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Optimality Theory and the Problem of Constraint
Aggregation™®

Daniel Harbour, MIT and Christian List, Oxford University

Optimality Theory (Prince & Smolensky, 1993) claims that “Universal Grammar
consists largely of a set of constraints on representational well-formedness”! and
that grammaticality is a matter of structural well-formedness. As constraints
make “sharply conflicting claims about the well-formedness of most
representations”, grammars require a means of resolving such conflicts in order
to determine a given input’s “surface representation”, the analysis “most
harmonic” with the well-formedness constraints. Prince & Smolensky (1993)
claim that conflicts are resolved by “rank[ing] constraints in a strict dominance
hierarchy” and most optimality-theoretic research has been conducted using
constraints in precisely that manner. This paper questions that assumption and
aims to present a mathematical answer to the question of whether conflict
resolution can be theoretically modelled in other ways. The answer we give
casts light on problems in Optimality Theory, in particular, that of opacity.

To examine these issues in a rigorous, mathematical fashion, a certain
amount of formalism is requisite. The formal sections of the paper are, however,
firmly tied to the linguistics. Before preceding to them, we first sharpen the
observation in the opening paragraph, namely, that Optimality Theory is just one
implementation of the central intuition of constraint-based phonology. We then
ask which idiosyncrasies of Prince & Smolensky’s implementation are desirable
and which it might be productive to question. In particular, we focus on the
nature of constraints, constraint violation, and constraint aggregation. Once one
appreciates that there is a difference between constraint-based phonology,
generally construed, and Optimality Theory, as a particular example of it, one -
can ask-the following question: Of Optimality Theory’s perceived problems,
which are indeed problems with Optimality Theory which would not be shared
by other constraint-based theories, and which are ineluctable results of the use of
constraints? For an answer, we turn to the formalisation.

The formal methods of the paper are drawn from the techniques of
mathematical decision theory, in particular, from the area of social choice
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Rosenthall for comments on an early draft. Daniel Harbour gratefully acknowledges the
financial support of MIT; Christian List, the financial support of the British Economic
and Social Research Council and the German National Scholarship Foundation.
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theory. The reasons for this are made apparent below. Some comments on what
the mathematics mean for linguistics are interspersed through the formalism
The main discussion of the formal results follows their presentation. .
_ .The formalism also permits one to ask what the relationship is between
Optimality .Theory as presented in Prince & Smolensky (1993) and as it
developed in subsequent work (Smolensky 1995; Kirchner, 1996; Flemmin,
1997; It6 & Mester, 1997; Burzio 1999; Crowhurst & Hewitt, 1999)., That is wgé
can asl§ where exactly the difference between Prince & Smolensky (1993) ;md
say, K1rc_hner (1996) lies and how that difference affects the generation 01”
phonological surface representations. For further applications of the formal
mer_.hod_s p;esented below, especially in relation to the notion of economy of
derivation in syntax (Chomsky, 1995), see Harbour & List (forthcoming).

1. Constraint Conflict Resolution Generally

To gppreciate that Optimality Theory is merely one possible i i

the intuition that constraints on well-formednesys forrrllJ the c:rerﬁglgrm;aio?t ?sf
helpf_'ul to return to Prince & Smolensky (1993) and to place it in the contc;xt of
the rise of constraints in phonology generally.

_ _ Throughogt the seventies and eighties, constraints came to play an
1ncreasmg1¥ prominent role in phonology. The model of phonology that
developed in the years following Chomsky & Halle (1968) comprised four
levels: the underlying representation, the concatenation of morphemes, the

?p;gii)cation of rules, the surface representation. This is shown diagrammatically
in (1).

(¢)) underlying rlLeprcsentation
morpheme concatenation
application of rules

surface representations

Archangeli (1997), from whom (1) is taken ; i i
s , Observes that this neat pictur
became more complicated through i ins began
0 ghout the following decades as
to be introduced at all levels. The result was (2). d * a5 constrainis began

2) underlying representation constraints on underlying
f representations apply here
morpheme concatenation constraints on morpheme concatenation
’ apply here

application of rules constraints on applicability/output of

o
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i rules apply here

surface representations other constraints apply here

In addition, phenomena came to be discussed in which the regularities
of interest lay, not in the input structures, nor in the nature of the
transformational component, but in the output structures themselves. Examples
of this are conspiracies and paradigmatic uniformity.? Kisseberth (1970) presents
a conspiracy evident in some Amerindian languages, whereby rules of
epenthensis and deletion ensure the absence of triconsonantal clusters. Various
instances of paradigm uniformity are presented in Kenstowicz (1999).

What unites these cases is that one seems able to ask why the rules of a
language are such as they are. The answer is that certain structures are ‘more
optimal’ than others and that the purpose of phonological rules is to force non-
optimal structures, resulting, say, from morpheme concatenation, towards more
optimal ones. Convergence on a particular output structure (paradigmatic
uniformity) or divergence from a given output structure (conspiracies) may thus
be achieved by quite heterogeneous rules. Crucially, the motivation for the
different rules, a constraint on output structures, is external to the
transformational component, and, hence, difficult to express in traditional,
derivational phonology.

Faced with this situation, Prince & Smolensky (1993) conclude that any
theory of phonology “committed to Universal Grammar” must “rely heavily on
well-formedness constraints”. What remained in “‘subformal obscurity” was “the
character of the interaction among the posited well-formedness constraints”, “the
relation between such constraints and whatever derivational rules they are meant
to influence”, and, of course, the exact nature of the constraints themselves. The
most interesting hypothesis under such circumstances is the strongest: that the
character of the interaction, whatever it may be, is the whole of phonology and
that there is no interaction between constraints and derivations because the
derivational component is null. In this sense, Optimality Theory represents the
apogee of the trend, current in the seventies and eighties, which gave constraints
ever increasing prominence in phonological theories. .

Optimality Theory claims that structural well-formedness is the essence
of grammaticality. Well-formedness is achieved by satisfying well-formedness
constraints. However, the constraints are “‘sharply conflicting” and so grammars
must be able to resolve constraint conflicts in determining how a given input
surfaces. Resolution of constraint conflicts requires a specific proposal. Prince
& Smolensky recognise that there are two components to the problem of conflict
resolution: “first, a means of comparing entire candidates on the basis of a single
constraint; then, a means of combining the evaluation of these constraints”.
They write that “regulating the way these two dimensions ... interact is a key

2 We remain neutral on whether these motivate a shift to constraint-based phonology.
They are relevant in their connection to the rise of constraints in generative phonology.
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theoretical commitment”. Their response is that conflicts are resolved by
“rank[ing] constraints in a strict dominance hierarchy” and that, internal to any
constraint, all that counts is having the minimal number of violations.

We have thus traced a path from the emergence of constraints in
phonological theories generally to a specific implementation of them in a pure
constraint-based theory. What should be clear is that we are dealing with two
separate things: one is an intuition and the other is an implementation, a
proposal. The intuition says merely that phonological phenomena are regulated
by the resolution of constraint conflicts. The proposal concerns the specifics of
conflict resolution. For “comparing ... candidates on the basis of a single
constraint”, Prince & Smolensky propose simple ordinal measurement: a
candidate receives one ‘*’ per violation and the fewer violations a candidate has,
the better. For “combining the evaluation of the ... constraints”, that is, to
aggregate the scores, they propose a hierarchy where each constraint acts in turn
to reduce the size of the candidate set. However, ordinal measurement and strict
dominance hierarchies are not, conceptually speaking, the only ways to measure
and aggregate when selecting the optimal candidate. Therefore, it is natural to
ask what the alternative measurement and aggregation procedures are and what
effects different choices have on the shape of the resulting theory.

Recognising the availability of numerous solutions to the problem of
resolution of constraint conflict leads to another question. Of what are perceived
to be problems for Optimality Theory, which problems are genuine problems for
any constraint-based phonological theory and which are merely problems for
strict dominance hierarchies, Prince & Smolensky’s (1993) resolution of
constraint conflict? As an example, we ask below whether a different resolution
of constraint conflict could (dis)solve the problem of opacity.

The possibility of shedding new light onto a well-known problem adds
interest to what is otherwise merely a technical observation. That is, it is one
thing simply to observe that Prince & Smolensky (1993) use one of many
possible methods for resolving constraint conflicts. The possibility of showing
that opacity, a real difficulty for Optimality Theory, is in fact no problem for
alternative implementations of constraint-based phonology motivates closer
examination of other ways to resolve constraint conflicts. Just as interesting is
the alternative possibility, that one might prove opaque phenomena to be
unrepresentable in any uniform, tidy fashion within any purely constraint-based
phonology.

As part of the historical sketch, it is important to note that Prince and
Smolensky were aware of the possibility of alternative to strict dominance
hierarchies. The connectonist-theoretic origins of Optimality Theory highlighted
in Prince & Smolensky (1997) made weighted constraints one alternative. It
happened, however, that the specific problems that Prince & Smolensky (1993)

focused on were soluble with weightings in effect equivalent to strict dominance
hierachies. The current investigation can be regarded, then, as asking how
Prince and Smolensky’s theory might have differed, had they chosen to formalise
alternative methods of aggregation as part of Optimality Theory. Below, we
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present such a formalisation and examine some of its consequences for the
theory of phonology. o . .

’ ’Iehe remainder of the paper is divided into four parts. In Sectl_on g, wg
motivate use of social-choice-theoretic methods within constraint- asc;,l
phonology by illustrating the formal similarities betvyeen the problerps that. the
two address. In Section 3, we present our formalism Fogether wy:h _;f'anous
definitions, assumptions, and theorems. In Section 4, we ;_h;(lzuss the s1gt;n 1catr11:;e;

, i i iateness of the assumptions
of the results in Section 3 and the appropriz _ _ s th
underlie those results. We also show that various n}odlﬁcatlons of Opmr;z'lhty
Theory current in the literature can be Charactensed_ in terms of our fo_rme;) 1sm(i
and discuss the problem of opacity and its relationship to constraint-base

phonology generally.

2. Conflict Resolution as an Aggregation Procedure

The central formal intuition pursued in this paper is that the probler? of iElow ;Z
resolve constraint conflict is formally very simlliar aﬁj thq Prolz}:rg:y Ocalill-:desrggial
tion explored in the branch of mathema.tlc decision the _
2ﬁ§:§§aﬂleory.P Therefore, with suitable modlﬁcapons_, t_he methods of social
i can be applied to the problem within _lmgulsncs. .
i mg?)gal choicepptheory deals with situations _ such as the following.
‘Suppose a social planner is asked to rank a set of pohcy_optlons. The péannell;
proceeds. in the following way. For each mcm}:?er of society (person) an fe;::t
policy option, the planner determines a score which I:Dne:_asur?s t1t1he strg:ggl 2:;01-35
*s (dis)preference for that policy. On t!le asis of the op score
gcell:zglsl asﬂl( mg[[;lbers of society, the overall social ordering of these options is
determined. Three questions arise. How much information does each person’s
set of scores provide about their preferences? To \lwha;l e;_&ten:j c:m Olil; ecclo:)rrllpzz
i ¥ is the social ordering determ:
different people’s preferences? How is g.on
i ’ blem of measurability, the
s of people’s preferences? Call l:.h_ese the pro )
B:s:alem %f 1Zinterpersonal) comparability, and the problem of aggregation,
ectively. _ _
o W?I‘g frame the problems more precisely, suppose that. the social plam:,e;
assigns to every person-policy pair a number measuring tlilath perrsl,‘:)u(:h
(dis)preference for that policy. The problem of mqasq?bﬂl:y asS cfmeo:L o
on
ignificance we attach to those numbers. Are tl}ey significan _ :
::;garllé‘: Are only their ratios and/or differences 1mp_ortant? . Is thcra7 way in V\i')t;;cmh
they 1:ank-order the different policy options all that is meaningful? 'tIh‘he pro lem
of (interpersonal) comparability asks whet.hefr ortlﬁ can comga;tiaffe rinr:ug:) =
i i y ferences for the same o
representing different people s pre Sam ¢ sl
i i i to ask whether option x is mor
options. Is it meaningful, for instance, to- o
dis)preferred by person 1 than option y is by person 27 ( )
((qulczgons are answered can one ask how aggregation dt_atermmes the \:/ﬁnner(.)blem
To see the relevance of social-choice-theoretic methpds to the pr e
of conflict resolution, recall how Optimality Theory determines the outpu
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any given input. The input is fed into the generator (Gen), whi

set pf posmble_ outputs for that input. These are the pf)licy)Bptiorils] g?ﬁ: (;,Ziit:le
f:hmce-th;oretlc problem. There are, as mentioned in Section 1, two stage;
?VolYed In determining the final output from the set of candidate outputs. The

