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Abstract. While the traditional conception of inductive logic is Car-
napian, I develop a Peircean alternative and use it to unify formal learn-
ing theory, statistics, and a significant part of machine learning: super-
vised learning. Some crucial standards for evaluating non-deductive in-
ferences have been assumed separately in those areas, but can actually
be justified by a unifying principle.
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1 Introduction

According to the Carnapian/Bayesian view, inductive logic is a matter of se-
curing a “high proportion” of worlds that make the conclusion true within the
domain of the worlds that make the premises true (Carnap 1945). An alternative
view of inductive logic is developed here: it is a matter of being guaranteed to
get a true conclusion given “enough” premises (or data, or evidence).

This idea can be traced back to C. S. Peirce (1902/[1994]: CP 2.780-1), and I
propose that it be systematically developed along the following line of thought:
We should be given a certain kind of guarantee at least when the amount of
evidence is arbitrarily large. What kind of guarantee? A natural idea is to seek
(i) a guarantee to actually get exactly the true answer to the question posed in
one’s context of inquiry. If that is unachievable, we should seek (ii) a guarantee
to have a high physical objective probability of getting exactly the true answer.
If even that is unachievable, we should seek, or settle with, (iii) a guarantee to
have a high probability of getting close to the true answer. Note that those three
guarantees, (i)-(iii), form a sequence of increasingly lower standards:

(i) a guarantee to actually get exactly the true answer,
↓ weaken

(ii) a guarantee to have a high chance of getting exactly the true answer,
↓ weaken again

(iii) a guarantee to have a high chance of getting close to the true answer.

When we tackle an empirical problem, we ought to strive for the highest achiev-
able of such standards—achievable relative to the empirical problem undertaken.
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In a slogan: strive for the highest achievable! This is a principle that, I claim,
unifies multiple areas that study non-deductive inferences. In particular, many
disciplines—including formal learning theory, statistical testing theory, statisti-
cal estimation theory, and supervised learning in machine learning—appear to
assume distinct standards to evaluate the different types of inference methods
that they each study. But, if I am right, those evaluative standards need not
be assumed, let alone assumed separately; instead, they can be justified by the
unifying principle I propose.

To make my claim precise, many familiar concepts (such as empirical prob-
lems and various modes of convergences) need to be reformulated in a uniform
setting. This will be addressed in the first half of this paper (through section 3).
Then, in the second half (beginning in section 4), the main mathematical results
can be stated, and their philosophical significance will be explained. I will con-
clude by looking into both the history and the future: revisiting Peirce’s original
ideas and exploring the potential for further unification, including a version of
Bayesianism.

2 Varieties of Empirical Problems

Examples first:

Example 1 (Enumerative Induction). The easy raven problem poses a ques-
tion: Are all ravens black? Two potential answers: Yes vs. No, which form the
hypothesis space H = {Yes, No}. Evidence is gathered by observing ravens one
by one, and noting their colors as either black (1) or nonblack (0). So the space
of the possible evidential states, E, is the tree of all finite binary sequences. A
possible world for this problem takes the form:

w = (e1e2e3 · · · , h),

where e1e2e3 · · · is an infinite binary sequence, and h is the competing hypoth-
esis true in that world w. It is assumed in the background that either all ravens
are black or, if not, a counterexample would be observed sooner or later if the
evidence were to accumulate indefinitely. This assumption rules out only one
possible world, (111 · · · , No), in which the true answer is No (not all ravens are
black) and we would still always only observe black ravens 111 · · ·. This back-
ground assumption is formalized by a set W of possible worlds—the set of all
worlds of the form (e1e2e3 · · · , h) except for (111 · · · , No).

If the above background assumption is relaxed to include the possible world
(111 · · · , No), we obtain the hard raven problem, which was studied in formal
learning theory only quite recently (Lin 2022).

