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Most models of generational succession in sexually reproducing populations necessarily
move back and forth between genic and genotypic spaces. We show that transitions
between and within these spaces are usually hidden by unstated assumptions about
processes in these spaces. We also examine a widely endorsed claim regarding the
mathematical equivalence of kin-, group-, individual-, and allelic-selection models made
by Lee Dugatkin and Kern Reeve. We show that the claimed mathematical equivalence
of the models does not hold.

1. Introduction. A major struggle in the philosophy of evolutionary and
population genetics has concerned the question of what the appropriate
units should be for the dynamics of evolutionary change in sexually repro-
ducing organisms. We propose an analysis of what needs to be known for
an adequate genetical representation of evolutionary change. We then ad-
dress a widely influential paper that claims that kin-, group-, individual-,
and allelic-selection models are mathematically equivalent.

2. State Spaces. A useful tool for the analysis of the problem of evolu-
tionary change is the state space. A state space is characterized by: (1)
entities such as genes, genotypes, phenotypes, groups of individuals, and
so on, and (2) attributes of these entities which may be either nonmetric
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descriptors like molecular composition or metric descriptors for each of
which there is a metric dimension, of the space, that are sufficient to localize
each individual entity to a point in the space (Lewontin 1974; Lloyd 1994).
Dimensions might also be morphological or behavioral, or, if the entities
are collections such as populations, they may be allele or genotype fre-
quencies, or mean phenotype, for example. The actual process of genetic
transition between generations involves, in general, transformations in
time in spaces of both genic and genotypic entities, as well as mappings
from one space to another during the complete generational cycle. It is
certainly true that particular special cases can be adequately represented
as transitions in fewer spaces, but these cases involve assumptions, some-
times hidden, about certain parameters of the material processes that are
being represented.

The simplest predictive structure for Mendelian inheritance involves a
transition from diploid to haploid and then back to diploid spaces. The
development of genetics as a science has been possible only by the delib-
erate modeling of inheritance as a sequential transition between the diploid
and haploid spaces during the process of heredity. This science was able
to develop as a system of regular prediction only because Mendel’s insight
into the phenomenon of segregation was joined to the identification of
chromosomes as physical linear arrays of factors which recombine with
each other during meiosis by a simple exchange of these linear arrays to
produce haploid gametes. This chromosomal linearity, maintained in the
recombination process, and sorted as alternative arrays into haploid gam-
etes, made it possible to create linkage maps which could predict the
outcome of crosses between multiple genetic variants that had not pre-
viously been combined in the same individuals. Standard formal trans-
mission genetics is built on an alternating sequence of events that move
from a diploid genotypic space of description of the parents to a haploid
genic space of description of the formation of gametes, and back to the
diploid genotypic space of description of the next generation.

For some purposes it seems possible to choose arbitrarily between genic
and genotypic spaces, and these have received a great deal of attention
in the conflict over the appropriate level of description for changes in
populations under natural selection. Changes in population composition
are usually described as change in allele frequencies and for one gene
locus it is well known that, using allele frequencies and the proportions
of individuals of different genotypes, the entire change in population
composition can be described as a change in allele frequencies resulting
from different genic fitnesses, where those fitnesses are calculated as gene-
frequency-weighted averages of fitnesses of the genotypes containing those
alleles (Godfrey-Smith and Lewontin 1993; Waters 2005). Note that this
definition of allelic fitness requires that the genotypic fitnesses have been
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previously determined; thus the necessary information is imported into
the allelic space model from genotypic space (Lloyd 2005).