Irst 1s measurement of the degree to which each candidate violates each
constraint. The second is the determination of the optimal candidate on the basj
of the first. Clearly, the first of these is the problem of measurability, and thl:
second, the probl_em of aggregation. Where is the problem of comparabi’lity"

_ In Optimality Theory, as traditionally set out, the problen.l of
(}nterpersonal) comparability is not addressed and no use is made of correlates of
(interpersonal) comparisons. Clearly, the social planner may want to ask
whether a _hom-eless person is better off under a policy of wealth redistribution
than a mll_honalre is under a policy of low taxation (whether person 1 is better off
undgr option x than person 2 is under option y). Moreover, this question is
0bv1ous_ly distinct from the issue of whether the millionaire ha; a greater say in
the.chmce of ppligy than the homeless person-has. Who has greater inﬂuenc):a is
an issue of an individual’s ‘rank’, whereas welfare under distinct policy options
1s an issue of_mterpersonal comparability. To the linguist, the issue of ranking i
familiar, 'l;ll.l]t Interpersonal comparability, not. , o
_ e lack of ‘cross-constraint comparability’, a linguisti
Interpersonal comparability, does not mgan thatty we sr;ngol.ll.:lstg1 cd?;)rltll?;:rl:::ﬁsts?
constraint comparabiligy from our considerations. For one thing, closer
f:fongde}'auop may furnish an appropriate notion of comparability. For ’another
:] sl pm:dallty Theor}f without cross-constraint comparability should be:
= m?;;eéx ot:itli)g nt;)]n-wfable_, then such comparisons might be forced on it. The
- comp[;r abili?y : erefore includes, not only measurability and aggregation, but

. Thus, there is considerable similarity between the social i

ge;)ire:lc. problems and the problem of constraint conflict resolugl;glc?n
w?nnIiIL 12{ Theo?l'. Bo@h attempt to fom_lalise a procedure for selecting the
e fa%;e rtmost larmonic or optlmal. candidate from a given set. In so doing,
meis urabil' to varying degees, three issues, labelled above as the problems of
e o o IL _Z, ict:oi:;npﬁls'ztf)}htt){, and aggregation. Given the formal similarity of
e . ] iable to attempt to use the insights of one field in the

3. The Formalism

We have argued that there are good philosophical reaso ini

\ ] ns fi
alternatives to F_'rmce_& Smolensky’s (1993) procF:adure for selectil;)gr tt?g 21;1;:1[;;%
?utput.f'or a given input. In what follows, we expound a framework for
ormah.smg the probh.sm of constraint aggregation in Optimality Theo We
start with a fe\y_deﬁmtions. Once strict dominance hierarchies are deﬁ;};d
relate the definitions back to the conventional optimality-theoretic view e
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A generator is a function, Gen, which maps each given input, Input, to
a set of possible outputs, X. Optimality Theory, in its purest form, should make
the generator as simple as possible. This follows from Optimality Theory’s
commitment to the idea, discussed in the Introduction, that grammaticality is
determined by conformity to well-formedness constraints. If X varies from input
to input, then part of the work is shifted from the constraints to the generator.
This can illustrated using the mock word ‘blick’. It should not be the case that,
for the input /cats/, it is the constraints that rule out the output blick, whereas, for
the input /dogs/, it is the generator that rules out blick by not producing it
(blicke Gen(dogs)). Therefore, to make the generator as neutral as possible in
the determination of output forms, we assume that Gen is a constant function.3
We denote this constant by X (the set of all possible outputs). For the theorems
below to hold, X must be assumed to have at least three elements, which is
reasonable as every language has at least three words. The outputs contained in

X are denoted by X, Y, X, X5 ¥ys ¥y -o- -
Let C = {c,, €, ..., C,} be aset of k constraints,* where each constraint,

c,, is a mapping

¢, : set of all possible inputs — set of all possible evaluation functions.
That is, ¢, maps each input, Input, to an evaluation function (for Input), c[Input],
where c[Input] is a mapping

¢[Input] : X - R.

This evaluation function, c[Input], maps each generated output in X to a real
number’ representing the ‘score’, or ‘local level of harmony’, which constraint c;
assigns to that output given the input, Input.® The statement ‘c[Input](x) 2

3 While this assumption simplifies the present mathematical exposition, essentially the
same results can be proven without it.
4 We assume that the set of constraints is finite and we apply social-choice-theoretic
results for finite sets of ‘voters’. However, social-choice-theoretic results can be
generalised to infinite sets of ‘voters’. See for example Heal (1997) and Efimov &
Koshevoy (1994). Infinite constraint sets are suggested, for instance, by Smolensky
(1995). Mathematically, the infinite case is no less complex than the finite.
5 The choice of R, rather than, say, Z, does not imply any substantive assumption about
the accuracy with which constraint violation can be evaluated. Such substantive
assumptions are represented by the classes of transformations up to which constraint
evaluation functions are taken to be unique (see Table 1, below).
6 Though a very important question, we do not address how the evaluation function
determines the score. The reader is referred to Eisner (1997b) for a discussion of the
issues and a proposal using multi-argument mappings. We use single-argument mappings,
and it is important to note that it is incorrect to think of ‘ci[Input](output)’ as
‘c(Input,output)’. The two-argument notation suggests that it is meaningful to ask
whether, for instance, c,(Input,output) 2 c(Input,output,). The one-argument notation,
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c,[Input](y)’ 1s interpreted as “according to constraint c,, output x is at least as
harmonic as output y given the input Input”. Below, we present a formal
treatment of the question of how much information these ‘scores’ contain and
how they can be interpreted. A profile (of evaluation functions for a given input)
is a k-tuple, {c[Input]} =, {c,(Input], c,[Input], ..., c [Input]}, with one c,[Input]
for each constraint.” This notation may appear to ‘claim’ that the constraints are
dependent on the inputs. It does not. What depends upon the input is what
‘scores’ each constraint assigns to different outputs. Hence, the evaluation
function, c[Input] : X—R, assigned to Input by constraint c,, is input-dependent.
The constraint itself is not. Because of the existence of constraints which
regulate divergence between output and input, constraints cannot blindly
evaluate just the candidate outputs, but must evaluate them in relation to the
input. It is this sensitivity which the notation is supposed to reflect. We say
more about the typology of constraints in Section 4.
A constraint aggregation function, F, is a function

F : some set of profiles of evaluation functions — set of all possible
global harmony orderings.

Condition (U) below is the assumption that the domain of F is the set of all
logically possible profiles of evaluation functions, but other domain assumptions
are possible (see Sen, 1982a). (U) is discussed further in Section 4. F maps each
profile of evaluation functions, {c,[Input]}, to a global harmony ordering of X, R
= F({c[Input]}). R is assumed to be refiexive, connected and transitive, and
xRy is interpreted to mean “output x is at least as globally harmonic as output y”.
R also induces a strong ordering P and an indifference relation I defined by

xPy if and only if xRy and not yRx,
xly if and only if xRy and yRx.

We read xPy as “the output x is strictly more globally harmonic than the output
y”, and xIy as “the output x and the output y are equally globally harmonic”8.
Before we can ask what kinds of constraint aggregation functions can be defined,

on thq other hand, commits us only to the meaningfulness of comparisons in which the
input is held constant (i.e., Input, = Input,). The difference in the number of arguments

our respective mappings take does not make our proposals incompatible as they concern
different parts of the grammar.

_7 The.use of curly brackets, {}, for profiles (k-tuples) of evaluation functions is standard
in social choice theory. They are used to denote ordered sets.

8 1t may seem unnecessary to require that the constraint aggregation function determine
orderings rather than just winning candidates. However, an alternative social-choice-
theoretic framework uses choice functions rather than orderings for determining winning
candidates. Provided some consistency requirements are imposed on these choice
functions, equivalents of the results stated in the present paper hold in the alternative
framework too. See, for example, Sen (1982b).

—
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we need to discuss how the ‘scores’ assigned to the outputs by the constraints can
> mtcrp%tgié issues were discussed in Section 2 as . the p_roblems gf
measurability and comparability.. Rephrasing the smltzlill-cfhcl);ce-.theor%tﬁz
questions as questions about constraints gnd outputs, we have the c;h owing. 1 N
issue of measurability: How much significance do we attach to k eb numenc1
values of the ‘scores’? Are they significant on an absolute scale? t[}-l-are g:k y
their ratios and/or differences significant? Or is the way in which they L _n-t
order the possible outputs all that is meamngful? The }ssue_of c;osl;s-ccé?fsf cf:m
comparability: Are comparisons between mc scores asmgﬁr:e i/ s
constraints meaningful? Is it sensible, for instance, t0 agk whether ou pl:_r e
the perspective of constraint c; is at least as harmonic as output y
i aint ¢.? .
Perspecm],)eifc;i:eorﬁsuassurﬁpﬁons about measurability and cros?-cons?'mr;t
comparability can be stated formally by reference to classes of transformal ;c::ir;
A transformation is simply a function, ¢:_ R — R, which %regervei t;:li b
structure. A positive monotonic transformation preserves the or :rmg_ t(? e
numbers: for all real numbers t,, t, if t, < t, then o(t,) < o(t)- : ﬂE’OSl ive e
transformation preserves ratiosbof difi;;a(n;nces ogtreal numbers: there exist a,
numbers t, ¢(t) = a + bt. _ s
©>0 sucﬁgv%t’ﬂizr;li;scfremem of any profile pf evaluation functions wﬂlTllze
assumed to be unique up to certain transf_ormanons but not up to oﬂtlttlars. ﬁlz
class of these transformations covaries with l?ow much 11'1formauot1111 _ elpr(; N
contains and how that information is descn_bed._ The smaller this c asatiorl
transformations, the more information is contained in a profile. An ?)gigreg on
function satisfiles a given assumpt'u.)n. concerning measura lb ity Rerws
comparability if the aggregation f:;ncﬁon t;ls [mvanl:;tig:der any member O
tions corresponding to that assu n. N
. trg:lscf\ovr,mv:e give a nuglber of possible as:s,umptlons gbout n}eas;rabrléltti)é
and comparability that have been proposed in the so'cml-ch_cl).lce-w;etz ol
literature.? The table will be clearer when the reader is familiar

formalism and may be disregarded initially.

i i jed. The reader is referred to
9 Numerous other possible assumptions have been studie )
Robgrts (1980b), Sen (1982c), Blackorby & Donaldson (1984), and Tsui & Weymark

(1997).
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3 Table 1

For any two profiles of evahiation functions, {c;[In g i
5 e h , {ci[Input]} and {c’i[Input]},
domain of F, it is required that F({c;[Input]}) = F({c’;[Input] }{) if[... put]}, in the

ONC: ordinal measurability, no cross-constrai ili
) nt com
... ¢'{[Input] = ¢;(c;[Input]), ’ =t
for some k-tuple {&;} of positive monotonic transformations

CNC: cardinal measurability, no cross-constrain ili

7 ’ - t

... ¢'{[Input] = a; + bic;[Input], e
for some k-tuples {a;}, {b;} of real numbers (b;> 0)

OLC: ordinal measurabili : e
harmony levels ty, cross-constraint comparability of local

.. ¢/i[Input] = ¢(c;[Input]),
for some positive monotonic transformation ¢: R->R

CUC: cardinal AT n =
harmony units measurability, cross-constraint comparability . of local

.. ¢'j[Input] = a; + bc;[Input],
for some k-tuples {a;} of real numbers and a real number b>0

CFC: cardinal measurability, cross- g —
harmony levels & units 2 constraint comparability of local

... ¢i[Input] = a + b¢;[Input],
for some real numbers a and b (b>0)

g Or1le Of

@) ‘Is the violation of ¢ i i
s the viol f constraint ¢, by candidate x at least as i
5 violation by candidate y?’ greatas 18
(it) What is the ratio of _score-of-x,-minus-score—of—x2 to score-of-y,-
fnml.us-sc.ore-of-y2 according to the same constraint?’ l
(iii) I.s T.h(? violation of.consu'aint c, by candidate x at least as great as the
. :llolatloq of constraint ¢, by candidate y?’
@iv) c\xl}:;i t1s tl;e ratio of score-of-x,-minus-score-of-x,-according-to-
nt-c, -of-y -minus- i i
- . to score-of-y,-minus-score-of-y,-according-to-constraint-

According to (ONC), only i i i
_ X questions of type (i) are meaningful.l0
According to (CNC), only questions of types (i) and (ii). According to (gC);(:?)

