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ABSTRACT 
Throughout history, a relatively small number of individuals have made a profound and lasting 

impact on science and society. Despite long-standing, multi-disciplinary interests in understanding 

careers of elite scientists, there have been limited attempts for a quantitative, career-level analysis. 

Here, we leverage a comprehensive dataset we assembled, allowing us to trace the entire career 

histories of nearly all Nobel laureates in physics, chemistry, and physiology or medicine over the 

past century. We find that, although Nobel laureates were energetic producers from the outset, 

producing works that garner unusually high impact, their careers before winning the prize follow 

relatively similar patterns as ordinary scientists, being characterized by hot streaks and increasing 

reliance on collaborations. We also uncovered notable variations along their careers, often 

associated with the Nobel prize, including shifting coauthorship structure in the prize-winning 

work, and a significant but temporary dip in the impact of work they produce after winning the 

Nobel. Together, these results document quantitative patterns governing the careers of scientific 

elites, offering an empirical basis for a deeper understanding of the hallmarks of exceptional 

careers in science. 
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Introduction 
According to Harriet Zuckerman1, scientific elites “are worthy of our attention not merely because 

they have prestige and influence in science, but because their collective contributions have made 

a difference in the advance of scientific knowledge”. Indeed, across the broad spectrum of sciences, 

scientific elites are often pathbreakers and pacesetters in the science of their time2-7. Understanding 

patterns governing the careers of scientific elites helps us uncover insightful markers for 

exceptional scientific careers, useful for scientists and decision makers who hope to identify and 

develop individual careers and institutions8.  

 

The Nobel Prize, widely regarded as the most prestigious award in science, offers a unique 

opportunity to systematically identify and trace many of the world’s greatest scientists1,3,8-15. These 

scientific elites have attracted interest from a wide range of disciplines1,3,8,11,12,15-27, spanning 

sociology, economics, psychology, and physics. On the one hand, quantitative studies analyzing 

publication and citation records have mainly focused on the prize-winning work alone, helping 

uncover a set of highly reproducible patterns ranging from understanding the link between age and 

creativity3,16,17,28-30, to allocating credits and recognition4,15,19,21. On the other hand, Zuckerman’s 

canonical work1 probes into the entire career histories of Nobel laureates through qualitative 

methods13,14,16,31-35. The rich patterns articulated by Zuckerman vividly highlight the need to go 

beyond their prize-winning works, and put them in the context of the entire careers of laureates. 

Together, the two strands of research call for a quantitative, career-level analysis relying on large-

scale datasets to study patterns of productivity, collaboration, authorship, and impact governing 

the careers of scientific elites.  

 

Despite recent surge of interest in the science of science3,19,28,29,36-43 and efforts in constructing 

large-scale datasets of scholarly activities3,44-46, large-scale studies of the career histories of Nobel 

laureates remained limited, largely owing to the difficulty in collecting systematic data for their 

scientific contributions. Here, by combining information collected from the Nobel Prize official 

websites, laureates’ university websites, Wikipedia entries, publication and citation records from 

the Microsoft Academic Graph (MAG)47, and extensive manual curations, we constructed a unique 

dataset capturing career histories of nearly all Nobel laureates in physics, chemistry, and 

physiology or medicine from 1900 to 2016 (545 out of 590, 92.4%)48. We cross-validated this 
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dataset with four different approaches to ensure the reliability of our results. We deposited the 

derived dataset in a public data repository49, and describe our data collection and validation 

procedures in a data descriptor with great detail48.  

 

We further constructed a comparison dataset of scientific careers using data from the Web of 

Science (WOS) and Google Scholar (GS)46, representing the kinds of “ordinary” careers that tend 

to be studied in the science of science literature29,50. For each laureate who published the first paper 

after 1960, we randomly selected 20 scientists in the same discipline who started their careers in 

the same year (Supplementary Information S1). Note that the goal here is not to create a matching 

sample of Nobel-caliber scientists, but a comparison group consisting of scientists who are more 

similar to typical scientists in the field. One advantage of this comparison approach is that, by 

selecting individuals with long careers and well-maintained GS profiles, it covers scientists with 

relatively higher visibility and impact than typical scientists, indicating that our comparisons offer 

a conservative estimate of the difference between Nobel laureates and their contemporary peers.  