2.1. The Spaces of Hardy-Weinberg. It is not generally realized that the
Hardy-Weinberg equilibrium for one biallelic locus was derived both by
Hardy and by Weinberg using the frequencies of the diploid genotypes,
P, Q, and R, rather than the now familiar p* : 2pq : ¢* description in terms
of the allele frequencies p and ¢, which was introduced by R. A. Fisher
in 1918. But to derive the Hardy-Weinberg equilibrium in terms of p?,
2pq, and ¢*, one begins with arbitrary genotypic frequencies and shows
that after a generation of random mating of diploid genotypes followed
by Mendelian segregation in the production of gametes, the resultant
proportions of offspring genotypes are algebraically equivalent to p2
2pq, and ¢*. It is sometimes claimed that these proportions can be trivially
derived by multiplying the gamete frequencies directly, making no use of
the diploid genotypic space, but this depends on the hidden assertion that
planktoid mating is identical in outcome with random mating of diploid
genotypes followed by Mendelian segregation, a claim that has to be
established by first mapping diploid mating frequencies into frequencies
of haploid pairs at fertilization. Central to this mapping is the calculation
of genic output from genotypic inputs, that is, the mapping of a diploid
space into a haploid space. The steps in the derivation of the Hardy-
Weinberg equilibrium for a biallelic locus in terms of allele frequencies
and the demonstration that this occurs after a single generation of random
mating are as follows:

1. In the original mating population the frequencies of the three geno-
types are specified as D, H, and R;

2. The six possible types of mating (D x D, D x H, H x R, etc.) are
assumed to occur at random, so the frequencies of these matings
are simply the products of the genotypic frequencies (D?, 2DH,
2HR, etc.).

3. The offspring ratios from each of these matings are specified. It is
still possible to stay in the diploid space by using Mendel’s pro-
portions without any commitment to an underlying segregation
mechanism. Alternatively, the segregation mapping into the genic
space in step (5) below can be carried out here, in which case the
expressions for D', H', and R’ in (4) below will be in terms of allele
frequencies p and g. Whether or not the segregation mapping is
carried out at this point, however, the, assumption of unbiased seg-
regation in heterozygotes is fundamental, since if there is meiotic
drive then Mendel’s ratios are incorrect.
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4. The sums of the output genotypes D’, H', and R’ are calculated over
all matings. These turn out to be

D'=(D+ H2)*H = 2D+ H2)R + HI2) R' = (R + HI2)™.

5. To turn this genotypic description finally into an allele frequency
description p?:2pgq : ¢, it must be established that D + H/2 and
R + HJ/2 are the allele frequencies p and ¢. But this requires mapping
genotype space into gene space by Mendel’s Law of Segregation
and this segregation must be unbiased. If it is not, then both parts
of the Hardy-Weinberg law—that p remains unchanged from one
generation to the next and that D, H, and R can be expressed as
p3 2p, and ¢* with p = 1 — g = D + H/2—are false.

2.2. The Generational Cycle. In addition to the above complications
of Hardy-Weinberg, we must take into account the fact that genotypic
and genic information alone are not determinative of the various forces
operating to change population composition because many of these pro-
cesses function on phenotypes rather than simply genotypes. Mating pat-
terns, and probabilities of survival and reproduction, although influenced
by genes are a consequence of developmental events that are contingent
on the environment of the developing organism. In the most general case,
environment includes influences of the phenotypes of previous generations
by means of cytoplasmic inheritance through the egg. A complete general
representation of genetic evolutionary processes then requires not two,
but six spaces with sequential transitions within them and mappings from
one to the other. (In what follows, mappings refer to translations or re-
representations of a population or system in terms of a new set of state
variables, i.e., in a new state space, while state transitions refer to dy-
namical laws that transform the system within a single state space from
one step to the next.) These spaces are:

a diploid phenotypic space,

a diploid genotypic space,

a diploid pair phenotypic space,
a diploid pair genotypic space,
a haploid phenotypic space, and
a haploid genic space.

nhpnnna

For the moment we consider only organisms that reproduce in discrete
generations, with no overlap between generations. We can then begin to
formalize the process of temporal change by choosing some point in the
life cycle as the initial condition. For our purposes it is convenient to
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choose the point of mating pair formation. The sequential transformations
and mappings are then described in model stages as follows:

1. The description of the entities in phenotypic space (S,;) and their
mapping into genotypic space (S,): (S, = S,).

2. The formation of mating pairs by mapping pairs of entities in S,
and S, into S; and S,. The attributes of each individual, in the most
general case, must include a list of ancestry relationships with other
individuals so that any potential pair can be classified as sibs, cousins
or any other descriptor of the ancestry tree. The mapping into mat-
ing pairs includes self-fertilizations or obligate outcrossings, and
assortative mating by size, behavior, habitat chosen or degree of
genetic relationship (inbreeding) or completely random mating in
either dioecious or monoecious species, all of which can then be
described genotypically (S, > S;—> S, or S,—> S,).

