, can be summarized by the following
argument:
Premise 1. In the lattice depicted in figure 4, if a mode of convergence to
the truth is ordered higher, it is a higher epistemic ideal about reliability.

Premise 2. For tackling a learning problem, the best learning methods might
have to achieve epistemic ideals of various kinds (e.g., ideals about coher-
ence, unbiasedness, or reliability), but they must at least achieve, of the nine
epistemic ideals about reliability in the lattice, the highest achievable one—
if such a highest one exists uniquely. (Achieve the best we can have.)

Premise 3. Theorem 1 is true.

Conclusion. So, the best learning methods for tackling the present learn-
ing problem must have at least the following properties:

(C1) achieving the starred mode of convergence to the truth (by premises 1
and 2 and the first part of the theorem),

(C2) sacrificing stochastic convergence to the truth on the entire Unfaith-
ful Plane—as if the Faithfulness condition were accepted as true (by C1 and
the second part of the theorem).
The rest of this article defines the key concepts in the above theorem, sketches
a proof with an explanatory picture, and reports a more general theorem.
5. Definitions. A causal hypothesis H is understood as a set of possible
causal states with a topological structure. For example, the cubic hypothesisHleft

is equipped with the Euclidean topology generated by open balls (fig. 5, left).
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The trapezoidal hypothesis Hright is equipped with the Euclidean topology
generated by open discs (fig. 5, right). More formally, I define those topol-
ogies standardly in terms of the so-called total variation distance between
probability measures, which turns out to generate the Euclidean topology
in the present case.2 A region in a topological space H is said to be topolog-
ically negligible, or nowhere dense, if it is a subset S ⊆H such that every
nonempty open set O of H includes some nonempty open set O 0 of H that is
disjoint from S. In that case, S has an open “hole” O 0 in every open neigh-
borhood O, so it is like a slice of Swiss cheese incredibly full of open holes
in H. For example, the Unfaithful Plane is a negligible region in Hleft, and so
is any subset of the Unfaithful Plane. Both the empty set and the singleton
{s1} are negligible regions in Hright.

A learningmethodM is said to converge stochastically to the truth almost
everywhere if, for each hypothesisH under consideration,M converges sto-
chastically to the truth in all states in H except on a topologically negligible
region of H. Method M is said to converge stochastically to the truth on a
maximal domain if no other learning method does on a more inclusive set
of possible states.

A learning method M is said to converge stochastically to the truth with
global uniformity if, for any (upper bound of error probability) ε > 0, there
exists a sample size n such that, given any sample size greater than or equal
to n, there is a chance at least 12 ε for M to output the truth in all possible
states under consideration (i.e., all possible states contained in Hleft [ Hright).
Global uniformity would be great to have if it could be achieved, for it
Figure 5. Open sets, which are open balls in the cubic hypothesis Hleft and open
discs in the planar hypothesis Hright.
2. The total variation distance between P and P 0 is defined as the least upper bound of
jP(A) 2 P0(A)j over all A.
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HARD PROBLEM OF THEORY CHOICE 977
would allow us to control the sample size to ensure any desired level of
reliability—ensured for all the states in Hleft [ Hright simultaneously. But this
epistemic ideal is too high to be achievable, simply because it implies statis-
tical consistency, namely, stochastic convergence to the truth everywhere.
Well, if we cannot make it globally, let us see whether we can make it at least
locally.

A learning method M is said to converge stochastically to the truth with
adherent local uniformity if, for any hypothesis H under consideration (be
it the cube Hleft or the plane Hright) and for any state s ∈ H in which M con-
verges to the truth stochastically, s has an open neighborhood N in H (where
N is an open ball in the cubeHleft or an open disc in the plane Hright) such that:
All 
Method M has stochastic convergence to the truth uniformly on neighbor-
hoodN ⊆H ; namely, for any (upper bound of error probability) ε > 0, there
exists a sample size n such that, given any sample size greater than or equal
to n, there is a chance at least 12 ε for M to output the truth in each state
contained in neighborhood N ⊆H .
This means that, for any possible state s in which M converges to the truth
stochastically, a sufficiently large sample size can stably secure a high chance
for M to output the truth—having a high reliability secured not just in s but
stably secured under small perturbations of the joint chance distribution true
in s. This is a kind of locally uniform convergence. It is also a statistical var-
iant of Nozick’s (1981) adherence condition for knowledge, which says
roughly that, if the truth one believes in were true in a slightly different
way, then one would still believe in it—one’s belief would “adhere” to the
truth. This finishes the definitions of all the concepts involved in theorem 1.

