A Semantic Approach to the Structure of Population Genetics

Elisabeth A. Lloyd

Philosophy of Science, Vol. 51, No. 2. (Jun., 1984), pp. 242-264.

Stable URL:
http://links jstor.org/sici?sici=0031-8248%28198406%2951%3 A2%3C242%3 AASATTS %3E2.0.CO%3B2-H

Philosophy of Science is currently published by The University of Chicago Press.

Your use of the JSTOR archive indicates your acceptance of JSTOR’s Terms and Conditions of Use, available at
http://www.jstor.org/about/terms.html. JSTOR’s Terms and Conditions of Use provides, in part, that unless you
have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and
you may use content in the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at
http://www jstor.org/journals/ucpress.html.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or
printed page of such transmission.

JSTOR is an independent not-for-profit organization dedicated to creating and preserving a digital archive of
scholarly journals. For more information regarding JSTOR, please contact support@jstor.org.

http://www.jstor.org/
Tue Feb 28 12:22:42 2006



A SEMANTIC APPROACH TO THE STRUCTURE
OF POPULATION GENETICS*

ELISABETH A. LLOYD

Department of Philosophy
Princeton University

A precise formulation of the structure of modern evolutionary theory has proved
elusive. In this paper, I introduce and develop a formal approach to the structure
of population genetics, evolutionary theory’s most developed sub-theory. Under
the semantic approach, used as a framework in this paper, presenting a theory
consists in presenting a related family of models. I offer general guidelines and
examples for the classification of population genetics models; the defining fea-
tures of the models are taken to be their state spaces, parameters, and laws. The
suggestions regarding the various aspects of the characterization of population
genetics models provide an outline for further detailed research.

1. Introduction. Known to be unlike Newtonian mechanics but also un-
like Creationist biology, modern evolutionary theory has a structure which
has proved difficult to characterize. Recently, John Beatty (1980, 1981,
1982) and Paul Thompson (1983) have approached the problem of de-
scribing the structure of evolutionary theory using the semantic approach
developed by P. Suppes, B. C. van Fraassen and F. Suppe.

Advantages of the semantic view over the logical positivist approaches
which until recently, dominated discussions of theory structure, have been
presented by Suppes (1957, 1961, 1962, 1967), van Fraassen (1970, 1972,
1974, 1980), Suppe (1972, 1973, 1974, 1977), and Stegmuller (1976),
and will not be discussed here.

The semantic approach, in which I include both the “set theoretic” and
“state space” approaches, has been used to describe the structure of New-
tonian mechanics, equilibrium thermodynamics, quantum mechanics, and
parts of biological theory (Sneed 1971; Stegmuller 1976; Suppes 1957,
Wessels 1976; Moulines 1975; van Fraassen 1970, 1972, 1974; Suppe
1974a; see Suppe 1974, 1979 for a summary of the semantic view and
its literature).

I shall assume the following positions in this paper, without defense:
the semantic view—in particular, the state space version—is more suited
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to a description of evolutionary theory than any axiomatic view (Beatty
1980, 1981, 1982; Thompson 1983); the semantic view can provide a
richer and more useful description of the structure of a theory than axi-
omatic approaches (see especially Suppe 1972, van Fraassen 1980); and
finally, the semantic view is capable of formally describing theories which
are not describable using any axiomatic approach (van Fraassen, forth-
coming).

My goal in this paper is to provide an introduction and further devel-
opment of the semantic approach to the structure of population genetics
theory, the most formal and developed sub-theory of contemporary evo-
lutionary theory." In the process of providing a formal framework for the
detailed description of the theory, I provide a means by which precise
analysis of theoretical problems can be carried out. Ultimately, the utility
of describing population genetics (and evolutionary theory as a whole)
through the semantic view rests on the ability of the semantic view to
provide an analytical framework sensitive to the relevant theoretical prob-
lems. A working model, i.e. an actual semantic description of the theory,
must therefore be available before we can evaluate its power as an ana-
lytical tool.

After a brief look at the semantic view in the rest of Section 1, I present
a range of population genetics models in Section 2, in order to illustrate
the variety and general character of the theory, and the suitability of the
semantic approach. In Section 3, I discuss particular problems encoun-
tered in describing population genetics models using the semantic view
of theory structure as a framework. Promising lines for further research
that makes use of this approach are noted throughout the paper.

1.1 The Semantic View of Theory Structure. According to the seman-
tic view of theory structure, a scientific theory specifies certain kinds of
systems. The systems specified by a scientific theory are ideal; they are
used in scientific explanation through claims that certain systems in the
natural world are of the kind defined by the theory. The semantic view
offers a formal approach to analyzing these systems, which are usually
understood as mathematical structures. There are different ways to de-
scribe these structures formally: the set-theoretic predicate approach, de-

'Populations genetics theory, because of its advanced formal development, lends itself
to analysis by the semantic view. My use of population genetics as a starting place for the
analysis of the structure of evolutionary theory as a whole does not imply, however, that
population genetics is assumed to constitute the “core” or “foundation” of the theory. On
the contrary, I assume that population genetics, as a set of structures, is embedded in the
larger structure called evolutionary theory. It seems likely that if the semantic approach
can be used to describe the most structured segment of the theory, it may provide a good
approach to the theory as a whole.
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veloped by Suppes, Sneed, and Stegmuller, involves description by a set-
theoretic predicate; the state space approach, employed by van Fraassen
and Suppe, describes the structures as configurations of certain mathe-
matical spaces. In this paper we will be using van Fraassen’s version of
the state space approach (see Suppe 1979 for discussion of differences
among the various semantic approaches).