3. Mapping genotypes (diploid genomes) into genes (haploid sequences)
by initial gamete formation within each individual, including genetic
segregation, recombination, and mutation and meiotic drive, to form
gamete potential subpools corresponding to each individual in S,
(84— So).

4. Mapping potential gamete subpools into effective gamete subpools
taking into account differential fertility of adult gamete producers,
gamete motility and survival S, — S..

5. Mapping into diploid genotypes taking into account differential
compatibility of sperm with recipient ova S;— S, — S,.

6. Mapping of diploid genotype into phenotype in development S, —
S

7. Transition of the ensemble of phenotypes by survivorship to mating
stage (S)).

8. Start of a new generation in S,, namely, S.

While it is true that the system’s transition from one generation to the
next may be represented in any one of the seven model-stages and six
spaces, we need to know the entire loop—and all the parameter values in
each of the model stages in that loop—in order to obtain an accurate
representation of the chosen state space in the next generation, that is,
to get the state transformation equation between generations within any
one of the spaces (e.g., if we want to move from (S;) to (S;)). For the
transition in allelic space, we must move out of that space, into genotypic
space to define the parameters, and back into allelic space in order to
characterize the next generation. (We elaborate this point in 5.1 below.)
The dynamical problems that arise in the context of several spaces will
be elaborated in Section 4, below.

One important claim in the literature has been that any genetical system
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can be adequately represented in at least two ways: its original, usually
genotypic form, and a revised allelic one (Dugatkin and Reeve 1994;
Sterelny 1996; Kerr and Godfrey-Smith 2002). In order to assess whether
this is correct, we must address the overall issue of how to compare models
in population genetics. We propose a new definition of representational
adequacy that rests on dynamical and parametric sufficiency, from which
equivalences can be derived.

3. Representational Adequacy of Models. The most common approach to
comparing population genetic models has emphasized prediction of allele
frequency changes: If two models both predict the same changes in allele
frequencies, it is thought, then the models are equivalent. But this is an
inadequate approach to understanding and confirming models, as will be
demonstrated below. We advance the notion of representational adequacy,
which we define as parametric and dynamical sufficiency. Why introduce
representational adequacy? What is wrong with straightforwardly check-
ing whether the model fits the allele frequency data?

There are a variety of ways that models can be tested against data, and
fitting the outcome or prediction of the model—in these cases, the pre-
dicted allelic or genotypic frequencies—is only one of them (Lloyd 1987).
Other significant components of the empirical evaluation of any mathe-
matical model include: testing the values of its parameters against the
system independently (e.g., measuring or estimating the mutation param-
eter value in the model); evaluating the appropriateness of the state space
and parameters used; and testing the model against a range of values in
the variety of systems to which it is supposed to apply (variety of fit). In
addition, a model is taken to be better confirmed when it has more of its
parameter values—that is, a variety of them—estimated or confirmed
independently (Lloyd 1994, 145-159).

Our notion of representational adequacy combines the traditional stan-
dards of predictive accuracy and goodness of fit with the broader re-
quirements of confirming that the state space, parameters, and laws being
used in the models are appropriate and sufficient to the task (see Skipper
2004; Forber 2008). We take it as foundational to any notion of adequate
representation that the standards of parametric sufficiency in model-build-
ing be weighed in judging overall model adequacy. Parametric sufficiency
is dependent upon choice of space and parameter set, in any particular
case.

The concept of dynamical sufficiency is precisely defined in terms of a
set of objects and their frequencies, and another set of objects and their
frequencies. Dynamical and parametric sufficiency together provide a
much more adequate measure of a model’s empirical worth than the vague
notion of empirical adequacy, or the overly simplistic idea that if a model’s
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prediction of allelic or genotypic frequency is correct, then the model is
empirically substantiated.

