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Abstract
A truthmaker for a proposition P is exact if it contains nothing irrelevant to P . What are the exact truthmakers for necessitated
propositions? This paper makes progress on this issue by showing how to extend Fine’s truthmaker semantics for intuitionistic
logic to an exact truthmaker semantics for intuitionistic modal logic. The project is of interest also to the classical logician:
while all distinctively classical theorems may be true, they differ from the intuitionistic ones in how they are made true. This
sheds new light on the status of the T and B axioms.
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the possible worlds approach is
fine but for two features: the first is
that possible worlds are worlds
[...]; and the second is that they
are possible.

Kit Fine

1 Introduction

If it is necessary that Socrates is human, what makes it
necessary that Socrates is human?More generally, if a propo-
sition P is necessarily true, what makes it the case that P
is necessarily true? In short, what are the truthmakers for
necessitated propositions?1 Philosophers have put forward a
number of metaphysically substantive answers to these ques-
tions.2Our goal in this paper is in one way more modest: we
will not propound a substantive view about the truthmakers
for necessitated propositions, rather we will just develop an
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exact truthmaker semantics for the necessity operator �.3

In another way our goal is more ambitious: the truthmaker
semantics should be adequate not just when � is interpreted
as metaphysical necessity, but also when it is interpreted as,
say, nomological necessity, deontic necessity, or knowledge.

Throughout the main text the presentation is kept at an
informal level; for the full technical details the reader is
referred to appendix A. For the reader’s benefit, here’s an
overview of the main paper. We begin in §2 by rehears-
ing the basics of the truthmaker semantics for intuitionistic
propositional logic (Fine 2014), highlighting the idea that
while all the theorems of classical logic might be true, they
require substantial truthmakers; in contrast, the theorems of
intuitionistic logic are all made true by the null truthmaker.
A classical logician may prefer the more standard bilateral
treatment of negation; §2.1 briefly considerswhat the distinc-
tion between substantial and insubstantial truths look like in a
such a setting. Turning next to truthmakers for modal propo-
sitions, in §3 we show how to construct a modal truthmaker

1 A parallel question arises for possibilized propositions. For reasons of
simplicity, we deal only with the truthmakers for necessitated proposi-
tions. However, given the intuitionistic truthmaker theory adopted here,
in a fuller treatment one should not treat necessity and possibility as
duals.
2 Some answers include: (facts about) essences, dispositions, recombi-
nation, possible worlds, conventions, and laws of metaphysics.
3 The paper is in the tradition of work in exact truthmaker semantics
pioneered in Fine 2012c; 2014; 2017a; 2017b; 2021; 2012a; 2012c.
Previous attempts at truthmaker semantics formodal logic areHaleHale
2020, ch. 7, Zylstra 2019, and Rosella 2019. The work on this paper
was complete before the publication ofKim forthcoming.A comparison
between the two approaches has to await another occasion.
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semantics based on ideas from neighborhood semantics. It
turns out that all theorems of the intuitionistic modal logic
IntK�—the analogue of the smallest classical normal modal
logic—have the null truthmaker and are in that sense insub-
stantial. In §4 we consider whether we can achieve the same
result using accessibility relations. One of the main philo-
sophical contributions of this paper is an argument (§§4.1 to
4.3 that the possibility of necessary connections between dis-
tinct propositions rules this out. In §5 we consider extensions
of IntK�. The second important philosophical contribution
of the paper is an account of how different modalities might
be characterized by the same principles, but differ in how
those principles are made true. The main paper ends in §6 by
discussing some avenues for further research. Appendix A
puts the claims in the main paper on a rigorous footing and
establishes soundness and completeness results.

2 Truthmaker Semantics for Intuitionistic
Logic

In possible worlds semantics propositions are simply true
(false) at a world; truthmaker semantics looks inside the
world to find the states thatmake propositions true (or false).
Unlike worlds, states are, in general, neither complete nor
consistent: they may fail to make true both a proposition and
its negation and they may make true both a proposition and
its negation.

Unlike worlds, states also stand in interesting mereologi-
cal relationships. We write s � t to mean that the state s is
part of the state t . For any collection S0 of states there is a
smallest state that has each member of S0 as a part; this is
the fusion of the states S0. We write

⊔
S0 for the fusion of

S0; if S0 = {s0, . . . , sn−1} is finite we write s0 � s1 · · · � sn−1

for
⊔ {s0, . . . , sn−1}. Note that

⊔ ∅ exists; this is the null
state, the minimal truthmaker. Henceforth we write “0” for
this state—it will play an important role in what follows.

Throughout we are interested in exact truthmaking.4

Informally, if s makes P true, then every part of s is relevant
to making P true. The mathematical cash value is that con-
taining a truthmaker for a proposition does not entail being a
truthmaker for that proposition. If t has a part that is an exact
truthmaker for P , say that t is an inexact truthmaker for P .

The goal of truthmaker semantics is to specify the truth-
makers for complex propositions in terms of the truthmakers
for less complex ones. For conjunction and disjunction it is
clear what to say. A truthmaker for a conjunction P ∧ Q is a
fusion of a truthmaker for P with a truthmaker for Q; a truth-
maker for a disjunction P ∨Q is either a truthmaker for P or

4 We will use “verifier” and “truthmaker” interchangeably; similarly,
for “makes true” and “verifies”.

a truthmaker for Q.5 But negation poses notorious problems:
how can one determine the truthmakers for a negation¬P on
the basis of the truthmakers for P? In this paper we follow
Fine 2014 in adopting an intuitionistic treatment of negation.
We define ¬P as P → ⊥; here ⊥ is some designated absurd
proposition and → is an intuitionistic conditional.

Say that P inexactly entails Q iff every truthmaker for P
contains a truthmaker for Q. Following Fine we take there to
be a collectionC of contradictory states, which we take to be
the truthmakers for ⊥. A state that contains a contradictory
state is said to be inconsistent. Since the intuitionist accepts

the rule of ex falso quodlibet ⊥
p we must ensure that ⊥

inexactly entails each proposition. To do this we follow Fine
and define propositions to be sets of states P such that every
contradictory state contains an element of P .

The intuitionistic conditional is an “incremental” condi-
tional in the sense of Yablo 2018; 2016 and Fine 2020. A
truthmaker for P → Q is a state s such that s contains
exactly the “increments” that you have to “add” to a truth-
maker for P in order to obtain a truthmaker for Q. Following
Fine 2014 we implement this by assuming that for any two
states s, t there is a smallest state s ��� t such that the fusion
of s ��� t with s contains t . This is the “conditional con-
nection” between s and t . (See further appendix A.3 and
appendix A.4.) Let f be a function from truthmakers for P
to truthmakers for Q. The truthmakers for P → Q are then
of the form

⊔
s a verifier for P s ��� f (s).

Consider a propositional language L with connectives
∧,∨,→,⊥. A truthmaker-interpretation of L consists in
a set S, a parthood relation � on S, a subset C ⊆ S
of contradictory states, and an interpretation function � �

assigning a proposition to each sentence such that �⊥� =
C ; �φ ∧ ψ� = �φ� ∧ �ψ�; �φ ∨ ψ� = �φ� ∨ �ψ�; and
�φ → ψ� = �φ� → �ψ�. Fine 2014 establishes the fol-
lowing two philosophically suggestive results about such
interpretations (see Theorem A.2 below).

First, he established that the theorems of intuitionistic
logic are null-valid. That is, if φ is a theorem of intuitionistic
logic, then φ is always interpreted as a proposition that is
verified by the null state. This is metaphysically suggestive.
Think of a proposition P as making a demand on reality:
reality has to contain a collection of states that fuse to a
truthmaker for P . Given that the null state is the fusion of the
empty collection of propositions, a proposition that is veri-
fied by the null state thus makes the empty demand. Fine’s
result thus suggests that the truths of intuitionistic logic are
insubstantial, in that they make the empty demand on how
reality is.

5 Sometimes one also requires that a fusion of a truthmaker for P with
a truthmaker for Q is a truthmaker for P ∨ Q. But the issues raised
by this “amalgamating” clause will not matter for the purposes of this
paper.
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Fine’s second result concerns classical logic. An instance
φ ∨ ¬φ of excluded middle makes a substantive demand on
reality: it has to contain either a truthmaker for φ or a truth-
maker for ¬φ. However, saying that classical logic makes a
substantive demand is not to say that the demand is not met.
Say that a state w is a world if it is consistent and for every
state s either w contains s or s � w is inconsistent. Fine then
showed that the theorems of classical logic are world-valid;
that is, every theorem of classical logic is inexactly verified
by each world. Say that a space of states is thoroughly clas-
sical if every state is either inconsistent or contained in a
world. The demand that classical logic imposes on reality is,
then, that the space of states is thoroughly classical.

The idea that the truths of intuitionistic logic has some
special status not shared by the truths of classical logic, is
hardly novel; but the idea is usually cashed out in epistemic
or semantic terms—see, e.g., Dummett 1991 and Tennant
1996.What truthmaker semantics provides is a metaphysical
interpretation of the difference between classical and intu-
itionistic logic. How a proposition is made true is a worldly
matter, having nothing to do either with howwe can know the
proposition or with the meaning of the sentences expressing
the proposition.6,7

As we develop the truthmaker semantics for modal logic,
wewill see that some standardmodal principles are null-valid
whereas others are merely world-valid.

2.1 Digression: Classical Content Intuitionistically
Construed?

Onecouldobject that the theoremsof classical logic only look
substantial becausewehave construed their content intuition-
istically. In particular, a classical logician could object to the
intuitionistic treatment of negation.8

The most common approach to negation in the literature
on truthmaking is bilateralist: one identifies a proposition P
with the sets of its truthmakers and falsemakers. One then
takes the truthmakers of ¬P to be the falsemakers of P and
one takes the falsemakers of ¬P to be the truthmakers of P .
Unlike on the intutionist view, the proposition P is identical
to the proposition ¬¬P .

However, while the classical logician disagrees with the
intuitionist about negation, there is nothing in the bilateral
approach that stops the classical logician from defining the

6 See also Linnebo 2022 for more on the idea that (semi)-intuitionistic
logic has a special metaphysical status.
7 Some might argue that one should express the insubstantiality of the
truths of intuitionistic logic in terms of ground rather than truthmaking
(Fine 2012b, pp. 43–46). The insubstantiality claim would then be that
the truths of intuitionistic logic are zero-grounded. See Donaldson 2020
for an introduction to this idea.
8 I amvery grateful to two anonymous referees for raising the objections
that lead to this section.

intuitionistic conditional. The clause for the truthmakers for
conditionals is as above. Once oneworks in a bilateral setting
one also has to decide on the falsemakers for conditionals. A
quite natural approach would take the falsemakers for P →
Q to be fusions of truthmakers for P with falsemakers for
¬Q.9 If one adopts the bilateral approach, the conditional
¬¬P → P will thus be null-verified and so insubstantial.