In general, a structure presented by a theory (understood as intended
to represent empirical phenomena) is a model of the theory if it satisfies
the theorems of the theory. In a semantic definition, the set of sentences
that are theorems of the theory is defined not in relation to a set of ax-
ioms, but by directly defining the class of structures; for any given lan-
guage L, the theorems of the theory in L are the sentences of L which
are satisfied in all these structures. Reference to syntax or to a syntac-
tically defined set of theorems is thus unnecessary. The models picked
out are mathematical models of the evolution of states of a given system,
in both isolation and interaction, through time. This selection is achieved
by conceiving of the ideal system as capable of a certain set of states—
these states are represented by elements of a certain mathematical space,
the state space (van Fraassen 1970, p. 238; 1972, pp. 303, 305). (NB
In this paper, “models” and “systems” always refer to ideal systems;
when the actual biological systems are being discussed, they will be called
“empirical” systems.) The variables used in each mathematical model
represent various measurable or potentially quantifiable physical magni-
tudes. Classically, any particular configuration of values for these vari-
ables is a state of the system, the state space or “phase space” being the
collection of all possible configurations of the variables.

The theory itself represents the behavior of the system in terms of its
states; the rules or laws of the theory (i.e. laws of coexistence, succes-
sion, or interaction) can delineate various configurations and trajectories
on the state space. Under the semantic view, these structures, “being
phase spaces of configurations imposed on them in accordance with the
laws of the theory”, are themselves seen as constitutive of the theory
(Suppe 1977, pp. 226-227).

Description of the structure of the theory itself therefore involves only
the description of the set of models presented by the theory. It is crucial,
then, to discuss the various necessary components of describing a model.

Construction of a model within the theory involves assignment of a
location in the state space of the theory to a system of the kind defined
by the theory. Potentially, there are many kinds of systems that a given
theory can be used to describe; limitations come from the dynamical suf-
ficiency (i.e. whether it can be used to describe the system accurately
and completely) and the effectiveness of the laws used to describe the
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system and its changes. Thus, there are two main aspects to defining a
model. First, the state space must be defined—this involves choosing the
variables and parameters with which the system will be described; sec-
ond, coexistence laws, which describe the structure of the system, and
laws of succession, which describe changes in its structure, must be de-
fined.

Defining the state space involves defining the set of all the states the
system could possibly exhibit. Certain mathematical entities—in the case
of the models we shall be looking at, these are vectors—are chosen to
represent these states. The collection of all the possible values for each
variable assigned a place in the vector is the state space of the system.
The system and its states can have a geometrical interpretation: the vari-
ables used in the state description (i.e. state variables) can be conceived
as the axes of a Cartesian space. The state of the system at any time may
be represented as a point in that space, located by projection onto the
various axes.

The family of measurable physical magnitudes, in terms of which a
given system is defined, also includes a set of parameters. The biologist
R. C. Lewontin defines parameters as values that are not themselves a
function of the state of the system? (1974, pp. 7-8). Thus, a parameter
can be understood as a fixed value of a variable in the state space—
topologically, setting a parameter seems to amount to limiting the number
of possible structures in the state space by reducing the dimensionality
of the model (see Section 3.4).

Laws, used to describe the behavior of the system in question, must
also be defined in a description of a model or set of models. Laws have
various forms: in general, coexistence laws describe the possible states
of the system in terms of the state space, while changes in the state of
the system are described by laws of succession. Suppe has given a com-
plete, formal classification of succession and coexistence laws according
to the semantic view (Suppe 1976); detailed discussion of the various
evolutionary laws in terms of his system cannot be done here. Rather,
we will discuss, in Section 3.3, certain problems of classification en-
countered in analyzing evolutionary laws.

At this point, I would like to draw a distinction. Consider the problem
of determining the most appropriate state space with which to represent
genetic changes in populations; this is, to an extent, an empirical ques-
tion. Determination of the types or categories of state spaces used in pop-

?Lewontin notes that although parameters can involve time and can change over time,
they are not correlated to the variable value as it changes over time (personal communi-
cation).
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ulation genetics, however, and the relation of these state space types to
determination of the structures comprising the theory, are philosophical,
rather than empirical, questions.

With this distinction in mind, I examine a few examples of population
genetics models in Section 2. My purpose is threefold. First, having pre-
sented the general terms in which I propose to describe population ge-
netics models, I illustrate these terms through a few actual models. This
is an easy and natural task, since much of the theory is presented in these
same terms. The second goal, then, is to demonstrate that the state space
version of the semantic approach provides a natural reconstruction of the
theory—Iless arbitrary than, for example, an axiomatic approach—since
it makes sense of the theory as presented. Third, I hope to show, partic-
ularly through the example in Section 2.3, that the semantic approach
highlights some features of population genetics theory which are theo-
retically important. Detailed discussion of the description of population
genetics models is presented in Section 3.

2. Models in Population Genetics. Population genetics, as character-
ized for example by Lewontin, is the “study of the origin and dynamics
of genetic variation within populations” (1974, p. 12). The notion of “gene
frequency” is fundamental; description of both changes and equilibria of
gene frequencies in populations is a primary goal of population genetics
theory.

The Hardy-Weinberg law, an equilibrium law of gene frequencies, serves
as the foundation of population genetics theory. Take a single locus (gene)
with only two alleles, A and a (alternate types of that gene), in a popu-
lation of diploid organisms (organisms with paired chromosomes). Take
the frequency of allele A to be p, the frequency of a to be g (with p +
g = 1). The Hardy-Weinberg law gives the genotype frequencies of the
zygotes (the potential next generation) by the equation:

p*AA + 2pgqAa + qlaa = 1

The system represented by the above equation is a “one-locus” system,
i.e. calculations are performed assuming the complete isolation and in-
dependence of the alleles at each locus. Furthermore, a completely ran-
dom mating pattern is assumed, i.e. the genotype makes no difference to
the probability of mating to any given genotype. It is also assumed that
each genotype contributes equally to the pool of gametes from which the
zygotes are randomly “chosen”, but this is not generally the case. The
comparative contribution of each genotype to the next generation is its
fitness value. More complicated models, involving the individual (w) or
population fitness value (W), in conjunction with the basic Hardy-Wein-
berg law, are necessary in order to describe all but the most simplistic
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system. In the rest of this section, I shall present a few examples of these
more complex models.

