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SYMMETRY AND ASYMMETRY IN
THE CONSTRUCTION OF ‘ELEMENTS’
IN THE TIMAEUS*

I. OUTLINE AND INTRODUCTION

In the last seventy years, aspects of symmetry have become very significant in the
physical sciences. Many of the available introductions to this symmetry theory! refer,
directly or indirectly, to the so-called ‘Platonic Solids’ of the Timaeus as prototypes.
In the present article I intend to show that there is also a connection in the reverse
direction, since similar symmetry arguments have relevance to a problem which has
concerned commentators on the Timaeus for some time. At Tim. 54A-55C the bodies
of the four ‘elements’ are constructed by the Demiurge from sub-units, equilateral
triangles and squares, which are themselves made up of smaller triangles, Plato’s
stoicheia. The problem with this construction is that the numbers of stoicheia
specified for the sub-units appear to be larger than necessary. Cornford® suggested
that the Timaeus recipe is actually that for the second member in a series of equi-
lateral triangles (squares) of increasing size, not for the first member, and proposed a
rationalization for this. Although this rationalization has not been generally
accepted,’ and Taylor* had earlier given reasons for preferring the Platonic con-
struction, Cornford’s proposed structures have been used widely. The question as to
why the Demiurge uses his particular constructions and not the simpler versions
remains. According to Brisson,> ‘Il est extrémement difficile de répondre a cette
question.” Zeyl® thinks that there is ‘something of a mystery, and the problem is
considered to be ‘wirklich erklarungsbediirftig’ by Bohme.” The difficulty seems
worth investigating.

In this paper I contend that the ‘superfluity’ of triangles is only apparent; all those
specified are indeed required for the smallest sub-units, so long as the symmetry of the
final body to be constructed is taken into account at earlier stages. This condition sets
requirements on the symmetry of the two-dimensional sub-units, equilateral triangles
and squares, and hence on the construction of larger versions. So long as the sym-
metry principles are followed, the construction of the larger sub-units can be shown

* T wish to thank Professor David Sedley for invaluable discussions on this work, and the
Warden and Staff of Madingley Hall, Cambridge, for providing a most pleasant and stimulating
environment for them. I am also grateful to the referee for some very helpful comments.

! See the Appendix.

2 F. M. Cornford, Plato’s Cosmology, (London, 1937), especially 234-9.

3 Although D. J. Zeyl, Timaeus, (Indianapolis, 2000), 1xix, provides cautious support to
Cornford at this point. I use Zeyl’s translation, unless otherwise specified, and at most points I
discuss arguments, at least initially, as presented in the accompanying commentary.

4 A. E. Taylor, A Commentary on Plato’s Timaeus (Oxford, 1928), 374.

5 L. Brisson, Méme et 'autre dans la structure ontologique du ‘Timée’ de Platon: un comment-
aire systématique du ‘Timée’ de Platon (Sankt Augustin, 1994?), 364. See also Brisson and
Meyerstein, Inventing the Universe (Albany, 1995), 46: ‘It has never been explained why Timaeus
needed six right-angled triangles to make an equilateral triangle when two would have suffice(d).”

6 Zeyl (n. 3), Ixviii, n. 141,

7 G. Bohme, Platons theoretische Philosophie (Stuttgart, 2000), 304.
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460 D. R. LLOYD

FIGURE 1. Constructions of the simplest equilateral triangle from the ‘most excellent’ (Tim. 54A)
scalene right-angled triangle. (a) According to Cornford (234-8); (b) According to Timaeus
(54D-E).

to be in accord with the Timaeus text. Fully symmetric three-dimensional bodies can
be created from these sub-units and from no others; any choice of sub-unit other than
those specified by Plato generates bodies with lower symmetries than the true ones.

Furthermore, if the specification is complied with, a unique construction for each
of the prototype bodies follows. In contrast, there are many possible ways to assemble
any particular body if other units are used. This leads to a built-in multiplicity for
each size of ‘element’ , which seems inimical to Plato’s thought. In the proposals of
Cornford,? structures that are additional to those that can be assembled using the
original Platonic description fail these tests of symmetry and of uniqueness.

II. THE ‘MYSTERY’

The elements of Fire, Air, Water and Earth are associated in the Timaeus with four
of the five three-dimensional regular polyhedra (‘solids’). In a careful but very
condensed description it is shown how these can all be constructed from elementary
triangles, the scalene right-angled triangle, nowadays specified as having angles of
30° and 60°, for the tetrahedron, octahedron, and icosahedron, and the isosceles
right-angled triangle (45°) for the cube.

I deal mainly with the three polyhedra with equilateral triangular faces. Figure 1b
shows the assembly of the primitive equilateral triangle which Timaeus specifies at
54A-E. Figure 1a shows the apparently simpler alternative which is suggested by the
name hémitrigénon. The ‘mystery’ can be specified briefly as: why does the text specify
1b, and not 1a? The answer proposed by Cornford” is that 1b is intended as a general-
ized specification of an equilateral triangle which is intermediate in size between the
small 1a and higher members of a set of increasingly larger ones, each constructed
from the minimum possible number of half-equilateral triangles.

Although it is clear that Plato requires many sizes of each element, there is no
evidence in the text for this particular proposal of Cornford, but his series has been
widely adopted, inter alia by Friedlinder,'? Vlastos,!! Gregory,'? and Zeyl.!3 The first
two of these authors show in some detail three-dimensional structures which can be
constructed using the Cornford series of equilateral triangles, and these illustrations

8 Cornford (n. 2), 238. 9 Cornford (n. 2), 234.

10 P, Friedlander, Plato, translated from the German by Hans Meyerhoff (Princeton, 1958).

1 G. Vlastos, Plato’s Universe (Oxford, 1975), 69—79. The diagrams here are reproductions of
those in n. 10; they are quoted in the text, rather than the originals, since they are probably more
readily accessible.