However, it does not follow that all the theorems of clas-
sical logic are insubstantial. In particular, there is still no
reason to accept that all instances of excluded middle are
verified by the null state. Indeed, given that the classical
logician accepts the standard account of the truthmakers for
disjunctions, holding that all instances of excluded middle
are null-verified would commit one to the fatalistic view
that every proposition is either necessarily true or necessarily
false.10

This possibility raises an interesting technical question.
Consider the propositional language with ∧,∨,¬,→ as
its sole connectives. Let us consider truthmaker interpreta-
tions of this language with the standard bilateral clauses for
conjunction, disjunction, and negation, and in addition the
bilateral clauses for the conditional sketched above. What
sentences are then null-valid? We have to leave exploration
of this question and the extension of this bilateral framework
to the modal setting to another occasion.

3 NeighborhoodModels

Let us adopt a naïve approach and simply assign to a state the
set of propositions that it makes necessary; we thus obtain
a truthmaker analogue of neighborhood semantics.11 (In §4
we will consider whether we can obtain a more illuminating
formulation using accessibility relations).More formally, we
assume that we have a partial function N that assigns sets of
propositions to states. We must impose some conditions on
N .

It is important to allow N to be partial. Consider, e.g.,
the modality “it is known by Williamson that”. The state of
a particular pebble’s being on the beach is not a state that,

9 For a different clause see Fine 2020, p 160. We here have to face up
to a the fact that in a bilateral framework there no “canonical” way of
deriving the falsemaking clause from the truthmaking clause (cf. Fine
2017a, pp. 633–634).
10 The bilateral account of negation is not the only other treatment
of negation in the literature on truthmaking. Fine (2017a) develops an
account of negation using an exclusion relation and Plebani et al. (2022)
develop a related account using incompatibility relations. There are
ways of developing these accounts where the conditional ¬¬P → P
ends up being null-verified. But given that both these accounts retain
the standard truthmaking clauses for disjunction, some instances of
excluded middle will not be null-verified.
11 For an introduction to neighborhood semantics in a possible worlds
setting, see e.g., Pacuit (2017).
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as a whole, makes Williamson know anything. However, if
Williamson comes to know that the pebble is on the beach,
the state of the pebble’s being on the beach is plausibly part
of the state that constitutes his knowledge that it is on the
beach.12

The states on which N is defined are the modal states.
While not every state is modal we will assume that a fusion
of modal states is itself modal13:

(Modal Closure) If for all i ∈ I the state si is modal, then
⊔

i∈I si is modal

The next principle concerns the relationship between the
propositions made necessary by a state and the propositions
made necessary by a state containing the first state. The
thought behind this monotonicity principle is that while the
larger state may say more about what is necessary, what it
says is necessary had better contain what the smaller state
says is necessary.

To state this precisely, we introduce some standard termi-
nology (Fine 2017a, b).

If P, Q are propositions say that P is a conjunctive part
of Q (Q contains P) iff

(i) for all s ∈ P there is t ∈ Q such that s � t ; and
(ii) for all s ∈ Q there is t ∈ P such that t � s.

Abusing notation we write P � Q for this notion.
Say that P entails Q (or P is a disjunctive part of Q)

if P ⊆ Q. P inexactly entails Q iff for all s ∈ P there
is t � s such that t ∈ Q. More generally, Q is inexactly
entailed by P0, P1, . . . if for all s0 ∈ P0, s1 ∈ P1, . . . there
are t0 � s0, t1 � s1, . . . such that

⊔ {t0, t1, . . . } ∈ Q. We
write P � Q if Q is entailed by P and P �i Q if Q is
inexactly entailed by P . Finally, say that P0, P1, . . . weakly
ground Q (writing this P0, P1, . . . ≤ Q) iff for all s0 ∈
P0, s1 ∈ P1, . . . we have

⊔ {s0, s1, . . . } ∈ Q.14

(Monotonicity) If s � t and both are modal then for all
P ∈ N (s) there is Q ∈ N (t) such that

12 The phenomenon of non-modal states means that we should not take
propositions to be convex in the sense that if s, t,∈ P and s � u � t ,
then u ∈ P . Consider the proposition that 0 = 0 or the pebble is on the
beach. Williamson can know this proposition in virtue of knowing that
0 = 0; call the state that realizes this s. He can also know it in virtue of
knowing that the pebble is on the beach; call the state that realizes this
t . Finally, he can know it in virtue of knowing both that 0 = 0 and that
the pebble is on the beach. A state that realizes this is s � t—the fusion
of s and t . t contains the state t0 of the pebble’s being on the beach.
Convexity requires that s � t0 is a state that makes Williamson know
that 0 = 0 or the pebble is on the beach. But this seem incorrect.
13 For remarks on the distinction between modal and non-modal states
see further Fine’s introduction to Hale 2020, pp. 6–8.
14 Note that we allow the case where P0 = P1 = P2 = . . . .

P � Q and for all P ∈ N (t) there is
Q ∈ N (s) such that Q � P

To motivate the next constraint consider the following
principle.

(�Down) �(P ∧ Q) inexactly entails �P

This principle appears unimpeachable: how could one make
it necessary that P ∧ Q without, in part, making it necessary
that P? In order to ensure that (�Down) holds we impose the
principle

(CN+) If P ∈ N (s) and Q � P then there is t � s such
that Q ∈ N (t)

This principle simply says that if a state makes a proposition
necessary, then every proposition contained in that proposi-
tion is made necessary by some part of the state. (Note that
the part need not be proper.)

The next two principles concern the structure of N (s). The
first principle ensures that a state that makes the conjuncts
necessary also make the conjunction necessary.

(Ground Closure) If Pi ∈ N (s) for all i ∈ I and {Pi }i∈I
ground Q then Q ∈ N (s)

Together (CN+) and (Ground Closure) ensure that �(φ ∧
ψ) inexactly entails each of �φ and �ψ and that �φ,�ψ

together ground �(φ ∧ ψ).
Sincewe areworkingwith exact truthmaker semantics,we

do not expect that a proposition contained in a proposition
made necessary by a state is itself made necessary by that
state; however, if the proposition itself contains a proposition
that ismade necessary by the state, then it is natural to assume
this. This gives us:

(Convexity) If P, Q ∈ N (s) and P � R � Q then R ∈
N (s)

So far we have not said anything about which states are
modal. The final two principles deal with this. These prin-
ciples say that 0—the null state—and all the contradictory
states are modal.

(Nullity) N (0) is defined.

(Contradictory) If c ∈ C then N (c) is defined and there is
C0 ⊆ C such that ∅ �= C0, andC0 ∈ N (c)

By Fine’s results we know that all theorems of intuition-
istic propositional logic are made true by the null state and
are in that sense insubstantial. In a normal modal logic the
necessitation of a theorem is itself a theorem. So if we want
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the theorems of intuitionistic modal logic to be insubstantial
in the same way, the null state has to be modal.15

To capture the rule of ex falso we have required that if P
is a proposition then if c is contradictory then P is made true
by a part of c. (Contradictory) ensures that the necessity of a
proposition has this feature if the proposition does.

Extend the language of intuitionistic propositional logic
with a necessity operator � in the obvious way. An intu-
itionistic modal logic is any subset of L� that contains
intuitionistic propositional logic, is closed under modus
ponens, substitution and the regularity rule φ → ψ/�φ →�ψ . IntK� is the smallest intuitionisticmodal logic that con-
tains the axiom � as well as the distribution axiom

(K�) �(φ ∧ ψ) ↔ �φ ∧ �ψ

An exact modal model consists of a set S, a parthood relation
� on S, a subset C ⊆ S of contradictory states, a function N
satisfying the conditions above, as well as an interpretation
function � � assigning a proposition to each sentence. In
addition to the conditions on � � mentioned in §2 we require
that ��φ� = {

s : �φ� ∈ N (s)
}
.

One can show—see Theorem A.10 below—that all the
theorems of IntK� are null-valid. The insubstantiality of
intuitionistic propositional logic extends to IntK�.16

4 Against Relational Semantics

Whatwe have given above is a truthmaker analogue of neigh-
borhood semantics. For normal modal logics, one can also
provide a relational possible worlds semantics: the proposi-
tions necessary in a world are the propositions true in every
world accessible from thatworld. Since IntK� is normal, it is
natural towonder whether one could also develop a relational
truthmaker semantics. If the only desideratum was having a
semantics with respect to which IntK� was sound and com-
plete, a relational semantics would be adequate. There are,
however, philosophical reasons to be unhappy with a rela-
tional semantics. This section presents that case.17

15 For some interpretations of� (Nullity) is questionable. For instance,
wemight not want (Nullity) for themodality “it is known byWilliamson
that . . . ” since this would treat Williamson as logically omniscient.
16 Suppose one adopts a bilateral treatment of negation. It then seems
reasonable to expect that � as well as all instances of (K�) are null-
valid. It would be of considerable interest to determine exactly which
modal principles will be null-valid in such a bilateral system.
17 Hale (2020, pp. 128–129) has, working in a bilateral framework,
sketched a different relational approach. Various problems with Hale’s
account are pointed out by Fine in this introduction to Hale 2020, pp. 6–
8. A couple of further problems should bementioned here. Hale’s initial
account is that a state s is a truthmaker for �P iff no state accessible
from s is a falsemaker for P . This runs into the following problem.
Suppose s is a truthmaker for �(P ∧ Q). Then no state accessible

Modeling the approach on possible worlds semantics one
takes there to be a relation R between states such that when
sRt , then t is an exact truthmaker for every proposition that
is made exactly necessary at s. We thus obtain the following
analogue of the clause for possible worlds semantics.

(�Relational) s � �P iff t � P for all t such that sRt

Tomake a relational accountworkwehave to impose some
constraints on the interaction of� and R. Say that a state s is
modal if sRt , for some t . Since we want the propositions that
are made necessary by a state to be contained in a proposition
made necessary by the extensions of that state we have to
impose the following analogue of (Monotonicity).

(MonotonicityR) If s � s0 are both modal and s0Rt0 then
there is t � t0 such that sRt

Without further constraints (�Down) will not hold. To see
the problem suppose that every t such that sRt is such that
t � P ∧ Q. Any such t inexactly verifies P , but there is no
reason to think that each such t exactly verifies P . Thus, if
s exactly verifies �(P ∧ Q) there is no reason to think that
s exactly verifies �P . What is worse, there is no guarantee
that s even inexactly verifies �P , which means that (�Down)
would fail.

One cannot respond to this challenge by changing
(�Relational) to say that s exactly verifies �P iff t inex-
actly verifies P for all t such that sRt . That would collapse
the distinction between exact and inexact truthmaking for
necessitated propositions: anymodal state extending an exact
truthmaker for �P would then itself be an exact truthmaker
for �P .

What is required to ensure that (�Down) holds is the Prin-
ciple of Contained Necessities: if a proposition is made
necessary by a state then any proposition contained in the
aforementioned proposition is entailed by a propositionmade
necessary by a state contained in the aforementioned state.

from s is a falsemaker for P ∧ Q. So no state accessible from s is
an exact falsemaker for either P or Q. But then s is a truthmaker for
both �P and �Q. But it is not plausible that every truthmaker for
the necessity of a conjunction is a truthmaker for the necessity of the
conjuncts. For reasons like this Hale considers adding the requirement
that some state accessible from s is an exact truthmaker for P . While
this avoids the above problem, one now has to impose a requirement like
the problematic (CN) discussed below to ensure that (�Down) holds.
A further problem with Hale’s account can be brought out as follows.
Hale (2020, P. 129) asserts that if one takes � “to express absolute
necessity [...] conforming to S5 laws, then reference to [the accessibility
relation] may be suppressed” and one can take s to make �P true iff
no possible state falsifies P . Suppose now that every possible state is
contained in a world—that is, a maximal possible state. Now let W be
the proposition that is made exactly true by each world. Then every
modal state is a truthmaker for �W . But even if one accepts classical
logic and holds that every state is contained in a world, one might not
want every modal state to be a truthmaker for �W .
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Formally, the following is necessary and sufficient to ensure
(�Down).