2.1 Deterministic Models. Consider the case in which carriers of a
certain genotype contribute a larger proportion of gametes (reproductive
cells carrying only half of the complement of the organism’s chromo-
somes) to the gene pool than the other genotypes (of the locus under
consideration). Some modification in the Hardy-Weinberg equation is
necessary, since it represents equal contributions from genotypes to the
gene pool. The difference in contribution is a measure of the “fitness”
or “selective value” (w) of a given genotype. The fitness of the genotype
contributing the most is taken by convention as 1; the other genotypes
have fitnesses of (1-s), where the value of s is the selection coefficient
of that genotype.

In a case of simple dominance, where the fitness of genotypes AA and
Aa equals 1, and the fitness of aa is (1-s), we can predict the frequencies
(in the ideal system) of the genotypes after selection through a modifi-
cation of the Hardy-Weinberg equation:

p*AA + 2pqAa + (1 — s)g’aa = 1 — sq*

We can then calculate the frequency p' of the A allele in the next gen-
eration:

p'=(p*+p/(1 = sq") = p/(1 = sq)
So the increment, Ap of the frequency of allele A in one generation is:

Ap = spq’/(1 = sq*)
(from Dobzhansky 1970, p. 102). If 5 is very small (0.01 or less), it is
possible to calculate analytically an equilibrium value p; (such that p,'
= pg) for the frequency of A. Calculations of the number of generations
taken for a given change in gene frequency are then also possible (May-
nard Smith 1968, pp. 74-75; Lewontin 1967, p. 81). This sort of model
is a deterministic model since, given the initial conditions of the popu-
lation—in this case the initial gene frequency—and any set of parame-
ters—in this case the selection coefficient—the precise condition of the
population at some future time can be predicted (Lewontin 1967, p. 81;
see Section 3.3).

More than one parameter can be incorporated into the basic model based
on the Hardy-Weinberg equations. For example, mutation rates can be
included, so that the frequency in the next generation depends both on
selection and on mutation. Take the mutation rate from a to A as ., where
p is defined as the probability that a has mutated to A within the time of
one generation. The frequency in the next generation is calculated as fol-
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lows (where s is the negative fitness coefficient of A):

,_2p( =)+ 2pq( —ps) _p—ps+ pg— ppgs
2 = 2s(p* + 2pq) 1-sp(p+29)

In other words, the frequency of allele A in the next generation is cal-
culated in terms of both parameters, w and s. Once again, this is a de-
terministic model, since a definite gene frequency results. The model can
be simplified greatly by assuming that p is very small, which is plausible
under the assumption that the A allele is deleterious, and hence would be
maintained only at low frequency. If p is small, then we can approximate
using

p'=p-pstpg
and at the equilibrium state
Pe=pe — Spe + (1 — pg)
or, if p is small relative to s, we can approximate by

P =

w |[E

(Maynard Smith 1968, p. 79).

In general, in deterministic models the initial conditions of the popu-
lation are represented by an ordered ser of values of variables, i.e. a
vector. The above examples used a set of only one variable, p. A param-
eter set is also specified, p and s in the previous example; the value for
the variable after a certain time interval is given by equations incorpo-
rating the parameters. Such equations embody the dynamical laws of change
for the system; they entail a theory about the equilibrium states of the
system.

2.2 Stochastic Models. With some evolutionary processes, a number
of different results are possible. The mathematical models must, in these
cases, represent the relative chances of the occurrence of each of the
possible results. In one example of such a probabilistic or “stochastic”
model, the probability that an allele with selective coefficient s will reach
fixation (i.e. have frequency of 1) within a population of effective size
N over many generations is evaluated. The result of this type of model
will be a probability distribution rather than the single value specified by
a deterministic model. That is, the model will specify the probabilities
of the various possible final states, but will not say which one will occur,
even if we know only one will occur. The model can be understood as
having “ergodic properties”, i.e. at equilibrium there is some final prob-
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ability p(1) of the system being in state 1, another probability p(2) of the
system being in state 2, etc. (Lewontin 1967, p. 81).
Thus, p; in
1- e—4Nsp
Ds = W (Kimura & Ohta 1971, pp. 9-10)
(where p is the frequency of the allele at the beginning of the process)
can be understood roughly as the proportion of total populations of ef-
fective size N, which, confronted with an allele with selection coefficient
s, would eventually reach a frequency of 1 for that allele (i.e. eliminate
all other alleles at that locus).

The need for stochastic models arises when it is necessary to know
more than the average of a range of values, i.e. when we need to measure
variability. The basic way to handle essential (i.e. necessary) variability
is to use an appropriate probability distribution that represents the chance
that an individual selected at random will be found to have any given
value or range of values. A number of different types of distributions are
useful .

In most stochastic models in population genetics, the biologist attempts
to predict the way in which the “ensemble of populations” changes in
time, and what the equilibrium distributions look like. This is basically
statistical mechanics, and the problems can be solved by borrowing meth-
ods from that branch of physics (Lewontin 1968, p. 82). For example,
in order to solve the distribution function of the gene frequency at equi-
librium, change in the ensemble is often approximated as a partial dif-
ferential equation in time, though this is not always possible or practical
(see Bailey 1968, p. 42).

As the mathematical models used to represent genetical phenomena
incorporate more parameters and information—in order to make them
match the empirical results more closely—it becomes more difficult to

3For continuous measurements, a normal (Gaussian) probability curve
1 (x — p)?
= exp —
Y o\V2n P 207

provides an accurate representation. The equation is put in terms of two parameters, p:
the mean, and o: the standard deviation. In application, the likelihood of observing an
individual with the character in the range from x, to x, = [ ydx.

For discrete variables, a binomial distribution can be used. Taking » individuals for
which the (independent) chance of having a certain character is p, the chance of observing
r individuals with that character is

ml"(l -py7 (O=r=n

(equations from Bailey 1967, p. 25).