12° A. Gregory, Plato’s Philosophy of Science (London, 2000), 196-200.

13 Zeyl (n. 3), Ixix.
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SYMMETRY AND ASYMMETRY 461

FIGURE 2. A simple equilateral triangle, showing the positions of the three reflection or mirror
planes.

can be consulted, bearing in mind the caveats that will become apparent, to extend the
range of examples which will be given here.

More than a century ago it was suggested by Wilson' that the advantage of 1b over
1a ‘is that the former division is symmetrical and the latter is not’. The response of
Cornford,! ‘this is true, but why is this important?’, seems to have buried arguments
based on symmetry, at least for the English-speaking world.! I intend to show not
only that this is important, but that it is crucial.

III. THE ARGUMENT IN TWO DIMENSIONS

The symmetry of an object is completely specified by the set of symmetry operations
which convert the configuration of the object to an equivalent, indistinguishable
configuration. This may appear trivial, but merely by specifying this symmetry fully,
some surprising results appear; for example, despite their different shapes, it can
readily be shown!7 that two of Plato’s polyhedra, the octahedron and the cube, have
identical symmetries, and the same is true for the dodecahedron and icosahedron
pair.

For a simple equilateral triangle, one variety of such a symmetry operation is a
rotation through 120°. (A more detailed presentation of this argument is given in the
Appendix.) Three such operations bring us back to the starting configuration, so the
rotation axis is referred to as threefold. Another operation, which relates to the
obvious ‘left-right’ symmetry, is that of an imaginary mirror perpendicular to the
plane of the triangle—this ‘reflects’ the left half into the right, and vice versa. There
are three such ‘mirror’ or ‘reflection’ planes, whose positions are shown by dashed
lines on Figure 2 ; the intersection of these gives the position of the rotation axis.

The triangle in Figure 2 is a complete, undivided triangle, but it is clear that the
mirror plane positions match exactly the positions of the join lines in the composite
triangle of Figure 1b. If we superimpose the two figures, there is no difference except
for the join lines. It is shown in the Appendix that the symmetries of the simple
undivided and composite triangles are therefore identical.

14 J. C. Wilson, On the Interpretation of Plato’s Timaeus: Critical Studies (London, 1889), 49,
also cited by Taylor (n. 3), 374.

15 Cornford (n. 2), 217, n. 2.

16 A similar comment to Wilson’s, but concerning the vertices of the polyhedra, appears as a
footnote in E. M. Bruins, ‘La chimie du Timée’, Revue de Métaphysique et de Morale 56 (1951),
269-82, 279, n. 2. For a comment concerning axial symmetry, see n. 23 below.

17 See references in the Appendix.
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462 D. R. LLOYD
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FIGURE 3. Construction of the triangle shown in Figure 1b. The first stage, the quadrilateral
AEOD formed from two elementary triangles kata diametron is emphasized, and the position of
the mirror plane which generates this from a single triangle is indicated by the dashed line. The
second stage can be described as the operations of the threefold axis on AEOD. Taylor’s unit (see
n. 24) OADOCFO also has mirror symmetry and generates the complete triangle through the
rotation operations. Lettering follows Zeyl (n. 3), 45.

The simple equilateral triangle is described by Speusippus,'®!° writing only a little
later than Plato, and probably influenced by him? at this point: mpd7ov ydp éort
Tplywvov 76 lodmlevpov, & éxer plav mws ypapuy kai yovia: Aéyw 8¢ piav,
8187t loas éxer doyioTov yap dei kal évoedés o loov. If it is possible to make any
connection at all between the language of the Academy and that used nowadays, this
seems to be close to a modern description of the symmetry of an equilateral triangle,?!
and of 1b, Plato’s unit.

In terms of symmetry, any individual one of the elementary ‘half-equilateral’
triangles of Figure 1b can be used to generate the complete sixfold unit by operating
on it with the reflection and rotation operations. This has similarities to the recipe of
Timaeus (55D-E): first, two triangles are joined kata diametron. Most commentators
take this to mean joining them with a common hypotenuse to create a quadrilateral.
There are two ways to do this; one of these produces a rectangle,??* but with no
mirror symmetry. The alternative is to join them as the unit** AEOD in Figure 3
which does have mirror symmetry. In modern terms, operation by the mirror
generates this odd-looking unit from a single triangle. Operation by the threefold axis
on this unit now generates the complete equilateral triangle; in the language of
Timaeus, ‘this is done three times’. The first step of the assembly implied mirror

18 Quotation in Iamblichus (attrib.), Theologumena Arithmeticae; text with English trans-
lations in Thomas, Greek Mathematics 1 (Boston, MA, 1939), 75, and L. Taran, Speusippus of
Athens: A Critical Study with a Collection of the Related Texts and Commentary (Leiden, 1981),
141. Taylor (n. 4), 370 has emphasized the significance of this quotation; his translation reads
“The first triangle is the equilateral which has in a sense only one side and one angle; I say one,
because they are equal, for the equal is always undivided and unitary.’

19 Speusippus can use ‘one’ in the modern sense of the first integer, unlike Plato and Aristotle.
See the discussion in J. M. Dillon, The Heirs of Plato: A Study of the Old Academy (347-274 B.C)
(Oxford, 2003), 44-51, and Taran (n. 18), 277.

20 Taréan (n. 18), 286.

21 Although Speusippus does call this triangle ‘undivided’ (aschiston, ‘indivisible’ in Thomas,
n. 18), which suggests that he might have some difficulty with the argument for the equivalence of
the undivided and (appropriately) divided triangles.

2 For a fuller discussion, see Brisson (n. 5), 364.

2 The phrase which follows, at Tim. 54E2, ‘their short sides converge upon a single point as
center’, may be meant partly to avoid the rectangle confusion.