(CN) If Q, P are propositions such that Q � P and
{t : sRt} ⊆ P , then there is s0 � s such that
{t : s0Rt} ⊆ Q

It is easy to see that (CN) is sufficient for (�Down). To see
that it is necessary, suppose that s is a state and P, Q are
propositions such that Q � P , {t : sRt} ⊆ P but there is
no s0 � s with {t : s0Rt} ⊆ Q. By (�Relational) s � �P .
Since Q � P , it is also the case that P ⊆ P ∧ Q, and thus
s � �(P ∧ Q). But by assumption there is no s0 � s such
that s0 � �Q. We thus have a failure of (�Down).18

There are thus certain situations that cannot bemodeled by
the relational approach. Let P, Q be two propositions such
that no truthmaker for P∧Q is a truthmaker for either P or Q.
If a state s is an exact truthmaker for�(P∧Q) then that state
is not an exact truthmaker for �P or�Q. Rather, what (CN)
ensures is that s has a proper part that is an exact truthmaker
for �P and a (possibly different) proper part that is an exact
truthmaker for �Q. On the neighborhood semantics of §3,
on the other hand, we can simply assign a set containing the
propositions P, Q, P ∧ Q to the state s. Thus s can itself
be an exact truthmaker for each of �P,�Q and �(P ∧ Q).
The neighborhood semantics is thus more flexible than the
relational semantics.

If this was merely an abstract possibility this would per-
haps not be a significant strike against a relational semantics;
however, this possibility is arguably often realized. In the
next three subsections we present three scenarios, involving
different modalities, and argue that they realize this abstract
possibility.

4.1 Legal Entanglement

If� is interpreted as “it is law that” then the states t such that
sRt are the states that are in (exact) conformity with the law.
Sometimes what makes it a law that A ∧ B is that a single
act of legislation was passed by Congress (both houses), not
vetoed by the President, and then finally not overturned by
the Supreme Court. As a concrete example we may look at
the Inflation Reduction Act (ira). Simplifying, the ira sets
the tax credit for buyers of (certain) electric cars at $7500;
it also caps the price of a month’s worth of insulin at $35.19

18 Many thanks to an anonymous referee for forcing me to clarify the
relationship between (CN) and (�Down).
19 The law, in all its 274 pages, deals with more than that: it
governs subsidies for clean energy and electric cars, maximum
prices for insulin and others drugs, clean-up of superfund sites,
corporate tax reform, . . . . The full text of the law is available at
https://www.congress.gov/117/plaws/publ169/PLAW-117publ169.pdf.
Thanks to for suggesting this example.

On plausible assumptions this situation cannot be modeled
relationally.

Let A be the proposition that the tax credit is $7500. We
understand this as the proposition that one’s tax bill is $7500
less than it otherwise would have been. Let B be the propo-
sition that the price for insulin is at most $ 35, understanding
this as the proposition that what you pay for the insulin is at
most $35.20 Let s be the complex state that constitutes the
ira being law. The state s makes it a law that A ∧ B. By
(�Relational) this means that every state t such that sRt is a
fusion of a state making A true with a state making B true.

Clearly, the proposition B is contained in the proposition
A ∧ B. (CN) thus requires that there is a part s0 of s such
that for all t if s0Rt then t is a truthmaker for B. Since the
ira is a single piece of legislation there is no proper part of
s that makes anything a law; so s itself has to make it a law
that B. But this means that the states that exactly make it the
case that one pays at most $35 for insulin also are states that
exactlymake it the case that one’s tax bill is $7500 less than it
otherwise would have been. But this is implausible. An exact
truthmaker for a proposition is a way for that proposition to
obtain. One thus has to hold that a way for one to pay at most
$35 for insulin is a way for one’s tax bill to be $7500 less
than it otherwise would have been.21

4.2 Epistemic Entanglement

Suppose � is interpreted as “the agent knows that . . . ”; then
each state t such that sRt would be a state that exactly verifies
the propositions the agent knows by being in state s. Suppose
one sees two twins Alice and Allison screaming in the dis-
tance. One takes the scene in as a whole: one simply sees that
they are both screaming, the state of seeing them scream is
not composed of a distinct state of seeing that Alice screams
and a distinct state of seeing that Allison screams. Rather,
there is a single state of knowing that Allison screams which
is also a state of knowing that Alice screams which is also a
state of knowing that they both scream. There is no problem
accommodating this on the neigborhood semantics of §3:
one simple assigns to this state the propositions that Alice
Screams, that Allison screams, as well as their conjunction.
However, this causes a problem for (�Relational). Suppose s

20 The proposition B is not the same as the proposition that it is a law
that the price cap is $35. These propositions are not even intensionally
equivalent. Even if it is a law that the price cap is $35 your pharmacist
mightmake amistake and charge youmore; and evenwhen the law does
not cap the price the pharmaceutical company could be in a generous
mood and voluntarily cap the price. (Similar points apply to A and the
proposition that it is a law that the tax credit is $7500.)
21 It is, again, important to distinguish the propositions A, B from the
propositions that they are laws. The very existence of the ira shows
that a way for it to be a law that A is a way for it to be a law that B (as
well as a way for it to be a law that A ∧ B.)
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is the state of one’s knowing that Alice and Allison scream.
Then every state t such that sRt would be a fusion of two
states one of which exactly verifies that Allison screams and
the other of which exactly verifies that Alice screams. (CN)
thus requires one to hold that the state verifying that Allison
screams is the same state as the state verifying that Alice
screams, but this is very implausible: it does not seem plau-
sible that a way for Alice to scream is, in part, a way for
Allison to scream.

Indeed, this case is not an outlier. For most propositions
P one cannot know just P (and what is entailed by P): given
one’s epistemic situation coming to know P might involve
coming to know lots of propositions properly containing P .
(Suppose that what makes one know that a tree is in front
of one is one’s being in a certain visual state. But being in
that visual state also makes one know, say, that the sun is
shining from one’s upper right, that the leaves are green, that
the light falls on the tree just so, . . . ). The relational approach
is ill-suited to model epistemic phenomena.

4.3 Metaphysical Entanglement

The above cases involve non-metaphysical modalities; more-
over, they are cases where there could be truthmakers for the
necessities in accordancewith (CN). After all, onemaymove
closer to the sorry scene and seeAlice’s andAllison’s scream-
ing separately; and—though this is far-fetched—Congress
could stop bundling different issues into a single bill for late
night passage. However, there are arguably cases involving
metaphysical modality where there could not be truthmakers
satisfying (CN)—though these cases are admittedly not as
clear as the legal and epistemic cases.

Consider a non-eliminative structuralist view of the nat-
ural numbers where the natural numbers are the results
of applying an abstraction operation A to entries in ω-
sequences.22 Let us write A(S, a, n) to mean that n is the
number that is abstracted from entry a in ω-sequence S. It is
plausible that the truthmakers for En—the proposition that
n exists—are the truthmakers for propositions of the form
A(S, a, n), where a is the n’th entry in the ω-sequence S. A
reasonable view about the nature of the abstraction operation
A is that for each ω-sequence S, if a is the n’th entry in S,
then there is a truthmaker for A(S, a, n).

It is,moreover, plausible that the truthmakers for A(S, a, n)

are distinct from the truthmakers for A(S, a′, n′)whenever a
and a′ are distinct entries in S. However, given the above view
about the nature of the abstraction operation the truthmakers
for A(S, a, n) and A(S, b,m) are necessarily connected in

22 For a version of this view see Linnebo (2008) and with more meta-
physical elaboration Litland (2022).

the sense that one obtains iff the other does.23 If that is right,
one cannot just necessitate the existenceofn; bynecessitating
the existence of one number one necessitates the existence
of them all. This metaphysical view cannot be modeled rela-
tionally.

5 Beyond IntK�
Some modalities satisfy stronger principles than those of
IntK�. The modality “it is required that” satisfies the D-
principle ¬�⊥, which expresses that one is never required
to do incompatible acts. Both “it is metaphysically necessary
that” and “it is known that” satisfy theT-principle:�φ → φ,
expressing that what is necessary (known) is true. More con-
tentiously, both knowledge and metaphysical modality are
sometimes taken to satisfy the 4-principle �φ → ��φ,
expressing that what is necessary (known) is necessarily nec-
essary (known to be known). And metaphysical necessity is
sometimes taken to satisfy the B-principle φ → �¬�¬φ

expressing that what is the case is necessarily not impossi-
ble; and metaphysical necessity is often taken to satisfy the
5 principle ¬�φ → �¬�φ expressing that what is not nec-
essary is necessarily not necessary.

We have seen that the theorems of IntK� are null-valid.
Should the principles that go beyond IntK� be null-valid or
merely world-valid? Arguably, this turns out to depend on
what modality we are considering.

Let us first consider the case of B—the axiom P →�¬�¬P . Here null-validity is not appropriate. If B is to be
null-valid, then P has to inexactly entail�¬�¬P , and so any
truthmaker for P has to contain a truthmaker for �¬�¬P .
But there is simply no reason to think that a state that verifies
P itself is a modal state or even contains a modal state that
bears on the modal status of P . This point holds irrespec-
tive of how � is interpreted, but it is perhaps especially clear
for epistemic modality: the state of the pebble’s being on the
beach need not contain any epistemic state ofWilliamson’s.24

Let us next turn to the T-principle. This is the only uncon-
troversial principle governing both the knowledge operator
and the metaphysical necessity operator. To ensure that the
T -axiom is null-valid one requires that if P ∈ N (s), then
there is some t � s such that t ∈ P . That is, one requires
that a truthmaker for �P be an inexact truthmaker for P: to
make �P necessary, one first, so to speak, makes P true and
then one adds its necessity.