3.1. Parametric Sufficiency. Parameters are properties of objects, and
may be properties of more than one object at a time. (Parameters are
represented in the models as values that are not variables.) Two models
may look as though they should be dynamically equivalent because of
the similar appearance and names of their parameters, but real differences
in their parameter measures may result in dynamics that are not equiv-
alent. Two models should be considered ‘parametrically equivalent’ if the
parameters that apply in one model have a natural representation in the
parameters that apply in another. One case in which similar-looking pa-
rameters yield very different dynamics concerns allelic and genotypic fit-
nesses, which has led to much confusion in current controversies. (See
Sections 5.1 and 5.3.)

3.2. Dynamical Sufficiency. The concept of dynamical sufficiency con-
cerns what state space and variables are sufficient to describe the evolution
of a system given the parameters being used in the specific system. What
happens to the frequency of the variable over time? In a simple allelic
model, this question becomes: Can we describe the changes in the fre-
quency of allele A over time, with the information that we have, which
includes the state space (variables) and the parameters (fitnesses, popu-
lation size, etc.)?

Consider a set of objects @, = {0,,0,,...,0,} (e.g., genotypes
0, = AA, O, = Aa, O, = aa) whose frequencies are given by k =
{ki,k,, ..., k,}, and a set of variables G = {g,,,, ...,g,} that repre-
sents the frequencies of another set of objects @, = {0,,0,, ..., 0,}. For
example, Q, = {A4,a}. Then Q, is dynamically sufficient for Q, if the func-
tions {f;} and {A,} are such that we can write the recursions

giI+I :ﬁ{gltagzza 7g:§} (l: 1,,}’1)
with
kjﬁrl = h/{glta . 9gr€} (.] = 1’29 .. ~’m)'

In the one-locus diploid case with selection on A4, Aa, aa in terms of
fitnesses w,,, w;,, W,, (Stage 7 above) we have

Q, = {AA, Aa,aa}, k= {x,pz}

QZ = {Aaa}a G = {pAnl _p/i}



THE CYCLE OF STATE SPACES 147

Then after selection

gz+| — pH—l _ (1 = p)H)(powy, + (A = pHw,,)
l ! Wll(PA’)z + 2w pipl + wa(1 _pA[)z’
KIH—I — xH—l — A1+1)2,

t+1 t+1

Ky =y = 2p (1= ph),

K;+l — Zt+| — (1 _pAH—l)Z.
In this case, the allele frequencies G in the allelic state space are dynam-
ically sufficient to study the evolution of genotype frequencies k. These
equivalences depend, however, on the parameters, w,,, w,,, w,,, that could
only be determined in the genotypic space.

Increasing attention has recently been paid to the phenomenon of epi-
genetics, which includes a variety of biological processes that act on genes
and may be transmitted between generations, but not according to any
of the rules of genetic inheritance. Formal models for the evolution of
epigenetic objects or properties (Feldman and Cavalli-Sforza 1976, 1981;
see also Jablonka and Lamb 2005) utilize an additional state space S,
the phenogenotype, in which changes may occur during organismal
development.

4. Population Genetics Models: Dynamical Issues. Returning to our dis-
cussion of the six state spaces involved in the calculation of a single
generational change in genetics, we elaborate several of the steps involved
in mapping from space to space, in order to illustrate the assumptions
undertaken when laws are formulated and parameters are chosen, esti-
mated, or omitted.

Philosophers have focused much attention on genotypic space, un-
doubtedly because genotypes are the ‘smallest’ entities that have dynam-
ically adequate state spaces within which to calculate the next generation’s
allele frequencies (Section 5.1). But in order to do so adequately, genotype
models must incorporate biological information—that is, the parame-
ters—from other state spaces involved in the generational cycle. Start with
the fact that we cannot calculate the next generation of genotypes without
a segregation rule, that is, without knowing whether the genotypes un-
dergo a normal process of meiotic distribution of gametes—information
from the haploid model.