The above example suggests that, in general, an empirical problem has at
least three components: (i) competing hypotheses, (ii) data sequences as possible
evidence, (iii) a background assumption. Indeed, these three components also
figure in another classic empirical problem:
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Example 2 (Statistical Testing). The fair coin problem poses a question: Is
the coin fair? So the hypothesis space H is {Fair, Unfair}. Evidence is obtained
by tossing the coin repeatedly, and observing the results, either landing heads
(1) or landing tails (0). So the evidence space E for this problem is the tree of
binary sequences (as in the easy raven problem). Assumed in the background is
the standard IID assumption in statistics: that the bias θ of the coin, i.e., the
probability of landing heads, stays constant through time and coin tosses are
independent. Under the IID assumption, each possible bias θ in the unit interval
[0, 1] determines a probability function Pθ defined over E (which is the binary
tree). A possible world for this problem takes this form:

w = (e1e2e3 · · · , θ,Pθ).

In this world, θ is the true bias of the coin, Pθ is the true probability function
that represents the data-generation mechanism, and it turns out to generate
the data sequence e1e2e3 · · ·. The background assumption is represented by a
set of possible worlds, W, defined as the set of all worlds of the above form.
The hypothesis Fair asserts that θ = 0.5, which is true in the worlds in which
θ = 0.5. Similarly for the hypothesis Unfair, which asserts the negation θ ∕= 0.5.

Some clarifications are in order. First, the background assumption is very
weak. For example, it is logically compatible with this possible world:

w = (1010 · · · , 0.5,P0.5),

in which the coin is fair and alternates between landing heads (1) and tails (0).
It is also logically compatible with this possible world:

w = (1111 · · · , 0.5,P0.5),

in which the coin is fair and it turns out to always land heads—yes, this is
logically possible. In fact, the background assumption is even compatible with
any worlds of the following form, where e1e2e3 · · · is an arbitrary binary sequence:

w = (e1e2e3 · · · , 0.5,P0.5),

in which the coin is fair and it turns out to land heads or tails according to
the pattern e1e2e3 · · ·. All those worlds are ruled in, following the practice of
classical statistics.

Second, note that probabilities are assigned to the data sequences in the ev-
idence space. That is, each probability function Pθ is defined over the evidence
space, which represents a stochastic mechanism for generating data or evidence
and conforms to the use of objective physical probabilities, or chances, in clas-
sical statistics. Bayesian statistics, and Bayesian epistemology in general, allow
probabilities to be assigned to possible worlds, but those probabilities represent
subjective degrees of belief. A comparison of the present work with Bayesianism
will be provided in the concluding section.
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The fair coin problem presupposes that there exist probabilities, so probabil-
ities have to figure in the possible worlds in use. In contrast, for the easy raven
problem, it suffices to use worlds of simpler forms without probabilities. So there
should be flexibility in our designs of possible worlds:

Definition 1 (Possible World). A possible world, or world for short, is an
ordered pair or tuple of the form:

w = (e1e2 · · · , other),

where the first component e1e2 · · · is an infinite data sequence, understood as the
one produced in that world, and the second component other specifies the other
relevant elements of that world.

Many different things can go into other, such as a distinguished statement
true in world w, or the distribution of physical probabilities that exist objectively
in that world.

I have mentioned three components of an empirical problem: (hypothesis,
evidence, and assumption). There is a fourth component, to be motivated below:

Example 3 (Statistical Estimation). The coin bias problem is basically the
same as the fair coin problem except that it poses a more fine-grained question:
What is the bias of the coin? So the hypothesis space is H = [0, 1], the unit inter-
val. The evidence space E is the same; so is the background assumption W. The
possible worlds in use are the same, too, taking the form w = (e1e2e3 · · · , θ,Pθ).
But our guess of the bias, as a hypothesis h ∈ H, can be more or less accurate;
the loss of accuracy can be measured by the difference between the guess h and
the true bias. So the loss of accuracy of guessing h ∈ [0, 1] in a world w, written
Loss(h,w), can be defined as the difference between the guess h and the true
bias in w.

So we need this additional definition:

Definition 2 (Loss Function). A loss function is a function Loss : H×W → R
that maps any hypothesis h in H together with any world in W to a nonnegative
real number, denoted by Loss(h,w), under the constraint that, in each world
w ∈ W, there is a unique hypothesis h ∈ H that attains zero loss of accuracy:
Loss(h,w) = 0 .

The uniqueness constraint is adopted in this paper only for the sake of sim-
plicity. It allows us to talk about convergence to the truth in a world w: the
unique hypothesis that attains zero loss of accuracy in that world w. It is not
hard to generalize, referring to a truth or truths in a world, but let’s opt for
simplicity here in order to focus on more important issues.