24 See also Zeyl (n. 3), 45; Cornford (n. 2), 217, n. 1.
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SYMMETRY AND ASYMMETRY 463

symmetry, and it seems that Plato may now be thinking in terms of the rotational
symmetry in this second step, even though this language does not exist for him. A
recent comment by Brisson? supports this idea: ‘On peut cependant penser que, dans
le cas du carré et dans celui du triangle équilatéral, Platon veut trouver un centre de
symétrie axiale’ (the square is discussed below).

There is an alternative interpretation of the first part of the recipe for the
equilateral triangle,’ but this does not change the symmetry argument. For either
interpretation, the Timaeus recipe makes perfect sense when expressed in the modern
language of symmetry.

Returning to Figure 1a, the triangle proposed by Cornford as the minimum unit, it
is clear that this does not have the threefold rotational symmetry required to specify a
truly symmetric equilateral triangle. So much symmetry has been lost that the only
operation possible is that of the single mirror plane along the join line. We can now
compare the effects of the two types of symmetries represented in la and 1b as we
build up the polyhedra.

IV. THE ARGUMENT IN THREE DIMENSIONS

The primitive tetrahedron can be constructed from four equilateral triangle sub-
units, following the recipe indicated at 54E. The commentators have very little to say
about this final assembly process, but sometimes illustrate the end result with a
diagram; I will return to some aspects of the presentation of such diagrams during
the course of this paper. Popper has presented an analysis of some implications of
the Timaeus text here, which he believes has been misunderstood.?’

In the context of the symmetry argument, it is interesting that Popper makes no
commitment about the construction of the equilateral triangles: by leaving them
undivided, no symmetry problems arise. It is convenient to start by considering the
assembly of four such ‘blank’ undivided triangles. Because the undivided units have
the full triangular symmetry, all possible relative orientations of the separate units as
they are brought together, including Popper’s, give the same result: there is only one
possibility for the final regular tetrahedron.

The same applies to the assembly of four divided equilateral triangles of the type
shown in Figure 1b. Such a tetrahedron, despite the sectioning of the faces, has the
full symmetry of the undivided regular one (see Appendix).

25 L. Brisson, ‘A quelles conditions peut-on parler de “matiére” dans la Timeé de Platon?,
Revue de Métaphysique et de Morale (2003), 14.

2% Taylor (n. 4 ), 374-5, disagrees strongly with the interpretation described above. He thinks
that kata diametron does not mean adjacent hypotenuses but the creation of diagonals across a
quadrilateral ACFD (see Figure 3). This also generates a unit which has mirror symmetry and is
converted into the full triangle by the operation of the threefold axis. As far as the present
argument about symmetry goes, this works as well as the alternative; indeed, if this is correct it
provides better support for the rotation axis concept, since it is difficult to see how the second
stage can physically be ‘done three times’ if triangle pairs are joined to one another only at a
mathematical point.

However his quadrilateral requires the construction of a line (DF) which is not a part of the
triangle, and which will cut across other triangles in the final sub-unit. In contrast, the unit
AEOD preferred by Zeyl and Cornford already has a quadrilateral formed once the triangles are
brought together, and the diagonal of this is the common hypotenuse. Taylor seems to take up
this position because for him it is ‘unthinkable’ that the quadrilateral (‘trapezium’ ) could be
considered by Timaeus.

21 K. R. Popper, ‘Plato, Timaeus 54E-55A°, CR 20 (1970), 4-5.
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FIGURE 4. Two different tetrahedra made up by assembling type 1a triangles. (a) In perspective,
following Vlastos (n. 11), but see text; (b) in projection, with join lines now set for maximum
symmetry. Heavy lines outline the three triangles meeting at apex A, which points towards the
viewer.

In describing the regular tetrahedron, Speusippus uses remarkably similar lan-
guage to that above for the equilateral triangle: yiverar ydp mws 7 uév mpdrn
mupauls plav Tws ypauuly Te kal émpdveiay v iodtyr éxovoa.?® Symmetry, in
the present-day sense, is clearly of great importance to him, and presumably to others
in the Academy. Even though our language is not available, the ‘one-ness’ appears to
indicate something of our ‘fully symmetric’.

The ‘one-ness’ needs to be borne in mind as we consider trying to assemble a set of
four sub-units of the type in Figure la. The most obvious symmetry element of a
regular tetrahedron, when it is drawn or imagined as sitting on a side, is the ‘vertical’
threefold rotation axis which passes through this triangular base. But a base like la
has lost its threefold symmetry—here can be no ‘vertical’ axis for this tetrahedron.
One of the important symmetry properties of the regular tetrahedron is that it has
four threefold axes, but in going through the above argument successively it is clear
that all of these have been destroyed by using 1a-type triangles. There is simply no way
to construct a truly regular tetrahedron with these triangles.

This is illustrated in Figure 4a, which shows a perspective view of one of the
possibilities. This is essentially the figure shown by Friedlidnder,” and reproduced by
Vlastos® in his Figure 2. However, on the original figure, only the front join lines,
which I have shown with heavy lines, are indicated. The present point about the low
symmetry is therefore obscured. When the dashed join lines on the back faces are
added, it can be seen that there is only a single reflection plane left, which includes
these join lines. Any alternative orientation of one of the three sides which meet at the
apex A would destroy even this low symmetry. Figure 4b shows a view of a different
tetrahedron, this time in projection, so that the apex A is now at the centre of the
figure. If the join line on the base is aligned with CX, the maximum possible
symmetry with la triangles (two mirror planes and various axes) is reached.

In the terms used by Speusippus, it can be seen, using Figure 4, that a tetrahedron
built from 1a triangles no longer has ‘one edge’; some edges have two triangle joins at
the mid-points, others one, and others have none. The tetrahedron no longer has ‘one
angle’, since at the vertices some planes are bisected by joins, others are not. Neither
he nor Plato are likely to have found such irregular tetrahedra acceptable.

