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Abstract

The 2021 Nobel Prize in Economics recognizes a type of causal model known

as the Rubin causal model, or potential outcome framework, which deserves far

more attention from philosophers than it currently receives. To spark philoso-

phers’ interest, I develop a dialectic connecting the Rubin causal model to the

Lewis-Stalnaker debate on a logical principle of counterfactuals: Conditional Ex-

cluded Middle (CEM). I begin by playing good cop for CEM, developing a new

argument in its favor—a Quine-Putnam-style indispensability argument. This

argument is based on the observation that CEM seems to be indispensable to

the Rubin causal model, which underpins our best scientific theory of causal infer-

ence in health and social sciences—a Nobel Prize-winning theory. Indeed, CEM

has long remained a core assumption of the Rubin causal model, despite chal-

lenges from within the statistics and economics communities over twenty years

ago. I then switch sides to play bad cop for CEM, undermining the indispens-

ability argument by developing a new theory of causal inference that dispenses

with CEM while preserving the successes of the original theory (thanks to a new

theorem proved here). The key, somewhat surprisingly, is to integrate two ap-

proaches to causal modeling: the Rubin causal model, more familiar in health

and social sciences, and the causal Bayes net, more familiar in philosophy. The

good cop/bad cop dialectic is concluded with a connection to broader philosoph-

ical issues, including intertheory relations, the revisability of logic, and the role

of background assumptions in justifying scientific inference.
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1 Introduction

This is an invitation to the Rubin causal model (Rubin 1974), also known as the po-

tential outcome framework. Designed for causal inference, this framework has been

highly influential in the health and social sciences, underpinning the 2021 Nobel Prize

in Economics. However, it is under-discussed in philosophy, and deserves far more

attention than it currently receives.1 Since philosophers crave arguments, I will try to

spark their interest by developing a debate around the Rubin causal model and linking

it to a familiar controversy over a logical principle of counterfactuals:

Conditional Excluded Middle (CEM)

It is logically necessary that

- either B would be the case if A were the case,

- or B would not the be case if A were the case.

Due to the severe lack of discussion of the Rubin causal model in philosophy, I will

have to play both good cop and bad cop myself. Specifically, I will first develop a new

argument for CEM. Here is the idea: CEM was already assumed in the early days of

the Rubin causal model (Rubin 1974), which found important applications to causal

inference through the work of Imbens & Angrist (1994), culminating in the 2021 Nobel

Prize in Economics. Notably, even though the assumption of CEM was challenged in

the scientific community more than 20 years ago (Dawid 2000), it has remained central

to the Rubin causal model to this day. Thus, CEM appears to be an indispensable part

of our best scientific theory of causal inference in health and social sciences. A new

argument for CEM then emerges: an indispensability argument in the style of Quine

(1948) and Putnam (1971), as detailed below (Section 3).

Next, following the good cop/bad cop approach, I will switch sides and challenge

the indispensability argument. A new theory of causal inference will be developed to

dispense with CEM while preserving its Nobel-Prize-winning applications. The trick,

somewhat surprisingly, is to combine two causal modeling frameworks: the Rubin

causal model, more familiar to health and social scientists, and the causal Bayes net,

more familiar to philosophers (Section 4).

1For example, the Stanford Encyclopedia of Philosophy includes an entry on the Philosophy of
Economics (Hausman 2024), which has a section dedicated to causation in economics (section 2.5)
but does not mention the Rubin causal model. The entry on Causal Models (Hitchcock 2024) cites
Rubin’s works but does not refer to any philosophical discussions in the literature.
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In the final section, 5, the good cop/bad cop dialectic will conclude by connecting

it to additional issues familiar in philosophy, such as the revisability of logic in light of

empirical sciences, the role of background assumptions in justifying scientific inference,

and intertheory relations.

But before all that, I will have to begin by developing an accessible tutorial on

the Rubin causal model for philosophers, presented in Section 2. This tutorial will be

accompanied by a fully rigorous version in Appendix A, which improves upon textbook-

standard presentations in important ways for philosophical purposes.

2 The Rubin Causal Model without Tears

The Rubin causal model has been extensively applied to study various aspects of our

medical and economic lives. Think about it: life itself is not unlike a card game.

2.1 Introducing the Card Game

There are cards that determine our fates:

Card #1: What If You Took the Treatment?

Nature gives every individual a card of this form: the back is printed with

‘if Take = 1’, and the face is printed with ‘Cure = 1’ or ‘Cure = 0’.

The former case means that this person would be cured if they took the treatment,

while the latter means that this person would not be cured if they took the treatment.

Thus, this card design already presupposes Conditional Excluded Middle.

There is only one rule for card flipping: any card given to a person is initially face

down and will be flipped to reveal the result exactly when the if-clause actually applies

to that person.

Similarly, there is also:

Card #2: What If You Didn’t Take the Treatment?

Nature gives every individual a second card, with the back printed ‘if Take =

0’, and the face is printed with ‘Cure = 1’ or ‘Cure = 0’.

Each person’s cards #1 and #2 define that person’s individual treatment effect

(ITE): the value of binary variable Cure on card #1 minus its value on card #2.
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There are three possible cases:

ITE =






1 (= 1− 0) i.e. improvement,

0 (= 1− 1 or 0− 0) i.e. no difference,

−1 (= 0− 1) i.e. deterioration.

The average treatment effect (ATE) for a population is defined as the average of the

individual treatment effects for all individuals in the population.

A bit of algebra shows that the ATE is equal to the difference between two propor-

tions:

ATE = (i) the proportion of ‘Cure = 1’ cards among all cards of type #1

− (ii) the proportion of ‘Cure = 1’ cards among all cards of type #2.

There is a simple and effective way to estimate term (i): randomly flipping some cards

of type #1 in the population—or equivalently, randomly selecting some people in the

population and forcing them to flip their cards of type #1. Once the faces of those

cards are revealed, register the proportion of the occurrences of ‘Cure = 1’, and use

it as an estimate of term (i). Term (ii) can be estimated similarly. This procedure

for estimating the ATE is the idea behind randomized controlled trials (RCTs). The

problem, however, is that RCTs are often ethically impermissible.

Fortunately, there is a Nobel-Prize-winning solution, which seeks to estimate, not

exactly the ATE, but a closely related causal effect—without forcing anyone to do

anything.