250 ELISABETH A. LLOYD

arrive at precise mathematical solutions. Yet there is still a need to for-
mulate the complex models in well-defined mathematical terms (Bailey
1968, p. 43). In cases in which approximations cannot be done, simu-
lations are often used. These simulations are “realizations of a stochastic
model which are strictly analogous to possible realizations of a real-life
process” (Bailey 1968, p. 43). In other words, a computer is used to
produce a large number of artificial (as opposed to actual, laboratory)
realizations of the stochastic process in question. A large number of runs
are executed, using alternative combinations of the values of the param-
eters, which are fixed for each particular model. With the collection of
model results in hand, the biologist can then compute the means, vari-
ances, etc. for the models. Simulation models can also aid future research
by providing 1) information about what measurements might be useful,
and 2) a means of estimating parameter values (Starfield et al. 1980, pp.
338, 353; Bailey 1968, p. 42).

2.3 Example. Lewontin and Dunn’s work on polymorphism in the house
mouse, discussed below, provides an interesting example of both the sim-
ulation of a stochastic process, and an explicit comparison between de-
terministic and stochastic models.

Lewontin and Dunn (1960) examined a situation in which the existence
of a mutant ¢ allele at a specific locus is widespread among the popula-
tions studied. The polymorphism (presence of more than one type of al-
lele of the gene) is unusual. Strong selection against its maintenance in
the population is assumed because it is lethal when homozygous (except
in 3 cases, in which it causes male sterility). These ¢ alleles, however,
are also subject to a strong abnormality in the process of gamete pro-
duction and maturation. Under normal conditions, 50% of the gametes
of a heterozygote will contain one allele, and 50% the other. The het-
erozygote containing the z-allele, however, yields an abnormal ratio of
95:5 of ¢ to normal gametes—rather than the expected 50:50—now known
to result from differential mortality of the gametes as they mature (see
Bennett 1975).

The problem for the biologist is to explain how the polymorphism is
maintained in the population.

In general, the presence of the polymorphism is accounted for by a
balance between the two forces cited above: the selection against the mu-
tant ¢ allele in the homozygote reduces the number of such alleles, while
the stock of ¢ alleles is constantly increased by the abnormal gamete ratios
in the heterozygous males. Heterosis, i.e. superior fitness of the heter-
ozygote, might also serve as a balancing force, but this force is omitted
from these models because of lack of data (Lewontin and Dunn 1960, p.
707).
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Both deterministic and stochastic models can be used to represent the
key features of this qualitative account. The choice, in this case, turns
on assumptions about the value of the parameter for population size.

If the breeding groups (i.e. effective population size) are assumed to
be small, then chance processes, such as random drift, add a statistical
element to the situation, necessitating the use of a stochastic model. That
is, Wright showed that if you have a finite population size, the rates of
changes in gene frequencies will depend, among other things, on random
processes involving mutation rates, migration rates, selection, and “ac-
cidents of sampling”. One particular result is that it is easier to reach
fixation (of an allele) in small populations, in which genes are lost or
fixed at random, with little reference to selection pressure (Dobzhansky
1970, pp. 230, 232-234). With small populations, then, the presence of
the polymorphism is not understood to be purely a function of the inter-
action of the two forces discussed above, so a deterministic model is not
appropriate (Lewontin and Dunn 1960, p. 707).

If, on the other hand, the population size is assumed to be effectively
infinite, then the random effects resulting from small population size are
absent, and the state of the polymorphism in the population is solely a
function of the selection and abnormal segregation values (although in-
finite population size is not necessarily required by deterministic model-
ling).

The deterministic model, chosen first to account for the frequencies of
this polymorphism (from Bruck 1957), uses two parameters: the propor-
tion of mutant ¢ gametes in the effective sperm pool, m; and p, the fre-
quency of the non-mutant allele. The result of this model is a single value
for the frequency of adults heterozygous for the ¢ allele. This result was
found not to correspond with the result in nature (Lewontin and Dunn
1960, p. 708).

In addition to the empirical inadequacy of the deterministic model, the
biologists had theoretical reasons to believe that a stochastic model would
be more appropriate for this phenomenon. That is, they noted that the
effective size of a breeding unit is small; the species population as a whole
consists of a number of partly separated, relatively small, breeding groups.
Thus, Lewontin and Dunn decided that “a useful approach in the con-
struction of models is to test the effects on gene frequencies of small
effective size of the breeding unit” (1960, p. 708).

Lewontin and Dunn analyzed the stochastic model of the processes of
the interaction of selection, segregation abnormality, and restricted pop-
ulation size by simulation. The simulation is done by making rules for
the evolution of simulated populations that “conform with genetic rules
of meiosis, fertilization, and selection” (1960, p. 708). Random elements
are also included in the models, since chance is involved in the survival



252 ELISABETH A. LLOYD

and reproduction of any particular individual (selection), and in which
gametes are chosen from the gamete pool. Randomization of the union
of sperm and egg yields different frequencies on each run of the simu-
lation (done on computer, in most cases). The idea is to collect a number
of these different frequency results and get a distribution of the results
over a number of runs (Lewontin 1962, p. 67). The parameters fixed for
each run include N (effective population size), the fitnesses of the various
genotypes, and m (the factor of segregation distortion). Each run is started
with an exact description of the initial population (Lewontin and Dunn
1960, pp. 708-710).

Large numbers of runs are made with identical parameter sets; no two
of these runs will have the same results, because of random factors. Dis-
tributions, means, and variances can be calculated from the gene fre-
quency results obtained from all the models with a given parameter set.
Lewontin and Dunn’s statistical analysis of their simulated results led
them to conclude that the effects of changing the population size are sta-
tistically significant, i.e. use of a smaller value for the population size
parameter results in genetic drift. The actual distributions obtained by
Lewontin and Dunn from the simulation of the stochastic model conform
with the predictions made by Wright’s mathematical model (1960, p. 712).
They conclude that for small populations, the mean values from the sto-
chastic model do not correspond with the prediction from the determin-
istic model, because the latter model does not account for the chance loss
of alleles in small breeding groups (1960, p. 719).