 

Results 
Early Performance. Widely held is the belief that the great minds do their critical work early in 

their careers3,16,17, prompting us to ask if there is any early signal that distinguishes Nobel laureates. 

Here we focus on the first five years since their first publication and measure their productivity 

and impact at this early stage of their careers. Consistent with Zuckerman’s observation1, we find 

that Nobel laureates were energetic producers from the outset, publishing almost twice as many 

papers as scientists in our comparison group (Fig. 1a). Yet, compared with this productivity 

difference, more impressive is the gap in impact. Indeed, the future laureates had a more than six-

fold increase over the comparison group in terms of the rate of publishing hit papers, defined as 

the papers with top 1% of rescaled 10-year citations (Eq. (1)) in the same year and field 

(Supplementary Information S3.1) (Fig. 1b). This difference is not simply driven by the early onset 

of prize-winning works. Indeed, we repeated our measurements by omitting the careers of laureates 

who published their prize-winning work in this period, finding that a substantial gap remained 

(Fig. S1).  
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To conceptualize the observed difference in productivity and impact, we separated team- and solo-

authored papers, finding that both types of work boost early performance, but they do so in 

different ways: Most of the difference in early productivity is accounted for by team-authored 

papers, as solo-authored papers show meager productivity difference between the laureates and 

their comparison group (Fig. 1c), documenting a greater propensity toward collaborations for 

scientific elites in their early careers1. The only exception is physics laureates who published 

slightly more solo-authored papers than their comparison group (1.73 vs 1.07, Student’s t-test, p-

value=0.07). Yet interestingly, solo-authored papers in early careers turned out to 

disproportionally more likely to be prize-winning papers than team-authored ones. Indeed, 

comparing the fractions of prize-winning papers within solo- and team-authored papers, we find 

that the former is about twice as high as the latter on average (Chi-squared test, p-value<10-11, Fig. 

1d).  

 

Career before the prize. Figure 1 documents outstanding early performance of future laureates. 

This is consistent with the innovation literature, which shows that the most important works tend 

to occur early in the lifecycle3,16,51, speaking to the idea that great, young minds disproportionally 

break through. Yet on the other hand, growing evidence shows that ordinary scientific careers are 

governed by the random impact rule28, predicting that the highest impact work occurs randomly 

within the sequence of works. To reconcile these two schools of thought, we focus on the career 

of laureates before they were awarded the Nobel and measure the positions of the prize-winning 

work and highest impact work within the sequence of works one produced. Here the paper impact 

is measured by rescaled 10-year citation (Methods). We find both types of works tend to occur 

early within the sequence of papers (Fig. 2a), a result that contradicts the random impact rule 

governing typical scientific careers28,46. Yet, our earlier analysis suggests that a selection effect 

may offer a potential explanation for this observation52—since the Nobel Prize in science has never 

been awarded posthumously, those who produced ground-breaking works early were more likely 

to wait long enough to be recognized20,22. Indeed, we removed prize-winning papers and calculate 

among the remaining ones the position of the highest impact papers. We find that the timing of 

each of the three remaining highest impact works for Nobel laureates all follow clearly uniform 

patterns52 (Fig. 2b). This means, apart from the prize-winning work, all other important works in 

Nobel careers closely follow the random impact rule: They could be, with equal likelihood, the 
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very first work, the last, or any one in between. This observation is in line with the recent discovery 

of hot streaks that occur at random within individual careers46, and therefore raises an important 

next question: Are these high-impact works clustered together in time?  