2.2 Switching from the ATE to the LATE

Let’s randomly select individuals from the population and then assign each of them to

either the treatment or control group by flipping a coin. Here is the thing: anyone in

the treatment group is offered the treatment for free, and they decide whether to take

it—there is no forcing anyone to do anything. This creates a new type of card:

Card #3: What If You Were Assigned to the Treatment Group?

Nature gives every individual a card of this form: the back is printed with

‘if Assign = 1’ (where 1 means the treatment group), and the face is printed

with ‘Take = 1’ or ‘Take = 0’.
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This determines whether the individual would or would not take the treatment if

assigned to the treatment group. Similarly:

Card #4: What If You Were Assigned to the Control Group?

Nature gives every individual a card of this form: the back is printed with

‘if Assign = 0’ (where 0 means the control group), and the face is printed

with ‘Take = 1’ or ‘Take = 0’.

With the new cards, we can define some subpopulations:

1. Compilers: those who would take the treatment if assigned to the treatment

group, and would not if assigned to the control group (namely, those whose card

#3 and card #4 are printed with ‘Take = 1’ and ‘Take = 0’, respectively).

2. Defiers: those who would do the opposite of what compliers would do.

3. Always-Takers: those who would take the treatment regardless of assignment.

4. Never-Takers: those who would not take the treatment regardless of assignment.

By Conditional Excluded Middle, those four subpopulations jointly exhaust the entire

population.

Now, let the target of estimation be, not exactly the ATE, but a closely related

quantity, the LATE, short for local average treatment effect. The LATE is defined as

the average of the individual treatment effects of just the compliers in the population,

or more formally:

LATE =df


i: being a complier ITE of individual i

the number of compliers
.

Interestingly, when there are no defiers and other conditions are met, it is possible to

estimate the LATE without forcing anyone to take the treatment, as will be shown

shortly.

2.3 Estimating the LATE

The standard procedure for estimating the LATE is known as instrumental variable

estimation. To understand it, we need a theorem, now a classic result in econometrics

and statistics (Imbens & Angrist 1994, Angrist, Imbens, & Rubin 1996):
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Informal Statement of Theorem 1 (Identification of the LATE). In

the card game presented above, which already builds in Conditional Excluded

Middle, suppose that the following four assumptions hold:

• (Random Selection) People are randomly selected from the popu-

lation.

• (Random Assignment) The selected people are randomly assigned

to the treatment or control group.

• (Existence of Compliers) There are compliers.

• (No Defiers) There are no defiers.

Then the LATE can be expressed solely in terms of probabilities over the

three observable variables—Assign, Take, and Cure—without counterfac-

tuals. Specifically:

LATE =
Pr(Cure = 1 |Assign = 1) − Pr(Cure = 1 |Assign = 0)

Pr(Take = 1 |Assign = 1) − Pr(Take = 1 |Assign = 0)
.

To be more precise, this equation holds under the assumptions 1-8 formalized in Ap-

pendix A. The first four of those assumptions, which include CEM, are automatically

build into the card design.

Some explanations are in order. First, the assumption that there are compliers

plays a straightforward role by ensuring that the target of estimation, the LATE, is

well-defined (i.e., has a nonzero denominator).

The assumption of no defiers plays a more interesting role: to delineate the scope

of application. For example, when estimating the causal effect of a newly designed

drug not yet available on the market, no one in the control group could take the new

drug, which implies that no one is a defier. Another example comes from Angrist’s

(1990) now-classic study on the Vietnam War, where “random assignment” refers to

the draft lottery, “treatment” to military service, and the “medical result” to lifetime

earnings. A defier in this scenario is someone being this crazy: one who would volunteer

for military service if they were not drafted but would avoid service if drafted. Here,

it is also reasonable to assume that no defiers exist. However, in cases where it is

implausible to assume the absence of defiers, the theorem above provides no guidance

on estimating causal effects.
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Let’s now turn to Pr, the probability function in use. The probabilities discussed in

this paper are restricted to physical objective probabilities. These probabilities might

be frequencies (Neyman 1955), propensities (Popper 1959), or primitive physical states

posited in science (Sober 2000: sec. 3.2)—to mention just the options developed with

classical statistics in mind, which often serves as the background theory for the Rubin

causal model. I remain open to the metaphysics of physical objective probabilities; the

focus of this paper is epistemology.

The first conditional probability in the equation, Pr(Cure = 1 |Assign = 1), is

defined in the standard way:

Pr(Cure = 1 |Assign = 1) =
Pr(Cure = 1 ∧ Assign = 1)

Pr(Assign = 1)
,

where the denominator is the probability that a randomly selected person is assigned

to the treatment group (Assign = 1), and the numerator is the probability that a

randomly selected person is assigned to the treatment group (Assign = 1) and then

gets cured (Cure = 1). This unknown conditional probability can be easily estimated—

by the observed proportion of the cured individuals in the treatment group. The other

three conditional probabilities can be similarly estimated by observed proportions.

This procedure for estimating the conditional probabilities on the right-hand side of the

equation, and thus estimating the LATE on the left-hand side, is known as instrumental

variable estimation (with the variable Assign serving as the so-called instrument).

This result marks an important achievement. Recall that the LATE is defined in

counterfactual terms, using the contents of cards that cannot all be flipped to reveal

their faces at the same time—a single person cannot simultaneously take the treat-

ment and not take it. Fortunately, to estimate the LATE, it suffices to observe some

proportions in the treatment and control groups and estimate the counterfactual-free,

conditional probabilities on the right-hand side of the equation in Theorem 1. It is

amazing that an interesting quantity defined in counterfactual terms (the LATE on

the left) can be identified with a quantity that depends solely on counterfactual-free

probabilities (on the right), which are easy to estimate. Thus, this theorem is also

known as an identification result. Many important theorems in statistics and econo-

metrics for causal inference are identification results.

For a rigorous statement of Theorem 1, see Appendix A, which seeks to improve

upon standard presentations. To be sure, there is a particularly lucid and frequently

7



cited presentation in the statistics article by Angrist, Imbens, & Rubin (1996, Proposi-

tion 1), but those authors list only four assumptions, omitting an explicit statement of

CEM. In Appendix A, I identify eight assumptions in total, including CEM, of course.

This concludes the first task of this paper: a crash course on the Rubin causal

model and the identification result for the LATE.