6. Sketch of Proof. Theorem 1 has two parts. Part 1, like many existence re-
sults, has a tedious proof. It is an immediate corollary of a more general result
in my joint work with Jiji Zhang (see Lin and Zhang 2019, theorem 1).

But part 2 has a revealing, pictorial proof that explains why the achieve-
ment of at least (a) “almost everywhere” plus (b) “on amaximal domain” plus
(c) “adherent local uniformity” forces a learning method to sacrifice conver-
gence to the truth on the Unfaithful Plane. In fact, a plus c alone forces that.
Proof of Part 2 of Theorem 1. LetM be an arbitrary learningmethod for the
above learning problem that achieves these two modes of stochastic conver-
gence to the truth: “almost everywhere” and “adherent local uniformity.” I
will omit ‘stochastic’ when writing the proof. Suppose, for reductio, that M
converges to the truth in a state s0 on the Unfaithful Plane, which is embed-
ded in state space Hleft. By adherent local uniformity, M converges to the
truth uniformly on some open ball Bd(s0) centered at s0 with radius d > 0,
This content downloaded from 128.120.234.045 on January 24, 2020 15:34:35 PM
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as depicted in the upper left part of figure 6. From state s0, let us construct
states s1, s2, and s3 in three steps, which follow the flow in figure 6.

Step 1. Take state s0 5 (Gleft, P) and replace the causal structure therein by
Gright to obtain state s1 5 (Gright, P), retaining the same chance distribution.
So we have constructed state s1, which is in hypothesis Hright.

Step 2. Recall that d is the radius of the open ball Bd(s0) mentioned above.
Use the same radius to construct an open disc Dd(s1) ⊆Hright centered at s1.
Since Dd(s1) is an open disc in Hright, M must converge to the truth Hright in
some state inDd(s1). For otherwiseMwould fail to converge to the truth on a
certain open set (i.e.,Dd(s1)) in topological spaceHright, which contradicts the
supposition that M converges to the truth almost everywhere in each hy-
pothesis. Now, choose a state s2 in the open disc Dd(s1) in which M con-
verges to the true hypothesis Hright. Let P 0 be the chance distribution in s2.
So s2 5 (Gright, P0).

Step 3. Take state s2 5 (Gright, P0) and replace the causal structure therein
by Gleft to obtain state s3 5 (Gleft, P0), retaining the same chance distribu-
tion. So we have constructed state s3, which is in hypothesis Hleft. This fin-
ishes the three-step construction.

State s3 has two notable properties. First, s3 is less than d away from s0,
because s2 is less than d away from s1 (by construction). Second, in state
s3 we have that M converges to Hright (a falsehood), because s3 has the
same chance distribution as s2 (by construction) and because in s2 we have
thatM converges toHright (by construction). To sum up, s3 is both a state in
the open ball Bd(s0) ⊆Hleft and a state in whichM fails to converge to the
truth. It follows thatM fails to converge to the truth uniformly on the open
ball Bd(s0)—contradiction. QED
Figure 6. Proof that we must sacrifice convergence to the truth on the Unfaithful
Plane.
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HARD PROBLEM OF THEORY CHOICE 979
7. Closing: Report of a General Result. The above theorem can be gen-
eralized as follows. A directed acyclic graphG, understood as a causal struc-
ture, is said to entail a conditional independence statement if that statement
holds with respect to every joint chance distribution P such thatG and P jointly
satisfy the (causal) Markov condition. Let I(G) denote the set of the conditional
independence statements that G entails. Similarly, let I(P) denote the set of
the conditional independence statements that hold with respect to P. Then the
Markov condition can be equivalently reformulated as

I (G) ⊆ I (P):

A causal Bayesian network, which is also called a (possible) causal state (of
the world), is an ordered pair (G, P) that satisfies the Markov condition. The
Faithfulness condition strengthens the Markov condition by requiring that

I (G) 5 I (P):