IO be pleCISB, When we Say (X) 18 the aSSl.llllpthll tha[ oulV queSthllS Of type y are
mealllngful wWE mean accordlng to (X), a proﬁle Of evaluatlo" flmctlons 1S u".lque up to

the largest class of transformati i i
s ions under which answers to questions of type Y are

—
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only questions of types (i) and (iii). According to (CUC), only questions of types
(i), (i1) and (V). And according to (CFC), only questions of types (i)—(iv).

We can now ask which constraint aggregation functions are definable.
In order to formalise the requirement that global harmony orderings be sensitive
to individual constraints, we shall state a number of conditions that can be
imposed on constraint aggregation functions. They are versions of the famous
minimal conditions in social choice theory proposed by Kenneth Arrow (1951,
1963). Their appropriateness is discussed in Section 4.

Universal Domain (U). The domain of F is the set of all logically possible
profiles of evaluation functions.

Strong Pareto Principle (SP). Let {c[Input]} be any profile of evaluation
functions in the domain of F, letR = F({c[Input]}), and let P denote the
strong ordering induced by R. For any X,, X, in X, we have x,Rx,,
whenever c[Inputl(x,) 2 c[Input](x,), for all i; if, in addition, there
exists an i such that c[Input](x,) > c[Input](x,), we have x,Px,.

Independence of Irrelevant Alternatives (I). Let {c[Input]} and {c'[Input]} be
profiles of evaluation functions in the domain of F, and let R =
F({c,[Input]}) and R’ = F({c’[Input]}). Suppose X, and x, are elements
of X such that, for all i, c[Input](x,) = ¢’ [Input](x,) and c{Input](x,) =
¢’ [Input](x,). Then x,Rx, if and only if X R'x,.

To paraphrase, suppose candidate x, is assigned the same scOres by two
different profiles of evaluation functions and that candidate x, is likewise
assigned the same scores under each profile. (I) then says that these iwo
candidates must be ranked identically in each case. That is, the aggregation
function, focusing exclusively on x,’s and x,’s scores when ranking them with
respect to each other, must rank them identically in each case. In particular, how
other candidates’ scores vary under the two profiles is irrelevant. So, the
aggregation function does not take any third candidate into account when ranking
x, with respect to X,.

Optimality Theory uses a strict dominance hierarchy of the constraints.

Definition 1. A constraint aggregation function, F, is a strict dominance
hierarchy of the constraints if there exists a fixed permutation ¢ of {1,
2, ..., k} such that, for any profile {c[Input]}in the domain of F and
any x, and x, in X,
x,Px, if and only if

coﬁ)[Input](x,) > co[Input](x,) for some je {1, 2, ..., k}

and cq[Input](x,) = Co[Input] (x,) for all i<j,
where P is the strong ordering induced by R = F({c,[Input] D.
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We can now relate these definitions back to a more typical optimality-
theoretic view of phonology. The process of selecting the output corresponding
to a given input would run as follows. The input (say, /IN-put/) would be fed
into the generator, which produces X, the list of all possible outputs. Each
candidate in X is then evaluated with respect each constraint. That is, there are k
constraints, ¢,, ¢, ..., C,. (The subscripts do not reflect any ranking. The
numbering does not change cross-linguistically, though rankings, it is assumed,
do. If ¢, denotes NOCODA and c, denotes FAITH(high),,, then they denote them
in Universal Grammar. Languages would then choose how to rank them: ¢, » c,,
or c, » ¢, The ranking is represented by a permutation ¢ of {1, 2, ..., k}.)
Corresponding to each constraint, there is an evaluation function, c[IN-put].
Each evaluation function maps each candidate in X to a real number. So, if ¢, is
NOCODA, the candidate im.p"ut would be mapped by c,[IN-put] to some real
number. In the case of Optimality Theory, ¢ [IN-put](m.p'vt ) = **, where ‘*’ is
one violation unit.

For any input, there exists a k-tuple of such evaluation functions, known
as a profile. When every candidate in X has been evaluated by the profile of
evaluation functions, {c[IN-put]}, the aggregation of the scores begins. Recall
that in traditional Optimality Theory, the constraints are arranged in a strict
dominance hierarchy and that the optimal candidate is the one that outranks all
others in pairwise comparisons. Given Definition 1, the optimality-theoretic
claim that cross-linguistic variation is variation in languages’ strict dominance
hierarchies translates as variation in the specification of 6. To determine the
optimal candidate, one proceeds as follows.!! One takes two candidates, x and
y. Suppose that constraint c,,, say ONSET, is highest ranked in the language
under consideration. Then, in that language, o(1) = 23; that is, ¢ permutes {1, 2,
..., k} such that constraint c,, is first. Thus, in pairwise comparison of x and y,
the first constraint we consider is what Universal Grammar labels as constraint
C,.- More generally, the first constraint we consider is cq1), the second is Cyz),
the third c4s), and so on. If x outperforms y on cs), then x is more optimal.
That is, cqp)[IN-putl(x) > co()[IN-putl(y) entails xPy. If y outperforms x, then
yPx. If neither outperforms the other, that is, if cq)[IN-pUt](X) = co()[IN-pUt](y),
we make the same comparison with respect to cz). We continue in this fashion
until we find an i, 1<i<k, such that x outperforms y, or vice versa, with respect to
Co()- If there is no such constraint, we conclude xIy.

It is easily checked that a strict dominance hierarchy satisfies (U), (SP)
and (I). Moreover, a version of Arrow’s famous impossibility theorem (Arrow,
1951, 1963) entails that strict dominance hierarchies are the only constraint

I1 The method described is not efficient. Indeed, if the candidate list is infinite, no
decision can be reached in this fashion. However, we are keeping to a close reading of
Prince & Smolensky (1993). The real question of how optimality-theoretic selection
processes could be effective lies beyond the scope of this paper. See Eisner (1997) for a
solution.
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aggregation functions satisfying (U), (SP), (I) and at least one of (ONC) and
(CNC).

Theorem 1.” A constraint aggregation function, F, is a strict dominance
hierarchy if and only if it satisfies (U), (SP), (I) and at least one of
(ONC) and (CNC).

If, on the other hand, we are prepared to introduce relevant forms_ of
cross-constraint comparability, other ways to define constraint aggregation
functions emerge.

Definition 2. For each xe X, define a permutation pos[x] : {1, 2,..k} > {12,
...k} such that
Cposixy[Input](x) < cpos[x](z)[lnput](x) <..< cp?slx](k)[lnput'](x).
A constraint aggregation function, F, is a positional dominance
hierarchy!3 if there exists a fixed permutation G of {1, 2, ..., k} such
that, for any profile {c[Input]}in the domain of F and for any x, and x,
in X,
x,Px, if and only if _
cpos[xll(,,(j»[lnpnt](xl) > cpos[xz](c(j»[lnput](xz), some j& { 1.,2_,. ..k}
and cpos[xll(u(-.»[lnput](xl) ] cpos[,z](oﬁ»[lnput](xz) for all igj,
where P is the strong ordering induced by R = F({ c[Inputl]}).

The following is a particularly interesting version of a positional
dominance hierarchy:

Definition 3. A constraint aggregation function, F, is the leximin rule if. it 1s the
positional dominance hierarchy where ¢ is the identity permutation.

According to the leximin rule, output x is preferred to output y
whenever the smallest local harmony level of x is greater than the smallest local
hai-mony level of y; ties are broken by consecutive comparisons of the second
smallest, third smallest, ... local harmony levels. More concretely, the global
harmony ordering would be determined as follows. Take a tableau. Erase the
column headings (the constraint names, €, C,, .-, c,). Within each row, re—ordpr
the cells so that there is no cell that contains more violations than any cell to its
left. Then label the columns 1 through to k and rank the candidates treating 1to
k as a strict dominance hierarchy (1»2»...»K) to determine the optimal cand_idate.
Note, however, that, unlike in a proper strict dominance hierarchy, entri.es in the
same column will not in general correspond to the same constraint. To
determine the global harmony ordering in a positional dominance hierarchy,

2 This result follows immediately from theorem 3.3.6. in d’ Aspremont (1985).
13 The term positional dominance hierarchy is derived from the term for its social-
choice-theoretic counterpart positional dictatorship.
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erase headings and re-order each row as for the leximin rule. Relabel the
columns 1 to k and permute them according to 6. Rank the candidates treating
6(1), 6(2), .., o(k) as a strict dominance hierarchy (c(1) » 6(2) » ... » 6(k)).

It is easily checked.that positicnal dominance hierarchies, in addition to
strict dominance hierarchies, satisfy (U), (SP), (I) and (OLC). However, the
range of possible constraint aggregation functions satisfying (U), (SP), (I) and
(OLC). is still limited. Roberts (1980a) has shown that the only aggregation
functions satisfying these conditions are single-focus rules. Informally, such
rules lexicographically focus exclusively on single scores amongst c,[Input](x),
c,[Input](x), ..., c[Input](x), each ‘focus’ being either ‘fixed’ (as in strict
dominance hierarchies) or ‘positional’ (as in positional dominance hierarchies).
Combinations of strict dominance hierarchies and positional dominance
hierarchies also satisfy (U), (SP), (I) and (OLC). It is, for instance, conceivable
that certain constraints might take absolute priority, but ties might be broken by a
suitably defined positional dominance hierarchy, or, conversely, that a positional
dominance hierarchy for a number of positions less than k takes absolute priority
and ties are then broken by a strict dominance hierarchy. If we invoke an
additional axiom to rule out the strict-dominance-hierarchy-component of such
rules, positional dominance hierachies are the only remaining possibilities. The
axiom requires aggregation functions to treat ail constraints identically, that is, to
be invariant under permutation of the constraints.

SYMMETRY (S). Let {c[Input]} be any profile of evaluation functions, and let o
be any permutation of {1, 2, ..., k}. Then F({c[Input]}) =
F({cog[Input]}).

Theorem 2. A constraint aggregation function, F, is a positional dominance
hierarchy if and only if it satisfies (U), (SP), (I), (S) and (OLC).

If we admit cardinal measurablity, further possibilities emerge.

Definition 4. A constraint aggregation function, F, is a weak utilitarian rule if,
for every non-empty subset L of {1, 2, ..., k}, there exist fixed non-
negative real numbers Ay, Ay, ..., Ay, not all zero, but with A;=0 for all
igL, such that, for any profile {c[Input]} in the domain of F and for
any Xx,, X, in X with ¢,[Inputj(x,) = ¢[Input](x,) for all ieL,

Yie(1,2, ... k) MGlInputl(x,) > Yic (1,2, ...,k Mici[Input](x,) implies x,Px,,
where P is the strong ordering induced by R = F({c,[Input]}).

The definition of a weak utilitarian rule is quite broad. Even a strict
dominance hierarchy can be interpreted as a weak utilitarian rule, with exactly
one non-zero A; for each non-empty subset L of {1, 2, ..., k}. The rather
complex conditions involving L are necessary for breaking ties. For example,

" This result follows immediately from theorem 3.4.7. in d’ Aspremont (1985).
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consider the following weak utilitarian rule F, where the number of gonsu'aints
k = 5. For any profile {c[Input]} in the domain of F and any x, and x, in X,

x,Px, if and only if - 2c¢,[Input](x,)+5¢,[Input](x,) >
ZCJ[Input](xz)+504[lnput](x,z)
or [2c3[1nput](x,)+5c4[lnput](x,)
=2c,[Input](x2)+504[1nput](x2)
and c[Input](x,) > c,[Input](x,)]
or [20,[Input](x,)+504[lnput](xl)

=2c3[Input](x2)+5c4[1nput](x2)
and c,[Input](x,) = c,[Input}(x,)
and cl[Input](x,)+3c,[lnput](x,) >
c,[Input](x,)+3c2[Input](x,)]

i ' ing i . that, for
where P is the strong ordering induced by R = F({c[Input]}). Note ,
example, for L = {1, 2, 3, 4, 5}, we have 1,=0, A,=0, =2, A=5, As=0. ForL =
{1, 2, 5}, M=0, 2,=0, A3=0, A4=0, As=1. ForL = {1, 2}, M=1, 12=3, A3=0, L}:O,
A=0. Weak utilitarian rules are the only constraint aggregation functions
satisfying (U), (SP), () and (CUC).