3 Playing Good Cop

The preceding discussion can inspire a new argument for Conditional Excluded Middle.

Let me flesh it out, playing the role of the good cop—for now.

3.1 A New Argument for CEM

Why might it be interesting to have a new argument supporting CEM? The reason is

that there is a highly influential argument against CEM (Lewis 1973). Let me briefly

review it. Consider the following pair of sentences:

(A) If i took the treatment, i would be cured.

(B) If i took the treatment, i would not be cured.

CEM requires that the disjunction (A)∨ (B) is true in every possible world. To find a

counterexample, consider an indeterministic world in which the following holds:

(C) If i took the treatment, i would have a nontrivial probability p of being cured

and a probability 1− p of being not cured, where nontriviality means that p lies

strictly between 0 and 1.

Then argue as follows that the truth of (C) implies the falsity of both (A) and (B):

Indeterminist Argument Against CEM

1. Assume that (C) is true.

2. By 1, if the individual i took the treatment, i would have a more-than-zero

probability of being not cured.

3. So, if i took the treatment, i could be not cured. (This follows from 2, by the

inference from ‘would have a more-than-zero probability to be’ to ‘could be’.)
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4. Now, suppose for reductio that (A) is true: if i took the treatment, i would

be cured.

5. Then, by 3 and 4, we have: if i took the treatment, i would be cured and

could be not cured—absurd.

6. So, by the reductio argument from 4 to 5, it follows that (A) is false.

7. By symmetry, (B) is false, too; thus (A) and (B) are both false.

In a nutshell, nontrivial counterfactual probabilitiy refutes CEM—or so Lewis (1973)

concludes. Hájek (manuscript) further argues that such counterexamples to CEM are

pervasive in the actual world we live in.

The above is just round one of the debate. The next round features responses

from defenders of CEM, such as Stalnaker (1981). This debate has unfolded across

philosophy of language (Williams 2010), metaphysics (Emery 2017), and traditional

epistemology (Boylan 2024).2 I submit that philosophy of science is also an area where

we can explore a new argument for CEM:

Indispensability Argument For CEM

CEM is assumed in our best theory of causal inference in health and so-

cial sciences, whose application to instrumental variable estimation under-

pinned the 2021 Nobel Prize in Economics. Despite the influential challenge

raised by statistician Dawid (2000) more than twenty years ago in the sci-

entific community —a challenge very similar to Lewis’s (1973) worry from

nontrivial counterfactual probability—CEM has persisted as a core assump-

tion of this theory to this day. Thus, CEM seems indispensable. Given that

we should believe in our best theory of causal inference in health and social

sciences, and that CEM is an indispensable part of it, it seems that we

have no choice but to believe in CEM—for fear of intellectual dishonesty,

in Putnam’s (1971) terms.

As just mentioned, the indispensability of CEM is already supported by its per-

sistence in the fact of the challenge in the scientific community. This indispensability

can be further reinforced by examining the role of CEM in the Rubin causal model, to

which I turn now.

2For reviews of this debate, see Loewenstein (2021) and Mandelkern (2022, sec. 17.3.4).
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3.2 What’s the Role of CEM, Exactly?

The answer lies in some lemmas proved using the Rubin causal model. At this point,

we must examine some formal aspects of the model.

Let Take i = 1 express the proposition that the individual i takes the treatment.

Similarly, Cure i = 1 expresses that i is cured, and Assign i = 1 expresses that i is

assigned to the treatment group (rather than the control group). To this notation, we

can add superscripts to express counterfactuals, such as the following:

• CureTakei=1
i = 1 means that i would be cured if i took the treatment.

• Take
Assigni=0
i = 0 means that the individual i would not take the treatment if i

were assigned to the control group.

The Rubin causal model makes some logical assumptions:

Assumption (Centering). The antecedent of a counterfactual is redun-

dant if it happens to be true; in symbols:

Xi = x ⇒

Y Xi=x

i = y ⇔ Yi = y

.

There is another logical assumption, being the focus of this paper:

Assumption (Conditional Excluded Middle, or CEM). If Yi is a

binary variable, so is the counterfactual variable Y Xi=x
i .

Notably, presentations in the scientific literature almost always mention only in passing

that Y Xi=x
i is a binary variable, without recognizing that this is a substantive assump-

tion. The substance can be appreciated only by going from the formalism back to

the intended interpretation: To say that CureTakei=1
i is binary is to say that either

CureTakei=1
i = 1 or CureTakei=1

i = 0, which means that either i would be cured under

the treatment or i would not be cured under the treatment—an instance of CEM.

The four cards for each individual i correspond to the four counterfactual variables:

CureTakei=1
i , CureTakei=0

i , TakeAssigni=1, and TakeAssigni=0, whose values correspond to

the faces of the four cards. Thus, the card-based definitions presented above can be

formalized as follows. The ITE (individual treatment effect) for an individual i is

defined by:

ITEi =df CureTakei=1
i − CureTakei=0

i .
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The four subpopulations are defined as follows:

Complier(i) ⇔df Take
Assigni=0
i = 0 ∧ Take

Assigni=1
i = 1 ;

Defier(i) ⇔df Take
Assigni=0
i = 1 ∧ Take

Assigni=1
i = 0 ;

Always-Taker(i) ⇔df Take
Assigni=0
i = 1 ∧ Take

Assigni=1
i = 1 ;

Never-Taker(i) ⇔df Take
Assigni=0
i = 0 ∧ Take

Assigni=1
i = 0 .

Then we have:

Lemma A. Under the assumption of CEM, the four subpopulations just

defined—compliers, defiers, always-takers, and never-takers—are mutually

exclusive and jointly exhaustive.

The proof is simple: mutual exclusion follows immediately from the definitions; joint

exhaustion follows immediately from the definitions and the assumption of CEM. This

role of CEM will become important shortly. The local average treatment effect (for

the compliers) is defined as:

LATE =df


i:Complier(i) ITEi

#{i : Complier(i)} ,

where the denominator denotes the size of the complier subpopulation.

Here is the key point: For the technical reasons explained in Appendix A.4, existing

proofs of the identification result for the LATE (Theorem 1) all require estimating an

important quantity: the proportion of compliers in the population. It is the estimation

of this quantity that makes use of Lemma A, which ultimately relies on CEM. Let me

explain how this quantity is estimated to reveal the deeper involvement of CEM.