 

To answer this question, we quantify the relative timing between the two most cited papers (𝑁∗ 

and 𝑁∗∗) within each career by calculating the joint probability 𝑃(𝑁∗, 𝑁∗∗)	with a null model in 

which the two papers each follow their independent temporal patterns. We uncovered clear 

diagonal patterns across all three domains (Figs. 2c-e), showing that high-impact papers are more 

likely to cluster together than expected by chance. The diagonal pattern disappeared when we 

shuffle the order of the works, while preserving the random impact rule (Figs. 2f-h). We also 

measured the distribution of the longest streak within a career 𝐿, finding that 𝑃(𝐿) follows a 

broader distribution compared with that in shuffled careers across all three disciplines (Figs. 2i-k) 

(Supplementary Information S4.3-4.5). We further find that their hot streaks occur randomly 

within the sequence of works (Fig. 2l), and are not associated with any detectable change in the 

overall productivity (Fig. 2m, Kolmogorov-Smirnov test, p-value=0.18). Together, these results 

demonstrate a remarkable resemblance between the career histories of Nobel laureates and 

ordinary scientists46. 

 

What seems to distinguish the Nobel laureates from ordinary scientists, however, is that they are 

disproportionately more likely to have more than one hot streak. Indeed, while hot streak is usually 

unique for typical scientists46, Nobel laureates are characterized by 1.93 hot streaks on average 

(Fig. 2n). Furthermore, their hot streaks also tend to sustain for longer. We measured the duration 

distribution of hot streaks for Nobel laureates, finding that it peaks around 5.2 years (Fig. 2o), 

compared with 3.7 years for typical scientists46. The longer duration of laureates’ hot streaks is 

also captured by its proportion over career length (Fig. 2p). We also find that prize-winning works 

are disproportionately more likely to be produced during hot streaks (Fig. 2q). Overall the vast 

majority of all Nobel winning works (88%) occurred within hot streaks. 

 

Collaboration patterns. One of the most fundamental shifts in science over the past century is 

the flourishing of large teams across all areas of science29,39,53,54. Compared with the overall rate 

of this shift, Nobel laureates’ papers are produced by an even higher proportion of large teams 
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(Fig. 3a). One possible factor that may explain this team-size difference is impact, as larger teams 

tend to produce papers with higher impacts37. To control for this factor, we created a matching 

sample for each paper published by the laureates by selecting 20 papers from the same field and 

year but with the most similar number of citations. We find that, after controlling for impact, the 

Nobel laureates’ papers are still more likely to be produced by larger teams in all times across the 

last century (Fig. 3b).  

 

Figure 3ab thus underscore another similarity between Nobel and ordinary careers, highlighting 

the increasing reliance of team work across all types of scientific careers. Yet the ubiquitous 

increase in team size can be in tension with the fact that the Nobel Prize can only be awarded to at 

most three recipients for each subject every year1, prompting us to compare the team size of all 

prize-winning papers with those published immediately before and after them by the same 

laureates52 (Supplementary Information S5.1). We find a greater propensity for the prize-winning 

papers to be written by less than three authors52 (61.43% vs 53.28%, Chi-squared test, p-value<10-

4, Fig. 3c). We further examine the authorship structure of the prize-winning papers, finding that 

they are substantially more likely to have the laureates as the first author than other joint papers 

published by them (45.04% vs 30.64%, Chi-squared test, p-value<10-7) (Fig. 3d). We also 

calculated the probability of being the last author, finding no statistical difference (Chi-squared 

test, p-value=0.41).  

 

To test if these phenomena are unique to the prize-winning work, we removed the prize-winning 

papers and repeated the same analysis for the most cited paper among the remaining papers. We 

find that there is no statistical difference in their likelihood of being written by small teams52 (60.18% 

vs 56.17%, Chi-squared test, p-value=0.1193, Fig. 3e). While the difference in the likelihood of 

being the first author still exists for chemistry laureates, there is no statistical difference for 

laureates in physics or medicine (Fig. 3f). Together, these results show that prize-winning papers 

are more likely to be authored by fewer than three authors, with an intriguing tendency for laureates 

to claim the first authorship in the prize-winning works. While these observations are consistent 

with the finding that works produced by small teams tend to disrupt science and technology37, they 

are also consistent with Zuckerman’s argument that “the future laureates were especially 
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concerned to have the record clear for their most significant work, and particularly in their prize-

winning research papers”1.  