Thus, with the application of a stochastic model to small breeding groups,
it is possible to produce simulation results that fit the actual results better
than the deterministic model. Information is also gained regarding the
exact inadequacies of the deterministic model for the particular phenom-
enon being modelled. In this case, the assumption of infinitely large ef-
fective population size, N, led to inadequacy of the model containing that
assumption.

3. The Structure of Population Genetics Theory. Having presented a
few particular examples of population genetics models which highlight
the presence and utility of certain facets of model description, I would
like to discuss details of the description of the theory according to the
semantic view. Formalization of any theory T, according to the semantic
view, involves defining the class of models of T. The theory is conceived
as defining a kind of ideal system. The main items needed for this de-
scription are the definition of a state space, state variables, parameters,
and a set of laws of succession and coexistence for the system (see Sec-
tion 1.1). Section 3.1 discusses the most common state space for the
representation of genetical phenomena of populations, and its theoretical
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disadvantages. Choice and evaluation of parameters, and the relations
between parameters and the structures are discussed in Section 3.2. Sec-
tion 3.3 contains some general comments regarding the laws or rules of
the models. Finally, I discuss very briefly the interrelationship among the
models.

3.1 State Spaces. Choosing a state space (and thereby, a set of state
variables) for the representation of genetic states and changes in a pop-
ulation is an important part of population genetics theory. As Lewontin
notes

The problem of constructing an evolutionary theory is the problem
of constructing a state space that will be dynamically sufficient, and
a set of laws of transformation [i.e. laws of succession] in that state
space that will transform all the state variables (1974, p. 8).

Paul Thompson has suggested that the state space for population ge-
netics would include the physically possible states of populations in terms
of genotype frequencies. The state space would be “a Cartesian-space
where ‘n’ is a function of the number of possible pairs of alleles in the
population” (Thompson 1983, p. 223). We can picture this geometrically
as n axes, the values of which are frequencies of the genotype pair. The
state variables are the frequencies for each genotype. Note that this is a
one-locus system. That is, we take only a single gene locus, and deter-
mine the dimensionality of the model as a function of the number of
alleles at that single locus.

Another type of single-locus system, used less commonly than the one
described by Thompson, involves using single gene frequencies, rather
than genotype frequencies, as state variables. Debates about “genic se-
lectionism” center around the adequacy of this state space for representing
evolutionary phenomena (see Sober and Lewontin 1982 for discussion of
this issue). With both genotype and gene frequency state spaces, though,
treating the genetic system of an organism as being able to be isolated
(meaningfully) into single loci involves a number of assumptions about
the system as a whole. For instance, if the relative fitnesses of the geno-
types at a locus are dependent upon other loci, then the frequencies of a
single locus observed in isolation will not be sufficient to determine the
actual genotype frequencies. Assumptions about the structure of the sys-
tem as a whole can thus be incorporated into the state space in order to
reduce its dimensionality. Lewontin (1974) offers a detailed analysis of
the quantitative effects on dimensionality of various assumptions about
the biological system being modelled. It is made clear in his discussion
that, although a state space incorporating the most realistic assumptions
is desirable from a descriptive point of view, it is mathematically and
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theoretically intractable. For instance, a total genetic description (with no
implicit assumptions) of a population with only two alleles at two loci
would have a dimensionality of nine, while three alleles at three loci
would be described in a 336-dimensional space (1974, p. 283). Most
organisms have thousands of loci; the one-locus system is much more
manageable, e.g. for the formulation of laws of succession for the sys-
tem.

A number of objections to the single-locus system have been raised by
biologists. These objections, reviewed below, can be understood in terms
of the descriptive inadequacy of the dimensions of the state space.

Michael Wade, in his discussion of group selection models, objects to
the use of the single-locus model in calculations of the strength of group
selection vs. individual selection. Since some of the processes important
to the operation of group selection (e.g. genotype-genotype interaction
and interactions between loci) cannot be represented by a single-locus
model, results of comparison of the forces of individual selection vs. group
selection within the context of such models is inevitably skewed (Wade
1978, pp. 103-104).

Interactions between genotypes, and between one locus and another,
cannot (except in the case of frequency dependent selection) be repre-
sented in a single-locus model, for the simple reason that they involve
more than one locus. The trajectory of the frequency of a gene involved
in these processes in a single-locus model will not follow a law-like pat-
tern, and will be thus inexplicable. Lewontin offers an example involving
two polymorphic inversion systems whose frequencies are dependent on
one another. The actual frequencies are inexplicable in a one locus model,
which does not allow for the interaction of the two polymorphisms in
their determination of fitness. Models of higher dimensionality (or using
different state variables) are necessary, because of the “dimensional in-
sufficiency” of the single-locus models (1974, pp. 273-281; since this
example has been discussed at length by Wimsatt 1980, pp. 226-229, I
shall not go into detail here).

At this point, I would like to introduce an additional category. Al-
though all single-locus models should, in some sense, be grouped to-
gether, they are not all exactly the same model-—each particular model
has a different number of state variables, depending upon the number of
alleles at that locus. Van Fraassen has suggested calling the general out-
line for each model its “model type” (1980, p. 44). Since a model type
is simply an abstraction of a model, constructed by abstracting one or
more of the model’s parameters, a single model can be an instance of
more than one model type; the model types themselves are therefore not
hierarchically arranged. Along similar lines, I suggest that each model
type be associated with a distinctive state space type. In the preceding
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example, the single-locus model is to be taken as an instance of a general
state space type for all single-locus models, i.e. the different single-locus
model types are conceived as using the same state space type. Alterna-
tives, such as two-locus models (see Lewontin 1971 for an example),
must be taken as instances of a different state space type.