Let’s start by considering the proportions of the four subpopulations:

(1) the proportion of compliers in the population;

(2) the proportion of defiers in the population;

(3) the proportion of never-takers in the population;

(4) the proportion of always-takers in the population.

Those four proportions sum to 1 because the corresponding four subpopulations are

mutually exclusive and jointly exhaustive, as stated in Lemma A, which assumes CEM.

So, to estimate the primary target, (1), it suffices to subtract the estimates of the
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remaining three proportions from 1. This is the first role played by Lemma A, and

hence, by CEM.

Since (2) is equal to zero by the assumption of No Defiers, it remains to estimate

(3) and (4).

To estimate (3), consider the following three quantities:

(3) the proportion of never-takers in the population;

(3′) the proportion of never-takers in the control group;

(3′′) the proportion of those who end up not taking the treatment in the control group.

Assuming random assignment to the treatment or control group, proportion (3) can

be estimated by proportion (3′), provided that we can obtain an accurate value for the

latter. And we can. The idea is to exploit this lemma:

Lemma B. Under the assumptions of CEM, Centering, and No Defiers, it

follows that, within the treatment group, the never-takers are exactly those

who end up not taking the treatment. Or in symbols, Assign i = 1 implies

this equivalence:

Never-Taker(i) ⇔ Take i = 0 .

Thanks to this lemma, proportion (3′) is equal to proportion (3′′), which can be easily

observed: simply count the number of individuals not taking the treatment in the

treatment group and divide it by the size of the treatment group. To recap: CEM is

assumed in Lemma B, which enables us to use proportion (3′′) as an accurate value of

proportion (3′), which, by randomization, can then be used as an estimate of proportion

(3). Very ingenious indeed!

The idea behind the proof of Lemma B is also clever, drawing on Lemma A. This

is a second role played by Lemma A, and hence, by CEM. Let me present the proof in

plain language.

Proof of Lemma B. To prove the “⇒” direction, consider any individual i being a

never-taker in the treatment group. Then, by the assumption of Centering, i does not

take the treatment. Now, to prove the “⇐” direction, consider any individual i in the

treatment group who ends up not taking the treatment. By Lemma A, which relies on

CEM, this person i must be one of the following: an always-taker, never-taker, defier,

or complier—notably, this is the only place where CEM is employed in this proof. Of

those four possibilities, three can be eliminated. Specifically, we can eliminate the
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possibility that i is a defier, by the assumption of No Defiers. We can also eliminate

the possibility that i is an always-taker or complier; for the always-takers and complier

in the treatment group end up taking the treatment by the assumption of Centering,

but i does not take the treatment. Thus, the only remaining possibility is that i is a

never-taker, as desired. Q.E.D.

Now that we know how to estimate proportion (3), the same trick can be used to

estimate (4), the proportion of always-takers in the population, by counting the actual

takers in the control group, and by applying a similar lemma with a similar proof.3

And recall that proportion (2) equals zero. Once estimates of proportions (2), (3), and

(4) are obtained as explained above, subtracting them from 1 yields an estimate of the

primary target, (1), the proportion of compliers.

To wrap up: While the assumption of CEM is often obscured in the formalism of the

Rubin causal model, I hope the above reconstruction illuminates the deeply involved

roles that CEM plays in both the model and its applications to causal inference. No

wonder CEM has remained a core assumption for more than twenty years even after

the influential challenge posed by the statistician Dawid in 2000 within the scientific

community. This strongly suggests that CEM is indispensable to our best theory of

causal inference in health and social sciences.

I have thus completed my second task: presenting a new argument that proponents

of CEM can explore and utilize—an indispensability argument drawn from the 2021

Nobel Prize in Economics. To further the dialectic, it is now time for me to switch

sides and assist opponents of CEM.

4 Playing Bad Cop

In my role as the bad cop, I argue that the above theory of causal inference can be

reformulated to dispense with CEM.4 To this end, expansion packs to the base game

are needed.

3This lemma, Lemma B’, states that, under the assumptions of CEM, Centering, and No Defiers,
we have that, within the control group, the always-takers are exactly those who end up taking the
treatment; in symbols, Assigni = 0 implies this equivalence: Always-Taker(i) ⇔ Takei = 1.

4This approach is akin, at least in spirit, to what Field (1980/2016) did to challenge the Quine-
Putnam indispensability argument for mathematical realism, by reformulating Newtonian mechanics
without referring to real numbers.
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4.1 Expansion Pack: Going Stochastic

In the base game, everyone is given only a single card printed with ‘if Take = 1’, whose

face determines whether that person would, or would not, be cured under the treatment.

But now imagine that you are given not just one card printed with ‘if Take = 1’, but

a deck of such cards, where 80% are printed with ‘Cure = 1’ on their faces, and the

remaining 20% with ‘Cure = 0’. Let this deck be thoroughly shuffled, with all faces

down initially. What if you took the treatment? Nature would then randomly draw a

card from this deck and flip it to reveal your medical result. Consequently, you would

have an 80% probability of being cured.5 So, you could be cured and could be not

cured, and hence, it is neither true that you would be cured nor that you would not

be cured. CEM is thereby rendered invalid—or so the Lewisians contend.

Let’s generalize. In the base game, every individual is given four cards, each an-

swering one of the following what-if questions:

• What if one took the treatment?

• What if one didn’t take the treatment?

• What if one were assigned to the treatment group?

• What if one were assigned to the control group?

Now, let each individual’s four cards be replaced by four decks, which provide answers in

the following form: ‘If individual i were . . . , then i would have a probability p of being

. . . ’. Such a p is a counterfactual probability—a probability under a counterfactual

condition.

So, we now have a stochastic version of the Rubin causal model: single cards are

replaced by decks of cards—that is, deterministic outcomes are replaced by counter-

factual probabilities. These counterfactual probabilities can then be used to redefine

several concepts in the original Rubin causal model.

Start with the ITE (individual treatment effect). Each individual i still has an ITE,

but it is now redefined as the difference between two counterfactual probabilities, or

equivalently, two proportions in decks of cards:

ITE i =df (i) the proportion of ‘Cure = 1’ cards in i’s deck for ‘if Take = 1’

− (ii) the proportion of ‘Cure = 1’ cards in i’s deck for ‘if Take = 0’.