 

After the prize. How does winning the Nobel impact one’s subsequent career? The Matthew 

effect4,55 tells us that winning begets more winnings. Hence one may expect that works produced 

after the Nobel garner more impact than those produced before, given their substantially elevated 

reputation and visibility15. Here we find that, to the contrary, when comparing the average impact 

of papers (defined in Eq. (4)) published by the laureates in each of the four years before and after 

winning the Nobel, the average impact per paper shows a significant drop in the two years 

following the Nobel. The effect is most significant in the year immediately after, where impact 

dropped by 11.1% on average compared with the year before. Furthermore, the effect is not 

permanent, with impact quickly bouncing back by year four to a similar level as the year of the 

Nobel (Fig. 4a). The “Nobel dip” is most pronounced for physics laureates, as the impacts of their 

papers were reduced by 18.1%, compared with 4.8% for chemistry and 13.4% for medicine 

(Supplementary Information S6.2, Fig. S17). Interestingly, in contrast to the common perception 

of decreased productivity following the Nobel1,21, possibly due to “the disruptive consequences of 

abrupt upward social mobility”1, we find that the average number of papers by the laureates shows 

no significant change (Fig. 4b), indicating that the uncovered Nobel dip mainly pertains to impact 

rather than productivity. Note that winning the Nobel may introduce citation boosts to prior papers 

by the laureate15,26. To understand if the observed dip in impact may be explained by this factor, 

we alter the observation window to exclude post-Prize citations to pre-Prize works, finding that 

the “dip and bounce back” pattern remains robust (Fig. 4c, Supplementary Information S6.4, Fig. 

S20). We also find that the number of solo-authored papers decreased precipitately after the Nobel 

(Student’s t-test, p-value=0.004, Fig. 4d), whereas the fraction of team-authored papers increased 

(Student’s t-test, p-value=0.008, Fig. 4e), suggesting that collaboration and teamwork carry an 

increasing importance for the laureates after winning the Nobel. 

 

The Nobel dip signals that scientific community’s attention is not driven by status but the quality 

of work. To unearth potential mechanisms underlying the “dip and bounce back” dynamics, we 

trace topic changes before and after Nobel as reflected in their publications. We use an established 

method43 that detects research topics based on communities in the co-citing network of papers 
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published by a scientist, offering a discipline-independent method to identify and trace research 

topics across a career (Supplementary Information S6.5). As an illustrative example, Fig. 4f shows 

the constructed co-citing network and topic communities for the career of Jean-Marie Lehn, who 

was awarded the 1987 chemistry Nobel together with Donald Cram and Charles Pedersen for the 

synthesis of cryptands. In his remarkable career, Lehn published more than 700 papers. Figure 4f 

visualizes his publication history by topic, showing that his research agenda was almost 

exclusively focused on cryptands related research, until he was awarded the Nobel in 1987. Yet, 

just as this line of research was officially recognized, we observed a clear shift in topic right after 

winning the Nobel (Fig. 4g). In the next 10 years, his research was primary focused on self-

assembly and self-organization. Most interestingly, this is a topic that he had never published on 

before winning the Nobel.  

 

The intriguing example of Lehn’s career prompts us to ask if laureates disproportionately shift 

research topic after winning the Nobel. We randomly selected two papers, within 4 years before 

and after the Nobel, respectively, and measured the probability of two papers belonging to the 

same topic, finding only 36.8% of the two papers cover the same topic before and after winning 

the Prize. We then build a null model by randomly choosing a year as the pretended prize-winning 

year for comparison, finding that the probability is significant higher (45.2% vs 36.8%, p-

value=0.004, Fig. 4h), which suggests the laureates have a higher likelihood of shifting research 

topics after winning the Nobel. We further measured the likelihood of laureates studying a new 

topic after winning Prize, and compare it with a null model where we shuffled the topic of the 

works, finding that the laureates are much more likely to study a new topic after winning Prize 

than expected (14.2% vs 1.8%, p-value<10-14, Fig. 4i). To ensure that these results are not affected 

by specific community detection methods used to detect topics, we repeated our analyses with	

another well-known algorithm (Infomap56), obtaining the same conclusions (Supplementary 

Information S6.6).  