23 cf. Linnebo 2008, pp. 78–79 on how the natural numbers weakly
depend on each other.
24 This problem also arises for 5. There does not seem to be a reason
for taking a state that verifies ¬�p itself to be a modal state. Interest-
ingly, the situation would be different if one had a primitive possibility
operator �. The 5-principle would then be �P → ��P , and of course
a state that verifies �P would be a modal state.
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In the case of knowledge this seems correct: ifWilliamson
knows that the pebble is on the beach this is partly because
the pebble is on the beach. But in the case of metaphysical
necessity one may balk. Does the necessity of its either rain-
ing or not raining partly consist in its raining? One might
think not: in making it the case that P is necessary, one has
not thereby made P the case.25

To see the worry it might help to think of the necessitated
propositions as putting down requirements on what God has
to do when creating reality. A state that makes it necessary
that P requires ofGod that he include a verifier for P when he
constructs reality, but a state that imposes such a requirement
on God need not itself meet this requirement. If this is right
we should just require that �P → P be inexactly verified at
each world, that is, we should just require world-validity.26

This is a case where truthmaker semantics gives us some-
thing genuinely new: even though the T-principle holds for
bothmetaphysical necessity and knowledge theway the prin-
ciple is true differs between the two cases.27

A different phenomenon arises with the 4-principle. For
metaphysical necessity it might be reasonable to take the 4
principle to be null-valid.28 A natural way of ensuring this is
by requiring that each modal state make itself necessary.29

(Self Necessity) If N (w) is defined, then there is P ∈
N (w) such that {w} � P

The 4-principle is of course very contentious for knowl-
edge, but even if one accepts that what is known is known to
be known one cannot validate 4 via (Self Necessity). Suppose
Williamson knows that the pebble is on the beach and knows
that he knows that the pebble is on the beach. Part of what
makes him know that the pebble is on the beach is that the
pebble is on the beach. But there is a very specific way the

25 Here it is important not to confuse the propositionwhich is necessary
with the proposition that it is necessary. Of course, the proposition that
it is raining or not raining is made true by the state of its raining.What is
that issue is whether the proposition that it is necessary that it is raining
or not raining is made true by this.
26 There is a relation here to the distinction between unworldly (or
transcendental) facts and worldly (or mundane) facts drawn in Fine
(2005). It would be interesting to explore if one can use truthmaker
semantics to model the distinction between Fine’s grades of necessity
(Fine 2005, pp. 326–328).
27 The same phenomenon is illustrated by nomological necessity. It
might be a law of nature that P . For humeans it is partly because it is
the case that P that it is a law of nature that P . But for non-humeans
this is not so: its being the case that P is not part of what it is for it to
be a law that P . Non-humeans thus should reject the null-validity of T.
For related ideas, see Shumener (2022).
28 We set aside the worries about 4 due to Chandler (1976) and Salmon
(1989).
29 If one had a separate possibility operator this would also ensure that�P → ��P is 0-valid.

pebble is on the beach—it is in a specific location, partially
covered by sand . . . .) But there is no plausibility to the claim
that in knowing that the pebble is on the beach Williamson
knows the exact location, the way it is partially covered, . . . .

How can we ensure the world-validity of principles like
T and B?

We begin by refining our understanding of what it is for
a state space to be classical. If w is a world, let mw be the
maximal modal state contained in w. (The existence of such
a state is ensured by (Nullity) and (Modal Closure).) Say that
a state-space is modally classical if it is classical and for all
worlds w there is exactly one proposition W ∈ N (mw) and
every s ∈ W is a world.

The propositions that are made necessary at mw are the
propositions that are made exactly true by each world. We
then say that φ is a world-consequence of � iff for every
modally classical interpretation and everyworldw: ifw inex-
actly verifies each γ ∈ � thenw inexactly verifies φ. And we
say that φ is world-valid iff φ is inexactly verified by every
world in every modally classical interpretation.

It turns out that there are “purely logical” conditions that
ensure thatT, and B, and 5 are true at each world. The details
for how to ensure this are given in the appendix in table 3
but let us consider the case of T as an illustration. To ensure
that every world that makes �P true, makes P true as well it
suffices that every state that makes�P exactly true is incom-
patible with any state that makes ¬P exactly true. If that is
the case, anyworld that contains a verifier for�P will have to
contain a verifier for P given that it cannot contain a verifier
for ¬P . The upshot of this is that while T is not null-valid,
the principle T¬¬—that is, �P → ¬¬P—is.30

Above we noted that one can adopt intuitionistic truth-
maker semantics without opposing classical logic. The
theorems of classical logic are all true, but they are true in a
more substantive way than the truths of intuitionistic logic.
We have now seen that certain truths of modal logic—like T
and B—also might have substantive truthmakers.

6 Conclusions and Further Work

This is obviously but the beginning of work in exact modal
truthmaker semantics. Let us end by indicating some ques-
tions for future research. (While it would obviously be
interesting to develop a truthmaker semantics formodal logic
based on a bilateral treatment of negation, we restrict our
attention to issues that arise using an intuitionistic treatment
of negation.)

30 This characterization of what ensures world-validity assumes the
intuitionist’s treatment of negation. It is an interesting question how
this should be done if one adopts a bilateral treatment of negation.
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(i) It would be interesting to develop a truthmaker semantics
with a primitive � as well as a truthmaker semantics that
takes both� and� as primitive. (See footnotes 24 and29)
This raises interesting questions about the relationship
between ¬�P and �¬P .

(a) Given the intuitionistic understandingof negationone
should not expect ¬�P to inexactly entail �¬P . A
truthmaker for¬�P is merely a state that when fused
with a truthmaker for �P yields a truthmaker for
⊥. But there does not seem to be any reason why a
state that rules out that there is a truthmaker for the
necessity of P should contain a state that makes P
possible; in fact, there is no reason to assume that a
truthmaker for ¬�P need be a modal state.

(b) However, one should expect ¬�P to inexactly entail
¬¬�¬P . Thus �¬P is a world-consequence of
¬�P . For the classical logician � and � would be,
as it were, “world duals”.

(c) Related to this point, Servi (1980) argued that if we
take both� and� as primitive, then the intuitionistic
analogue of classical K is is the logic FS. This logic
contains the axiom �(φ → ψ) → (�φ → �ψ). It
is not clear whether this principle should be taken to
be null-valid or merely world-valid.

(ii) It is obviously of considerable interest to develop a truth-
maker semantics for quantified modal logic. And the
same holds for modal logic with propositional quantifi-
cation. It is to be hoped that the finer resolution offered
by truthmaker semantics might throw new light on the
contingentism/necessitism debate (Williamson 2013).

(iii) Throughoutwe have assumed that N (s) satisfies (Ground
Closure) but there are many applications where it is nat-
ural to relax this assumption. We mention two:

(a) Suppose one reads�P as someting like “Williamson
knows and is aware that P”. One should not know all
the consequences of what one knows, only the conse-
quences of which one is aware. A natural restriction
on (Ground Closure) is this. If one knows that P , Q
is a logical consequence of P , and the subject matter
of Q is contained in the subject matter of P , then one
knows that Q.31

(b) One might want to develop a truthmaker semantics
for essence where for a state s to make P essentially
true is for the state s to make P necessary and in

31 For more on this idea see Elgin (2021). Related ideas have been
explored a lot recently, though not in the context of truthmaker seman-
tics. See, e.g., Hawke et al. (2020) Hawke and Berto (2021).

Table 1 Modal Axioms
D ¬�⊥
T �φ → φ

T¬¬ �φ → ¬¬φ

B φ → �¬�¬φ

B¬¬ φ → ¬¬�¬�¬φ

4 �φ → ��φ

5 ¬�φ → �¬�¬φ

5¬¬ ¬�φ → ¬¬�¬�¬ϕ

addition for s to “contain” what the proposition P
depends on.32

(iv) We have already defined the notion of weak ground, but
we have only used it in the meta-language. An important
task is to introduce an operator for weak full ground so
that one can reason—in the object language—about the
grounds for the propositions expressed in the language
of intuitionistic modal logic.

This is work for a future occasion; hopefully, the results of
the present paper show that there is much to be gained by
that further work.

A. Appendix

This appendix rigorously develops the account given in
the text. Appendices A.1 to A.4 mainly rehearses material
from Fine (2014). From appendix A.5 onwards we turn to
modal matters.

A.1 The Language of Intuitionistic Modal Logic

The language L� of intuitionistic modal propositional logic
is generated as follows. We have a countable infinity of
atomic sentences p0, p1, . . . and a designated sentence⊥. If
φ,ψ are sentences then φ ∧ ψ , φ ∨ ψ , φ → ψ , and �φ are
sentences. We use¬φ as an abbreviation for φ → ⊥, and we
use φ ↔ ψ as an abbreviation for (φ → ψ)∧ (ψ → φ). We
use  for as an abbreviation for p0 → p0. We use �,�, . . .

for sets of sentences of L�.

A.2 Normal Intuitionistic Modal Logic

An intuitionistic modal logic is any subset of L� that con-
tains intuitionistic propositional logic, is closed under modus
ponens, substitution and the regularity rule φ → ψ/�φ →

32 It should be mentioned that Zylstra (2019) already has proposed
a truthmaker semantics for essence. Unfortunately, as shown by Vogt
(2021), his account is unsatisfactory.
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�ψ . IntK� is the smallest intuitionistic modal logic that
contains the axiom � as well as

(K�) �(φ ∧ ψ) ↔ �φ ∧ �ψ

Weuse the following naming convention. If S0, . . . , Sn−1,
n ≥ 0 are some of the axioms in table 1 then IntKS1. . . Sm is
the least intuitionistic modal logic containing IntK� and all
instances of the axioms S0, . . . , Sn−1. (Note that if n = 0,
then IntKS0, . . . ,Sn−1 is IntK�.) We write � φ to mean
that φ is in IntK� and we write �S1...Sn φ to mean that φ is
in the logic IntKS1 . . . Sn .

A.3 State Spaces

A state space is a pair S = 〈SS ,�S〉 where SS is a set
(intuitively of states) and �S is a complete partial order on
SS . We write

⊔
S S0 for the least upper bound of S0 and

refer to it as the fusion of S0. We use
�

S S0 for the greatest
lower bound of S0. If s, t are two states we write s �S t for
the fusion

⊔
S {s, t}; similarly, we write s0 �S s1 · · · �S sn−1

for the fusion of {s0, . . . , sn−1}. Recall that by completeness
0S = ⊔ ∅ exists.

When there is no risk of confusion we drop the subscript
S; for instance, we write s � t instead of s �S t and 0 instead
of 0S .

By completeness, for any states s, t there is a state s ���
t = � {u : s � u � t}. A space 〈S,�〉 is residuated if for all
s, t we have (s ��� t) � s � t . An intuitionistic state space
is a triple S = 〈SS ,�S ,CS〉where 〈SS ,�S 〉 is a residuated
state space andCS ⊆ SS is non-empty set of states. Any state
inC is said to be contradictory.We assume thatC is complete
in that if ∅ �= C0 ⊆ C then

⊔
C0 ∈ C . The collection

of inconsistent states is C+ = {t : c � t, for some c ∈ C}.
We say that s, t are incompatible if s � t ∈ C+; they are
compatible otherwise.

A set P ⊆ S is closed if for all non-empty P0 ⊆ P ,
⊔

P0 ∈ P; it is convex if whenever s, t ∈ P and s � u � t ,
then u ∈ P; it is regular if it is both closed and convex. A
proposition is simply a non-empty subset of S. An intuition-
istic proposition is a proposition P such that for all c ∈ C
there is c0 � c with c0 ∈ P . From now on we use P, Q, . . .

(possibly with subscripts) to stand for (intuitionistic) propo-
sitions.