5If randomly drawing a card from a deck does not sound chancy enough, replace it with measuring
an observable in a quantum-mechanical system.
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In the limiting case where each deck contains only one card, the newly defined ITE

reduces to the original ITE.

Subpopulations are redfined, too. Every individual i now has a degree of compliance

DCi, defined by how one’s counterfactual probability of taking the treatment would

change if one switched from the control group to the treatment group:

DCi =df (a) the proportion of ‘Take = 1’ cards in i’s deck for ‘if Assign = 1’

− (b) the proportion of ‘Take = 1’ cards in i’s deck for ‘if Assign = 0’.

The difference between term (a) and term (b) can be positive, zero, or negative, corre-

sponding to three subpopulations:

• If DCi > 0, one is called a complier (in the general sense).

• If DCi < 0, one is called a defier (in the general sense).

• If DCi = 0, one is called an indifferent-taker, with two special cases: an always-

taker, who has (a) = (b) = 100%, and a never-taker, who has (a) = (b) = 0%.

As to the target of estimation, LATE, it is replaced by a more general concept: a

weighted average of the individual treatment effects, where each individual’s weight

wi is proportional to their degree of compliance DCi. This new concept is called

the degree-of-compliance-weighted average treatment effect, or DATE for short. In

symbols:

DATE =df



i: being a complier

wi ITE i ,

wi =df
DCi

j: being a complier DCj

,

where the denominator in the definition of weights wi is a normalizing factor introduced

to ensure that the weights sum to 1.

The present setting is quite general, encompassing the original card game as a

limiting case, where every deck contains only one card. In this special case, all compliers

are equally compliant, with a maximal degree of compliance (100% minus 0%), which

reduces the DATE to the LATE.
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4.2 The Final Expansion Pack: Adding a Causal Bayes Net

The next step is to state a key assumption in instrumental variable estimation, which,

when expressed in plain language, asserts the following:

Assumption (Instrumentality, Informal Version). The assignment

mechanism (to the treatment/control group) causally influences the medical

outcome only through whether an individual takes the treatment. More-

over, there is no common cause shared by the assignment mechanism and

the medical outcome.

When this assumption holds, the variable Assign is called an instrument. This informal

statement is often found in textbooks (Hernán & Robins 2023, sec. 16.1), but interest-

ingly, the standard formalization of this assumption in the Rubin causal model appears

quite different, as you can see from the statement of Assumption 2 in Appendix A (see

also Hernán & Robins 2023, technical point 16.1).

I propose a more straightforward formalization of this assumption, using the causal

structure depicted in Figure 1.

Figure 1: The causal structure that captures the Instrumentality assumption

This causal structure is an exact representation of the Instrumentality assumption:

every path from the Assign variable to the Cure variable passes through the Take

variable, and there is no common cause shared by Assign and Cure. The confounding

variable, U , is set to be as fine-grained as possible to avoid missing any confounding

factors: its possible values are the individuals in the population. This suffices to

encompass all the social, economic, and health conditions of each individual.
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Next, let’s turn this causal graph into a causal Bayes net.6 This is done by specifying

some probabilities: the probability distribution of each exogenous variable (i.e., U and

Assign), and the conditional probability distribution of each effect variable given its

direct cause variables, as shown in Figure 2.

Figure 2: The causal Bayes net assumed in Theorem 2

Those probabilities are defined as follows. First, everyone in the population has

an equal probability of being selected, so Pr(U = i) = 1/N , where i is the i-th indi-

vidual and N is the population size. Once a person i is selected, a coin is flipped

to decide whether to assign that person to the treatment or control group, with

Pr(Assign = 1) = 1/2, or more generally, Pr(Assign = 1) being a constant, indepen-

dent of the individual selected. Finally, the conditional probabilities of effects given

direct causes are identified with the appropriate counterfactual probabilities ci, c
∗
i , ti,

and t∗i (as shown in the Figure 2), whose values are taken from the stochastic version

of the Rubin causal model, or equivalently, the stochastic expansion pack to the base

6The word ‘Bayes’ can be misleading. Despite the established name in the literature, there is
nothing inherently Bayesian in causal Bayes nets, also known as causal Bayesian networks. The prob-
abilities in such networks are most naturally interpreted as physical objective probabilities, measuring
the propensities or tendencies of causal influences, rather than degrees of belief.

17



game:

ti =df the proportion of ‘Take = 1’ cards in i’s deck for for ‘if Assign = 1’ ;

t∗i =df the proportion of ‘Take = 1’ cards in i’s deck for for ‘if Assign = 0’ ;

ci =df the proportion of ‘Cure = 1’ cards in i’s deck for for ‘if Take = 1’ ;

c∗i =df the proportion of ‘Cure = 1’ cards in i’s deck for for ‘if Take = 0’ .

The main idea can be summarized as follows:

Proposal of a New Causal Modeling. While the original Rubin causal

model allows only deterministic outcomes for an individual, it is updated

with an expansion pack—replacing single cards with decks—to allow stochas-

tic outcomes with nontrivial counterfactual probabilities. These probabili-

ties are then incorporated into an appropriate causal Bayes net.

This is a combination of two frameworks for causal modeling: the Rubin causal model,

more familiar to health and social scientists, and the causal Bayes net, more familiar to

philosophers and computer scientists. You will soon see that these two causal models

are stronger together, at least for the purpose of pursuing freedom from CEM.

4.3 Dispensing with CEM

Finally, we arrive at a new theorem—a stochastic counterpart to the identification

result for the LATE:

Theorem 2 (Identification of the DATE). Suppose that the following

assumptions hold:

• (Random Selection) Individuals are randomly selected from the

population with equal probabilities.

• (Random Assignment) The selected people are randomly assigned

to the treatment or control group with a constant bias strictly between

0 and 1 (e.g., by flipping a fair coin).

• (Instrumentality*) The true causal model is the causal Bayes net

depicted in Figure 2.

• (Existence of Compliers*) There are compliers in the population,

in the sense that someone’s degree of compliance is positive.

18



• (No Defiers*) There are no defiers in the population, in the sense

that no one’s degree of compliance is negative.

Then the DATE can be expressed solely in terms of probabilities over the

observable variables—Assign, Take, and Cure—without counterfactuals.

Specifically:

DATE =
Pr(Cure = 1 |Assign = 1) − Pr(Cure = 1 |Assign = 0)

Pr(Take = 1 |Assign = 1) − Pr(Take = 1 |Assign = 0)
.