The Faithfulness condition rules out the Unfaithful Plane discussed above.
A causal Bayesian network satisfying Faithfulness is called a faithful causal
state. TheFaithfulness assumption says that the actual causal state is faithful.
Faithfulness has some weaker variants (for a review and comparison, see Zhang
[2013]). A learning method for the present purposes is a function that maps
each data set of a finite sample size to a causal hypothesis taking this form:
“The true causal structure is Markov equivalent to G,” where the Markov
equivalence between two graphsG andG0 is defined by I (G) 5 I (G0). Such
a method is a method for learning theMarkov equivalence structure of the true
(but unknown) causal Bayesian network. Then the preceding theorem can be
generalized as follows; it is an immediate corollary of the main result of Lin
and Zhang (2019, theorem 1):
All 
Theorem 2. Let P be a problem of learning the Markov equivalence struc-
ture of the true (but unknown) causal Bayesian network. Suppose that prob-
lem P makes only the following assumptions: that the true causal Bayesian
network is defined on afinite,fixed set of categorical variables; that only non-
experimental, nontemporal data are accessible; and that data are IID. (So
there is no assumption of Faithfulness or any of its variants). Then:
use s
1. Of the nine modes of stochastic convergence to the truth, the ones
that are achievable with respect to problem P are exactly those in
the shaded area in figure 4. (So the highest achievable epistemic ideal
of the nine is the starred mode in the middle.)

2. For every learning method M that tackles problem P, if M achieves
the starred mode in figure 4, then M has this convergence property:
converging stochastically to the truth in every faithful causal state
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and sacrificing convergence to the truth in every causal state that
shares the same chance distribution with some faithful causal state.
It is a standard practice of causal inference in data science to design and em-
ploy causal learning methods that satisfy at least the convergence property
specified in clause 2, at least when data are assumed to be IID, nonexperimen-
tal, and nontemporal. This standard practice is justified by the above theorem
and the guideline developed in this article: Look for what can be achieved, and
achieve the best we can have.
REFERENCES

Lin, Hanti, and Jiji Zhang. 2019. “How to Tackle an Extremely Hard Learning Problem: Learning
Causal Structures from Non-experimental Data without the Faithfulness Assumption or the
Like.” Unpublished manuscript, arXiv.org, Cornell University. arXiv:1802.07051.

Meek, Christopher. 1995. “Strong Completeness and Faithfulness in Bayesian Networks.” In Uncer-
tainty in Artificial Intelligence: Proceedings of the Eleventh Conference, ed. Philippe Besnard
and Steve Hanks, 411–18. San Francisco: Morgan Kaufmann.

Nozick, Robert. 1981. Philosophical Explanations. Cambridge, MA: Harvard University Press.
Robins, JamesM., RichardScheines, Peter Spirtes, and LarryWasserman. 2003. “UniformConsistency

in Causal Inference.” Biometrika 90:491–515.
Spirtes, Peter, Clark Glymour, and Richard Scheines. 1993. Causation, Prediction, and Search. Dor-

drecht: Springer.
Zhang, Jiji. 2013. “A Comparison of Three Occam’s Razors for Markovian Causal Models.” British

Journal for the Philosophy of Science 64 (2): 423–48.
his content downloaded from 128.120.234.045 on January 24, 2020 15:34:35 PM
o University of Chicago Press Terms and Conditions (http://www.journals.uchicago.edu/t-and-c).

https://www.journals.uchicago.edu/action/showLinks?doi=10.1086%2F705492&crossref=10.1093%2Fbjps%2Faxs005&citationId=p_8
https://www.journals.uchicago.edu/action/showLinks?doi=10.1086%2F705492&crossref=10.1093%2Fbjps%2Faxs005&citationId=p_8
https://www.journals.uchicago.edu/action/showLinks?doi=10.1086%2F705492&crossref=10.1093%2Fbiomet%2F90.3.491&citationId=p_6

The highlighted paper is published as: 
Lin, H. and Zhang, J. (2020) "On Learning Causal Structures from Non-Experimental Data without Any Faithfulness Assumption", Proceedings of Machine Learning Research, 117: 554-582.




	Cit p_8:1: 
	Cit p_8:2: 
	Cit p_6:1: 