When we were thinking about the first two examples (the easy raven prob-
lem and the fair coin problem), we were not compelled to think about the loss
function only because the role of the loss function is already played by the talk of
truth and falsity. That is, the loss of accuracy has only two values: 0 for getting
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the truth, 1 for getting a falsehood. Or more precisely, in the easy raven and
fair coin problems, the loss function is simple: Loss(h,w) is equal to 1 minus the
truth value of hypothesis h in world w.

Thus, for the sake of uniformity, every empirical problem is required to in-
clude a loss function as a fourth component. In fact, as will become clear in the
next section, this fourth component is even a necessity in order to produce a
uniform treatment of various standards for evaluating inference methods. Hence
the following definition:

Definition 3 (Empirical Problem). An empirical problem, or problem for
short, is a quadruple (H,E,W, Loss) with the following interpretations and re-
quirements:

• H is a set of hypotheses, understood as the hypotheses under consideration.
• E is a tree, called the evidence tree, in which the nodes are finite data se-
quences e1 · · · en ordered by sequence extension, and every branch is infinite.

• W is a set of possible worlds such that the infinite data sequences that appear
in the worlds therein are exactly the branches of the evidence tree E. This set
W is meant to contain all and only the possible worlds compatible with one’s
background assumption.

• Loss is a loss function on H×W.

This definition is also general enough to cover problems in supervised learn-
ing, from binary classification to nonparametric regression, to be discussed in
section 6.

The components of an empirical problem have their own roles to play. The
evidence space E and the hypothesis space are used to define inference methods
as functions from the former to the latter (with a minor refinement to be formally
stated below). The other two components are used to define various standards for
assessing inference methods, as we will see below. Those standards examine each
inference method by considering how that method performs for truth seeking
across a range of the possible worlds—the worlds in W. So, W represents the
background assumption against which inference methods are evaluated. These
ideas will be fleshed out in the formal definitions provided in the next section.

3 Modes of Convergence as Evaluative Standards

Here are the objects of evaluation:

Definition 4 (Inference Method). An inference method for an empirical
problem (H,E,W, Loss) is a function M : E → H ∪ {?}; that is, M can receive
any finite data sequence that figures as a node of the evidence tree E, and then
output one of the hypotheses in H or a question mark ? that represents judgment
suspension.

Only the first two components of a problem, H and E, are needed to define the
inference methods for that problem. The remaining two components,W and Loss,
are used to define standards for assessing inference methods. But preliminaries
first:
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Definition 5. Here are some notation conventions:

• Let Pw denote the probability measure true in w if w contains such a thing.

• Let hM,n,w denote the hypothesis or output of method M at stage n in world
w, that is, M(e1e2 · · · en), where e1e2 · · · en is the sequence of the first n data
points received in world w.

• Similarly, let ĥM,n be the random variable that maps each possible data se-
quence of length n to the output of M on that sequence; so ĥM,n can be
intuitively understood to denote the random hypothesis or output of method
M at stage n (leaving worlds and data sequences unspecified), following the
standard use of variables in statistics.

The random variable notation ĥM,n is particularly convenient for expressing
probabilities like the following:

Pw


Loss


ĥM,n, w


< 


=df Pw


e1e2 · · · en : Loss


M(e1e2 · · · en), w


< 


.

The right side means the probability, in world w, of observing a data sequence
e1e2 · · · en of length n such that the loss of M ’s output is below the threshold .
This phrase can be more concisely expressed using the notation on the left side:
it denotes the probability, in world w, for the loss of M ’s output to be bellow 
given sample size n.

Here is the real thing:

Definition 6 (Three Basic Modes of Convergence). An inference method
M for a problem (H,E,W, Loss) can be said to achieve one or another mode of
convergence to the truth. The following defines three modes.

• Convergence with Nonstochastic Identification

for any world w ∈ W,
there exists sample size N such that,
for all n ≥ N ,

Loss

hM,n,w, w


= 0;

that is, given sample size n, M outputs exactly the truth in w.