See Appendix B for a proof. The first two assumptions are actually redundant, as

they are already encapsulated in the causal Bayes net posited in the third assump-

tion; but they are stated here to highlight the role of randomization. The last three

assumptions are labeled with asterisks to distinguish them from their counterparts in

the original Rubin causal model, as stated in Appendix A.

This new theorem has a notable feature: the right-hand side of the equation

for the DATE in the new theorem is identical to that for the LATE in the clas-

sic result. Both are expressed as the same combination of conditional probabilities:
Pr(Cure=1 |Assign=1)−Pr(Cure=1 |Assign=0)
Pr(Take=1 |Assign=1)−Pr(Take=1 |Assign=0)

. This feature is crucial. Scientists can continue

using the same procedure of instrumental variable estimation—estimating the left-hand

side by estimating the exact same conditional probabilities on the right-hand side, based

on the exact same proportions observed in the treatment and control groups. However,

thanks to this new theorem, the old estimation procedure no longer assumes CEM and

can be reinterpreted as estimating the new left-hand side: the newly defined causal

effect DATE, of which the LATE is merely a limiting case in a deterministic world (at

least for Lewisans).

This reinterpretation undermines the indispensability argument. Medical and social

scientists have practiced instrumental variable estimation for decades, with the stated

goal of estimating the LATE under the assumption of CEM. Yet this well-established

practice can now be reinterpreted as actually estimating the DATE all along—without

assuming CEM. So, the successes of the original theory for causal effect estimation are

preserved in the new theory, which dispenses with CEM. The indispensability argument

is thus defused.

At this point, proponents of CEM might reply that even if they are compelled to

adopt the new theory of causal inference, this would not to stop them from holding onto

CEM. Indeed, the assumptions of the new theory only involve counterfactual probabil-
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ities and do not explicitly refer to the logic of counterfactuals. And Stalnaker (1981)

already argued that one can coherently embrace nontrivial counterfactual probabilities

and insist on CEM at the same time. The idea is based on a semantic technique known

as supervaluation, used to resist Lewis’s (1973) argument that nontrivial counterfactual

probability refutes CEM.

Setting aside the details of supervaluation, it suffices to note that I, as the bad

cop at this moment, can concede the points that Stalnakerians made in the previous

paragraph. Even so, my main point remains: thanks to the new theory of causal

inference, CEM is no longer indispensable, even if it might still be optional. This

is sufficient to undermine the indispensability argument—the mere optionality of an

option is too weak to entail that we should take that option.

This concludes my role as the bad cop, whose goal is to defuse the indispensability

argument.

5 Closing

The Rubin causal model, with its underlying logic of counterfactuals and its capacity

to facilitate causal inference, merits closer examination by philosophers. To this end,

the preceding discussion provided a card-game tutorial to introduce the model and

developed a dialectic connecting it to familiar philosophical issues. The focus was

on the ongoing debate surrounding a logical principle: Conditional Excluded Middle

(CEM). I developed both sides of the debate in turn. First, I demonstrated how the

Rubin causal model could be used to construct a new argument for CEM—a Quine-

Putnam-style indispensability argument. Then, I switched sides and challenged this

argument by employing a causal Bayes net that renders CEM dispensable.

Where does my heart go to, the Stalnakerian side for CEM, or the Lewisian side

against it? I find myself leaning slightly toward the latter, but that is secondary

for now. The real takeaway is how the dialectic between the good cop and the bad

cop underscores the intriguing potential of the Rubin causal model for philosophers.

Indeed, I see opportunities for both sides of the debate.

For proponents of CEM, the next step might be to explore whether the use of causal

Bayes nets is most sensible with or without CEM. Opponents of CEM, on the other

hand, should further explore the potential of causal Bayes nets as an enhancement

of the original Rubin causal model, extending beyond the application to instrumental
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variable estimation as discussed above. After all, the original Rubin causal model has

several significant applications, such as the method of difference in differences; see

Hernán & Robins (2023, technical points 7.3 and 21.13).

The dialectic above also suggests an interesting case for the revisability of logic.

If health and social scientists can be persuaded to abandon CEM, possibly following

the new theory of causal inference developed above, it would be an example of how

empirical inquiry can drive revisions in deductive logic—precisely the kind of case

Quine (1951) envisioned. This would underscore the possibility of revising logic based

not only on empirical inquiries but specifically on those addressing immediate practical

concerns, such as in the health and social sciences—a much more relatable example

than Putnam’s (1968) proposal to shift from classical to quantum logic.

So much for deductive logic, but there is also something here for theorists of induc-

tion. When scientists justify inductive methods, they rely heavily on their contexts of

inquiry, including background assumptions. Past discussions have mostly focused on

background assumptions that are physical (Longino 1979, Christensen 1997), method-

ological, or ethical (Reiss 2020), rather than logical. But do scientists have to assume

a logical principle like CEM to justify certain causal inferences? As we have seen, the

search for an answer is far from trivial. Thus, background assumptions about deductive

logic warrant greater attention from theorists of induction.

There is also something for those more interested in scientific modeling rather than

inference, whether deductive or inductive. Consider the interplay between three ap-

proaches to causal modeling:

(1) Rubin causal models (Rubin 1974),

(2) structural equation models (Pearl 2009),

(3) causal Bayes nets (Spirtes et al. 2000).

Pearl (2009) famously argues that the first two approaches—Rubin causal models and

structural equation models—are essentially equivalent and can produce everything we

can do with the third approach: causal Bayes nets. However, the new theorem suggests

a different picture: in at least one important application (instrumental variable esti-

mation), causal Bayes nets appear to generalize Rubin causal models with an extended

result. This prompts a reconsideration of these questions: Which approach to causal

modeling is more general? Which are equivalent, and in what sense? These questions

would make for an interesting case study on an important topic: intertheory relations,
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a subject whose case studies have thus far been largely drawn from natural sciences.7 I

submit that more attention be directed to the relations among causal models in health

and social sciences. While initial steps have been taken by Markus (2021) and Wein-

berger (2023), their work does not consider causal Bayes nets. Much more remains to

be explored.

The Rubin causal model clearly offers a rich landscape for further exploration by

philosophers.
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Appendices

A The Formalism of the Rubin Causal Model

The Rubin causal model builds on a simple idea: ordinary variables are extended to

variables under counterfactual conditions, also known as potential outcomes.