If P is a proposition and s ∈ P we say that s is a truth-
maker or verifier for p and write this s � P . If s � P and
s � t we say that t inexactly verifies (is an inexact truthmaker
for) P and write this t �i P

If P, Q are (intuitionistic) propositions then the propo-
sitions P ∧ Q, P ∨ Q, and P → Q are defined by the
following33:

• P ∧ Q = {s0 � s1 : s0 � P and s1 � Q}.
• P ∨ Q = {s : s � P or s � Q}
• P → Q =

{
t : t = ⊔

s�P s ��� f (s), for some function

f : P → Q
}

A distinguished state space (or D-space) is a tuple 〈S,R〉.
HereS = 〈S,� C〉 is an intuitionistic state space andR ⊂ S
is a designated set of states. (The “real” or “obtaining” states.)
R satisfies the following:

(Non-Vacuity) R is not empty

(Consistency) R ∩ C = ∅
(Part) If s � t and t ∈ R, then s ∈ R
(Finite Fusion) If s, t ∈ R then s � t ∈ R

We say that the D-space S is closed if it satisfies:

(Closure)
⊔

R ∈ R

We say that it is complete if it satisfies

(Completeness) For all s ∈ S either s ∈ R or else s is
incompatible with an r ∈ R

A D-space is classical if it is both closed and complete.
If S is a state space andw is a consistent state say thatw is

a world if every state of S is either part of w or incompatible
with w. If 〈S,R〉 is classical then there is a world w such
that R = {s : s � w}. A state space is thorougly classical if
every consistent state is part of a world.

A.4 Truth-maker semantics for intuitionistic
propositional logic

An exact model for L is a tuple E = 〈SE , � �E 〉. Here
SE = 〈S,�,C〉 is an intuitionistic state space and � �E is a
function mapping the propositional letters of L to intuition-
istic propositions over S. An exact designated model is a
tuple E = 〈S,R, � �〉 where 〈S, � �〉 is an exact model and
〈S,R〉 is a designated state space.

We extend � �E to a function � �+
E defined on all the sen-

tences of L by recursion.

(i) �⊥�+
E = C ;

(ii) �φ ∧ ψ�+
E = �φ�+

E ∧ �ψ�+
E ;

33 Note that we use the same notation ∧,∨,→ for the operations on
propositions as we do for the sentential operations. This should not
cause any confusion.
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(iii) �φ ∨ ψ�+
E = �φ�+

E ∨ �ψ�+
E ;

(iv) �φ → ψ�+
E = �φ�+

E → �ψ�+
E

Whenever possible we will drop sub- and superscripts and
write � � for � �+

E .
When φ is a sentence of L and E = 〈S, � �〉 is an exact

model say that E, s � φ iff s ∈ �φ�. E, s �i φ is defined
analogously. When E is clear from context, we may write
s � φ (and similarly for s �i φ). If E is a designated model
with reality R then we say that φ is true in E iff r �i φ for
some r ∈ R.

Following Fine 2014, p. 569 we define the following
notions of consequence:

Definition A.1 (i) � |�i1 φ iff for all models E and all states
s, if E, s �i γ for all γ ∈ �, then E, s �i φ.

(ii) � |�i2 φ iff for all models E and all consistent states s,
if E, s �i γ for all γ ∈ �, then E, s �i φ.

(iii) � |�i3 φ iff for all models E and the null state 0E of E if
E, 0E �i γ for all γ ∈ �, then E, 0E �i φ.

(iv) Let X be a class of designated models; then � |�X φ iff
for all models E in X if γ is true in E for all γ ∈ �, then
φ is true in E .

Write � �I φ to mean that φ is derivable from � in
some standard proof system for intuitionistic propositional
logic; and let � �C φ mean that φ is derivable from � in
some standard proof system for classical propositional logic.
Fine established the following soundness and completeness
results.

Theorem A.2 (i) � |�i1 φ iff � |�i2 φ iff � |�i3 φ iff � �I

φ.
(ii) If X is the collection of closed or complete models then

� |�X φ iff � �I φ;
(iii) If X is the collection of classical models then � |�X φ

iff � �C φ.

Fine proved these results by relating exact (designated)
models to the more familiar Kripke-models for intuitionis-
tic logic. In proving soundness and completeness results for
IntK� and stronger systems we will adopt a similar strat-
egy. The next section, following Wolter and Zakharyaschev
(1999), will present an (inexact) Kripke semantics for intu-
itionistic modal logic.

A.5 Kripke semantics for intuitionistic modal logic

An inexact modal space (or frame) is tuple K = 〈KK,≤K,

RK〉. Here KK is a set, ≤K is a partial order on KK, and RK
is an accessibility relation such that:

(Monoi�) For all s0 and t0: if s ≤ s0, s0Rt0, and t0 ≤ t
then sRt

As usual, we say that a set P ⊆ K is upwards closed if for
all s ∈ P and all t with s ≤ t we have t ∈ P . An inexact or
Kripke model is a tuple K = 〈K ,≤, R, � �〉, where 〈K ,≤,

R〉 is a frame and � �K : P → P(K ) is a function taking
each propositional letter p to an upwards closed set �p�K
such that the following condition is satisfied:

(Consistency) �⊥�K = ∅
When no confusion arises we drop subscripts writing just
�p� instead of �p�K.

We define what it is for a state s to force the truth of a
sentence φ as follows, writing K, s |� φ for “s forces φ”.

Definition A.3 Let K = 〈K ,≤, R, � �K〉 be an inexact
model and s ∈ K be a state.

(i) K, s |� p iff s ∈ �p�
(ii) K, s |� φ ∧ ψ iff K, s |� φ and K, s |� ψ

(iii) K, s |� φ ∨ ψ iff K, s |� φ or K, s |� ψ

(iv) K, s |� φ → ψ iff for all t ≥ s, if K, t |� φ then
K, t |� ψ

(v) K, s |� �φ iff for all t such that sRt we haveK, t |� φ

Note that it follows from (Consistency) thatK, s �|� ⊥ for all
s. If K is clear from context we usually write s |� φ instead
of K, s |� φ.

A straightforward induction establishes:

(Heredity) If s |� φ and s ≤ t then t |� φ

As usual, we say that φ is a Kripke-consequence of �

(� |�K φ) iff for all models K = 〈K ,≤, R, � �〉 and all
s ∈ K , if s |� γ for each γ ∈ � then s |� φ. We say that
φ is Kripke-valid (|� φ) if φ is a consequence of any set of
sentences.

By imposing conditions on the accessibility relation R we
can ensure the truth of various modal axioms. Some standard
and not so standard axioms and the corresponding conditions
are depicted in table 2.

Theorem A.4 (Soundness)

(i) Every theorem of IntK� is true at every state in every
model.

(ii) If a model satisfies a frame-condition from table 2 then
the corresponding modal principle is true at every state
in that model.

Proof The proof is routine. But since they are unfamiliar will
do the cases of T¬¬, B, B¬¬, and 5¬¬.

Let K = 〈K ,≤, R, � �〉 be a model where R is weakly
reflexive and let s be a state. Suppose s |� �φ and let s ≤ s0.
Since R is weakly reflexive find s1, t such that s0 ≤ s1, sRt ,
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Table 2 Inexact frame conditions

Axioms Conditions R is

D ¬�⊥ ∃tsRt Serial

T �φ → φ sRs Reflexive

T¬¬ �φ → ¬¬φ For all s0 ≥ s there is s1 ≥ s0 and t such that

sRt , s1 ≥ t Weakly Reflexive

B φ → �¬�¬φ sRt → ∀t0 ≥ t∃s0(t0Rs0 ∧ s ≤ s0) Symmetric∗

B¬¬ φ → ¬¬�¬�¬φ for all s0 ≥ s there is s1 ≥ s0 such that

for all t, t0 such that s1Rt and t ≤ t0

there is s2 ≥ s such that t0Rs2 Weakly Symmetric∗

4 �φ → ��φ sRt ∧ t Ru → sR�u Transitive

5 ¬�φ → �¬�φ sRt → ∃s0(s ≤ s0 ∧ ∀t0(s0Rt0 → t Rt0) Euclidean∗

5¬¬ ¬�φ → ¬¬�¬�φ for all s0 ≥ s there is s1 ≥ s0 and s′ ≥ s such that

∀t∀t0(s1Rt ∧ s′Rt0 → t Rt0) Weakly Euclidean∗

and t ≤ s1. Since s |� �φ, t |� φ and so s1 |� φ by
(Heredity). Since s0 was arbitrary this shows that s |� ¬¬φ.

Suppose next that R is symmetric∗ and that K, s |� φ.
Suppose sRt and let t0 ≥ t be given. Since R is symmetric∗
find s0 ≥ s such that t0Rs0. Since s |� φ, s0 |� φ and thus
t0 �|� �¬φ. Thus t |� ¬�¬φ and so s |� �¬�¬φ.

Suppose next that R is weakly symmetric∗ and suppose
K, s |� φ. Let s ≤ s0. Since R is weakly symmetric∗ find
s1 ≥ s0 witnessing weak symmetry∗. Let t, t0 be such that
s1Rt , and t ≤ t0. Then there is s2 ≥ s such that t0Rs2. Since
s |� φ also s2 |� φ. But then t0 �|� �¬φ and so t |� ¬�¬φ.
But then s1 |� �¬�¬φ and so s |� ¬¬�¬�¬φ.

Suppose R is Euclidean∗. Suppose s |� ¬�φ and let sRt .
To show that t |� ¬�φ, let t ≤ t0. By (Monoi�) sRt0. Since
R is Euclidean∗ there is s0 ≥ s such that if s0Ru then t0Ru.
But since s |� ¬�φ, s0 |� ¬�φ which means that there is u
such that s0Ru and u �|� φ. But then t0 �|� �φ. And since t0
was arbitrary t |� ¬�φ, and thus s |� �¬�φ.

Finally, suppose that R is weakly Euclidean∗ and that s |�
¬�φ. To show that s |� ¬¬�¬�φ let s0 ≥ s. Since R is
weakly Euclidean∗ find s1 ≥ s0 and s′ ≥ s satisfying the
conditions for being weakly Euclidean∗ and let s1Rt . For
each t0 such s′Rt0 we have t Rt0. Since s |� ¬�φ, there is
t0 such that s′Rt0 and t0 �|� φ. But then t �|� �φ. But then
s1 |� �¬�φ. And thus s |� ¬¬�¬�φ, as desired. ��
Theorem A.5 (Completeness)

(i) If φ is true in every model of IntK� then �IntK�
φ.

(ii) If φ is true in every model satisfying the frame-conditions
for axioms S0 . . . Sn in table 2 then, �IntKS0···Sn φ

The result is proved by a standard canonical model con-
struction. Recall that a set of sentences � is prime iff � is
closed under � and whenever φ ∨ ψ ∈ �, then φ ∈ �

or ψ ∈ �. We say that � � � iff � ∧
�0 → ∨

�0 for

some finite subsets �0,�0 of �,� respectively. (Similarly,
for �S1,...,Sn .)

The following lemma is proved in the standard way:

Lemma A.6 If� � �, then there is a prime�′ ⊇ � such that
� � �.

Proof of TheoremA.5 The canonical frame C = 〈K ,≤, R〉 is
constructed as follows. The elements of K are the prime sets
of sentences. If �,� ∈ K then � ≤ � iff � ⊆ �. We set
�R� iff φ ∈ � for each φ such that �φ ∈ �

Since some of the frame-conditions are unfamiliar we deal
with the cases of T¬¬,B,B¬¬ and 5.