Theorem 3.” A constraint aggregation function, F, is a weak utilitarian rule if
and only if it satisfies (U), (SP), (I) and (CUC).

If we admit cardinal measurability with cross-constraint comparability
of both local harmony levels and units, i.., if we impose (CFC), the two c_lzllsses
of constraint aggregation functions we have discussed so f:ar, positional
dominance hierarchies and weak utilitarian rules, will cl'early sat_lsfy (U), (SP)
and (I), but further possibilities also emerge. The following classification result

holds:

Theorem 4.° If a constraint aggregation function, F, satisfies (U), (SP), (1) almd
(CFC), then there exists a positively linearly homogeneous function
« g:R*— R (thatis, g(\t) = Ag(t) for all te R* and all A>0), such that, for
all x,, x,in X,
" (e aputi(x,)}) + glicTnputl(x,) - u({cTnputl(x) D) >
u({c,[Input](x,)}) + g({c,[Input](x,) — u({c,[Input](x) )}
implies x,Px,, where u({c[Inputl(x)}) =, 1Y s, ..o SlInput)(x), and
P is the strong ordering induced by R = F({c[Input]}).

Roberts (1980b) provides an example ofkthis type of function. Define
g() = g({ty ty v §}) Sge @M, 0t for t_eR and0sos 1. Fora= 0, thE
corresponding constraint aggregation function is a weak utilitarian rule, with 4; =

'S This result follows immediately from theorem 3.3.3. in d’ Aspremont (1985).
16 This result follows immediately from theorem 3.5.1. in d’ Aspremont (1985).
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Ay = ... = & = /; for o = 1, it is the leximin rule; for 0 < a < 1, it is a weighted
combination of these two rules. Note, however, that Theorem 4 is silent on how
ties are broken by constraint aggregation functions satisfying its conditions. This
does not entail that these functions do not have tie-breaking procedures.- The
theorem is simply not sufficiently strong to tell us what they are. Stronger
theorems, using stronger conditions, have been proven (for instance,
d’Aspremont, 1985). '

4. Interpretation of the Formalism

This section examines the consequences of various theoretical implementations
of the proposal that phonological phonomena are regulated by constraint
interaction. That is, we will now examine what the formal results of the
preceding section hold for linguist(ic)s. The obvious starting point, Section 4.1,
is to discuss the assumption that constraint aggregation functions must satisfy
(U), (SP), and (I). As the ways in which they restrict the possible shape of
constraint-based theories of phonology become apparent, we consider the
consequences of abandoning them or mollifying their effect. We will also argue
that the nature of constraints, ignored above, is crucial to the possibility of
mollifying the requirements on aggregation functions. The typology of
constraints is addressed in Section 4.3. In Section 4.2, we examine several
proposals that slightly modify Optimality Theory as presented by Prince &
Smolensky (1993) and show that they are characterisable in terms of the
formalism in Section 3. In Section 4.4, we discuss the problem of opacity and
how it relates to different constraint typologies and measurement and cross-
constraint comparability assumptions.

4.1. Conditions on Constraint Aggregation Functions

We wish to emphasise at the outset that we cannot prove (U), (SP), and (I)
indispensible to (aggregation in) constraint-based phonology. Our comments
below are intended as broad motivation for linguistic correlates of common
social-choice-theoretic assumptions concerning aggregation functions, which
further research may call into question.

We imposed three conditions on aggregation functions.

(U) requires that a global harmony ordering be defined for any profile
of constraint evaluation functions. Given our set of constraints, C, the issue is
whether, for any tableau of scores, there exists an input, Input, such that the
constraint evaluation functions in the profile {c,[Input]}, applied to each output
in X, produce precisely that tableau. If condition (1) is also invoked (as defended
below), the issue simplifies to whether, for any k-tuple of scores, {t,}, there
exists an input, Input, and an output in X, Output, such that {c[Input](Output)} =
{t}. Itis difficult to give a definitive answer to these questions in the absence of
greater information about the constraints.

T

—
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(SP) imposes a condition on the relationship between candidates’ scores
and their degree of harmony. It states that, for any candidates, x, and x,, x, is at
least as globally harmonic as x, if there is no constraint with respect to which x,
is less harmonic than x,. Moreover, X, is more globally harmonic if there is a
constraint with respect to which x, is more harmonic than x,.

() forces the aggregation function, when ranking two candidates, to
consider those candidates’ profiles and no others’. If it is “[v]ia pair-wise
comparison of alternative analyses” that “the grammar imposes a harmoni.c order
on the entire set of possible analyses of a given underlying f_orm” (1.>rmce. &
Smolensky, 1993, p. 3), then all that should matter in any pairwise consideration
of candidates is their profiles. _

The case for (I) and (SP) can be made more compelling by noting a
property that they jointly entail (Proposition 6, below). Firstly, observe that if a
constraint aggregation function satisfies (SP), it also satisfies (PI).

PARETO INDIFFERENCE (PI). Let {c[Input]} be any profile of evaluat@on
functions in the domain of F, and let I denote the indifference relation

induced by R = F({c[Input]}). For any x,, X, in X, we have x,Ix,
whenever, for all i, ¢[Input](x,) = c,[Input](x,).

Secondly, consider the condition (INV) below. Inform_ally paraphrased,
it requires that aggregation functions use nothing but candidates’ scores to
determine their global harmony ranking.

INDEPENDENCE OF NON-CONSTRAINT-VIOLATION CHARACTERISTI.CS
(INV). Let {c[Input]} and {c’[Input]} be profiles of evaluation
functions in the domain of F, and let x,, X,, ¥,, ¥, be candidate outputs
such that, for all i, c[Input](x,) = c’[Input](x,) and c¢[Input](y,) =
c’[Input](y,). Then xRy, if and only if x,R’y,, where R = F({c[Input]})
and R’ = F({c/,[Input]}).

Proposition 5.” If a constraint aggregation function, F, satisfies (U), (PI) and (I),
« then it also satisfies (INV).

Pure constraint-based phonology is committed to the claim that the
evaluation scores of two candidates in X contain sufficient informatioq to
determine their position relative to each other in the global harmony o_rdenng.
(INV) formalises this claim. We use evaluationism to refer to the view that
evaluation scores contain all the information necessary for determining global
harmony orderings. Pure constraint-based theories are therefore evaluationist.
We said that the problems of constraint aggregation in 1inguisFic.s aqd prefeljence
aggregation in social choice theory are very similar. The snm1_lanty continues
here. Evaluationism is the linguistic counterpart of welfarism in social choice

'” See Roemer (1996, pp. 28—29).
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A =...= N = ; for o =1, it is the leximin rule; for 0 < 0. < 1, it is a weighted
combination of these two rules. Note, however, that Theorem 4 is silent on how
ties are broken by constraint aggregation functions satisfying its conditions. This
does not entail that these functions do not have tie-breaking procedures.- The
theorem is simply not sufficiently strong to tell us what they are. Stronger
theorems, using stronger conditions, have been proven (for instance,
d’ Aspremont, 1985). ’

4. Interpretation of the Formalism

This section examines the consequences of various theoretical implementations
of the proposal that phonological phonomena are regulated by constraint
interaction. That is, we will now examine what the formal results of the
preceding section hold for linguist(ic)s. The obvious starting point, Section 4.1,
is to discuss the assumption that constraint aggregation functions must satisfy
(U), (SP), and (I). As the ways in which they restrict the possible shape of
constraint-based theories of phonology become apparent, we consider the
consequences of abandoning them or mollifying their effect. We will also argue
that the nature of constraints, ignored above, is crucial to the possibility of
mollifying the requirements on aggregation functions. The typology of
constraints is addressed in Section 4.3. In Section 4.2, we examine several
proposals that slightly modify Optimality Theory as presented by Prince &
Smolensky (1993) and show that they are characterisable in' terms- of the
formalism in Section 3. In Section 4.4, we discuss the problem of opacity and
how it relates to different constraint typologies and measurement and cross-
constraint comparability assumptions.

4.1, Conditions on Constraint Aggregation Functions

Wc_ wish to emphasise at the outset that we cannot prove (U), (SP), and (I)
indispensible to (aggregation in) constraint-based phonology. Our comments
below are intended as broad motivation for linguistic correlates of common
social-choice-theoretic assumptions concerning aggregation functions, which
further research may call into question.

We imposed three conditions on aggregation functions.

(U) requires that a global harmony ordering be defined for any profile
of constraint evaluation functions. Given our set of constraints, C, the issue is
whethe1.', for any tableau of scores, there exists an input, Input, such that the
constraint evaluation functions in the profile {c[Input]}, applied to each output
in X, produce precisely that tableau. If condition (I) is also invoked (as defended
bc!ow), the issue simplifies to whether, for any k-tuple of scores, {t}, there
exists an input, Input, and an output in X, Output, such that {c,[Input](Output)} =
{t}. It is difficult to give a definitive answer to these questions in the absence of
greater information about the constraints.

*
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(SP) imposes a condition on the relationship between candidates’ scores
and their degree of harmony. It states that, for any candidates, x, and x,, X, is at
least as globally harmonic as x, if there is no constraint with respect to which x,
is less harmonic than x,. Moreover, X, is more globally harmonic if there is a
constraint with respect to which x, is more harmonic than X,.

(D) forces the aggregation function, when ranking two candidates, to
consider those candidates’ profiles and no others’. If it is “[v]ia pair-wise
comparison of alternative analyses” that “the grammar imposes a harmonic order
on the entire set of possible analyses of a given underlying form” (Prince &
Smolensky, 1993, p. 3), then all that should matter in any pairwise consideration
of candidates is their profiles.

The case for (I) and (SP) can be made more compelling by noting a
property that they jointly entail (Proposition 6, below). Firstly, observe that if a
constraint aggregation function satisfies (SP), it also satisfies (PI).

PARETO INDIFFERENCE (PI). Let {c[Input]} be any profile of evaluation
functions in the domain of F, and let I denote the indifference relation
induced by R = F({c,[Input]}). For any X, X, in X, we have x]Ix,,
whenever, for all i, ¢,[Input](x,) = c,[Input](x,).

Secondly, consider the condition (INV) below. Informally paraphrased,
it requires that aggregation functions use nothing but candidates’ scores to
determine their global harmony ranking.

INDEPENDENCE OF NON-CONSTRAINT-VIOLATION CHARACTERISTICS
(INV). Let {c[Input]} and {c’[Input]} be profiles of evaluation
functions in the domain of F, and let x,, X,, ¥,, ¥, be candidate outputs
such that, for all i, c[Input](x,) = c’[Input](x,) and c[Input](y,) =
¢’ [Input](y,). Then x,Ry, if and only if x,R"y,, where R = F({c[Input]})
and R’ = F({c’,[Input]}).

Proposition 5.” If a constraint aggregation function, F, satisfies (U), (PI) and (D),
« then it also satisfies (INV).

Pure constraint-based phonology is committed to the claim that the
evaluation scores of two candidates in X contain sufficient information to
determine their position relative to each other in the global harmony ordering.
(INV) formalises this claim. We use evaluationism to refer to the view that
evaluation scores contain all the information necessary for determining global
harmony orderings. Pure constraint-based theories are therefore evaluationist.
We said that the problems of constraint aggregation in linguistics and preference
aggregation in social choice theory are very similar. The similarity continues
here. Evaluationism is the linguistic counterpart of welfarism in social choice

"” See Roemer (1996, pp. 28—29).
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theory, the view that no information beyond measurements of individuals’
welfare is necessary in determining social orderings of policy options.

- Moreover, if we accept evaluationism, we are also forced to accept (PI)
an -

Proposition 6. If a constraint aggregation function, F, satisfies (INV), then it
also satisfies (PI) and (I).