Lewontin, dissatisfied with the theoretical results afforded by the use
of single-locus and even multi-locus state space types, has suggested an
entirely different state space type. The intention is to treat the entire ge-
nome as a whole, rather than as a collection of independently segregating,
non-interacting genotypes of single loci. Ernst Mayr has stressed the
importance of the interaction of genes and the homeostasis of genotypes
(i.e. large amount of linkage) in evolutionary processes. The genome will
respond to selection pressures as a whole says Mayr, instead of as an
aggregate of individual loci (Mayr 1967, p. 53). In our terms, since evo-
lution works this way, any accurate model of evolution cannot employ
the single-locus state space type. Following up on his claim that the con-
struction of a dynamically sufficient theory of a genome with many genes
is “the most pressing problem of theory”, Lewontin suggests an alter-
native approach using a completely different set of state variables (1974,
p. 318).

According to the semantic view, a description of a theory’s structure
involves the description of the family of models for the theory. An es-
sential part of this description of the family of models consists in de-
scribing the specific types of state spaces in terms of which the models
are given. In this section, I have presented a general sketch of the types
of state spaces associated with various model types, i.e. a description of
the class of state space types.

3.2 Parameters. Values which appear in the succession and coexist-
ence laws of a system that are the same for all possible states of the
defined system are here called parameters. For instance, in the modifi-
cation of the Hardy-Weinberg equation which predicts the frequencies of
the genotypes after selection, the selection coefficient, s, appears as a
parameter in the equation:

P*AA + 2pgAA + (1 — s)gPaa = 1 — sq*

There are a variety of methods of establishing the value at which a
parameter should be fixed or set in the construction of models for a given
real system. Simulation techniques, like those presented in Section 2.3,
can be used to obtain estimates of biologically important parameters. In
some contexts, maximum likelihood estimations may be possible. Param-
eters can also be set arbitrarily, or ignored. This is equivalent to incor-
porating certain assumptions into the model for purposes of simplification
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(see Section 3.1 on state space assumptions). (See also Levins 1968, pp.
8, 89; Bailey 1966, pp. 42, 220; Suppes 1967, pp. 62-63.)

Parameters can play roles of varying importance in the determination
of the system represented by the theory. In this section, I shall discuss
cases of the differing effect of the values of the parameters on the model
outcome. The choice of parameters itself can also be theoretically im-
portant, as seen in the group selection example below.

One expects the values of parameters to have impact on the system
being represented; but variations in parameter values can make a larger
or smaller amount of difference to the system. For instance, take the
deterministic model which incorporated a parameter for mutation, p (see
Section 2.1). The outcomes of this model are virtually insensitive to vari-
ations in the value of w. Yet the selection parameter plays a crucial role
in this same model; a very small amount of selection in favor of an allele
will have a cumulative effect strong enough to replace other alleles (Le-
wontin 1974, p. 267).

Population size is another case in which the value assigned to the pa-
rameter has a large impact on the model results. As the case of poly-
morphism in the house mouse shows (discussed at length in Section 2.3),
effective population size, N, can play a crucial role in some models, since
selection results can be quite different with a restricted gene pool size
(see Mayr 1967, pp. 48—50). In many of the stochastic models involved
in calculating rates of evolutionary change, the resulting distributions and
their- moments can depend completely on the ratios of the mean deter-
ministic force to the variance arising from random processes (Lewontin
1974, p. 268). This variance is usually proportional to 1/N, and is related
to the finiteness of population size. Thus, change in the value of the single
parameter, N, can completely alter the structures represented by the the-
ory.

The choice of parameters can also make a major difference to the model
outcome. Theoreticians have choices about how to express certain aspects
of the system or environment. The choice of parameters used to represent
the various aspects can have a profound effect on the structure, even to
the point of rendering the model useless for representing the empirical
system in question. Group selection models provide a case in which choice
of parameters not only altered the results of the models, but also led to
the near disappearance (in the models) of the phenomenon being mod-
elled, according to Wade (see 1978).

Wade analyzed the major group selection models and found that they
contain a number of common assumptions about various ecological pro-
cesses, including extinction rates, migration, dispersion, and colonization
(1978, pp. 103, 112). He challenged the accuracy of several of these
assumptions on grounds that they are not biologically realistic enough.



SEMANTIC APPROACH TO THE STRUCTURE OF POPULATION GENETICS 257

Take the assumption about colonization in the models—there are differ-
ent modes of colonization, and the presence of these different modes has
different effects on a number of factors affecting the existence and strength
of group selection (1978, p. 103). Wade claims that the assumptions about
colonization incorporated into existing models limit, automatically, sev-
eral mechanisms for creating and maintaining genetic variation between
populations (1979, p. 105; 1977, p. 150).

Since variation of group traits between groups is the analog in group
level models to genetic variation in the genotype level models, and the
operation of selection is dependent upon variation among the units of
selection, the initial assumptions about colonization can have large effects
on the selection results of the system modelled. Existing assumptions re-
garding colonization are not representative, Wade claims, and he chal-
lenges them empirically. He finally suggests an alternate model incor-
porating new assumptions about colonization and new values for the
colonization parameters suggested by his empirical research (1978, pp.
109-110; 1979; 1976; see Wimsatt’s discussion, 1980, pp. 238-248).

Some authors, when discussing genetical changes in populations, speak
of the system in terms of a phenotype state space type (Eden 1967, p.
10; Lewontin 1974, pp. 9-13). This makes sense, since the phenotype
determines the breeding system and the action of natural selection, the
results of which are reflected in some way, in the genetic changes in the
population. In his analysis of the present structure of population genetics
theory, Lewontin traces a single calculation of a change in genetic state
through both genotypic and phenotypic descriptions of the population.
That is, according to Lewontin, population genetics theory must map the
set of genotypes onto the set of phenotypes, give transformations in the
phenotype space, and then map the set of phenotypes back onto the set
of genotypes. We would expect, then, that descriptions of state in pop-
ulation genetics would be framed in terms of both genetic and phenotypic
variables and parameters. But this is not the case—the description can
be in terms of either genotype or phenotype variables, but not both. Dy-
namically, then, it seems as if population genetics must operate in two
parallel systems: one in genotype state space; one in phenotype state space
(Lewontin 1974, pp. 12-13).