• Convergence with Stochastic Identification:

for any probability threshold 1− δ < 1,
for any world w ∈ W,
there exists sample size N such that,
for all n ≥ N ,

Pw exists, and
Pw


Loss


ĥM,n, w


= 0


> 1− δ;

that is, given sample size n, the probability for M to output exactly the
truth is high (greater than 1− δ) in w.
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• Convergence with Stochastic Approximation

for any upper bound on loss  > 0,
for any probability threshold 1− δ < 1,
for any world w ∈ W,
there exists sample size N such that,
for all n ≥ N ,

Pw exists, and
Pw


Loss


ĥM,n, w


< 


> 1− δ;

that is, given sample size n, the probability that M outputs a hypothesis
-close to the truth is high (greater than 1− δ) in w.

These three basic modes of convergence have been mostly developed and
studied separately in different areas, couched in very different languages, and
employed to talk about apparently different subjects. The formalism developed
here provides a uniform reformulation of those modes. Moreover, the plain En-
glish glosses accompanying the above reformulated definitions (the clauses fol-
lowing ‘that is’) make it clear that the old, familiar modes of convergence are
covered:

(i) Convergence w/ Nonstochastic Identification: It goes by the name
identification/decidability in the limit in formal learning theory (Kelly 1996:
ch. 3), originally designed for theory choice in a deterministic setting.

(ii) Convergence w/ Stochastic Identification: This captures the conjunc-
tion of consistency in significance level and consistency in power as studied
in statistical hypothesis testing (Lehmann 1999: ch. 3). It also captures the
so-called model selection consistency in statistical model selection (Claeskens
et al. 2008: ch. 4).

(iii) Convergence w/ Stochastic Approximation: This captures so-called
estimation consistency in the statistical theory of estimation (Lehmann 1999:
ch. 2). As you will see below (section 6), it also captures the consistency
of learning algorithms in supervised learning, which includes classification
(Shalev-Shwartz et al. 2014: Part I) and nonparametric regression (Györfi et
al. 2002: ch. 1).

It is not hard to develop variants of the above modes of convergence. Let me
briefly outline some notable ones. For each of the three modes defined above,
exchanging the quantifiers ‘for any world’ and ‘there exists sample size’ gives
us a higher standard, a mode of uniform convergence. There are other variants,
which can be obtained by thinking about: rates of convergence (Györfi et al. 2002:
ch. 1), monotonic convergence or somewhat stable convergence if not perfectly
monotonic (Lin 2022), and convergence for almost all worlds in W—almost all
in a topological sense (Lin 2019). Those modes of convergence and their combi-
nations have been studied in one or another area. From an epistemological point
of view, they correspond to higher or lower standards for evaluating inference
methods. However, I will focus on the three basic modes defined above, which
suffice for making the philosophical point I want to make below.
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4 Towards Unification

The three basic modes of convergence have been reformulated in a uniform no-
tation to clarify their close connection. Although they are developed in distinct
areas, they set standards for assessing all inference methods in any empirical
problems. The standards range from high to low—from actually getting the
truth, to probably getting exactly the truth, to probably getting close to the
truth. Hence the hierarchy depicted in Table 1.

Table 1. The Hierarchy of the Three Basic Modes of Convergence

(i) Convergence w/ Nonstochastic Identification
|

(ii) Convergence w/ Stochastic Identification
|

(iii) Convergence w/ Stochastic Approximation

We need just one more definition before the first result can be stated:

Definition 7 (Achievability). A mode of convergence is said to be achievable
for an empirical problem if some inference method for that problem satisfies that
mode of convergence.

Then we have:

Proposition 1. Consider the hierarchy of the three modes of convergence de-
picted in Table 1.

• For the easy raven problem, the highest achievable is mode (i).
• For the fair coin problem, it is mode (ii).
• For the coin bias problem, it is mode (iii).

See the appendix for the proof. The novelty of this result consists in what
is not achievable. The claims of achievability are already obtained with greater
generality in formal learning theory and statistics. But I still provide elementary
proofs of those achievability claims, considering that readers familiar with one
of the two areas might not be so with the other.