Proof. (1) To prove that (INV) entails (PI). Let {c[Input]} = {c[Input]}, x=y,
and x,=y,. Further, assume that, for all i, c,{Input](x;) = c[Input](x,), to
satisfy the conditions of (PI). Then the conditions of (INV) are met,
and x,Rx, if and only if y,Ry,, i.e., if and only if x,Rx,. But since R is
conmected, we must have both x Rx, and x,Rx,, i.e., x,Ix,, as required.
(2) To prove that (INV) entails (I). Let x,=x, and y,=y,. Further, to
satisfy the conditions of (I), assume that c,[Input](x,) = ¢’,[Input](x,) and
c,[Input](y,) = c’,[Input](y,), for all i. Then xRy, if and only if xR’y,,
as required.

We can now see that the assumption of (PI) and (I) follows from
constraint-based phonology’s commitment to evaluationism. In this light, let us
reéxamine the three conditions invoked above, (U), (SP) and (I).

(I) is least objectionable, given the evaluationist spirit of constraint-
based phonology.

. (SP) is justifiable at least to the extent that it is related to (PI). In fact,
(SP) is slightly stronger. (PI) asserts only that candidates with identical scores
should be ranked indifferently in the global harmony ordering. If we invoke only
_(PI), then a candidate x could be more globally harmonic than a candidate y even
if, for all i€ {1,...2,...,k}, x’s number of violations on constraint c, were greater
than or equal to y’s number of violations on constraint ¢, and, for some i, were
szr_'ictl.y greater. Therefore, the rejection of (SP) seems tantamount to the
rejection _of the basic principle behind constraint conflict resolution: the fewer
the v_lc?lanons, the more harmonic the candidate. However, there are also weaker
conditions that preserve some of this principle behind conflict resolution. The
weak Pareto principle, (P), for instance, requires that, if candidate x is strictly
better than y on every constraint, then x must be ranked above y in the global
harmony ordering. The condition of monotonicity, (M), requires that, if two
proﬁ.les are identical except that one constraint has ‘raised’ the ranking of a
candidate x in relation to the other candidates, then x’s position in the global
harmony _ordering cannot fall. If (SP) is replaced with (P), impossibility
t.h_colrems in essence identical to those in Section 3 still hold (Roberts, 1980b).
Slmlla.r. results stili hold if (SP) is replaced with (M) and the requirement that the
constraint aggregation function be non-constant, i.e., sensitive to the constraints
(Arrow, 1951, 1963).

In light of the evaluationist commitment to (I), (U) is justifiable to the
extent that we have no reason to rule out that, for any k-tuple of scores, {t},
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there exists an input, Input, and an output in X, Output, such that
{c[Input](Output)} = {t}. However, there is some indication that not every
logically possible assignment of scores to a candidate is possible for real
constraints. The assessment of a candidate by different constraints may not be
independent: for instance, a candidate cannot violate DEP(F) more than it
violates *F, where F is any feature; and exactly one of the constraints “X” and
“NOT X” will be violated, where X is a property of whole candidates, not of
substrings of candidates. Moreover, a constraint’s behaviour across different
candidates may be constrained too: for constraints that can be computationally
realized by finite-state machines (Ellison, 1994; Eisner 1997a) or weighted
context-free machines (Tesar, 1996), the number of violations cannot grow more
than linearly with the length of a candidate. But at present it is an open question
whether or not such interdependencies across rows and/or columns of tableaus
are sufficiently systematic to rule out the possible occurrence of certain profiles
and thus to warrant domain restrictions of constraint aggregation functions.

(It is important to note that systematic domain restrictions would
provide an escape-route from the impossibility result under ordinal or cardinal
measurability without cross-constraint comparability (Theorem 1). As an
example, consider the condition of triple-wise value-restriction. A profile of
constraint evaluation functions, {c,[Input]}, is triple-wise value-restricted if, for
every triple of candidate outputs in X, there exists at least one alternative
amongst this triple, x, and at least one position, j* (7=1: ‘most harmonic’; j=2:
‘medium harmonic’; j=3: ‘least harmonic’), such that all the constraint
evaluation functions c[Input] in {c[Input]} ‘agree’ that candidate x is not j"
amongst the given triple.18 Sen (1982a) has established the following result:

Theorem 7.19 There exist constraint aggregation functions on the domain of
triple-wise value-restricted profiles of constraint evaluation functions

satisfying (U), (SP), (I) and (ONC).

An example is the following constraint aggregation function F: for any
triple-wise value-restricted profile {c[Input]}, let R = F({c[Input]}) be the
ordering-such that, for any x,, X,1in X,

if and only if
l{ie {1, 2, ..., k} : c[Input](x,)) 2 c,[Inputl(x,)} 2
ifie {1, 2, ..., k} : c[Input](x,) = c,[Input](x,)}I.

x,Rx,

Informally, x, is at least as globally harmonic as x, if and only if x, beats, or at
least ties with, x, in a simply majority ballot across all constraints.

18 \e adopt the convention that, if different candidates amongst a triple are assigned
identical scores by c[Input], then each candidate has more than one position (i.e., 1% 2"
or 3™) amongst this triple according to ¢[Input].

1 This result is entailed by (though not identical to) theorem 1 in Sen (1982a).
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However, in the absence of a clearer empirical justification for
systematic domain restrictions, these considerations must remain hypothetical.)

In light of the preceding, we conclude that (I) and (SP) are very strongly
in the spirit of constraint-based phonology, and that (U) is a reasonable null
hypothesis concerning the domain of aggregation functions. We can now
proceed to ask what the significance of the theorems of Section 3 is. Of those
theorems, the first makes the most demanding assumption concerning invariance
and thus the least demanding assumption concerning measurability and cross-
constraint comparability, and the last, the least demanding assumption
concerning invariance and thus the most demanding assumption concerning
measurability and cross-constraint comparability. The intermediary theorems
represent assumptions of intermediary strength.

We consider two types of measurement: ordinal and cardinal. Ordinal
measurability assumes that only the ordering between scores of different
candidates is important. By contrast, cardinal measurability assumes that the
scores — in particular, the units of the scores — have additional numerical
significance. The most restrictive assumptions concerning measurability and
cross-constraint comparability are that there is no comparability and that
measurement is merely ordinal (ONC). Strict dominance hierarchies are the
only aggregation functions satisfying (U), (SP), (I) and (ONC). They are also
the only functions satisfying (U), (SP), (I) and (CNC), the result of admitting
cardinal measurability. This yields the situation with which we are familiar in
Optimality Theory. Strict dominance hierarchies are the only logical possibility
for an aggregation function given the basic assumptions. However, alternatives
are current in the literature. We now examine some of these.

4.2. Variants cn Optimality Theory

As optimality-theoretic research has expanded and encountered empirical
challenges, researchers have suggested modifying the version of Optimality
Theory presented in Prince & Smolensky (1993). These modified theories
diverge also from the system outlined above: a strict dominance hierarchy of
output and input-output constraints. Some of these modifications concern the
typology of constraints and are discussed in Section 4.3, particularly in relation
to the problem of opacity (to be defined). Others concern measurability and
cross-constraint comparability assumptions and are discussed immediately
below. With regard to these assumptions, it is striking that the apparently quite
different proposals discussed below actually have a single unifying feature: that
they diverge from standard Optimality Theory in precisely what they assume
about the nature of measurability and cross-constraint comparability. Our ability
to characterise the nature of this variation in terms of the concepts and formalism
presented in Section 3 constitutes, we believe, strong support for one of the
general claims of this paper, namely, that the nature of measurability and cross-
constraint comparability is an interesting and important area for research in
constraint-based phonology.

Optimality Theory and the Problem of Constraint Aggregation

42.1. Different Measurability and Cross-Constraint Comparability
Assumptions

A not uncommon situation in optimality-theoretic reasearch is that part of a data
set cannot be accounted for under any strict dominance hierarchy of an othermse
successful set of constraints. In this situation, researchgr§ have sometimes
suggested, not a revision of the constraint set, but a revision of _how global
harmony is determined given the number of times each candidate v1ola'fes each
constraint. Below, we discuss six such proposals and argue tha'g yvhat is really
being modified in each case is the assumed nature .of measurability and cross-
constraint comparability. ~ The examples - we discuss are Burzio (1999),
Crowhurst & Hewitt (1999), Flemming (1997), 1t6 & Mester (1997), Klrchqer
(1996) and Smolensy (1995). Since the discussion focuses on constraint
aggregation after the number of violations has been f:alculat_egl, the meaning of
each constraint is irrelevant. We therefore omit their definitions and refer the
reader to the relevant article in each case.

In the Tokyo dialect of Japanese, a compoundAof two words can
sometimes have two acceptable surface realisations. Itd & Mester _(199?,)
suggest the use of “tied rankings” to account for thls.“surface mdeterr;unacy .
“Tied ranking means that violations of the two constraints Id.entSS al}fi g count
as equivalent: It is just as bad to violate IdentSS as it 1s to, violate *g” (p. 433).
More specifically, consider (4), adapted from It6 & Mester’s (26c) (p. 434).

4 TOKYO JAPANESE TABLEAU

Lex = /niwa-Geta/ *[p IdentSS *g IdentLexS
S = [getal
@ [niwa geta]
& [niwa yetal

*

Clearly, if IdentSS and *g are in a strict don_xinance» relation, the_:n only
one of niwa geta and niwa yeta will be considered o_pnmal. _If the constraints are
equally ranked, however, the correct result, surfacg indeterminacy, fc_)l.lows. _

Precisely the required ranking can be achieved under DeflnltIOI:l 4, using
a (version of a) weak utilitarian rule. Partition {1,2, ..., k} (corresponding to the
k constraints in C) into S, Sy, « S, (ie., S=S,U S, ... Y S, where S;n §;= &
whenever i#j) and define F({c,[Input]}) to be the ordering R such that

x,Px, if and only if
S s M mputl(x,) > T 5 A nputl(x,)
or [ 3 es AclInputl(x,) = X es Ac[Input](x,)
and 3, s Ac[Inputl(x,) > ¥ 5 Ac[Tnput](x,) ]
or ...
or [ (V] :j<n) (Zies e Inputl(x,) = T s AcInput](x;) )
and ¥, s AcInput](x,) > T s AcInputl (x;)
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where P is the strong ordering induced by R and, for each 1, 4,20. So, the
constraint aggregation function ‘looks’ at the highest ranked partitioning set and,
by summing constraint violations for that set, determines which candidates must
be suboptimal. The same procedure applies to the next highest ranked
partitioning set, and then to the next, and so on.

For It6 & Mester, the following ranking is sufficient.

c,=*g » {c,=1IdentSS, c,=*g}  » c, = IdentLexS
S, = {1} S,=1{2,3} S; = {4}
)\.]=1 ?\.2=l3=1 7\.4:1

In fact, the numbers themselves are irrelevant. What matters is the equality A, =
Az, which guarantees “that violations of the two constraints IdentSS and *g count
as equivalent” (page 433).

Weak utilitarian rules that mimick strict dominance hierarchies (with
some constraints evaluated simultaneously) also present a way to ‘turn off’
constraints. In general, it is assumed that, in strict dominance hierarchies, very
low ranked constraints cannot affect the outcome of an aggregation procedure,
because the optimal candidate has essentially already been determined by the
stage at which they are ‘consulted’. The reasoning is that, if only one candidate
is in contention on a given constraint, then it is optimal with respect to that
constraint, no matter how many times it violates it. This reasoning is no longer
valid if, for some inputs, there is never a stage where only one candidate is in
contention. So, constraints that are provided by Universal Grammar but that are
inactive in a particular language may need to be ‘turned off’ to permit surface
indeterminacy.

As a concrete example, consider the spread of the feature [+nasal] from
consonants to (adjacent) vowels, which is mot uncommon cross-linguistically.
However, onset nasals do not spread nasality onto adjacent vowels in Tokyo
Japanese (Shogo Suzuki, personal communication). The problem for Itd &
Mester is that the ‘nasal spreading’ constraint would be violated twice by niwa
peta but only once by niwa geta. This would make niwa geta optimal,
destroying surface indeterminacy.