28 nn. 18-20. Taylor (n. 3) translates this as ‘it has in a sense one edge and one angle in equality,
like a number one’.
2 . 10. ® n, 11,
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SYMMETRY AND ASYMMETRY 465

There is yet another problem: not only is this tetrahedron irregular, it is very far
from unique, as Figure 4 illustrates. The la triangle forming the base has three distin-
guishable orientations, and the same is true of each of the other three sides. Since each
side can be oriented independently, there are 3 x 3 X 3 x 3 =81 possible combinations.
These come in sets of equivalent structures, but there are still many different sorts of
this element. These structures are difficult to draw adequately in two dimensions, but
three-dimensional models can readily be made, then as now,' and the points I have
been trying to make with the symmetry arguments are immediately obvious on such
models. Since Timaeus is setting up the generation of ‘elements’, though he dis-
approves of the term,* it is hardly likely that he would have allowed a scheme in
which each of his ‘elements’ has a built-in multiplicity, when ‘order is in every way
better than disorder’ (30A) and ‘likeness is incalculably more excellent than unlike-
ness’ (33B). These constraints apply to the kosmos at the cosmic scale; why should
they be relaxed at the microscopic scale?

It would be convenient to have a name for these multiple ‘sorts’ of ‘elements’ which
at first sight appear to be one structure, but actually have many different join line
patterns. In modern chemistry, the two words ‘allotrope’ and ‘isotope’ distinguish par-
ticular aspects of elements as they are now understood (see Section VII), but neither
has much connection with this point in the development by Timaeus. Although the
polyhedra assembled from sub-units have been called atoms by Gregory,* they have
more in common with the modern idea of molecules. Friedldnder refers to ‘the
elementary molecules of Plato’,** and Rex to ‘Molekulartheorie’.> Chemists use the
word ‘isomers’ for different forms of a molecule of the same formula; this description
fits the various tetrahedra, such as 4a and 4b, very well, and will be used again below.

The constructions of the octahedron and the icosahedron follow the pattern estab-
lished for the tetrahedron. The proof that assembly of type 1b triangles gives a perfect
octahedron follows, as with the tetrahedron, from the fact that the symmetry of the
set of join lines of the composite body is the same as that of the regular octahedron.
For example, the mirror planes of the triangles are maintained in the symmetric
octahedron, and they convert this set of joins into itself, but only so long as type 1b
triangles are used.* In contrast, Figure 5a shows an octahedron built up from tri-
angles of type la, with orientations chosen to maintain the maximum possible
symmetry. This is similar to Figure 3 of Vlastos.’” At first sight this may look like a
symmetric octahedron—it certainly has a ‘vertical’ fourfold axis, and this is at the
intersection of mirror planes as in the regular octahedron. However, drawings like this
can be deceptive. The eye concentrates on the vertical axis only, but if this were a truly

3 Although this is somewhat easier now. Anyone with paper, pencil, ruler and 60° set-square,
or some Euclidean construction with a pair of compasses, can draw the nets of these figures;
scissors and some adhesive can transform these into respectable models of the solids. It is even
easier to use the child’s toy “Magnetfix’, in which steel balls are clamped together by coloured bar
magnets, and the polyhedra almost self-assemble. The ‘isomers’ referred to below can then be
symbolized by using different-coloured magnets to represent edges with zero, one, or two joins.

32 At 48B-C the word stoicheion has been rejected, and it has been used for the elemental
half-equilateral triangle at 54D. I refer to ‘elements’ when discussing the various bodies, but
elements when referring to modern usage.

3 Gregory (n. 12), 198.

3 (n. 10), 250.

35 F. Rex, ‘Die alteste Molekulartheorie’, Chemie in unserer Zeit 23 (1989), 200-6.

36 The effects of mirror planes are probably the easiest to visualize, but all the operations
transform the set of joins into equivalent configurations. More detail is given in the Appendix.

37 n. 11. The original figure does not show all the join lines.

This content downloaded from
76.69.164.32 on Fri, 23 Jun 2023 17:06:30 +00:00
All use subject to https://about.jstor.org/terms



466 D. R. LLOYD

FIGURE 5. ‘Isomers’ (see text) of the primitive octahedron made up using six triangles of the form
la. The body is drawn as a ‘wire frame’, but the joins on the back faces are shown with dashed
lines. The front join lines have been emphasized. (a) This has fourfold symmetry, but only along
the vertical axis, and along the other two axes, one of which is marked, there is only twofold
symmetry. (b) One triangle has been rotated before joining on to the others, and the ‘octahedron’
now has no symmetry.

regular octahedron, it would have a set of three such fourfold axes through opposite
vertices. Two of these have disappeared, and have been replaced by twofold rotations,
one of which is indicated.

The orientation shown also concentrates attention away from the four threefold
axes which should run through opposite faces. All of these la-type triangles have lost
their threefold symmetry, so all four of these axes are missing, and the true symmetry
of an octahedron has been lost. Nevertheless 5a looks, and is, quite symmetric, since
the triangle orientations have been chosen to maximize symmetry. However, there is
no requirement to choose this particular set of orientations, and only one of these
orientations needs to be changed to destroy the symmetry completely, as shown in
Figure 5b. As with the tetrahedron, there is a multiplicity of possible orientations for
the assembled octahedron, this time 36 = 729, and again what is supposed to be one
element consists of very many different isomers, two of which are shown in Figure 5.

The symmetries of the tetrahedron and the octahedron are disrupted by incorrect
symmetries on the faces, and this is equally true of the icosahedron, which can only
have full symmetry if constructed from 1b triangles. There are even more possible
isomers if la triangles are used here; a brief discussion is provided in the Appendix.