We begin by showing that the canonical model for T¬¬ is
weakly reflexive. Let �0 ⊆ �1. We claim that there is prime
�0 such that �0R�0 and �1 ∪ �0 is consistent. To begin
let �′

0 = {φ : �φ ∈ �0}. Then �1 ∪ �′
0 is consistent. For

suppose otherwise, then there are φ0, . . . , φn ∈ �′
0 such that

�1 � φ0 ∧ · · ·φn → ⊥. But then also �1 � ¬¬φ0 ∧ · · · ∧
¬¬φn → ⊥. But byT¬¬ we have�φi → ¬¬φi ∈ �0 ⊆ �1

for each i ≤ n. And since�φi ∈ �1 for each i ≤ n it follows
that ¬¬φi ∈ �1 for all n, and thus �1 is inconsistent.

Since �,�′
0 is consistent, �′

0 � �¬ where �¬ =
{¬(φ0 ∧ . . . , φm) : φ0, . . . , φm ∈ �}. By LemmaA.6we can
extend �′

0 to a prime �0 such that �0 � �¬. It follows that
�0, � is consistent. This shows that R is weakly reflexive.

We next consider B. Suppose that �R� and let � ⊆ �′.
We claim that �′ = � ∪ {

δ : �δ ∈ �′} is consistent. Sup-
pose otherwise, then there are �δ0, . . . ,�δn ∈ �′ and
γ0, . . . , γn ∈ � such that�B δ0∧· · ·∧δm → ¬(γ0∧· · ·∧γn).
But then �B �(δ0 ∧ · · · δn) → �¬(γ0 ∧ · · · ∧ γn). However
since γ0∧· · ·∧γn ∈ �wehave�¬�¬(γ0∧· · ·∧γn) ∈ � and
thus¬�¬(γ0∧· · ·∧γn) ∈ � and so¬�(δ0∧· · ·∧δm) ∈ � ⊆
�′. But then �′ is inconsistent. Contradiction. By Lemma
A.6 we can extend �′ to a prime �′′. This shows that R is
symmetric∗.
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We next deal with B¬¬. Let � ⊆ �0. Let �1 = �0 ∪
{�¬�¬φ : φ ∈ �}. Clearly, �1 is consistent. Without loss of
generality wemay assume that�1 is prime. Let�1R� and let
� ⊆ �′. We claim that�′ = �∪{

δ : �δ ∈ �′} is consistent.
Suppose otherwise, then there are �δ0, . . . ,�δn ∈ �′ and
γ0, . . . , γn ∈ � such that�B¬¬ δ0∧· · ·∧δm → ¬(γ0∧· · ·∧
γn). But then �B¬¬ �(δ0 ∧ · · · δn) → �¬(γ0 ∧ · · · ∧ γn).

However, since γ0 ∧ · · · ∧ γn ∈ � we have ¬¬�¬�¬(γ0 ∧
· · · ∧ γn) ∈ �1 and thus ¬�¬(γ0 ∧ · · · ∧ γn) ∈ � and so
¬�(δ0 ∧ · · · ∧ δm) ∈ � ⊆ �′. But then �′ is inconsistent.
Contradiction. By Lemma A.6 we can extend �′ to a prime
�′′. This shows that R is weakly symmetric∗.

Finally, we deal with 5. Suppose that �R�. Let �′ =
� ∪ {�δ : �δ ∈ �}. We claim that �′ is consistent. For
suppose otherwise, then there are γ0, . . . , γn ∈ � and�δ0, . . . ,�δm ∈ � such that �5 γ0 ∧ · · · ∧ · · · γn →
¬�(δ0 ∧ · · · δm). But then ¬�(δ0 ∧ · · · ∧ δm) ∈ � and so
by 5 also �¬�(δ0 ∧ · · · ∧ δm) ∈ �. But this contradicts that
�R�. We conclude that �′ is consistent. By Lemma A.6 we
may extend �′ to a prime �1. Suppose that 
 is such that
�1R
. Then γ ∈ 
 for all �γ ∈ �1. But then also δ ∈ 


for all �δ ∈ �. This shows that �R
 and thus that R is
euclidean∗.

We let the canonical model be 〈K ,≤, R, � �〉 where � �
is defined by setting � ∈ �p� iff p ∈ � for atomic p. We
prove in the usual way by induction that � |� φ iff φ ∈ �.
As an illustration we give the case of φ = �ψ .

Suppose �ψ ∈ � and suppose that �R�. By definition
of R, ψ ∈ �. But then by the induction hypothesis � |� ψ ,
and so � |� �ψ .

For the other direction, suppose �ψ /∈ �. Let �0 =
{γ : �γ ∈ �}.We claim that�0 � ψ . For suppose otherwise.
Then there are γ0, . . . , γn ∈ �0 such that � γ0 ∧· · ·∧γn →
ψ . But � �γ0 ∧ · · · ∧ �γn → �ψ by Regularity and (K�).
But since �γ0, . . . ,�γn ∈ � this means that �ψ ∈ �; con-
tradiction. By Lemma A.6 we can extend �0 to a prime �

such that � � ψ . Since �R�, this shows that � �|� �ψ . ��

A.6 Exact Modal Models

An exact modal space is a tuple M = 〈S, N 〉 where
S = 〈S,�,C〉 is an intuitionistic state space and N is a
partial function from S to propositions over S that satisfies
(Modal Closure), (Nullity), (Contradictory), (Ground Clo-
sure), (Convexity), (Monotonicity), and (CN+).

We note the following consequence of (Ground Closure).

Observation A.7 Suppose N (s) is defined, Then we have:

(i) There is a unique regular proposition Ms ∈ N (s) such
that if P ∈ N (s) then P � Ms.

(ii) If u ∈ Ms and u � u0 then u0 ∈ Ms

(iii) If s � t and N (s), N (t) are both defined then Ms � Mt .

Proof We define

Ms =
{

t : t =
⊔

i∈I
{ti : ti ∈ Qi } , for some I such that N (s) = {Qi : i ∈ I }

}

By (Ground Closure) Ms ∈ N (s). By definition Q � Ms

for each Q ∈ N (s). To show that Ms is convex suppose
that t, v ∈ Ms and t � u � v. Let M ′ = (Ms\ {t}) ∪ {u}.
Clearly, Ms � M ′, and M ′ � Ms , but then M ′ ∈ N (s) by
(Convexity). Let I be such that t = ⊔

i∈I ti . For all i ∈ such
that Qi �= M ′ let t ′i = ti ; when Qi = M ′ let t ′i = u. Clearly,
u = ⊔

i∈I t ′i . This shows that u ∈ Ms .
To show that Ms is closed it suffices to show that

⊔
Ms ∈ Ms . By (Ground Closure) every proposition weakly

grounded byMs, Ms, . . . is in N (s), but any such proposition
is contained in Ms .

For the second part suppose that u ∈ Ms and u � u0. By
(GroundClosure)Ms∪{u0} ∈ N (s). By part oneMs∪{u0} �
Ms , but since Ms is convex u0 ∈ Ms .

For the third part, by (Monotonicity) there is Q ∈ N (t)
such that Ms � Q. But Q � Mt by the first part. ��

An exact modal model is a tuple E = 〈SE , � �E 〉 where
SE is an exact modal state space and � �E is an assignment
of intuitionistic propositions to the atomic sentences.

We extend � � to an assignment of propositions to all
the sentences of L� by recursion. The clauses are as in the
propositional case, and in addition we have:

• ��φ�E = {
s : �φ�E ∈ N (s)

}

We need to check that � �E always assigns intuitionistic
propositions. This is established by the obvious induction, the
only new case being�φ. Suppose c ∈ C . By (Contradictory)
let C0 ⊆ C be non-empty such that C0 ∈ N (c). By the
induction hypothesis, there is a function f : C0 → S such
that for all c0 ∈ C0 we have f (c0) � c0 and f (c0) � �φ�.
Thus { f (c0) : c0 ∈ C0} � C0. Thus by (CN+) there is c1 � c
such that { f (c0) : c0 ∈ C0} ∈ N (c1); and so c1 � �φ. This
shows that �φ�E is an intuitionistic proposition.

The conditions required on N for validating variousmodal
principles are depicted in table 3. We require the following
definitions. If t is a state, let mt be the largest modal state
contained in t and put Mt = Mmt . If s is a state we use
¬ {s} for the proposition {s ��� c : c ∈ C}. Say that t is an
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Table 3 Exact frame conditions

Modal axiom

D �φ → ¬�¬φ If P ∈ N (s) and ¬P ∈ N (t)

then s � t is inconsistent

T �φ → φ ∃t(t ∈ Ms ∧ t � s)

T¬¬ �φ → ¬¬φ P ∈ N (s) ∧ t ∈ ¬P → s � t is inconsistent

B φ → �¬�¬φ for all s there is an s-proponent m � s

B¬¬ φ → ¬¬�¬�¬φ For all s, if m is an s-opponent, then s and m are incompatible

4 �φ → ��φ If v ∈ P and P ∈ N (w) then

∃v0 � v(P ∈ N (v0))

5 ¬�φ → �¬�φ For all s and all t ∈ Ms , there is s0 � s such that Mt � Ms0

if t is consistent there is consistent such s0

5¬¬ ¬�φ → ¬¬�¬�φ For all s � s0 there is consistent s1 � s0 such that for all t ∈ Ms1 there is s
′ � s

such that Mt � Ms′ ; if t is consistent, there is consistent such s

s-guardian iff whenever ¬ {s} � Mu then t is incompatible
with u. Say that m is an s-proponent iff all t ∈ Mm are
s-guardians. (We write Pro(s) for the set of s-guardians.)
What is required for B is thus that every state s contains an
s-proponent.

Say that m is an s-opponent iff

m =
⊔

u∈Pro(s), f : Pro(s)→C

u ��� f (u)

An s-opponent is thus a state that “knocks out” each s-
proponent. What is required for B¬¬ is thus that every states
is incompatible with each s-opponent.

A.7 Transforming exact to inexact models

If E = 〈S,�,C, N , � �〉 is an exact modal model we asso-
ciate it with an inexact modal model K/E = 〈KK/E ,≤K/E
, RK/E , � �K/E 〉 as follows.

• K is the set of consistent states from S;
• ≤ is the restriction of � to K ;
• R ⊆ K ×K is defined by sRt iff t ∈ Ms . (Recall that we

use Ms to mean Mm , where m is the largest modal state
contained in s.)

• �p�K/E = {
s ∈ K : ∃t(t ∈ �p� ∧ t � s)

}

Theorem A.8 (i) K/E is a Kripke-model
(ii) If N satisfies a condition in table 3 then R satisfies the

corresponding condition in table 2.

Proof We check thatK/E is an inexact model. By definition
� �K/E assigns an upwards closed set to each propositional

letter. To see that (Monoi�) holds suppose first that s ≤ s0 and
s0Rt . By definition of R we have t ∈ Ms0 . By Observation
A.7 Ms � Ms0 thus there is t1 ∈ Ms such that t1 � t and
thus sRt , since Ms is upwards closed. If sRt and t ≤ t0 then
sRt0 follows because Ms is upwards closed.

For the second part, we take the conditions in order.
D. Let s be arbitrary and consistent and let s0 � s be

the maximal modal state contained in s. If Ms0 ⊆ C+ then
P ∧ ¬P ∈ N (s0), for each P by (Contradictory); thus s0 is
inconsistent since N satisfies the D-condition. We can con-
clude that there is t ∈ Ms0 with t ∈ K .