Since the novelty is in the claims of unachievability, let me explain the proof
strategy. Mode (i) is unachievable for the two statistical problems due to a
specific kind of underdetermination by data: those two problems allow that one
and the same infinite data sequence can be generated under different hypotheses.
Mode (ii) is unachievable for the coin bias problem because of considerations
about cardinality: the number of competing hypotheses (all the real numbers in
the unit interval) is strictly greater than the number of possible evidential inputs
(all finite binary sequences). So, for any inference method, there is at least one
hypothesis doomed to be never an output.
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I suspect that the proof strategy just sketched allows us to generalize the
result to cover wide classes of empirical problems. However, I will focus on the
three paradigm problems—easy raven, fair coin, and coin bias—to streamline
the discussion and emphasize more pressing points: a picture of different areas
unified into a cohesive whole.

Although statistics and formal learning theory may appear to be very dif-
ferent, they operate with the same guiding principle in the unifying picture I
propose:

Strive for the Highest Achievable!

Statisticians design inference methods with a minimum qualification in mind,
which is standardly called consistency in statistics but is just the stochastic
mode (ii) or (iii) defined above. Statisticians do not aim at the higher mode
(i). The cause underlying statisticians’ practices may lie in how their textbooks
are written and their PhD programs structured. But the reason that justifies
what statisticians do, I propose, is based on this fact: the empirical problems
addressed by statisticians are too hard to make the higher mode (i) achievable.
Similarly, formal learning theorists do not aim at the lower modes (ii) and (iii),
because they should not: since the empirical problems they study make the
higher mode (i) achievable, they should use that higher standard to evaluate
inference methods.

So, statistics and formal learning theory need not be regarded as two separate
areas that assume different standards to evaluate different kinds of inference
methods. Instead, there is a unifying principle: strive for the highest achievable.
The use of different standards in different areas—stochastic vs. nonstochastic—
need not be assumed and can be justified by the proposed principle.

Similarly, hypothesis testing and parameter estimation need not be viewed
as distinct subareas of statistics with separate evaluative standards. The use of
different standards—identification vs. approximation—need not be assumed and
can be justified by the proposed principle.

5 Deterministic vs. Stochastic?

Although formal learning theory is often presented in a way that gives the im-
pression that it only concerns deterministic hypotheses (as in Kelly 1996), let’s be
more careful. The hypothesis “all ravens are black” is neutral regarding whether
the actual world is deterministic or indeterministic. This hypothesis can be true
in a deterministic world, but it can also be true in an indeterministic world—a
world in which all ravens turn out to be black by chance. We have represented
this world without probabilities by:

w = (111 · · · , Yes) .

Strictly speaking, this w only represents a very coarse-grained world, for it says
nothing whatsoever about whether determinism is true or false. The coarse-
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grained world w can be realized by two different, more fine-grained worlds:

u = (111 · · · , Yes,Ptrivial) ,

u′ = (111 · · · , Yes,P′) ,

where, Ptrivial is a probability function that only assigns trivial probabilities 0
and 1—in particular, it assigns probability 1 to the constant sequence 111 · · ·.
But P′ is a nontrivial probability function, assigning (say) .7, to the constant
sequence 111 · · ·. In both of those fine-grained worlds, it is true that all ravens
are black. However, it is true deterministically in the first world u, and true only
by chance in the second world u′. Hence the following definition:

Definition 8 (Probabilistic Extension). Suppose that an evidence tree E is
given. Consider a world w = (e1e2 · · · , h) that contains no probability measure.
This world w is said to have another world w′ as a probabilistic extension if
w′ takes the form w′ = (e1e2 · · · , h,P), which differs from w only by adding a
(trivial or nontrivial) probability measure P over the evidence tree E.

Definition 9 (Fine-Grained Version). Fine-grained versions of a problem
(H,E,W, Loss) are problems of the form: (H,E,W′, Loss′), with the same H, the
same E, but a different W′ and a different Loss′, satisfying the following con-
straints:

• W′ can be obtained from the original W by, first, removing each world w that
contains no probability measure and, then, replacing w with one or multiple
probabilistic extensions of w.

• Loss′(h,w′) = Loss(h,w) if w′ is a probabilistic extension of w.

Then we have:

Proposition 2. Consider the three modes of convergence in Table 1. If the high-
est mode (i) is achievable for a problem P, then the three modes (i)-(iii) are all
achievable for any fine-grained version of P that only involve countably additive
probability measures.