V. LARGER TRIANGLES AND POLYHEDRA

At 57C-D it is made clear that there are various sizes of triangle, and Cornford
argued convincingly that this cannot mean that there are different sizes of elementary
half-equilateral triangles.® Instead, he has proposed that the larger equilateral

3% Cornford (n. 2), 230-3. He notes that the alternative, of a series of differently sized element-
ary triangles, stoicheia, for example A,B,C, . . . requires that ‘A-fire’ can only transform to
‘A-water’ and ‘A-air’, and so on. There is no evidence in the text for this very restrictive condition;
Plato seems to assume that transformations are perfectly general. There is a further problem with
differently sized stoicheia which Cornford does not raise. Unless the numbers of grades of fire, of
water, and of air are exactly the same, then there are redundant possibilities. There might perhaps
be ‘X-air’ and no ‘X-fire’. It would then need to be explained why ‘A-air’ and ‘A- fire’ interconvert
but ‘X-air and ‘X- fire’ cannot. The alternative of exact equivalence of the numbers in the grades
seems very unlikely when the numbers of actual examples given are compared; see Brisson and
Meyerstein (n. 5), 53.
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FIGURE 6. A superposition of the first three equilateral triangles of the series S (ABC, AHI, and
AJK) showing how two parts of the Timaeus text both apply to them. Successive members may
be considered to be built up by combining increasing numbers of equilateral triangles of the 1b
type. Alternatively, increasing numbers of the smallest scalene triangle, of the type AOE, can be
combined to generate larger scalenes APC, and so on, as indicated by the heavy lines. These larger
stoicheia satisfy the conditions of 57C-D; they vary according to their sustasin. These scalenes
can then be combined according to 54D-E, generating the larger equilaterals.

triangles are all built up using a single size of half-equilateral. He has gone further in
taking the 1a triangle as the simplest equilateral unit; I have shown that this does not
allow the construction of properly symmetric bodies, but that Plato’s triangle, 1b,
does. This latter is therefore the smallest unit, and it is necessary to examine the
symmetries of the larger triangles and the bodies constructed from them.

Larger equilateral triangles can be built up by assembling several smaller ones in a
symmetric array. There is a simple (S) series of these, in which the numbers of
component 1b triangles are given by the squares of successive integers, 1, 4, 9, etc.,
and the numbers of elementary half-equilaterals are six times as great. However, an
alternative and more complex (C) series has been proposed by Cornford, beginning
with the 1a triangle. This C series generates equilateral triangles in which the numbers
of half-equilaterals are 2, 6, 8, 18, 24. The arguments for the C series have been
criticized by Pohle,*® who demonstrates that the supposed advantages of C over S
disappear as we move to the limit of large numbers.

Just as the first member of S (Figure 1b) has the full symmetry of an undivided
triangle, so does the next, which is made up from four of 1b (that is, the fifth member
of C, with 24 half-equilaterals); this symmetry is maintained through the S series,
since in each case the join lines of the composite unit have the full equilateral
triangular symmetry. Figure 6 illustrates this; the differences in weight of the lines
should be ignored for the moment. ABC, with threefold symmetry at O, has been
dealt with in Section III. The next member AHI, which can be considered as made up
of four 1b-like equilaterals, has threefold symmetry at P, with the full complement of
mirror planes. Similar comments apply to the symmetry at Q for triangle AJK (with
nine of 1b). R is the centre for the fourth member of S (not shown), and a similar

3 W. Pohle, ‘The mathematical foundations of Plato’s atomic physics’, Isis 62 (1971), 36-47.
The designations C and S are taken from this paper. His illustration for S shows empty
(undivided) triangles, but it is equally relevant to 1b triangles; in his later analysis, this is his Series
IIT; his Series II corresponds to my (C-S) series below.
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pattern repeats throughout the series. Fully symmetric, unique polyhedra can there-
fore be built from these S-series triangles.

The C-series includes the S, but the additional equilateral triangles in C, which can
be described as the series (C-S), all have lower symmetry; they can be considered to be
assemblies of la triangles. This (C-S) series cannot be used to build symmetric
polyhedra.*® Many different tetrahedra and so on can be built from la triangles (see
Section IV), the first member of (C-S). The next member of this (C-S) series, with
eight half-equilaterals, has the same problem, but in addition there is a non-
uniqueness in the triangle itself, since all four 1a triangular components can have their
own orientation; there are isomers of the triangle as well as of the polyhedra. Indeed
different authors draw this composite triangle in different ways.! It is surprising that
this does not seem to have rung alarm bells earlier.

In addition to the advantage of symmetry, the S series has a very important
property which relates to the text of Timaeus. The only specification given for the
construction of the equilateral triangle is that at 54D5-E3, for the 1b triangle, but no
specification is given for the building of larger equilaterals. However, at 57C8-D3 we
are told that the stoicheia vary according to their sustasin, which generates triangles of
different sizes. Cornford analyses this passage in detail, and remarks that the meaning
of sustasin has to be active, a ‘putting together’, and translates as ‘construction’. Zehl
agrees with this, and Zekl translates this as ‘Bildung’. So far I have considered
members of the S series as assemblies of equilaterals, but they can equally well be
considered to be assemblies of successively larger scalene triangles, all of which follow
Plato’s construction as used for Figure 1b, at 54D5-E3. The scalene triangles them-
selves are put together from increasing numbers of the first stoicheion. These numbers
also follow the sequence of squares of integers: 1, 4,9, . ..

This is illustrated in Figure 6, in which the heavy lines mark out successively larger
composite scalene triangles. The first member, AOE, is as in Figure 3; six of these are
assembled to form ABC according to the Timaeus recipe. Similarly six of APC (each
with four components of the type AOE) form AHI, the second member. Six of AQG
(nine components) form the third member AJK, and six of ARI, each with sixteeen
components, will generate the fourth. Thus all of the S series equilateral triangles are
consistent both with 57C7-D3 and with 54D5-E3, and also satisfy the symmetry
condition.*?