A.1 The Potential Outcome Notation

Recall that Take i = 1 expresses the proposition that individual i takes the treatment.

Similarly, Cure i = 1 says that i gets cured, and Assign i = 1 says that i is assigned to

the treatment group (rather than the control group). Given a variable Xi, we can use

XC
i to denote a potential outcome, which represents the value of X that individual i

would have under the counterfactual condition C. For example:

7For a review of this subject, see Palacios (2024).
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• CureTakei=1
i = 1 means that individual i would be cured if i took the treatment.

• Cure
Takei=1,Takej=0
i = 0 means that individual i would not be cured if i took the

treatment but another individual, j, did not.

There are eight assumptions for instrumental variable estimation, beginning with

those that are inherently tied to the card design introduced in the tutorial.

A.2 Assumptions Built into the Card Design

Here is a substantive, empirical assumption:

Assumption 1 (Stable Unit Treatment Value, or SUTVA). The

values of the variables of each individual (or unit) are determined indepen-

dently of the values of the variables of any other individuals. That is, for

any variable Xi and any conditions C1, . . . ,Cn concerning individuals from

1 to n, we have XC1,...,Cn

i = XCi
i , which omits any references to individuals

other than i in the counterfactual condition.

This assumption might be violated in some cases, such as when dealing with a con-

tagious disease in a densely populated community. However, when it is plausible to

make this assumption, the analysis becomes simpler: to determine whether i would be

cured under various conditions, it suffices to consider potential outcomes of the form

Cure
Assigni=a,Takei=t
i .

The next assumption enables further simplification by dropping additional terms

from the counterfactual conditions:

Assumption 2 (Instrumentality). For each individual i, Assign i is an

instrumental variable in the following sense: the value of Cure i is deter-

mined once the value of Take i is determined, independently of the value

of Assign i. That is, Cure
Assigni=a,Takei=t
i = CureTakei=t

i , which omits the

assignment Assign i = a in the counterfactual condition.

Thanks to the above two assumptions, now we only need to consider just four poten-

tial outcomes for each individual i: CureTakei=1
i , CureTakei=0

i , Take
Assigni=1
i , Take

Assigni=0
i .

Those four variables correspond to the four cards that i holds in the game presented

in the tutorial (Section 2). The faces of the four cards are printed with the values of

those four potential outcomes, respectively. By choosing to model each individual with
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such a simple set of four cards, we are already committed to the substantive empirical

assumptions of SUTVA and Instrumentality.

The design of four cards (as opposed to the four-deck design in my expansion pack)

also carries substantive assumptions, but these are logical assumptions this time. The

first is:

Assumption 3 (Centering/Consistency). It must be that

Xi = x ⇒

Y Xi=x

i = y ⇔ Yi = y

;

that is, an antecedent Xi = x in a counterfactual is redundant if it turns

out to be true.

While ‘Centering’ is the standard name for this logical principle in philosophy, the

scientific literature uses ‘Consistency’ instead. There is a second logical assumption,

which is the focus of this paper:

Assumption 4 (Conditional Excluded Middle, or CEM). Suppose

that Yi is a binary variable. Then the counterfactual variable Y Xi=x
i is also

a binary variable; in other words:

Y Xi=x
i = 1 ∨ Y Xi=x

i = 0 .

This disjunctive schema represents CEM as it is understood in philosophy.

Under the assumption of CEM, the four subpopulations defined below are mutually

exclusive and jointly exhaustive (as stated in Lemma A in Section 3.2):

Complier(i) ⇔df Take
Assigni=0
i = 0 ∧ Take

Assigni=1
i = 1 ;

Defier(i) ⇔df Take
Assigni=0
i = 1 ∧ Take

Assigni=1
i = 0 ;

Always-Taker(i) ⇔df Take
Assigni=0
i = 1 ∧ Take

Assigni=1
i = 1 ;

Never-Taker(i) ⇔df Take
Assigni=0
i = 0 ∧ Take

Assigni=1
i = 0 .
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A.3 An Auxiliary Assumption

Now we can define the target of estimation. The ITE (individual treatment effect) for

an individual i is defined by:

ITEi =df CureTakei=1
i − CureTakei=0

i .

The local average treatment effect (LATE) for the compliers is defined as:

LATE =df


i:Complier(i) ITEi

#{i : Complier(i)} .

To make this target of estimation well-defined, the denominator must be assumed to

be nonzero:

Assumption 5 (Existence of Compliers)

Complier(i) for some individual i.

None of the above assumptions involves probabilities, which will soon make their ap-

pearance.

A.4 Probabilistic Assumptions

The design of the cards itself is non-probabilistic. In the Rubin causal model, prob-

abilities arise from how individuals are drawn from the population and assigned to

different groups. For simplicity, let the subscript-free notation Pr

CureTake=0 = 1



denote the probability of drawing an individual from the population who would be

cured without taking the treatment. If everyone has an equal probability 1/N of being

selected, where N is the population size, then Pr

CureTake=0 = 1


is identical to the

proportion of those who would be cured without taking the treatment. This exploits a

convenient ambiguity of Pr between probability and proportion. Now I cam state the

first probabilistic assumption:

Assumption 6 (Random Selection). Everyone in the population has an

equal probability of being selected. So the actual frequency distribution of

the four potential outcomes in the population is the same as the probability

distribution of those variables. In other words, of the individuals with the

following counterfactual properties:
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• TakeAssign=0 = a,

• TakeAssign=1 = b,

• CureTake=0 = c,

• CureTake=1 = d

their proportion in the population is equal to:

Pr

TakeAssign=0 = a, TakeAssign=1 = b, CureTake=0 = c, CureTake=1 = d


.

Thanks to the above assumption, we can derive a probabilistic formula to express the

LATE—a formula often treated as a definition in textbooks for convenience, but which

is actually a lemma (Imbens & Rubin 2015):

Lemma C. Under the assumption of Random Selection, we have:

LATE = Pr

CureTake=1 = 1 |Complier


− Pr


CureTake=0 = 1 |Complier


.

Proof of Lemma C. Calculate the LATE as follows, where Existence of Compliers is

assumed throughout to make all denominators nonzero, and the last step applies the

assumption of Random Selection.