T. Let s be arbitrary and m � s be maximal modal. Since
N satisfies the T-condition, there is t ∈ Mm with t � m.
Since m � s it follows that sRs.

T¬¬. Let s, s0 ∈ K be arbitrary with s � s0 and let
m � s be maximal modal. Observe first that Mm ∩ K �= ∅.
For otherwise, Mm ⊆ C+ in which case 0 ∈ ¬Mm and
so m = m � 0 would have to be inconsistent by the T¬¬-
condition. Thus there is t such that sRt . Suppose that s0 � t
is inconsistent for each t such that sRt . Then in particular
s0 � t is inconsistent for each t ∈ Mm . But then s0 �i ¬Mm ,
and so, by (CN+), there is u � s0 such that u ∈ ¬Mm . Since
N satisfies the T¬¬-condition s � u is inconsistent, and so
s0 is inconsistent. Contradiction. We conclude that there is
s1 ≥ s0 with s1 ≥ t for some t such that sRt .

B. Suppose s, t, t0 ∈ K such that sRt and t ≤ t0. Let
m ≤ s be maximal modal; by definition of R we have t ∈
Mm . Let m0 ≤ t0 be maximal modal. Suppose that there is
no s0 ∈ K with s0 ≥ s and s0 ≥ u for some u ∈ Mm0 .
Then for all u ∈ Mm0 we have that s � u is inconsistent.
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Thus ¬ {s} � Mm0 . Since t0 is not inconsistent m0 � t is
not inconsistent, but this contradicts that N satisfies the B-
condition.

B¬¬. Suppose s, s0 are both in K and s ≤ s0. We need to
show that there is s1 ≥ s0 such that if m � s1 is maximal
modal, then m is an s-proponent.

Consider the set of all s-proponents. If this is the empty
set, then the null state is an s-opponent. But then s�0 is incon-
sistent by the B¬¬ condition; since s ∈ K this is impossible.
Suppose that for no m ∈ Pro(s) is s0 � m consistent. Then
there is f : Pro(s) → C such that m ��� f (s) � s0 for each
m ∈ Pro(s), and so s0 contains an s-opponent. But this is
impossible since by theB¬¬-condition s is incompatiblewith
every s-opponent. We conclude that there is an s-proponent
m such that s1 �m is consistent. Let m1 � (s1 �m) be max-
imal modal. Every t ∈ Mm1 contains a t ′ ∈ Mm and since
every t ′ ∈ Mm is an s-guardian, so is every t ∈ Mm1 .

5. Suppose sRt . Then t is consistent and t ∈ Ms . Since
N satisfies the 5-condition let s0 ≥ s be consistent and such
that Mt � Ms0 . But Mt is upwards closed so it follows that
if s0Ru then t Ru and so R is euclidean∗.

5¬¬. Let s0 ≥ s; by the 5¬¬-condition find s1 ≥ s0 such
that for all consistent t ∈ Ms1 , there is consistent s

′ � s with
Mt � Ms′ . But then s1 is such that for all t with s1Rt we
have s′ ≥ s such that for all u with s′Ru we have t Ru. This
show that R is weakly euclidean∗. ��

We next establish the following.

Theorem A.9 Let E = 〈E,�,C, N , � �〉 be an exact model
and let K/E = 〈K ,≤, R, � �i 〉 be the associated inexact
model. Then for each s ∈ K and each sentence φ we have:

E, s �i φ ⇔ K/E, s |� φ

Proof By induction on the complexity of φ. Except the case
for� the proof is as in Fine (2014), but we have included the
proof for definiteness.

For atomic p the result is immediate by the definition of
� �K/E .

We have E, s �i φ ∧ ψ iff there is s0 � s such that
E, s � φ ∧ ψ iff there are s1, s2 � s such that E, s1 � φ

and E, s2 � ψ iff (by the induction hypothesis) there are
s1, s2 � s- such that K/E, s1 |� φ and K/E, s2 |� ψ iff
K/E, s |� φ ∧ ψ .

We have E, s �i φ ∨ ψ iff there is s0 � s such that
E, s � φ ∨ ψ iff there is s0 � s such that E, s0 � φ or
E, s0 � ψ iff (by the induction hypothesis) there is s0 � s
such thatK/E, s0 |� φ orK/E, s0 |� ψ iffK/E, s |� φ ∧ψ .

We have E, s �i φ → ψ iff there is s0 � s such that
E, s0 � φ → ψ . Find a function f such that for every
verifier t of φ, t ��� f (t) � s0. Now let s1 ≥ s be such that
K/E, s1 |� φ. By the induction hypothesis E, s1 �i φ so let
s2 � s1 be such that E, s2 � φ. We have that E, s0 � s2 �i ψ

and soE, s1 �i ψ ; by the induction hypothesisK/E, s1 |� ψ .
Thus K/E, s |� φ → ψ .

For the other direction suppose K/E, s |� φ → ψ . Let
s0 be arbitrary such that E, s0 � φ. If s � s0 is inconsistent
let f (s0) be some element of C contained in s � s0. If s � s0
is consistent, then E, s � s0 �i φ and so K/E, s � s0 |� φ

by the induction hypothesis. Thus K/E, s � s0 |� ψ and so
E, s�s0 �i ψ . Let f (s0) � s�s0 be such that E, f (s0) � ψ .
We have s0 ��� f (s0) � s. Let s1 = ⊔

s0∈�φ� s0 ��� f (s0).
This shows that E, s �i φ → ψ .

Suppose that E, s �i �φ. Then let s0 � s be such that
E, s0 � �φ. Let t be arbitrary such that sRt . By definition
of R we have t ∈ Ms . Since s0 � �φ, �φ� ∈ N (s0). By
(Monotonicity) �φ� � Ms . But then E, t �i φ and so, by the
induction hypothesis,K/E, t |� φ. Since t was arbitrary this
shows that K/E, s |� �φ.

For the other direction, suppose that K/E, s |� �φ. For
each t such that sRt we have K/E, t |� φ. By the induction
hypothesis, E, t �i φ, for each t such that sRt . By definition
of Rwehave {t : sRt} = Ms . For each t ∈ Ms let f (t) � t be
such that E, f (t) � φ. Clearly { f (t) : t ∈ Ms} � Ms . Thus
by (CN+) find s0 � s such that { f (t) : t ∈ Ms} ∈ N (s0).
E, s0 � �φ and thus E, s �i �φ. ��
Theorem A.10 (Soundness) If � �S1, ... Sn φ then � �S1,...,Sn

i123
φ.

Proof Suppose that � �
S1,...,Sn
i123 φ and let E, s be such that

E, s �i � but E, s ��i φ. We may take s to be consistent. By
Theorem A.9 we have K/E, s |� � but K/E, s �|� φ. More-
over, K/E satisfies the conditions S1, . . . ,Sn iff E satisfies
the conditions S1, . . . ,Sn. But we know that � is sound with
respect to |�S1,...,Sn ; the result follows. ��

A.8 Transforming inexact models to exact models

We now wish to prove a completeness theorem with respect
to exact modal models. In the modal case we cannot show
that if � �i3 φ, then φ follows from � in IntK�. To see this,
observe that φ �i3 �φ. For let E be any model and suppose
E, 0 � φ. Then by (Nullity), (CN+), and (Ground Closure)
�φ�E ∈ N (0). And thus E, 0 �i �φ. But clearly, we cannot
derive �φ from φ in IntK�.

However, we do have the following.

Theorem A.11 Completeness If� �S1,...,Sn
i1,2 φ then φ follows

from � in IntKS1 . . . Sn.

In interesting exact models the interpretations of the
propositional letters are not upwards closed; but there is noth-
ing that precludes this. The completeness proof exploits this
by transformingKripke-models for intuitionisticmodal logic
to exact modal models. This strategy was used by Fine in his
completeness proof for intuitionistic propositional logic; the
modal case raises a number of complications.
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Definition A.12 A Kripke-model T = 〈T ,≤, R, � �〉 is
tree-like iff

(i) There is a unique r ∈ T such that T is the set of nodes
that can be reached from r by any combination of steps
using ≤ and R. Call this r the root of T .

(ii) Whenever s, t ∈ T are ≤-incomparable then there is no
u with s, t ≤ u;

(iii) Any strictly ascending infinite chain s0 < s1 < s2 < . . .

in T is unbounded.

Wewill need the following results about the tree-likemod-
els.

Theorem A.13 Let K = 〈K ,≤, R, � �K〉 be a Kripke-
model. Then there is a tree-like Kripke model T = 〈T ,≤T

, RT , � �T 〉 and an embedding f : K → T such that for all
s ∈ K

K, s |� φ ⇔ T , f (s) |� φ

Moreover, if K satisfies any of the conditions in table 2 then
so does T .

Proof Wedefine the tree-likemodelT = 〈T ,≤T , RT , � �T 〉
as follows.

We let T be the finite sequences s̄ = (s0, s1, . . . , sn−1),
n ≥ 0 of nodes from K such that s0 ≤ s1 ≤ . . . ≤ sn−1.
Note that we allow the empty sequence (). We define the tree
order ≤T by saying that s̄ ≤T t̄ iff t̄ is an end-extension of s̄.

The order RT is defined as follows. s̄ RT (t0, . . . , tn) iff
there is (s0, . . . , sm) such that s̄ ≤T (s0, . . . , sm) and sm Rtn .
If R is reflexive, we in addition require that ()RT ().

We define �p�T by saying (s0, . . . , sm) ∈ �p�T iff sm ∈
�p�K. For the empty sequence we require () /∈ �p�T .

We have to check that (Monoi�) holds. Suppose that
(s0, . . . , sm) ≤T (s0, . . . , sm, sm+1, . . . , sk) and (s0, . . . , sm,

sm+1, . . . , sk)RT (t0, . . . , tl) and t̄ = (t0, . . . , tl , tl+1, . . . , tp).
By definition of≤T and RT we then have sm ≤ sk and sk Rtl .
Since tl ≤ tp and (Monoi�) holds in K we that sm Rtp. By
the definition of RT we get (s0, . . . , sm)Rt (t0, . . . , tp).

The empty sequence is the root of T . Clearly, any two
≤T -incomparable elements do not have an upper bound in
≤T . And since the elements of T are finite sequences any
infinitely ascending chain does not have an upper bound. T
is thus tree-like.

We define the embedding f by putting f (s) = (s). To
show thatK, s |� φ iff T , f (s) |� φ we prove, by induction,
the stronger claim thatK, s |� φ iffT , (s0, . . . , sn−1, s) |� φ

for all s0, s1, . . . , sn1 such that s0 < s1 . . . < sn−1 < s.
The base case is immediate by the definition of � �T . The

cases of ∧,∨ are immediate by the induction hypothesis.
Suppose that K, s |� φ → ψ and let (s0, . . . , sn−1, s) be

any sequence ending with s. Suppose that T , (s0, . . . , sn−1,

s, t0, . . . , tm) |� φ. By the induction hypothesis K, tm |� φ;
by the definition of ≤T we have s ≤ tm , thusK, tm |� ψ . By
the induction hypothesis T , (s0, . . . , sn−1, s, t0, . . . , tm) |�
ψ and T , (s0, . . . , sn−1, s) |� φ → ψ .