The (C-S) series, in contrast, can only be reconciled with 57C7-D3 if the pattern of
assembly of the scalene triangles in Figure la is adopted, and this cannot be justified
from the text. It is not simply that the 1a triangle is not in agreement with the specifi-
cation of the equilateral at 54D-E; all the other members of this (C-S) series have the

4 Bruins (n. 16) has discussed a possible mechanism for interchange between the different
bodies. His ingenious scheme requires some very complex sectioning of large polyhedra in order
to generate the next smaller ones. Much of this complication arises because he is carrying out an
interconversion between a (C-S) series body and an S-series body. Since only S-series bodies are
allowed by symmetry, his scheme can be greatly simplified. In particular, further division of the
minimal equilateral triangles or squares defined in the Timaeus text becomes unnecessary—these
units can remain a-tomon throughout the interconversions.

4 Compare Cornford (n. 2), 238, Vlastos (n. 11), 75, and Gregory (n. 12), 200.

4 Gregory (n. 12), 298, n. 44, has commented that there may be a problem with sustasin, since
it is not clear whether this refers to the putting together of the stoicheic triangles in the sense of
their internal composition or to their external arrangement with other stoicheics into what he
calls complexes, the equilateral triangles. Within the S series, this problem disappears; the
construction can be set out in either formulation, and both can be picked out by eye on Figure 6.
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FIGURE 7. Construction of squares from isosceles right-angled triangles. (a) The simplest,
according to Cornford ([n. 2], 238). The two symmetry planes are shown; the fourfold axis of the
true square has become twofold. (b) The construction according to Tim. S5B—C, with a fourfold
axis and four mirror planes. (c) the third member of Cornford’s series, with a construction which
is different from the usual one, but equally valid.

same problem; they can be rejected for this reason, as well as for the symmetry reasons
given above.

Up to now the Cornford proposal for larger bodies, the C series, has had general
approval among writers in English, even if with some qualification and muted
criticism. Given this, the reaction from Brisson,** who referred to this construction
system as ‘la tentative louable, mais hypothétique et inutile, de F.M.Cornford’, is at
least surprising. I contend that, although there are indeed serious problems with the
complete set of Cornford’s suggested structures, which have been set out in detail
above, the subset of these which is represented as the S series is by no means ‘inutile’;
it satisfies the conditions set out by Plato as well as those demanded by symmetry.

VI. THE CUBE

There are no new symmetry principles here. However, Plato has to use a different
elementary triangle, the isosceles right-angled triangle, in order to create the two-
dimensional sub-unit, the square. Again Cornford* takes the Timaeus construction
at 55B-C, shown in Figure 7b, to be the second member of a series (C) which begins
with a ‘simpler’ one (Figure 7a). It should be clear that in 6a most of the symmetry
operations of a square are absent.*> A ‘cube’ built from these cannot have the true
symmetry of this body, and as with the polyhedra built from triangles of the (C-S)
series, there will be many isomers, differing in the pattern of join orientations, for
each of these ‘cubes’. In contrast the joins in 7b have the true symmetry of the
square, and the unique cube built from such squares has the true symmetry of the
cube.

The argument is not exactly parallel to that of sections III-V for squares of
increasing size. The above discussion of C and S series still applies, and the S series
squares, of which the first is 7b, generate unique, symmetric cubes. The discussion of
the construction of differently sized stoicheia in section V can be applied equally to
the isosceles triangles forming these squares. However, the higher members of the
(C-S) series can, if desired, be made more symmetric than those for the triangle series.

4 Brisson (n. 5), 391, n. 3. # Cornford (n. 2), 233, 238.
4 The comment of Brisson (n. 25) about rotational symmetry can be applied to 7b, but not to
7a, which has only a twofold axis; a true square has a fourfold axis.
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Illustrations*® show the third member as if built up from four of 7a, but with
orientations adjusted appropriately so that the diagonals of the complete square are
formed by the joins, giving a fully symmetric square, with a fourfold axis and four
mirror planes. If this procedure is followed for the square, a symmetric cube, which for
this particular square is unique, is generated.*’” However, there is no requirement that
the alignments of the 7a component squares must be adjusted to maintain a high
symmetry of the larger square. Figure 7c shows the third member, but now with an
arbitrary adjustment of orientation—three are as 7a, and one has been rotated. We
cannot build a symmetric cube from this, and there will be many isomers. Thus
already at the two-dimensional stage, there can be different sorts of square as there
can be different triangles, and the diversity is multiplied as we assemble cubes.

VII. EXCURSUS: TOPOS OR TROPOS?

At 58C-D Plato associates very different properties with different sizes of polyhedra.
In modern understanding, different atoms of the same element are indicated by the
name ‘isotope’. The fopos here is position in the modern periodic table of the
elements. It is unfortunate that this name has been applied inappropriately, even
though with some caution, by Friedlinder*® to Plato’s different types of the same
‘element’ which have different numbers of triangles in their constituent polyhedra,
and hence are of different sizes. This usage has been followed by Vlastos.’

The periodic table is a classification according to property, mostly but not exclu-
sively chemical property, and isotopes of an element, with the same position in the
table, have almost the same properties. In contrast, Plato’s different versions of an
‘element’, such as fire at 45B-D, and water and ‘liquifiable waters’ at 5§D-59C, have
very different properties, so ‘isotope’ conveys the wrong meaning. Gregory*® defines
‘atom’ to mean an individual polyhedron. He then uses ‘isotope’ in the captions to
figures describing the Cornford triangular constructions, which are components of
a polyhedron, and in modern terms, this would imply ‘isotopes’ of a nuclear
constituent. If ‘isotope’ is to have any meaning at all here, it must be reserved for the
polyhedra. It is probably inadvisable to associate new words with ancient concepts,
but using one that carries a totally wrong connection to Plato’s meaning is likely to
lead to serious misunderstandings.