The problem can be fixed, at least with respect to constraints entirely
inactive in Japanese, given a slight modification of definition 4. Suppose that c,,
is the lowest ranked constraint active in Japanese, and that the inactive
constraints are c,,, C,, ..., C,,. Lhen we partition {1, 2, ..., k} so that the lowest
ranked partitioning set is {23, 24, 25, ..., 30} and define the weak utilitarian rule
with weights A3 = 1 and Ap4 = Aps = ... = Azo = 0. By setting Aps, Ags, ..., Agp tO
zero, violations of constraints c,,, ¢, ..., C, are made irrelevant to a candidate’s
global harmony level. However, we require a modification of definition 4,
because, since A, Ass, ..., Az are always 0, the condition that c,,, c,, ..., Cy,
should sometimes act as tie-breakers is violated. The modification required,

Y
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then, is the removal of the phrase ‘not all zero’ in definition 4. Note that this
proposal violates (SP).

Flemming’s (1997) proposal is similar to It6 & Mester’s (1997). He
writes that “[t]he resolution of constraint conflict must employ numerically
weighted constraints rather than the strict constraint domination assumed in
Optimality Theory” (p. 1). Clearly, he is suggesting that measurability and
cross-constraint comparability assumptions be changed so as to permit weak
utilitarian rules. Note, however, that Flemming does not use weak utilitarian
rules to permit surface indeterminacy but to select uniquely optimal outputs and,
therefore, does not need to ‘turn off’ constraints as Itd & Mester do. Another
proposal involving weak utilitarian rules is found in Burzio (1999) who claims
that “the regularities of language can be accounted for by constraints that apply
simultaneously, in parallel” (p. 15).

Further modifications to Prince & Smolensky’s (1993) proposal are
found in Crowhurst & Hewitt (1999), Kirchner (1996) and Smolensy (1995).
Our remarks on these proposals are tentative as we are not sure of having
understood their finer aspects. Modulo that caveat, these proposals diverge from
Prince & Smolensky’s version of Optimality Theory with regard to their
measurability and cross-constraint comparability assumptions.

All these proposals involve ‘constraint conjunction’ but use that term in
quite different ways. In Crowhurst & Hewitt (1999), a candidate passes the
conjunction of constraints c, and c, if and only if it passes c, and it passes c,. In
Kirchner (1996), a candidate violates the conjunction of constraints c, and c, if
and only if it violates c, and it violates c,. In both cases, constraint conjunction is
an idiosyncrasy of an individual language: two constraints’ being conjoined in
Japanese implies nothing concerning their conjunction in English. So, we can
assume that all selection processes in all languages proceed identically up to the
point where constraint aggregation begins and that the aggregation function is
responsible for conjoining the constraints. That is, whether constraints are
conjoined or not does not affect how the number of violations of a single
constraint by a given candidate is calculated. We can therefore ask what
measurability and cross-constraint comparability assumptions must be made in
order to permit a constraint aggregation function to conjoin constraints (in either
of the ways described). To answer this question, it is important to note that, for
both Crowhurst & Hewitt and Kirchner, what matters is not (primarily) which of
two candidates violates two conjoined constraints the fewer number of times, but
whether the candidates violate the constraints at all. To take account of this
significance of zero, the constraint aggregation function cannot be invariant
under transformations of the constraint evaluation functions that shift the origin
(as can occur under positive monotonic transformations). Rather, we must
assume (ONC+0): for any two profiles {c[Input]} and {c’[Input]}, in the
domain of F, F({c,[Input]}) = F({c",[Input]}) if ¢’,[Input] = ¢,(c,[Input]) for some
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k-tuple {¢,} of positive monotonic and sign-preserving transformations20 (List,
in press).

Smolensky (1995) proposes ‘self-conjunction’ of constraints: if
candidate x violates constraint ¢, n times, then it violates c-self-conjoined-m-
times once if n is greater than or equal to m, and no times otherwise. This also
represents a deviation from (ONC), the standard measurability and cross-
constraint comparability assumptions underlying Optimality Theory. Depending
on whether the concept of ‘self-conjunction’ is incorporated into the formalism
exogenously or endogenously — that is, depending on whether the ‘work’ of self-
conjunction is assumed to be done by the constraints or by the constraint
aggregation functions — special significance must be attached at least to the
number O, if not to a constraint-specific number m, or even to the units of
evaluation. Again, the constraint aggregation function cannot be invariant under
transformations of the constraint evaluation functions that do not leave 0 (or m,
if necessary) invariant. (ONC+0) would thus seem to be the minimal
requirement for Smolensky’s proposal to be viable.

The proposals reviewed in this section are all modifications of
Optimality Theory as it is presented by Prince & Smolensky (1993). We have
argued that, in each case, the locus of modification is the assumed nature of
measurability and cross-constraint comparability. Moreover, we proposed that a
problem facing one of the accounts (i.e., the problem of optionality or ‘surface
indeterminacy’) can be solved by a modification of measurability and
comparability assumptions. This underlines both the utility and the centrality of
the issues that our formalism addresses.

4.3. The Typoiogy of Constraints

Two types of constraints seem indispensable to constraint-based phonology?!.
The very notion of a well-formedness constraint suggests restrictions on output
structures. So, we require output constraints. Furthermore, if the phonology is
not merely to produce the least marked syllable of the language (/stop/ emerging
as ta-ta-ta), then input-output faithfulness constraints are necessary to minimise
divergence between input and output. So, constraints can refer to inputs and to
outputs. This opens the way for other combinations: input constraints, output-
output constraints.

Input constraints are to be rejected because they do no work. We are
concerned with the problem of aggregation. That is, how the optimal candidate
is selected from X. Input constraints are irrelevant. Besides this, they are
conceptually incompatible with Optimality Theory. Recall that in the seventies
and eighties, constraints had entered all levels of the grammar, including the

20 A transformation ¢ : R — R s sign-preserving if, for all te R, t < 0 implies ¢(t) < 0,
t=0 implies ¢(t) = 0, and t > 0 implies ¢(t) > 0.

21 C.p. Burzio (1999), who argues for the rejection of underlying representations and, a
Jortiori, of input-output constraints. However, in the absence of a specific model for his
theory, it is hard to assess this proposal.
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input level (see (1)). Given the historical context, the claim that all constraints
concern the well-formedness of outputs entails that there are no input constraints.
Of course, it may emerge later that such constraints are required. This would
have consequences for Optimality Theory and its conceptual relatives. However,
in the absence of concrete arguments, this possibility should be discounted.??

Output-output constraints are more interesting. Conceptually, they
could come in two varieties. They could induce faithfulness of the output of a
given selection process to the optimal output of another ;election process. ’_I'his
type of output-output constraint is used by Kenstowicz (1999) to achieve
paradigm uniformity. Alternatively, such constraints could induce faithfulness
of the actual output of a given selection process to some suboptimal output of the
Generator within the same selection process. This type of output-output
constraint is utilised by McCarthy (1997). Call these two types of output-output
constraints Q00 and OOS constraints, respectively (‘output-output: optimal’,
‘output-output: suboptimal’). (By ‘selection process’, we intend.the process of
selecting the optimal output for a given input. OOQO constraints, therefore,
involve two different inputs; OOS, one.)

So far, we have been assuming an exogenous incorporation of the
constraints. That is, the constraints are treated, formally, in an identical fashion
and do their work ‘semantically’. All constraints are included in the constraint
set, C, and to each constraint there corresponds an evaluation function, as
defined above. The differences between constraints arise from differing
interpretations of ‘c[Input](x)>c,[Input](y)’:

@) “candidate x is more well-formed than candidate y”, for ¢, an output
constraint.

(ii) “candidate x is more faithful to Input than candidate y is” for c, an
input-output constraint.

(iii) “candidate x is more faithful to the optimal output of the other relevant
selection process than candidate y is”, for c, an OOO constraint.

(iv) “candidate x is more faithful to candidate z than candidate y is”, for ¢,

an OOS constraint.
In all cases, the constraint is treated identically for the purposes of measurability,
comparability, and aggregation. = .

In the case of OOS constraints, an alternative incorporation is possible.
An endogenous incorporation would have the effect of introducfmg .OOS
constraints without actually introducing any. Instead of having constraints in t_he
constraint set which, in order to assign a score to a given candidate, require

22 Archangeli & Suzuki (1997) propose input constraints. However, it is not clear that
these are constraints are entirely warranted by their data, nor is it clear that some o_f the
same work could not be done by an algorithm for determining underlying representations.
Roca (1997) observes that Archangeli & Suzuki “stretch [Optimality Theory] in ways
which, if nothing else, are not obviously congenial to its spirit” (p. 27). Constraints on
input are the topic of Harbour (forthcoming).
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information about other candidates, we deploy an aggregation function which,
when assessing the relative global harmony of two candidates, considers
candidates other than the two under comparison. That is, the work is shifted
from the evaluation function, which determines a candidate’s score on a given
constraint, to the aggregation function. The constraint set itself contains only
output' and input-output constraints (and OOO constraints, should any be
introduced).

Exogenous incorporations are compatible with (I), endogenous not.
Endogenous incorporation explicitly makes use of constraint aggregation
functions that violate (I). But violation of (I) permits a logical interdependence
between candidates which is not easily tractable, thus making the job of the
linguist very difficuit. Also, violation of (I) is strongly at odds with the
evaluationist spirit of Optimality Theory. And, finally, endogenous
incorporation of OOS constraints would break the formal symmetry between the
different types of constraints. For all these reasons, we advocate the exogenous
formalisation of all constraints, including the OOS type.

The theoretical considerations above force output constraints and input-
output constraints on us, but leave open the question of output-output constraints,
of either type. To begin with, we should attempt to use only the first two.
Several proposals involving other constraint types are intended as solutions to the
problem of opacity, in particular McCarthy (1997). We therefore turn now to
opacity. The discussion of the constraint typology with regard to opacity is
resumed in Section 4.4.1.

44. Opacity

The theory resulting from (U), (SP), (I), output and input-output constraints, and
(ONC) or (CNC) is empirically inadequate, at least in its current versions. The
most well-known difficulty is the problem of opacity. We can state the problem
as follows. Let x and y be two segments and let E be an environment. Under
normal, non-opaque conditions, an underlying x may emerge as surface y if y is
less marked in E than x is. So, if E is ‘t__# and x is the English present tense
morpheme /z/, then x will surface unfaithfully as s in the context E: we say eat[s]
not eat[z]. Opacity arises in one of two cases: (a) x surfaces unfaithfully as y
even though E is not present; (b) a third segment z surfaces unfaithfully in E as
X, not as the less marked y. A pseudo-example of (b) would be a morpheme /v/
such that [eat-v] surfaces as ear[z] rather than eaz[s], even though [eat-z] surfaces
as eaf[s]. Real examples include synchronic chain shifts (see, for example,
Kirchner, 1996).

As an example, we can consider the (in)famous opaque epenthesis in
Tiberian Hebrew, (McCarthy, 1997). In derivational terms, the segholate /das'/,
‘grass’, is targeted for epenthensis and the resulting /de8€"/ undergoes deletion of
the glottal stop, yielding dese. This process is opaque, by clause (a) above: E, the
environment for epenthesis, is ‘C__C’, x is @ and y is &. In dsse, @ surfaces
unfaithfully as ¢ even though E is not present.
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The normal cases of segholate epenthesis (e.g., input /pasl/ surfacing as
pesel) can be treated by Optimality Theory using only output and inpl_lt-output
constraints under a strict dominance hierarchy. McCarthy (1997), for instance,
uses five constraints: *COMPLEX, a ban on complex codas; ANCHORyo, the
requirement that, if the final segment of the input is present in the output, then it
be final in the output; CODA-CONDITION, a ban on codic glottal stops; MAX-
C,o, @ ban on deletion on input consonants; and DEP-V|q, a ban on vowel
insertion. However, these constraints fail to select the correct output when
opaque epenthesis occurs. The following is a reduced version of McCarthy’s

tableau (page 22).

(&) TIBERIAN HEBREW TABLEAU: 1

/des'/ *COMPLEX | ANCHOR;, : CODA-COND | MAX-Cin DEP-Viq

- ] * *|
@ deSe : ‘ - !
<  de§ :

Clearly, des will be selected as optimal in this tableau: Moreove;, d_afs
does not outperform de$ on any constraint. However, ) contains a very limited
number of constraints. In reality, Optimality Theory posits many more
constraints, including a large number which, in any given language, are very low
ranked. How one might solve opacity depends on the behav1pur of these lower
ranked constraints. Specifically, it depends on whether des' 1s (yveakly) anfeto
superior to dese, that is, whether, for every member of tht’T constraint set, df:s is at
least as good as des¥, and, for at Jeast one constraint, strictly better tlgm it. We
examine two cases: when Pareto superioty obtains {4.4.1) and when_ it dees not
(4.4.2). In cases of opacity, we refer to the candidate that ougl_lt to win (but does
not) as the opaque candidate, and to the candidate that does win (but should not)
as the transparent candidate.