Suppose that T , (s0, . . . , sn−1, s) |� φ → ψ and sup-
pose that K, t |� φ for some t ≥ s. Then by the
induction hypothesis T , (s0, . . . , sn−1, s, t) |� φ and so
T , (s0, . . . , sn−1, s, t) |� ψ . By the induction hypothesis
K, t |� ψ and so K, s |� φ → ψ .

Suppose K, s |� �φ and let (s0, . . . , sn−1, s) be any
sequence ending with s. Suppose that (s0, . . . , sn−1, s)
RT (t0, . . . , tm). Then sRtm and so K, tm |� φ. By the
induction hypothesis we have T , (t0, . . . , tm) |� φ and thus
T , (s0, . . . , sn−1, s) |� �φ.

Suppose that T , (s0, . . . , sn−1, s) |� �φ. And suppose
that sRt . Then (s0, . . . , sn−1, s)R(t) and so T , (t) |� φ.
By the induction hypothesis we then get K, t |� φ. And so
K, s |� �φ.

It remains to be seen that this model satisfies the frame
conditions in table 2 if K does. We do a few of the cases. If
K is reflexive, then ()RT ()was ensured by construction. The
other cases are immediate.

To establish that ≤T is weakly reflexive if < is weakly
reflexive suppose that (s0, . . . , sm) ≤T (s0, . . . , sm, . . . , sn).
Since ≤ is weakly reflexive let sk and t be such that sm Rt
and sn ≤ sk and t ≤ sk . By (Monoi�) sn Rsk . And thus
(s0, . . . , sm)RT (s0, . . . , sm, . . . , sn, sk). But clearly (s0, . . . ,
sm, . . . , sn) ≤T (s0, . . . , sm, . . . , sn, sk). This shows that≤T

is weakly reflexive.
For the case of B suppose that (s0, . . . , sm)RT (t0, . . . , tn).

And let (t0, . . . , tn) ≤T (t0, . . . , tn, . . . , tk). We have sm Rtn
and tn ≤ tk . Thus since ≤ is symmetric∗ let sl ≥ sm
be such that tk Rsl . Then by definition of RT we have
(t0, . . . , tn, . . . , tk)RT (s0, . . . , sm, sl)which is what we have
to show.

For the case of 5 suppose that R is Euclidean∗. Suppose
that (s0, . . . , sm)RT (t0, . . . , tn). By definition sm Rtn ; since
R is Euclidean∗ find sk ≥ sm such that for all u such that
sk Ru we have tn Ru. By definition of ≤T and RT we have
(s0, . . . , sm, sk) and for all u if (s0, . . . , sm, sk)RT (v0, . . . ,

vl , u) then (t0, . . . , tn)RT (v0, . . . , vl , u). This shows that RT

is Euclidean∗. ��

We next show to associate tree-like Kripke-models with
exact modal models.

If 〈S,�〉 is a partial order then A ⊆ S is downwards closed
if whenever s � t and t ∈ A, then s ∈ A. If A is downards
closed then A is said to be principal if there is t such that
A = [t] = {s : s � t}.

If K = 〈K ,≤, R, � �K〉 is a tree-like Kripke-model
we define the associated exact model E/K = 〈S,�
,C, N , � �E 〉 as follows.

123



Truthmaker Semantics for Intuitionistic Modal Logic

• S is the set of downwards closed subsets of T ;
• � is the subset relation on S;
• C is the set of non-principal downwards closed subsets.
• If A = [s] is principal, then

N ([s]) = {P : P is an upwards closed subset of

S such that for all t with

sRt there is t0 ≤ t with [t0] ∈ P}

• If A is not principal, then N (A) = {P : P is an upwards
closed supset of S}

• We define � �K/E as follows.

– [s] ∈ �p�K/E iff s ∈ �p�K;
– B ∈ �p�K/E for each non-principal B;
– �⊥�K/E = C .

Theorem A.14 (i) E/K is an exact model.
(ii) IfK satisfies a condition in table 2 then E/K satisfies the

corresponding condition in table 3.

Proof For the first part, the proof that 〈S,�,C〉 is a complete
residuated partial order is as in Fine (2014). For definiteness,
we give the proof here.

Let {Bi : i ∈ I } be a collection of downwards closed sets.
If {Bi : i ∈ I } is empty, the root r ofKwill be the least upper
bound. If {Bi : i ∈ I } is not empty

⋃
i∈I Bi is downwards

closed and it is obviously the least upper bound.
We next establish that the residuation condition is met.

Suppose A, B are downwards closed. Let C = r ∪
{[c] : c ∈ B\A}. Clearly, C is downwards closed. We claim
that C ∪ A ⊇ B. Let b ∈ B. If b /∈ B\A, then b ∈ A and
thus b ∈ A ∪ C . So suppose b ∈ B\A, then b ∈ C . Thus
B ⊆ A ∪ C .

Suppose next that D is such that D ∪ A ⊇ B. We claim
that C ⊆ D. For let c ∈ C . Then there is c0 such that c ≤ c0
and c0 ∈ B\A. Since D ∪ A ⊇ B we have to have c0 ∈ D,
and thus c ∈ D since D is downwards closed.

We now have to check that the conditions on N are satis-
fied.

(Nullity) and (Modal Closure) are immediate since N is
defined on all members of S.

(Contradictory): if A is not principal, then {S} ∈ N (A),
but S ∈ C .

(Ground Closure). If A = [s] is principal, suppose Pi , i ∈
I are in N ([s]). Then for all t such that sRt there is [ti ] ∈ Pi ,
with ti ≤ t for all i ∈ I . But if {Pi : i ∈ I } grounds Q then⋃

i∈I [ti ] ∈ Q. But
⋃

i∈I [ti ] ⊆ [t]. Thus Q ∈ N ([s]). If A is
non-principal, then every proposition is in N (A).

(Convexity): this is immediate since N (A) is in fact closed
under containment.

(Monotonicity). Suppose A � B. If A = [s], B = [t] are
both principal suppose P ∈ N ([s]). Then for all u such that
sRu there is f (u) ≤ u such that f (u) ∈ P . Suppose t Rv;

by (Monoi�), sRv. Since f (v) ≤ v it follows that P ∈ N (t).
Suppose next that P ∈ N ([t]). We have {r} ∈ N ([s]) and
thus by (Ground Closure) we have P ∪ {r} ∈ N ([s]). But
{r} ∪ P � P . If B is non-principal the result is immediate.

(CN+): this is immediate since N (A) is closed under con-
tainment.

We next turn to the second part of the theorem, taking the
conditions in order.

D. Suppose that R is serial. Suppose that [s], [t] are com-
parable and that P ∈ N ([s]). Since K is tree-like either
s ≤ t or t ≤ s. Without loss of generality, assume the for-
mer; we show that¬P /∈ N ([t]). By definition of N we have
P ∈ N ([t]). If¬P was in N ([t]) then, by (Ground Closure),
P ∧ ¬P would be in N ([t]). But since R is serial, let u be
such that t Ru. Then there is u0 ≤ u such that u0 ∈ P ∧ ¬P .
But this is impossible, since u is consistent.

T. Suppose that R is reflexive and suppose that P ∈
N ([s]). Then for all t such that sRt , there is f (t) ≤ t with
[ f (t)] ∈ P . Since R is reflexive, sRs and thus f (s) ≤ s with
[ f (s)] ∈ P . This is what we have to show.

T¬¬. Suppose that P ∈ N ([s]). Suppose [s] is compatible
with a [t] such that [t] ∈ ¬P . Since K is tree-like, without
loss of generality, wemay assume that t ≥ s. Byweak reflex-
ivity find [u] such that t ≤ u and v ≤ u for some v such that
sRv. But [v] ∈ P and so [u] ∈ P . But since [t] ∈ ¬P also
[u] ∈ ¬P . But then P ∧ ¬P ∈ [u], but this is impossible
since [u] is principal.

B: If ∅ ∈ N ([s]) we are done, so suppose ∅ /∈ N ([s]).
We show that [s] itself is an s-proponent. For suppose that
t ∈ M[s]. And suppose that ¬ {s} ∈ M[u]. Suppose [t] ∪ [u]
is consistent. Without loss of generality, we may suppose
that t ≤ u. Since R is symmetric∗ there is then s0 ≥ s
such that uRs0. Since ¬ {s} ∈ Mu there is c ∈ C such that
([s] ��� c) ⊆ [s0] but since s ≤ s0 this means that [s0]
is non-principal. Contradiction. We conclude that t is an s-
guardian and thus that s itself is an s-proponent.

B¬¬. The argument establishing B¬¬ is similar.
The case of 5 is immediate from the definition of N . ��

Proposition A.15 Let T = 〈T ,≤, R, � �T 〉 be tree-like
Kripkemodel, and E/T its associated exactmodel.K/(E/T )

is isomorphic to T .

Proof Define f : T → K/(E/T ) by f (s) = [s].
Clearly, f is a bijection; we also have s ≤ t iff [s] ⊆ [t];

and we have s ∈ �p�T iff [s] ∈ �p�K/(E/T ).
It remains to be shown that sRt iff [s]RK/(E/T )[t]. We

clearly have that if sRt then [t] ∈ ME/T ([s]). For the other
direction, suppose that [t] ∈ ME/T ([s]). There is t0 such that
sRt0 and t0 ≤ t . But since [t] is principal, t ∈ T and so sRt
by (Monoi�).

By definition of RK/(E/T ) we also have ME/T ([s]) iff [s]
RK/(E/T )[t]. This establishes the result. ��

We can now prove completeness result.
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Proof of TheoremA.11 Suppose that φ does not follow from
� in IntKS1 . . . Sn . Let T be a tree-like Kripke model sat-
isfying conditions S1, . . . , Sn and let s be a state in T such
that T , s |� � but T , s �|� φ.

Let E/T be the associated exact model and let K/(E/T )

be the inexact companion. We then have

T , s |� φ iff K/(E/T ), [s] |� φ iff E/T , [s] �i φ

But then E/T , [s] �i � but E/T , [s] ��i φ, showing that
� �

S1,...,Sn
i12 φ. ��

A.9World-validity

Weformulate classical S5 as follows. The axioms and rules of

IntK�; the axioms T, 4, 5; all instances of
n

︷ ︸︸ ︷� . . . �(φ ∨¬φ).

Theorem A.16 All theorems of classical S5 are inexactly ver-
ified at each world in a modally classical model satisfying
the T¬,¬, 5¬¬, 4 conditions.

Proof Clearly all instances of�P → ¬¬P ,�P → ¬¬�P
and ¬�P → ¬¬�¬�P are verified by the null state in a
model satisfying the T¬¬,, 5¬¬ and 4-conditions. Thus all
the instances of T,4, 5 are inexactly verified at every world.

It thus suffices to show that all instances of

n
︷ ︸︸ ︷� . . . �(φ ∨ ¬φ)

are inexactly verified at each world.
Observe first that excluded middle holds at each world.

For let w be a world and suppose that w does not contain
a verifier for P . Then w contains a conditional connection
s ��� c, c ∈ C , for each verifier s of P and so w inexactly
verifies ¬P .

So let w be a world. Since the state space is modally clas-
sical, Mw contains only worlds. Thus w �i �(φ ∨ ¬φ) for

each w. By induction, w �i

n
︷ ︸︸ ︷� . . . �(φ ∨ ¬φ). ��
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