There is a well-established word, ‘allotrope’, for different forms of an element.
These different forms can have notably different chemical properties, most spectac-
ularly with life-giving oxygen and life-destroying (bactericidal) ozone. Where there are
molecular forms, as in this example, allotropes differ in the numbers of constituent
atoms, so this word is reasonably close in meaning. If a modern term is necessary,
allotrope is preferable to isotope, and may even have the advantage in this context of
conveying a reminder that the various forms can undergo alloidsis.

4 Cornford (n. 2), 238; Vlastos (n. 11), 79.

47 The interconversion example given by Bruins (n. 16) involves a (C-S) series cube which can
be drawn in this way, so that the point of n. 40 is not immediately obvious; he leaves the
interconversions of the other three bodies, where it is inevitable that asymmetric bodies will be
generated, as an ‘exercise for the reader’.

48 Friedlander (n. 10), 255. It is surprising that he does this, since at 250 he refers to
‘molecules’, and isotopes cannot have any meaning in describing molecules.

4 Vlastos (n. 11), 72. % Gregory (n. 12), 200.
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VIII. FINAL REMARKS

Various components of my symmetry-based analysis have appeared previously,
sometimes in rather indirect form. Wilson®! and Taylor>? point out the symmetry of
the 1b construction, Cleary suggests that ‘considerations of geometrical symmetry
may be responsible for the more complex construction’, and Brisson’s comment
on the rotation centre’ echoes Taylor’s remarks> about the ‘centre of gravity’
and Bohme’s similar comments®® about ‘Gleichgewichtsfiguren’. Bruins notes the
asymmetry of the corners of a tetrahedron if the Timaeus specification is not used.’’
However, these various suggestions have not been followed through, and the
importance of symmetry has been largely ignored, at least by writers in English. By a
curious irony, Cornford’s dismissal of a symmetry argument®® came at a time when
the scientific implications of symmetry, formalized as group theory, were being
worked out and the first textbooks describing this work were beginning to appear.

It is still something of a mystery why it has taken so long for a revival of the idea,
but part of the answer may lie in the inadequacy of two-dimensional diagrams to
represent three-dimensional relationships. In Zeyl,” the polyhedra are introduced,
before the discussion of the Platonic construction, by diagrams which are already
reduced in symmetry by lines drawn on the surfaces which face towards the viewer.
This helps to emphasize the three-dimensionality of the figures, but it has the
unintended side-effect that when the polyhedra made up of the divided triangles are
drawn, as in Vlastos,%* these diagrams fail to emphasize the difference in symmetry
from bodies made up of undivided triangles. This is particularly true of the simplest
unit, the tetrahedron, which is surprisingly difficult to visualize without a model.¢!
Because of these visual complications, it may have been easy to miss something which
has long been available in published diagrams.

Plato’s apparently mysterious construction of his elemental polyhedra makes sense
in the light of the modern concept of symmetry, and proposed constructions of the
equilateral triangles or squares which do not follow his instructions simply do not
work; this applies for all sizes of polyhedra. These same principles of symmetry can
be seen for any particular case by building the appropriate models, or, with sufficient
imagination, by visualizing them in three dimensions. The individual points
concerning symmetry that have been noted by the authors mentioned above, and the
symmetry relationships that can be seen on models, are different aspects of the
underlying principles which are treated rigorously in the theory of point groups.
Bruins®? comments: ‘Si Timée divise le carré par la tracé des deux diagonales, et le
triangle équilatéral en six triangles partiels, c’est qu’il y a une nécessité fondamentale
pour ce faire.” In the words of the referee for this paper, the Demiurge uses precisely
the procedures he needs to get the results aimed at.

Chemistry Department, Trinity College, Dublin D.R. LLOYD
boblloyd@waitrose.com

51 Wilson (n. 14). 52 Taylor (n. 4), 374.

33 J. J. Cleary, in Tomas Calvo and Luc Brisson (edd.), Interpreting the Timaeus-Critias:
Proceedings of the IV Symposium Platonicum: Selected Papers (Sankt Augustin,1997), 245.

54 Brisson (n. 25). 55 Taylor (n. 4), 374. % Bruins (n. 7).

57 Bruins (n. 16). % Cornford (n. 15). 3 Zeyl (n. 3), Ixvii.

 Vlastos (n. 11), 74-7.

1 As an example, consider Figure 4b, which has higher symmetry than 4a.

2 Bruins (n. 16), 277, n. 2.
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APPENDIX: SYMMETRY OPERATIONS

Many accessible introductions to symmetry theory are now available. The following
simplified treatment uses the approach of Shriver and Atkins,% with some modifi-
cations; references to more advanced treatments are given there. The essence of this
approach is to examine the complete set of symmetry operations associated with
some particular physical unit, often a molecule. This set forms a ‘group’, and
knowledge of the mathematical properties of any group allows wide-ranging
rigorous conclusions to be drawn about the physical properties of the unit concerned.

The operations are best considered as transformations of the unit into exactly
equivalent configurations; they are associated with particular symmetry elements,
such as an axis of rotation, but it is the set of operations which constitutes the group.
For the present purpose the formal machinery of group theory is unnecessary, but it is
useful to be able to appreciate the operations which form the group of the equilateral
triangle, and how these extend into the three-dimensional solids.

(a) Operations in two dimensions

Figure 8a shows an equilateral triangle to which a ‘marker’ point has been added; at
this stage it is merely a reminder of the results of the operations which we will
consider. One possible operation which generates an equivalent configuration is a
rotation about an axis, perpendicular to the paper, through 120°. The result is shown
in 8b; the marker has moved, but we have an exactly equivalent configuration. This
can be repeated (8c). A third repetition regenerates the original configuration; the
axis is called ‘threefold’. The same mark can also be used to indicate a particular
point on the surface of the triangle, and then, in order to maintain the symmetry, we
have to mark all the equivalent positions generated by the rotations (see Figure 8d).