Lewontin explains that such independence of systems is illusory, “and
arises from a bit of sleight-of-hand in which phenotype and genotype
variables are made to appear as merely parameters that need to be ex-
perimentally determined, constants that are not themselves transformed
by the evolutionary process” (1974, p. 15). A prime example of such a
“pseudo parameter” is the fitness value associated with the individual
genotypes while computing the mean fitness value, w. The mean fitness
value appears in the equation which expresses the relative change in allele
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frequency, Ag, of an allele at a locus after one generation, in terms of
the present allele frequency, ¢, and the mean fitness, w, of the genotypes
in the population:
_q(1 —q)dlnw

2 dq
(Lewontin 1974, p. 13). Although w is used in computation in a genotype
state space type, fitness is a function of phenotype, not genotype. Thus

information regarding values of phenotype variables is smuggled into the
genotype models through parameters.*

Aq

3.3 Laws. In line with my goal of providing a general approach for
describing the models of population genetics (since the theory is being
described in terms of a family of models), I discuss'in this section a few
particular aspects and forms of the laws used in these models. The most
obvious differences, in laws as well as in state space types, are between
deterministic and stochastic models. But, as discussed below, even laws
having the common framework of the Hardy-Weinberg equilibrium can
differ fundamentally.

Coexistence laws describe the possible states of the system in terms of
the state space. In the case of evolutionary biology, these laws would
consist of conditions delineating a subset of the state space which contains
only the biologically possible states. Changes in the state of the system
are described by laws of succession. In the case of evolutionary theory,
dynamical laws concern changes in the genetic composition of populations
(see Lewontin 1974, pp. 6-19).

The laws of succession select the biologically possible trajectories in
the state space, with states at particular times being represented by points
in the state space (this is simplified—see discussion on time variables
below). The law of succession is the equation of which the biologically

“A referee for this journal points out that the situation is even more complicated than
this passage suggests. That is, this phenotype information amounts to “the average effect
of the phenotypes in fact produced by the relevant genotype in the present generation”;
but changes elsewhere in the genome or any other changes in the genetic environment may
yield a different ‘average’ phenotype for the same genotype. Furthermore, the same av-
erage phenotype could yield very different fitnesses in slightly different environments.

*The concept of a system changing over time, where the system is usually interpreted
as a single population or species, is peculiar. David Hull has suggested that a more ap-
propriate interpretation of such systems would be as lineages, which have the desirable
qualities of being necessarily spatiotemporally localized and continuous (personal com-
munication). Note, however, that such interpretive problems are a separate issue from
description of the models, which simply represent ideal systems. Clearer understanding of
the ideal systems and their interrelations should shed light on the advantages and disad-
vantages of the various possible empirical interpretations of the systems (e.g. see Hull
1980).
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possible trajectories are the solutions (van Fraassen 1970, pp. 330-331).

The Hardy-Weinberg equation, of which several variations were pre-
sented in Section 2, is the fundamental law of both coexistence and
succession in population genetics theory. As Lewontin has noted, even
the dynamical laws of the theory appeal to only the equilibrium states
and steady-state distributions, which are estimated from the Hardy-Wein-
berg equation or variations thereof (1974, p. 269). The Hardy-Weinberg
law is a very simple, deterministic succession law which is used in a very
simple state space. As parameters are added to the equation, we get dif-
ferent laws, technically speaking. For example, compare the laws used
to calculate the frequency p’ of the A allele in the next generation. In-
cluding only the selection coefficient into the basic Hardy-Weinberg law,
we get p’ = p/(1 — sq*). Addition of a parameter for mutation rate yields
a completely different law, p’ = p — ps + ng. We could consider these
laws to be of a single type—variations on the basic Hardy-Weinberg law—
which are usually used in a certain state space type. The actual state space
used in each instance depends on the genetic characteristics of the system,
and not usually on the parameters. For instance, the succession of a sys-
tem at Hardy-Weinberg equilibrium and one which is not at equilibrium
but is under selection pressure, could both be modelled in the same state
space, using different laws.

In the discussion in Section 2 involving equilibrium and dynamical models
employing the Hardy-Weinberg equilibrium, the distinction between sto-
chastic and deterministic models loomed large. Examination of the gen-
eral features of the deterministic and statistical laws which appear in these
models should help clarify the structure of the theory itself.

A theory can have either deterministic or statistical laws for its state
transitions. Furthermore, the states themselves can be either statistical or
non-statistical. In population genetics models, gene frequencies often ap-
pear in the set of state variables; thus the states themselves are statistical
entities.

In general, according to the semantic view, a law is deterministic if,
when all of the parameters and variables are specified, the succeeding
states are uniquely determined (this definition of determinism, and its
advantages over other definitions are discussed in detail by van Fraassen,
1972, pp. 306-321). In population genetics, this means that the initial
population and parameters are all that is needed to get an exact prediction
of the new population state (Lewontin 1967, p. 87).

Statistical laws are constructed by specifying a probability measure on
the state space. The example presented in Section 2.2 entailed assigning
probabilities (frequencies) to each distinct possible value of gene fre-
quency. Thus, the probability measure is constructed by taking a certain
value for the gene frequency, obtaining the joint distribution (in this case,
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through simulation), and making a new state space of probabilities on the
old state space of gene frequencies.

Sometimes it is possible, depending on the variables and parameters in
the laws, to translate a stochastic law on determinate states into a deter-
ministic law on statistical states (van Fraassen 1970, pp. 333-334). In
the case of population genetics models containing statistical states, this
particular translation may not be possible, and the laws might remain
statistical laws on statistical state variables. Consider, for example, the
case of the polymorphism discussed in Section 2.3. The stochastic model
actually contained more relevant information, (i.e. about population size)
but less information in general, since it did not yield determinate values.
Stochastic and deterministic models can thus contain more or less infor-
mation, depending on the question being asked, and the aspects of the
system or environment being included.