LATE

=
1

#{i : Complier(i)}


i:Complier(i)

ITEi

=
1

#{i : Complier(i)}


i:Complier(i)


CureTakei=1

i − CureTakei=0
i



=


i:Complier(i) Cure

Takei=1
i

#{i : Complier(i)} −


i:Complier(i) Cure
Takei=0
i

#{i : Complier(i)}

=
#{i : CureTakei=1

i = 1 ∧ Complier(i)}
#{i : Complier(i)} − #{i : CureTakei=1

i = 0 ∧ Complier(i)}
#{i : Complier(i)}

= Pr

CureTake=1 = 1 |Complier


− Pr


CureTake=0 = 1 |Complier


. Q.E.D.

If we unpack the conditional probabilities on the right-hand side using the stan-

dard definition, there will appear a denominator, Pr(Complier), which is equal to the
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proportion of compliers in the population, assuming Random Selection. This is why

the proof of the theorem for the LATE requires considering how this proportion is

estimated, which, in turn, relies on the assumption of CEM, as explained in Section

3.2.

In addition to the assumption of Random Selection, there is a second probabilistic

assumption:

Assumption 7 (Random Assignment). Any individual, once selected,

has a nontrivial probability (say 50%) of being assigned to the treatment/control

group, independently of their identity. So, Assign is probabilistically inde-

pendent of the set of all the four potential outcomes in use, TakeAssign=0,

TakeAssign=1, CureTake=0, and CureTake=1; in symbols:

Pr

TakeAssign=0 = a, TakeAssign=1 = b, CureTake=0 = c, CureTake=1 = d



= Pr

TakeAssign=0 = a, TakeAssign=1 = b, CureTake=0 = c, CureTake=1 = d |Assign = 0



= Pr

TakeAssign=0 = a, TakeAssign=1 = b, CureTake=0 = c, CureTake=1 = d |Assign = 1


.

A.5 The Last Mile

There is one final assumption:

Assumption 8 (No Defiers) Defier(i) for no individual i.

This is another substantive empirical assumption and is presented last because, in real

applications, it is often the one most responsible for delineating the scope of the method

of instrumental variable estimation.

Then we have the classic result due to Imbens & Angrist (1994) and Angrist, Im-

bens, & Rubin (1996):

Theorem 1 (Formal Version). Under the assumptions 1-8 as stated

above,

LATE =
Pr(Cure = 1 |Assign = 1) − Pr(Cure = 1 |Assign = 0)

Pr(Take = 1 |Assign = 1) − Pr(Take = 1 |Assign = 0)
.

I believe that this list of assumptions, 1-8, is the most comprehensive one currently

available.
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B Proof of the Main Result: Theorem 2

Recall that each individual i has an individual treatment effect given by:

ITEi = ci − c∗i ,

with a degree of compliance given by:

DCi = ti − t∗i .

Hence the DATE can be expressed as follows:

DATE =


i: being a complier


DCi

j: being a complier DCj



  
= the weight of i

ITEi

=


i


DCi
j DCj


ITEi

=


i


ti − t∗i
j


tj − t∗j




ci − c∗i


.

The first line is just the definition of the DATE, which is well-defined (with a nonzero

denominator) by the assumption of Existence of Compliers*. In the second line, i and

j are no longer restricted to compliers but range over all individuals in the population;

this is justified by the assumption of No Defiers* and by the fact that indifference-takers

carry zero weights. Now, the goal is to verify this equation:

DATE
?
=

Pr(Cure = 1 |Assign = 1) − Pr(Cure = 1 |Assign = 0)

Pr(Take = 1 |Assign = 1) − Pr(Take = 1 |Assign = 0)
.

The terms on the right-hand side are to be calculated in turn. I will leverage a defining

feature of the causal Bayes net, the Causal Markov Assumption, which asserts that

every variable is probabilistically independent of its non-descendants (non-effects) given
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its parents (direct causes). Start with the first term in the numerator:

Pr(Cure = 1 |Assign = 1)

=


i,j


Pr(Cure = 1 |Take = j,U = i,Assign = 1)

× Pr(Take = j |U = i,Assign = 1)

× Pr(U = i |Assign = 1)


by Chain Rule

=


i,j


Pr(Cure = 1 |Take = j,U = i,✭✭✭✭✭✭

Assign = 1)

× Pr(Take = j |U = i,Assign = 1)

× Pr(U = i |✭✭✭✭✭✭
Assign = 1)


by Causal Markov

=


i


Pr(Cure = 1 |Take = 1,U = i)

× Pr(Take = 1 |U = i,Assign = 1)

× Pr(U = i)


+


i


Pr(Cure = 1 |Take = 0,U = i)

× Pr(Take = 0 |U = i,Assign = 1)

× Pr(U = i)


=


i


ci ti

1
N


+



i


c∗i (1− ti)

1
N



= 1
N



i


ci ti + c∗i (1− ti)


.

Similarly for the second term in the numerator:

Pr(Cure = 1 |Assign = 0)

= 1
N



i


ci t

∗
i + c∗i (1− t∗i )


.
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Now calculate the first term in the denominator:

Pr(Take = 1 |Assign = 1)

=


i


Pr(Take = 1 |U = i,Assign = 1) · Pr(U = i | ✭✭✭✭✭✭

Assign = 1
byCausalMarkov

)


=


i

ti
1
N

= 1
N



i

ti .

Similarly for the second term in the denominator:

Pr(Take = 1 |Assign = 0)

= 1
N



i

t∗i .

To finish off, plug the four terms just calculated into the following:

Pr(Cure = 1 |Assign = 1) − Pr(Cure = 1 |Assign = 0)

Pr(Take = 1 |Assign = 1) − Pr(Take = 1 |Assign = 0)

=
✓
✓1
N


i


ci ti + c∗i (1− ti)


−✓

✓1
N


i


ci t

∗
i + c∗i (1− t∗i )



✓
✓1
N


i ti −✓

✓1
N


i t

∗
i

=


i


ci ti + ✓✓c

∗
i − c∗i ti − ci t

∗
i − ✓✓c

∗
i + c∗i t

∗
i




i ti −


i t

∗
i

=


i


ti − t∗i


ci − c∗i




j


tj − t∗j



=


i


ti − t∗i
j


tj − t∗j




ci − c∗i



= DATE .

Q.E.D.
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