 

To understand potential forces behind the uncovered change in research agenda following the 

Nobel, we examined several different factors, including the popularity of research topics before 

and after the Prize (Supplementary Information S6.7), changes in collaborators (Supplementary 

Information S6.8), and funding opportunities (Supplementary Information S6.9). We find that the 
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topic studied after the Nobel tends to be less popular at the time. The number of new collaborators 

does not increase after the Nobel, but these collaborators tend to more established in terms of 

productivity and impact. And somewhat surprisingly, the overall funding to each laureate remains 

mostly constant around the time of the award. Although none of these factors can directly explain 

the observed topic change and the associated citation dip (Figs. 4j-m, Supplementary Information 

S6.7-S6.9, Figs. S24-S26), they appear consistent with an endogenous shift in the laureate’s 

interest to explore new directions. Note that, although the uncovered dip-bounce-back dynamics 

and topic shifting behavior both occur around the same time (when awarded the Nobel), it does 

not imply that the two are causally related. On the other hand, while one may be better at 

anticipating which work will be recognized by the Nobel eventually57, it remains difficult to 

precisely predict the year of winning, indicating that the award year can be viewed as a largely 

exogenous variation in a career58, which then coincides with topic shifting behavior that is largely 

endogenous to the individual. Regardless, these results highlight the unwavering scientific efforts 

by the laureates, actively pursuing new lines of enquiry while undeterred by the extra burdens 

imposed by growing duties and responsibilities1. 

 

Discussion 
In summary, building on Zuckerman’s canonical work on scientific elites1, here we present a 

systematic empirical investigation of the careers of Nobel laureates by studying patterns of 

productivity, collaboration, authorship, and impact. This analysis is now possible thanks to a novel 

dataset we curated—both algorithmically and manually—which links several disparate 

biographical and bibliographical data sources, offering a unique opportunity to quantitatively study 

the scientific contributions and recognitions of scientific elites. Despite the clear difference 

between the Nobel laureates and “ordinary” scientists, we find universal career patterns that are 

applicable to both ordinary and elite scientists. Indeed, we find the careers of the laureates before 

winning the prize are governed by remarkably similar patterns as ordinary scientists, characterized 

by hot streaks and increasing reliance on team work. Hence these results help advance the 

canonical innovation literature by offering new empirical evidence from large-scale datasets. At 

the same time, we also uncovered notable but previously unknown variations along their careers 

associated with the Nobel prize, including shifting coauthorship structure in the prize-winning 

work, and a temporary but significant dip in the impact of work they produce after winning the 
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Nobel. Overall, these results represent new empirical patterns that further enrich our understanding 

of careers of the scientific elite.  

 

Together, this paper takes an initial but crucial step probing our quantitative understanding of 

career patterns of scientific elite, which not only offer an empirical basis for future studies of 

individual careers and creativity in broader domains16,51, but also deepen our quantitative 

understanding of patterns governing exceptional careers in science. 

 

Methods 
Rescaled number of citations. To approximate the scientific impact of each paper, we calculate the number 

of citations the paper received after 10 years, 𝐶*+, and use it as a proxy for the paper’s impact. Previous 

studies29,37,44 have shown that the average number of citations per paper changes over time. To be able to 

compare the impact of papers published at different times and to adjust for temporal effects, the rescaled 

number of citations a paper receives after 10 years, C*+,-, is suggested as a good proxy for publication 

impact. According to the reference29, given a paper i,  C*+,-, is defined as follows: 

C*+,- = 10 ∙ 345,6
345

,                                                                (1) 

where C*+,- is the raw number of 10-year citations for paper i, and C*+ 	is the average C*+ calculated over 

all publications published in the same year and field. 

 

Definition of hit paper rate. In Fig. 1b, we compare the “hit” paper rate—defined as the probability of 

publishing papers in the top 1% of rescaled 10-year citations in the same year and field—for Nobel laureates 

and typical authors. Our collected Nobel laureate dataset is based on information provided by the MAG, 

which assigns the field of subject for each paper. It is worth noting that the field of subject is a hierarchal 

structure with six levels. The first level contains 19 main fields, such as “physics,” “chemistry,” “medicine,” 

and “biology.” The second level contains 295 subfields, such as “astrophysics,” “biophysics,” and 