4.4.1. Pareto Opacity

By Pareto Opacity, we intend cases in which the transparent canflidate is
(weakly) Pareto superior to the opaque candidate. Pareto opacity 1s an insoluble
problem for constraint-based systems observing (_SP). This follows because any
constraint aggregation function satisfying (SP) will rank output X above output y
if x is (weakly) Pareto superior to y. But Pareto opacity informs us that the
opaque candidate is always (weakly) Pareto inft_erlor to some o_ther candidate, the
transparent candidate, and so will never be maximally harmonic.

Unless we are prepared to relax (SP), we are forced to introduce new
constraints which rank the opaque candidate above the transparent one, thereby
breaking the transparent candidate’s (weak) Pareto superiont.y. From the
discussion of constraints in Section 4 above, the relevant constraints seem to_be
output-output constraints. Recall that these come in two types: OOO, Tnduc?ng
faithfulness to the output of another selection process; and OOS, inducing
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faithfulness to a suboptimal output of the generator within the same selection
process. Which might solve opacity?

For faithfuiness to the optimal output of another selection process to
work, we require the following correspondence: for every opaque, o, and every
transparent candidate, ¢, corresponding to a given input, there exists a second
input with surface form, s, such that ¢ is more faithful to s than 7 is. Whether
there is such a correspondence is an empirical matter, as is whether one could
ideptify the relevant input. We are aware of no general treatment of opacity
which takes this as its starting assumption, however, perhaps reflecting a
difficulty with such an approach. The question is left open.

Famously, there is a proposed solution to opacity using the other type of
output-output constraint: McCarthy’s (1997) Sympathy Theory.23> McCarthy
proposes introduction of an OOS constraint on which the opaque candidate
outperforms the transparent.

How could the OOS constraint of Sympathy Theory be formalised?
Recall that the effect of OOS constraints can be achieved in two ways, in an
exogenous way and in an endogenous way. Under an exogenous formalisation,
the effect of OOS constraints is achieved ‘semantically’, whereas, under an
endogenpus formalisation, the effect of the constraints is built into the constraint
aggregation function by allowing this function to violate (I) (in a suitably defined
systematic way). We should therefore note that an endogenous formalisation of
OOS constraints could never solve the problem of Pareto opacity, unless, of
course, we are willing to abandon (SP). For, if no new constraints are added to
the constraint set and the transparent winner (weakly) outperforms the opaque
one on every constraint included in that set, the opaque winner will never be
ranked above the transparent one by a constraint aggregation function satisfying
(SP), no matter how much logical interdependence between the rankings of
(more than two) candidates we admit.

_ In order to tackle Pareto opacity, sympathy theory must therefore
fo_rmallse OOS constraints exogenously. A new constraint cn which the opaque
winner scores better than the transparent one is introduced into the dominance
hlera_rchy higher than the constraint which would otherwise select the transparent
candidate over the opaque. This constraint breaks the Pareto superiority of the
transparent candidate.

A suitable aggregation procedure can then rank the opaque candidate
above the transparent one without violating (SP). Furthermore, as Gen is
assumed to include all linguistically coherent representations, Sympathy Theory
does not suffer from the difficulty noted above, that there may not exist a
structure such that the opaque candidate is more faithful to it than is the
transparent candidate.

23 :

. aV&_/te d% ntcljlt claim any of the cases considered by McCarthy to be cases of Pareto
pacity. Rather, we aim to show how his proposal can be implemented agai

Pareto opacity, should any arise. B d SR
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Sympathy Theory is, however, in friction with the spirit of Optimality
Theory, and of constraint-based phonology generally. OOS constraints
introduce, in effect, an intermediary level of representation into phonology. The
target of OOO-faithfulness is the output of a selection process. However, there
is no process which selects as optimal the target of OOS-faithfulness (unless the
target of sympathy is the optimal output itself). Yet, this is the only significant
difference. Formally, OOS and OOO constraints are very similar, both inducing
faithfulness to something other than the input. This leads one to say that the
target of faithfulness in OOS constraints is just as much a part of the language as
the target of faithfulness in OOO constraints. Moreover, the process which
selects the sympathetic candidate, a strict ‘dominance hierarchy on a proper
subset of X, is very similar to that which selects the target of O0O-faithfulness.
If one wished to introduce intermediary levels of representation to Optimality
Theory, one would be hard pressed to find a better way to it than McCarthy
proposes. However, intermediary levels are contrary to the spirit of Optimality
Theory, which aims to make grammaticality purely a matter of conformity of the
output to structural well-formedness constraints.

Thus, if there is Pareto opacity in natural language, it presents a real
problem for Optimality Theory. Unless we are prepared to abandon (SP), it
cannot be accommodated with the most sparse assumptions concerning the
nature of constraints. If OOO constraints are adequate, then there must exist a
correspondence between opaque and transparent candidates of one selection
process and optimal candidates of another, as well as a means of identifying the
relevant selection process. On the other hand, OOS constraints seem
substantially to be in friction with the spirit of constraint-based theories of
phonology in that they tacitly introduce intermediary levels of representation, the
need for which constraints are meant to obviate.

4.4.2. Non Pareto Opacity

Suppose that there is at least one output or input-output constraint on which the
opaque candidate outperforms the transparent. Then Pareto opacity does not
obtain. Given the enormous number of conflicting constraints, this opacity
seems likely to be the more common. In what follows, we discuss whether the
problem non-Pareto opacity can be solved by changing measurability and cross-
constraint comparability assumptions. We should note that Kirghner’s (1996)
proposal, discussed in Section 4.2.1, is an example of a change in measurability
and cross-constraint comparability assumptions that is intended to account for an
instance of opacity, namely, synchronic chain shifts.

In the case of opaque epenthesis in Tiberian Hebrew segholates, the
transparent candidate is not Pareto superior to the opaque candidate, owing to
NOCODA, a well-motivated constraint banning codas: the transparent candidate,
though not the opaque, violates it. The realisation that de§ is not Pareto superior
to dese presents us with a very simple solution to the problem of epenthesis in
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/da¥/2* We can take the five constraints, ranked as (6), and simply insert the
constraint that breaks Pareto superiority between the constraints that are second
lowest and lowest ranked.

(6) *COMPLEX, ANCHOR;o, CODA-CONDITION » MAX-C;, » DEP-Vy,,

(7 *COMPLEX, ANCHOR 5, CODA-CONDITION » MAX-C,q »
NOCODA » DEP-V 25

This yields a set of constraints, which, under a strict dominance hierarchy,
selects defe as transparently optimal. This is shown explicitly in (8). The
_tableau presents three inputs: /da¥'/; /pasl/, a normal segholate; and /o', a normal
glottal-st_op—ﬁnal word. (We choose /pasl/, ‘idol’, over /malk/, ‘king’, used by
inter qlza' McCarthy (1997), Idsardi (1998), to avoid the complication of
spirantisation.) All the correct selections are made using the constraints in the
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This solution is quite obvious and natural and underlines the usefulness
of the distinction we have drawn between Pareto and non-Pareto opacity (and,
consequently of the formalism in Section 3). However, the phonology of
Tiberian segholates presents a variety of opacities: epenthesis, stress, tonic
lengthening, spirantisation, and vowel harmony (Idsardi, 1998).  The
introduction of NOCODA solves only a part of one of these problems.

To see that the strict dominance hierarchy in (7) does not select the
correct results for all cases of epenthesis consider another segholate, Me:t?,
‘sin’.26 This is another glottal-stop-final segholate. However, it does not
undergo epenthesis: its singular is he:t ot he:te. The wrong result is predicted
by (7), as shown below.

()] TIBERIAN HEBREW TABLEAU: 3

dominance hierarchy shown.

®)

TIBERIAN HEBREW TABLEAUX: 2

" /da¥/

*COMPLEX ' ANCHOR|g | CODA-COND

Max-C

NoCoba

Dep-V

@ deSe

/da§'/ *COMPLEX | ANCHORjQ ' Copba-ConD | Max-C | NoCopa | Dep-V

@ dese : : * *
de§ ; . *

[he:t = 5 Ee _%ﬁf}-\z

® he:te : *

@ he:t : i i

des
dese’
des'e
des'

/pasi/

& pesel
pESE

pEs

pesl
pesle

lto’/

24 :

We Lhank. Jghn Franzpton for suggesting that we look for a constraint that breaks the
Pareto superiority of_des, Jason Eisner for not letting us miss the significance of NoCoDA
grsld Benjamin Bruening for reminding us of ‘sin’. ,

Bill Idsardi (p.c.) points out that this ranking would cause epenthesis in word-internal

consonants clusters, a problem that can be fixed if NoCoda is i i
» 2 is interpreted as refes
word final-codas only in the current case. ® e

The problem is that, so far as the constraints in the tableau are
concerned, /he:t” and /da¥'/ are structurally identical: /CVC'/. So, either -
epenthesis will be optimal in both cases or it will be suboptimal in both cases.
Either way, the wrong surface form will be selected for one of the inputs.

This new problem cannot be solved as the problem of dese versus des
was, by the introduction of a new constraint such as NOCODA, as becomes
apparent when one tries to imagine what the new constraint would need to do.
According to (9), dese P ds¥ if and only if ke:te P he:t. The new constraint must
ensure that dese P de§ and he:t P he:tse. To do this, the constraint must be
violated more by #e:f¢ than by %e:t.

The constraint could not be a feature markedness constraint, because all
the features of fe:te are also features of fe:t and dese. If the new constraint
penalises a feature of common to he:te and he:t, then the extra violations will
not affect the relative global harmony of the two outputs. And if the new
constraint penalises a feature common to he:te and dese, then it will not alter the
current situation, that dese P des if and only if he:te P he:t. Similarly, the new
constraint could not be a faithfulness constraint. So, the constraint would have to
be a structural markedness constraint. That is, [Wd...t'a] must be more marked
than [,y,...t]. However, there is simply no motivation for such a constraint. An
ad hoc prohibition on, say, the string ‘C'e’ (‘pharyngeal+e’) could be invoked,
which only #e:7's would violate, and this would produce the correct output if the

26 [('] denotes a pharyngealised [t].
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new constraint were ranked between MAX-C;, and NOCODA. But this seems
more formal trick than insight.

To clarify, the problem is that there are two different vectors of scores,
v, and v, such that, with respect to Input,, v, corresponds to the optimal
candidate and v, to the suboptimal, whereas with respect to Input,, v, corresponds
to the suboptimal candidate and v, to the optimal. However, any constraint
aggregation function satisfying (INV) will rank the two pairs of candidates with
the same pair of score-vectors, v, and v,, identically. Moreover, the four
candidates appear similar enough in the relevant respects for there to be no
constraint that differentiates between them in such a way as to permit a new
strict dominance hierarchy under which only the correct candidates are selected.

Two observations are needed at this point, one concerning what this
problem means for Optimality Theory and constraint-based phonology in general
and the other concerning what it means for the analysis of Tiberian Hebrew in
particular. In brief, we will argue that situations such as the current one are very
real problems for any constraint-based phonology; and that is so, even though the
tableau reveals that the analysis ‘of Hebrew using the constraints in (6) is
fundamentally misconceived.

There is a very simple reason to suspect that the analysis of Tiberian
Hebrew based on the constraints in (6) is fundamentally misguided: it represents
de§ as a reasonable contender for the singular absolute form of /das/. Hebrew
nouns have two forms, absolute or construct: the absolute of, say, pesel means
simply ‘(an) idol’, whereas the construct means ‘(an) idol of’. Construct forms
are dependent forms in that they must be followed by another nominal and in that
they often have a special, ‘dependent’ phonological forms. Now, all Hebrew
words of the form CeC are phonological dependents, such as construct forms or
closed class items.2” In Masoretic texts, dependents are hyphenated with what
supports them. Some are shown in (11), with ‘" for the Masoretic hyphen.

(11) pen—  ‘lest’ Sel— ‘of’
ben— ‘son-CONSTR.’ Sem—  ‘name-CONSTR.’
ten— ‘give-IMPERATIVE-M.SG’ -

Several of these words have phonologically independent forms, but these forms
crucially have a different vowel: long e: not short &. These is shown in (12).