See the appendix for the proof.

Corollary 1. Mode (i) implies mode (ii) in the precise sense described by the
preceding proposition. Mode (ii) in turn implies mode (iii) in the standard sense.

The easy raven problem fails to make (ii) and (iii) achievable only because of
its somewhat misleading mathematical representation. The fine-grained versions
of that problem do a better representational job, being explicitly neutral between
determinism and indeterminism, making all the three modes provably achievable.

So it is misleading to say that formal learning theory differs from statistics
in that the former presupposes determinism. This claim is incorrect; there is no
such presupposition. The distinction between the two areas is best understood
as a division of labor guided by a common principle, as explained earlier.



Unified Inductive Logic 11

6 Supervised Learning

The present setting also covers problems studied in supervised learning, whose
simplest examples concern binary classification:

Example 4 (Binary Classification). Suppose that we want to determine whether
a given object is a cat by examining a (pixelated) picture of it. Or suppose
that we want to determine whether a given watermelon is tasty by examining
properties such as its skin color distribution and the sound it produces when
tapped. Or suppose, in general, that we want to classify an object of a certain
kind into category 0 or category 1, and do it on the basis of the feature that
it has in a countable set of mutually exclusive features: X = {x1, x2, x3 . . .}. A
(binary) classifier is an indicator function h : X → {0, 1}. Suppose, further,
that we are given a set H of (some or all) such classifiers. We would like to
pick a good classifier from H in light of examples. An example is an object
with a specified feature x ∈ X and a specified category 0 or 1; so an example
is formally an ordered pair (x, 0) or (x, 1). Such examples form an example
space: X×{0, 1}. A data sequence (e1 · · · en) is a finite sequence of such ordered
pairs. All such data sequences form an evidence tree E = (X × {0, 1})<∞. A
learning algorithm is just an inference method M : E → H ∪ {?}, although
people in machine learning typically only consider M : E → H. To sum up: a
task of binary classification can be formally identified as an ordered pair
(X,H) consisting of two elements:

• a countable feature space X = {x1, x2, x3 . . .},
• a set H ⊆ {0, 1}X, as a candidate pool of classifiers.

Those two elements suffice to determine the other elements of such a task, in-
cluding classifiers, examples, an evidence tree E, and learning algorithms. But
what counts as a good classifier—good for predictive purposes? The quality of a
classifier depends on the state of the world. Assume that examples are generated
by a probabilistic mechanism, represented by a probability distribution D over
the example space X × {0, 1}, where D(x, y) denotes the probability that the
next example has feature x and belongs to category y. The predictive risk of
a classifier h with respect to the (true but unknown) distribution D is given by
the probability of misclassification:

Risk(h,D) = D

(x, y) : h(x) ∕= y


=



(x,y):h(x) ∕=y

D(x, y)

The smaller, the better. All this points to an empirical problem (H,E,W, Loss),
called a (binary) classification problem:

• Question: Which classifier is the best in class (in H) for predictive purposes?
So the hypothesis space is H, the given candidate pool of classifiers.

• E, the evidence tree, is the tree of sequences of examples (x, y) taken from
the example space X× {0, 1}.
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• W, which represents the background assumption, is the set of all possible
worlds of the form w = (e1e2 · · · , D,PD), where D is an arbitrary probability
distribution over the example space, and PD is the IID probability measure
(on E) generated from distribution D.

• Loss(h,w) = Risk(h,Dw)−minh′∈H Risk(h′, Dw), where Dw denotes the dis-
tribution in world w

This concludes the last and longest of the four examples examined in this paper.
It is no coincidence that textbooks in machine learning use the symbol h to
denote classifiers, referring to them as hypotheses (Shalev-Shwartz et al. 2014).

Once we see what binary classification is, generalizations are straightforward.
When the category set Y = {0, 1} is generalized to a set of finite categories,
Y = {1, 2, . . . , k}, we obtain problems of multiclass classification. When both
the feature space X and the category space Y become continuous, say Euclidean
spaces Rn, we have problems of nonparametric regression. These generalizations
encompass nearly the entire area of supervised learning.