“geophysics.” In this paper, we choose the second level fields in calculating the hit paper rate for Nobel 

laureates. The GS typical scientist dataset is based on information from the WOS, and it is almost 

impossible to precisely match the career histories of 3540 GS scientists from the WOS to the MAG. Thus, 

the hit rate analysis of the GS scientists is based on the WOS database itself. Papers in the WOS are also 

assigned to one of 234 specific field categories, such as “astronomy & astrophysics,” “biophysics,” and 

“geochemistry & geophysics.” The hit paper rate for typical scientists is calculated using these 234 specific 

fields from the WOS. 
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Selecting matching papers. In Fig. 3b, we created a matching sample for each paper published by Nobel 

laureates. The procedure for selecting matching papers is introduced here in detail. For each Nobel prize-

winner’s work, we first determine its year of publication, total citation number, and subject categories based 

on the MAG dataset. Next, all the MAG papers with the same publishing year and specific field are obtained 

and sorted according to their number of citations. It is worth noting that when a laureate’s paper spans 

multiple subjects, we deem MAG papers appropriate matches if they share at least one common subject 

with the laureate’s. We then select the 20 papers with citation counts that are most similar to the laureate’s 

paper and use these as matching papers. 

 

Quantifying impact. In Fig. 4a, we compare the average impact of papers published by the laureates in 

each of the four years before and after winning the Nobel. We propose a measure to quantify average impact 

of papers: We first calculate the average impact within all papers in specific years, and then we take the 

individual heterogeneity of Nobel laureates into consideration when quantifying average impact of papers. 

      The impact of paper i, is quantified by Γ- = log(C*+,- + 1) where C*+,- measures the rescaled number of 

citations within 10 years of publication. We denote ∆y = y- − y?@-AB as a laureate’s relatively publishing 

time after winning the Nobel Prize, where y- is the publication year of paper i. Assuming there are N∆D 

papers publishing in the ∆y year after winning the Prize, we define the average impact of papers as follows:  

Γ? ∆D =
E6

F∆G
6H4
I∆G

.                                                               (2) 

However, the above measure did not consider the individual heterogeneity of Nobel laureates. For 

example, average impact may be driven by those laureates with high productivity as well as high paper 

quality. Thus, we first measure the average impact of papers for each laureate and then calculate the average 

for all Nobel laureates. For laureate j, the average impact of papers published in the ∆y year after 

winning the Prize is defined as: 

Γ? ∆D,L =
Γi

F∆G,M
6H4
I∆G,N

,                                                            (3) 

where N∆D,L is the number of papers published in the ∆y year of laureate j. Factoring in individual 

heterogeneity, the average impact of papers is defined as follows: 

ΓI ∆D =
EO ∆G,N

P∆G
NH4

Q∆G
,                                                         (4) 

where M∆D denotes the number of laureates who still publish papers in the ∆y year after winning the Nobel 

Prize. In the main text (Fig. 4a), we use ΓI  to measure the average impact of papers.  
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Topic changing after winning the Nobel Prize. To quantify the topic of a paper, we adopt a recent method 

based on community structure of the co-citing network of a scientist’s papers51. To ensure meaningful 

community detection results, we consider all Nobel laureates who have published at least 50 papers. We 

also excluded Nobel laureates who published fewer than five papers after winning the Prize. Finally, we 

selected 283 Nobel laureates (74 for physics, 96 for Chemistry, 113 for medicine) who satisfied these 

requirements. 

      In Fig. 4g, we measure the probability of two papers belonging to the same topic within 4 years before 

and after the reception of the Prize and a random year. To measure the probability of changing topics of 

Nobel laureates after winning Prize, we randomly selected two papers, within 4 years before and after the 

Nobel, respectively, and measured the probability of two papers belonging to the same topic. We then build 

a null model by randomly choosing a year as the pretended prize-winning year for comparison. 

To test if Nobel laureates tend to study a new topic after winning Prize, we measure the chance of Nobel 

laureates shifting to a new topic after winning the Nobel, #TBU	VWX-YZ	[\VB@	U-TT-T]	?@-AB
#VWX-YZ	

. We also shuffled the 

topic of the works and repeated the measurement as a null model for comparison.  
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