(12) be:n ‘son-ABS.’ Se:m ‘name-CONSTR./ABS.’
te:n ‘give-IMPERATIVE-M.SG’

These facts reveal that the constraints in (7) are substantially wrong:
they represent dese as being in crucial competition with de§ for a role (the

27 The two apparent exceptions to this generalisation (psk ‘mouth’; seh ‘sheep’) are in
reality simply Ce words. The 4 is silent.
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singular absolute of /das'/) that de§, as an improper word of Tiberian Hebrew,
' not fill.
sl caAn more reasonable competitor for dese is de:f/dc_i:s', or pe.rhap_s even
das$, given the restrictions on the structure of monosy!lablc words in ?lbenap
Hebrew. These candidates would break the prob_lcmanc symmetry, dass—-he:t_s
and des~he:t, and could, therefore, permit a solutlor}. In partlcular_, the reader is
referred to Bruening (1999) whose proposal involving morphologlc?lvtemplates
and metrical feet suggests we are correct to consider de:5ldd:s a fmore
appropriate competitor for dese than fis.s‘,h and_ to Harl_aour (forthcoming) for an
analysis of monosyllabic nouns and ad;ecpve_s in leenan_ Hebrew. N
The possibility of solving the Tiberian Hebrew instance of the pro en}
formulated three paragraphs higher does not answer the more general issue 'ct>h
whether Optimality Theory, or other constraint-based phonologlesz can cope wi
such cases. In the absence of a concrete exan}plc, the question may seem
somewhat pointless. So, we sharpen it by showing that the problem remains
even if the Hebrew instance of it does not. We t'hcn argue that such cases afr:,h a
problem for any constraint-based grammar assuming (U), (I), (SP) and any of the
ions in Table 1. . _ .
- 1['II'he new example we consider comes from Bedouin Arabic. This cTz'atsle
of opacity is considered by McCarthy (1997), whose exposition we folle>wa.11 e
problem concerns vowel raising in open syll.ables. - When it occurs fin k.y a;)n
open syllables in Bedouin Arabic, a raises .to i. Thus, /_katab/_ surfa.ces as ki.tab.
Furthermore, underlying glides vocal.lse under certain c1rcumstanrl:.eds.
Interestingly, if an underlying @ occurs in an open syllable created by g :1 e
vocalisation, then it does not undergo raising. Thus, foadw/ surfaces as ba.du,
T an bi.du.
radher These facts are hard to account for in Optimality Theory. The relevz}nt
constraints are as follows. Since a becomes i, the mz?rkedness constraint
concerning a in open syllables must outrz.mk.the relevant faithfulness coiszmnt.
Le., *a], » IDENT(high),o. Glide vocalisation shovys the relevant markedness
constraint to outrank the relevant faithfulness constraint: *COMPLEX » DEPf- Wo-
Lastly, *COMPLEX must outrank *a], as ba.du violates *als _whllst satisfying
*COMPLEX. So, we have *COMPLEX » *a], » IDENT(high)ip, DEP-lio-
However, this predicts the wrong result. The t_ableau shows the problem case
and /badw/ and the simple case /katab/. (This is not a case of Pz.lreto opacntﬁ',
since the opaque candidate outperforms the transparent candidate on the
constraint IDENT(high);o.)
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(13) BEDOUIN ARABIC TABLEAU

/badw/ *COMPLEX * alg IDENT(high)o DEP-u;0

@ ba.du * *

bi.du * *

badw *
/katab/
ka.tab *

@ ki.tab *

If the tableau contains all relevant constraints, then the situation cannot
be handled by a strict dominance hierarchy. However, it also cannot be handled
by any change in assumptions concerning measurability and cross-constraint
comparability. The difficulty, is essentially the same as the case of deSe~he:te
and des~he:t. With regard to output structures, ba.du/bi.du is a practically
minimal pair with ka.tab/ki.tab: both differ only with respect to i versus a. But
the candidate containing i wins in the lower part of the tableau, and the candidate
with g in the upper. There appears to be no constraint that sorts i from a in one
case and a from / in the other, nor is one easily imagined.

To see that a change in assumptions concerning measurability- and
cross-constraint comparability does not help, suppose that we permit weak
utilitarian rules by assuming cardinal measurability and cross-constraint
comparability of local harmony units (CUC). Then, we need to find non-
negative coefficients A, not all zero, such that the required constraint aggregation
function F can be defined as foliows: for all x,, X, in X,

x,Rx, if and only if Te(,, AcInputl(x) 2, . . Ac[Input](x,),

where R = F({c[Input]}). We take each violation to measure minus-one unit:
that is, c[Input](x) equals the negative of the number of violations of candidate x
on the ith constraint. In (13), therefore, every cell is filled by ‘0’ or ‘-1 so far as
the aggregation function is concerned. (The use of negatives may seem
somewhat awkward, but we should bear in mind that, if we impose (CUC),
significance is attached only to the units of the scores and not to the position of
the origin.)

T
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Let the set of constraints be C = {c, = *COMPLEX, c, = *a],, ¢, =
IDENT(high);c, ¢, = DEP-j;o}. We must assign values to X, i€ {1, 2, 3, 4}, in
such a way that

2 ieq.2.3.4 Mc[badw](ba.du) > Y e .2.3.4 Mc[badw](bi.du).

Le., ,,(-1) + A, (1) > L,(-1) + A,(-1). This immediately implies that LED >
A,(-1) (subtracting A,(~1) on both sides of the inequality). So,

Y 234 MG [katab](katab) > ¥ ¢, , , , Ac[katab](ki.tab),

contrary to the desired result. Therefore, any weak utilitarian rule that ranks
ba.du, the optimal candidate, above bi.du, the suboptimal one, will also rank
ka.tab, the suboptimal candidate, above ki.tab, the optimal one. Clearly, this
situation is not improved by altering (CUC) to (CFC).

It may be that we are not considering the correct constraints above,
despite the motivation given. Or some fifth constraint may assign sufficiently
different scores to ba.du, bi.du, ka.tab, ki.tab to make a weak utilitarian rule or
an alternative viable. In the absence of such proposals, we must conclude that
some cases of non-Pareto opacity are problematic for constraint-based
phonology under a variety of assumptions concerning measurability and cross-
constraint comparability.

5. Conclusion

We began this paper with a simple observation. To do constraint-based
phonology whilst using constraints that make incompatible demands, we require
a means of resolving constraint conflicts. There are many ways of resolving
such conflicts, and which resolution method ome chooses is related to one’s
assumptions about measurement of violations, cross-constraint comparability of
scores, and the way in which the aggregation function works. Optimality Theory
uses a strict dominance hierarchy, the only option if we impose cardinal/ordinal
measurability, no comparability, universal domain, the strong Pareto principle,
and independence of irrelevant alternatives. Recognising there to be alternatives
to strict dominance hierarchies, one is led to ask which shortcomings of
Optimality Theory are simply shortcomings of strict dominance hierarchies and
which reflect a deeper inadequacy, perhaps inevitable in constraint-based
theories of any description.

Our aim in this paper has been to address these issues rigorously,
employing methods from social choice theory, which deals with problems
formally similar to those in phonology (and in aspects of syntax, particularly the
economy of derivation; Harbour & List, forthcoming). Invoking these formal
methods, we have examined different proposals on how Optimality Theory could
be modified, particularly in view of the problem of opacity. The modifications
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we have discussed concern Optimality Theory’s assumptions on measurability,
comparability and aggregation, or Optimality Theory’s typology of constraints.
We underlined the centrality of these issues to constraint-based phonology by
showing that several variants of Optimality Theory are in fact what would result
from changing Prince & Smolensky’s assumptions concerning measurability and
cross-constraint comparability. And we have argued that certain cases of opacity
are simply insoluble within a constraint-based system which obeys (SP) and
which uses only output and input-output constraints together with ordinal or
cardinal measurement and no cross-constraint comparability. If these cases are
not misanalysed then a solution to opacity must come either from a richer
constraint typology or from a change in measurability and comparability
assumptions.

A richer constraint typology would include OOO or OOS constraints.
OOS constraints, used in Sympathy Theory (McCarthy, 1997), suffer from the
theoretical problem (independent of questions concerning their empirical
adequacy) that they introduce an intermediary level of representation which
constraint-based theories are designed to obviate. Whether OOO constraints
offer a solution is left an open question.

Different measurability and cross-constraint comparability assumptions
may solve some instances of opacity, as appears to be the case with, for instance,
Kirchner’s (1996) proposal. However, some cases of opacity are impervious to
changes in assumptions. One example is Bedouin Arabic g-raising, where the
set of scores for the optimal candidate of one selection process can be too similar
to the set of scores for a suboptimal candidate of ancther selection process,
thereby making it impossible for, e.g., a weak utilitarian rule to determine the
right outcome in both cases.

The use of more powerful constraint aggregation functions raises the
issue of what cross-constraint comparability signifies in phonology. It is not
clear what it means to ask whether a violation of constraint c, by candidate x is
worse than a violation of constraint ¢, by candidate y in some sense above and
beyond a question of constraint ranking. Until clarified, the use of utilitarian
ruies, or more sophisticated methods, raises questions that are hard to answer.
This question is, therefore, raised also by the authors discussed in Section 4.2.1.

We have not exhausted all possible solutions here. In particular, more
constraints may be relevant to the Bedouin Arabic case than we have considered.
However, if cormrect, the preceding cases greatly restrict the possible structure of
a constraint-based theory of phonology. Indeed, we have been able to argue the
most natural version of constraint-based phomology, one using only output and
input-output constraints together with minimal assumptions about measurability,
comparability, and aggregation, to be non-viable. Furthermore, we have argued
that the most appealing alterations to that theory are problematic in some cases.

We have seen that, in order for pure constraint-based phonology to
work, we need to accept evaluationism, the claim that the evaluation scores of
two candidates in X must contain sufficient information to determine their
position relative to each other in the global harmony ordering. Is this

v
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information sufficient? Let us briefly return to social cho@ce t.hepry. _Issl.les s?ch
as morality, context, culture, and the ‘history’ pf each policy option (its ‘path’ or
‘derivation’) may be relevant to social orderings ar_ld, _hf:nce, ’may have to be
represented in the choice procedure over and above individuals® welfare scores.
This is inconsistent with welfarism. Our failure to construct a constraint
aggregation function which generates global .harmony. orderings that d_eal
adequately with transparent and opaque candidates raises a corresponding
question in phonology. Is it conceivable that the pair of_ score-vectors a‘
constraint set, C, assigns to the pair of candidates X,, ¥, 18 1det_1t1cal to the_palr of
score-vectors C assigns to the pair of candidates X,, y, (pos§1b1y for a different
input), and yet x, is more globally harmonic than y, whilst x, is not more glob’;il_y
harmonic that y, given the relevant input(s)_? Presumably the answer to this
question depends strongly on what constraints (anc_l ho_w many of t!lem) we
include in the set C. If the set of (relevant) consfraints 1s sn}all, this is clearly
conceivable, as our example of the two pairs of candidates (dese, fief)_arl_d (he:te,
he:t') in Section 4.4.2 shows. If a very large nurnber. of constram@s is mclpded,
on the other hand, then maybe it is unlikely tl}at dxifferent candidates will be
assigned perfectly identical vectors of scores. If identical vectors pf scores never
occur, then it might be logically possible to define a descriptively adequate
constraint aggregation function extensionally, by matching up tableaux of scores
with the desired rankings in an ad hoc manner. There w.ould, .howcvcr, b_e.no
guarantee that a reasonably parsimonious and systematic mtenszonsa{ definition
of this function could be given, let alone that the functlon_would satisfy any of
the ‘minimal conditions’ from social choice theory dlSCllSS(.Bd above. 'In
particular, there would be no guarantee that such a constraint aggregation
function would represent a learnable method of resolving constraint COl‘LﬂlC’E. \
Might there be more to grammaticality th'an strucn'xral well-formedness’
If the answer is ‘yes’, then, whatever role constraints play in phonology., itis no(;
captured by Optimality Theory, nor can it be by any other pure, cc')nstramt-baw
theory. In seeking an answer, there will be many issues to cons1c!er. We have
argued that the nature of constraint aggregation is one those issues, and a

fundamental one at that.
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