In supervised learning, the minimum qualification for good learning algo-
rithms is called consistency, which is essentially the mode of convergence (iii)
as defined in this paper—convergence with stochastic approximation. However,
consistency does not need to be assumed as a minimum qualification in super-
vised learning. It can be justified as follows: By the principle of striving for the
highest achievable, the achievability of at least mode (iii) in the hierarchy in
Table 1 implies that mode (iii) or a higher mode has to be achieved, which in
turn implies, thanks to corollary 1, that mode (iii) has to be achieved at the
very least—as a minimum qualification. The same argument also justifies mode
(iii) as a minimum qualification for good estimators in statistical estimation.

7 Closing

This paper reformulates three basic modes of convergence to the truth using
a uniform notation, and explores their potential to create a unified picture of
inductive logic. Additional modes of convergence (as mentioned at the end of
section 3) should be investigated to enrich the simple hierarchy in Table 1 and
to determine whether more areas can be incorporated into the unified framework.
In this closing note, let me explain how we arrived at this point and where we
might go from here.

In hindsight, Peirce already did a lot for us over a century ago. As pointed
out in Lin’s (forthcoming) discussion of Peirce’s convergentism, Peirce sought
to justify enumerative induction by appeal to the mode of convergence with
nonstochastic identification (Peirce 1994: CP 2.775, 7.125), and he also studied
statistical estimation using the mode of convergence with stochastic approxi-
mation (Peirce 1994: CP 2.669-93). Unfortunate, after Peirce, those two modes
of convergence took diverging paths. The stochastic one helped establish the
estimation theory in statistics (Fisher 1925), and the nonstochastic one helped
create formal learning theory (Putnam 1965, Gold 1967)—but those two areas
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have long been regarded as largely unrelated. I propose that we return to Peirce’s
idea and reinforce it with the principle developed above “Strive for the Highest
Achievable!”

The result is a conception of logic that unifies formal learning theory, statis-
tics, and a significant part of machine learning: supervised learning. But can
it be extended to cover other areas of machine learning, such as reinforcement
learning and unsupervised learning? I am optimistic for reinforcement learning,
for it has been given a largely uniform foundation as supervised learning (Mohri
et al. 2018). Of course, a detailed argument is needed nonetheless, but that has
to be left to future work.

However, the prospect for incorporating unsupervised learning into the uni-
fied picture remains unclear. In fact, even theorists of machine learning have diffi-
culty evaluating algorithms of unsupervised learning by a rigorous standard—let
alone a standard defined as a mode of convergence. To talk about convergence
to the truth, there needs to be a truth to begin with, but such a truth is typ-
ically missing in unsupervised learning, as observed in a standard textbook on
the theoretical foundation of machine learning: “[A] basic problem is the lack
of “ground truth” for clustering, which is a common problem in unsupervised
learning” (Shalev-Shwartz & Ben-David 2014: 308).

The most influential approach to inductive logic to date in philosophy is the
Bayesian one. I suspect that it can be developed in a manner that fits into the
unified picture I have painted. On the Bayesian approach, inductive logic should
be founded on the idea that probabilities as rational degrees of belief ought to
be updated by conditionalization on the new evidence (Carnap 1945). But is it
that all priors—initial assignments of probabilistic degrees of belief—are equally
permissible? The answer is “yes” according to the subjectivists in Bayesian epis-
temology. But the answer is “no” according to anti-subjectivists, including the
objectivists, who maintain that permissible priors must be “flat”, conforming to
the principle of indifference or a variant of it. But the objectivists are not the
only people who would like to constraint the candidate pool of permissible prior
by something more than the axioms of probability. For a group of Bayesians who
are less known to the philosophical community but work in a branch of statistics
called Bayesian nonparametric statistics, it is customary to rule out some prior
assignments of degrees of belief by appeal to considerations about convergence
(see Rousseau 2016 for a review). The idea is simple: a Bayesian prior is permis-
sible only if updating it successively via conditionalization ensures a sequence of
posteriors that achieves a specific mode of convergence to the truth, commonly
called Bayesian consistency. Thus, even Bayesians may find their place within
the unifying framework I have outlined for inductive logic; however, the details
remain to be addressed in future work.