NV

1

f

'

M
1

'
~a
o

1
]

FiGURE 8. Illustration of symmetry operations upon configurations of a simple undivided
equilateral triangle with a temporary marker. Rotation operations: (a) initial state, (b) after a
(clockwise) rotation through 120°, (c) after a further rotation, (d) marker now a permanent part
of the triangle, maintaining the rotational symmetry. Reflection operations: (e) initial state, (f)
operated on by the mirror plane indicated by the dashed line, (g) as (d), but now symmetric with
respect to all operations in two dimensions.

8 D, F. Shriver and P. W. Atkins, Inorganic Chemistry (Oxford, 1999°), 117-18.
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In addition to these rotation operations, it is clear that the triangle as drawn in
(8a—c) also has left-right symmetries. The corresponding operation is that of an imag-
inary mirror plane, again perpendicular to the paper, indicated by the dashed line, and
again we use a temporary marker (8¢). Unlike the rotation, this is not a physically
possible operation in space. The operation of the mirror transforms the marked point,
and all others in the left-hand half, into corresponding points in the right-hand half,
and vice versa (8f). There are two other such planes running through the other two
vertices. All three of these intersect at the same point, which is also the rotation centre.
The effect of this complete set of operations is indicated by the sixfold mark on
Figure 8g.

The triangle used in Figure 8a—g is a complete, undivided triangle, but it is clear
that the reflection planes in 8g match exactly the positions of the join lines in the
composite triangle of Figure 1b. We can apply the operations described above to this
composite triangle also. Except for the join lines, the composite triangle behaves
exactly as the undivided triangle. To illustrate this, consider the general point marked
in Figure 8g—it could be at any position within the small scalene triangle, so every
point that is not along a join line is transformed by the operations into a set of six
equivalent points. Now consider the join lines themselves as an ‘object’. This ‘object’
has exactly the same symmetry elements, and operations, as the equilateral triangle.
The reflection plane of Figure 8e, for example, transforms its coincident join line
(AOF on Figure 3) into itself, and interchanges the other two (DOC becomes EOB).
Thus the complete composite triangle behaves in exactly the same way as an un-
divided equilateral triangle. When the composite triangle was assembled, it acquired
the full symmetry of the undivided triangle; Plato’s construction, Figure 1b, is
equivalent to an undivided equilateral triangle.

(b) The tetrahedron

The symmetry elements of the original equilateral triangles are now present in, and
operate on, the entire tetrahedron which has been assembled from them. However,
since Plato is only concerned with faces, and not with the interior, we can restrict
ourselves to transformations on faces. So long as 1b triangles are used, any one of the
threefold rotation operations carries out the same transformations as before on the
triangle to which it is perpendicular, and therefore transforms this set of joins into an
equivalent configuration. For the other faces it rotates one face into the next, and
generates a new set of joins in exactly the same position as those which were in this
position before the operation. Overall, the set of operations associated with any one
of the triangular faces transforms the complete set of joins on all faces into itself. The
tetrahedron has more operations than those of the separate triangles, but these
additional operations also transform the set of joins into itself.

However, any attempt to generate tetrahedra using 1a triangles fails to generate the
full symmetry of the regular tetrahedron; examples have been shown in Figure 4.

(¢) The octahedron and icosahedron

The octahedron constructed with 1b triangles has the full octahedral symmetry. For
example, the threefold axes of the triangles become the four threefold axes of the
octahedron, running through opposite pairs of faces. These rotate the individual join
lines in these faces into one another, and rotate the other four faces, with their join
lines, into each other. The mirror planes of the triangles remain, and new ones are
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FIGURE 9. A regular octahedron made up from 1b triangles, seen from above (in projection). The
heavy lines are the outlines of the equilateral triangles 1-4. Line A—A shows the position of a
second fourfold axis and of a mirror plane.

created by the assembly of the octahedron. Figure 9 shows an octahedron of 1b
triangles in projection on to a plane perpendicular to a fourfold axis. Faces 1-4 are
facing upwards, and corresponding faces 1'-4' face downwards, away from the
viewer. A single operation of the fourfold axis rotates 1, with its join lines, into 2, and
so on. Line A-A represents one of the new mirror operations, which reflects 1 into 2,
but with a different orientation from that produced by the fourfold axis. AA also
represents a fourfold axis; a single operation of this converts 1 into 2, again with a
different orientation, and 2 into 2', and so on. The plane of the paper is a mirror
plane, whose operation converts 1 into 1’, and so on. With la triangles, the highest
possible symmetry is that shown in Figure 5a.

The full symmetry of the icosahedron is quite complex; again it is maintained by 1b
triangles but destroyed by la triangles. There are even more isomers than for the
simpler bodies; it should be relatively easy to see a few of these by inspecting, for
example, the first item in Figure 4 of Vlastos,* and imagining triangles to be rotated
as is illustrated here at 5b for the octahedron. The icosahedron shown by Vlastos, like
the octahedron built from la triangles in his Figure 3, is drawn with a choice of
triangle orientations such that symmetry is preserved along the most obvious
dimension, the vertical,% but most of the operations of the true regular icosahedron
have been lost, such as those of the other five fivefold axes. However , if 1b triangles
are used, as in the second component of Figure 4 in Vlastos,% the operations of the
threefold and fivefold axes and the mirror planes now carry out transformations on
the joins exactly as they do on the rest of the triangular surfaces; only with 1b
triangles can we generate a fully symmetric icosahedron having only one isomer.

Note added in proof

Further work confirms the analysis of the S series of triangles, but shows that some
higher members of the (C-S) series also have the correct symmetry. This will be
described elsewhere.

6 Vlastos (n. 11), 76.
5 So long as it is assumed that the missing joins on the back faces maintain this symmetry.
% Vlastos (n. 11), 76.
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