In the last part of this section, I would like to discuss briefly a related
problem regarding the flexibility available in representing a given system.

In the representation of a system, a state can be conceived as a function
of time, or not. That is, the state vector itself can be a function of time;
the state is represented as a point, while the history of the system can be
represented as a curve. On an alternative approach, the operator repre-
senting the magnitude can be a function of time; the history of the system
would be represented as point in this state space, the different points
representing different “possible worlds” or world histories (van Fraassen
1970, p. 329-35).

Lewontin is interested in the biological usefulness of each of these pos-
sible ways to represent systems. He claims that although the usual mode
of presentation is done (in our terms) by employing an instantaneous state
space, the information presented thereby is not very interesting to the
biologist. A description of the “time ensemble of states of a given pop-
ulation” would be much more useful, he claims (1967, p. 82). We might
interpret this as a claim that a “possible worlds” representation would
represent the information in a more useful way. But Lewontin seems to
be saying more than this.

The case he is considering involves the following problem: In one case,
the gene frequency, Q, of a certain allele is calculated using a series of
randomly fluctuating, uniformly distributed values of the selection coef-
ficient. In the other case, the same procedure is performed using the exact
same set of selection coefficient values, except in reverse temporal order.
The resulting values of Q are different for the two cases. In other words,
in general, if the curves representing the paths of the selection coefficients
of each population through time are not identical, even though they have
the same mean, variance, and any other statistical measurement, the model
outcomes will not necessarily be identical, because of the difference in
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temporal order of the values (Lewontin 1967, p. 84). Thus, if a possible
worlds representation were possible, it would seem to contain more in-
formation about the system, since the time histories are preserved in a
certain sense. If this is so, then there would probably be problems trans-
lating between the two possible types of system, i.e. possible worlds and
instantaneous state space (analogous to Heisenberg and Schrodinger pic-
tures, respectively, in quantum mechanics). Are biological systems dif-
ferent from physical systems in that the descriptions of the systems, con-
ceived as both a function of time and independent of time, are not both
represented as two aspects of the same system in a Cartesian space? Le-
wontin explicitly claims that the gene frequencies of populations do not
follow the law of large numbers (1967, p. 84). In any case, this poses
an intriguing problem for future foundational research..

3.4 Interrelation of Models. The issue of the exact interrelations among
the different model types of population genetics is the topic of another
entire paper. Here I wish to make a few preliminary remarks.

According to the semantic view, the structure of a theory can be under-
stood by examining the family of models it presents. In the case of pop-
ulation genetics theory, the set of model types—stochastic and deter-
ministic, single-locus or multi-locus—can be understood as a related family
of models. The question then becomes defining the exact nature of the
relationships among them.

One rather nice example of a detailed analysis of a relation among
models was discussed in Section 3.2. There, parameters of genotype fit-
ness were found to be versions of information about phenotypes, con-
densed into genetic form. The model types constructed on phenotype and
genotype state space types can thus be understood as overlapping through
the specific parameter of fitness.

It can also be useful to examine models of the same phenomenon which
have different degrees of complexity. Some loss of information occurs in
all models when the parameters are set. By fixing the value of or ignoring
a factor which is known to be important in some contexts, assumptions
are made which simplify the model.

Sometimes the incorporation of simplifying assumptions reduces the
usefulness of the model. In the example presented in Section 2.3 the
assumption, present in the deterministic model, that the effective popu-
lation size had no bearing on the outcome of the model, turned out to
render the model inferior to a model which omitted such an assumption.
Lewontin and Dunn concluded that the latter model “more nearly explains
what is observed in nature” since it is “closer to the real situation” (1960,
p. 707).

It might seem that the inclusion in a model or set of models of as-
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sumptions that obviously do not correspond to the observed phenomena
would necessarily detract from the usefulness or accuracy of the models
involved. But the biologist Richard Levins has suggested a method of
eliminating detrimental effects of arbitrary assumptions on a theory as a
whole. He recommends replacing the unrealistic assumptions in a given
model or model type with other (perhaps equally unrealistic) assumptions.
A theorem which is supported by means of different models “having in
common the aspects of reality under study but differing in other details,
is called a robust theorem” (1968, p. 7). The actual operation and use-
fulness of such theorem testing is in the realm of theory confirmation,
and will not be discussed here. The important point is that, through con-
struction and comparison of alternative models and model types of a given
phenomenon for purposes of confirmation, the interrelation among the
various model types and parameters is made explicit.

4. Conclusion. In this paper, I have taken the semantic view of theory
structure as a general framework for foundational studies of population
genetics. A brief review of the semantic approach provided a basis on
which to discuss the theory. I examined specific problem areas in this
particular program of foundational studies, using examples of population
genetics models presented in Section 2.

According to the semantic view, to present a theory is to present a
related family of models. In the simplest case, these models are related
by having a common state space and common law of succession. Dif-
ferences between the models lie in different initial conditions (i.e. initial
location of the system in the state space), and hence different successions
of states satisfying the same law. Generally, however, the theory allows
for greater essential variety in the system it deals with (for instance, dif-
ferent degrees of freedom). Representation of these systems then requires
models with different state spaces (for instance, of different dimensional-
ity) and different laws.

In Section 2, I reviewed a variety of models employed in population
genetics. Using these as a starting point, in Section 3 I approached the
task of describing the models of population genetics in terms of the clas-
sification of state space types (such as single-locus state spaces), and law
types (such as the general form of the Hardy-Weinberg laws). In general,
instances of a type differ by having different values for parameters, while
different types result from the choice of parameters. Further research is
indicated, especially on the relations between state spaces (such as in
genotype and phenotype modelling) and the relations between different
sorts of laws of succession (such as in deterministic and stochastic model-
ling).
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