I hope all this offers initial reasons to be optimistic about the prospect of a
unified inductive logic.
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A Appendix: Proofs

A.1 Proof of Proposition 1

To establish the first part for the easy raven problem, it suffices to verify that
mode (i) is achieved in the easy raven problem by the inference method that
outputs Yes exactly when the input contains no 0, and outputs No otherwise.

Now, establish the second part for the fair coin problem as follows. Mode (i),
convergence with nonstochastic identification, is unachievable because the fair
coin problem features this kind of underdetermination by data: The background
assumption W in the fair coin problem is so weak that it contains a pair of
worlds in W sharing the same indefinite data sequence (say, heads, tails, heads,
tails, and so on), while one world makes Fair true and the other makes Unfair
true. So, to converge to the truth in one of those two worlds is to converge to a
falsehood in the other. Mode (i) is thus unachievable. As to the achievability of
mode (ii) for the fair coin problem, it can be proved by Bernoulli’s law of large
numbers as follows. Let M be the inference method that outputs Fair exactly
when the observed frequency X̄n of heads in the sample is close enough to 0.5
in the sense that |X̄n − 0.5| < 1/ 4

√
n, where n is the sample size. Now recall

Bernoulli’s law of large numbers:

Pθ(|X̄n − θ| < ) ≥ 1− 1

4n2
.

In any world in which the truth is Fair, the probability for M to get the truth
is obtained by letting θ = 0.5 and  = 1/ 4

√
n in Bernoulli’s law of large numbers:

P.5


|X̄n − 0.5| < 1/ 4

√
n


≥ 1− 1

4n(1/ 4
√
n)2

= 1− 1

4
√
n
,

which converges to 1 as n tends to infinity. Moreover, in any world where the
truth is Unfair with true bias θ ∕= 0.5, when the sample size n is large enough
to ensure that 1/ 4

√
n < 1

2 |θ − 0.5|, the probability for M to get the truth is

Pθ


|X̄n − 0.5| ≥ 1/ 4

√
n


≥ Pθ


|X̄n − θ| < 1/ 4

√
n


≥ 1− 1

4
√
n
,
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which converges to 1 as n tends to infinity. So M achieves mode (ii).
Now, establish the third part for the coin bias problem as follows. The set of

all possible (evidential) inputs is the set of all nodes in the binary tree. So there
are countably many possible inputs. But there are uncountably many hypotheses.
Let M be an arbitrary inference method. It follows that there is some hypothesis
hM that M is doomed to never output in any world. So, the probability for M
to output (exactly) the truth always stays zero in the worlds in which the truth
is hM . So M fails to achieve mode (ii). But mode (iii) is achievable, for a well-
known reason: the inference method that always outputs the observed frequency
of heads achieves mode (iii), convergence with stochastic approximation, thanks
to Bernoulli’s law of large numbers (again). Q.E.D.

A.2 Proof of Proposition 2

Suppose that mode (i) is achievable for a problem (H,E,W, Loss), which has a
refined version (H,E,W′, Loss′). Let M be an inference method for the original
problem that achieves mode (i), which implies that there is a one-to-one corre-
spondence between the worlds in W and the infinite branches of the evidence
tree E:

w = (e1e2 · · · ,−) → e1e2 · · · ∈ E .

So, any probability measure defined over E can be equivalently construed as a
probability measure defined over W. Let Success(M,n) be the set of the worlds
w ∈ W, or equivalently the branches b ∈ E, such that, by stage n, M has output
the truth and would never drop it in b. By definition, Success is monotonic in
this sense: whenever n ≤ n′,

Success(M,n) ⊆ Success(M,n′) .

Since M achieves mode of convergence (i), it follows that


n∈N Success(M,n) = E .

Let w′ be an arbitrary world inW′, and let Pw′ denote be the probability measure
over E in w′. Then, by countable additivity, we have:

lim
n→∞

Pw′

Success(n)



= Pw′


n∈N Success(n)


= Pw′(E)

= 1

Now, note that the probability for M to get the truth by stage n in world w′ is
greater than or equal to Pw′


Success(n)


, which approaches 1 as n → ∞ thanks

to the above calculation. So M achieves mode (ii), convergence with stochas-
tic identification. Achieving mode (ii) immediately implies achieving mode (iii).
Q.E.D.
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