When we move from the diploid model to the haploid representation,
in which only allelic frequencies p and ¢ (= 1 — p) are tracked, things get
tricky. When philosophers and biologists speak of allelic space, they refer
to the space of allelic frequencies. But in such a space, the marginal
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fitnesses w, and w, are calculated from the diploid genotypic fitness pa-
rameters w,;, wy,, and w,,, without which they could not be evaluated or
assigned (see Lloyd 2005; see also Section 5). Thus, the p’s are in one
(allelic) space, and the w’s refer to another (genotypic) space. The state
transition is actually calculated using parameters from genotypic space,
and then translated or mapped back into allelic space. Allelic space plus
allelic parameters alone are not able to represent the evolution of this
genetic system. As the examples below will show, this is not merely the
problem that marginal allelic fitnesses depend on genotypic parameters.
In many important cases, generational transitions for the genotypes can-
not be calculated from allele frequencies.

4.1. Example—Dynamical Insufficiency: Allelic Frequencies and Self-
Fertilization. Again Q, = {AA, Aa,aa}, k = {x,y,z}, Q, = {4,a}, G =
{ps1—p,. With random mating and no selection, after the first
generation,

x'=(p), ¥y =2 -p),  z'=0-p)

The allele frequencies are constant, p*' = p’, t > 0, as are the genotype
frequencies after the initial generation. With self-fertilization we have

X = x"+ 4,
yo =y,
=z 4 4.

Again p™' = x™' + p™1/2 = p’, and allele frequencies are again constant
over time. But the heterozygote frequency )’ tends to zero at the rate 1/
2 per generation. Thus, in the case of selfing, allele frequencies do not
give the dynamical properties of the full system, which converges to a
mixed population of 44 and aa homozygotes with frequencies p, 1 — p,
respectively. Partial self-fertilization would have a similar qualitative dif-
ference between allelic and genotypic evolution.

The lesson from such cases is not, however, that genotypic space is itself
somehow magically sufficient or transparently representative of the evo-
lutionary system, for genotypic parameters, particularly the fitness pa-
rameter, are most often averages, estimated in a number of ways.

4.2. Fertility Selection. The issue of types mating with types arises sim-
ilarly with fertility selection. Here the types of matings produce different
numbers of offspring, which means that the fertility-level fitness param-
eters are properties of the mating pairs. Bodmer (1965) shows that it is
not possible to represent the results of differential fertility among mating
types in general in terms of allelic state space. Having given the equations
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that relate the proportions of genotypes in one generation (right-hand
side of the equations) to those same genotypes in the next generation (left-
hand side of equations), he then remarks: “These equations are intractable
as they stand, and allow no simple expression of the right-hand sides in
terms of gene frequencies” (Bodmer 1965, 412). The population dynamic
is then necessarily presented in genotypic space, not in terms of genic
types. Most often, planktoid mating is simply assumed—that is, the ran-
dom union of gametes—obviating the need for any additional parameters
beyond fertilities of the mating pairs of genotypes.

4.3. Continuously Breeding Population. A much greater complication
of prediction occurs when diploid organisms with overlapping generations
and continuous breeding are considered. In addition to the age specific
mortality and fecundity schedules of the different genotypes, it is essential
to specify the growth rate of the population as a whole, particularly
whether the population is expanding, stable in size or shrinking. For
example, in a growing population, genotypes with reproduction at earlier
ages increase in frequency since, relative to those that postpone repro-
duction, they are contributing their genotypes while the population is at
a smaller size. The same genotypes will decrease in frequency in a shrinking
population, since it is advantageous to wait until the population has
decreased in total size before adding copies of the genotype (Charlesworth
and Giesel 1972). Thus the complete age-specific mortality and fecundity
schedules are insufficient to predict gene frequency change and there is
no ‘genotype fitness parameter’ at all in this model; genotypic fitnesses
change continuously over time. The only way to arrive at answers about
the evolutionary state of the system is to grind through the mathematical
dynamics of the model. Note that, in this model, the biological character
of the genetic types does not change, however we choose to model them.
The changes in frequencies occur because the types are part of a popu-
lation that is either growing larger or smaller. There is no reason to think
that this sort of context-dependence is unusual; rather, it seems to be the
rule. In that case, parameters that describe the context must be integrated
into genotypic fitnesses, with the result that separating the context and
genotypic dynamics from a forteriori allelic evolution becomes impossible.

Moreover, dependence on population growth or decline is not the only
kind of context-dependence that matters, in looking at genotypic fitnesses.
Lewontin demonstrated that fitnesses in genetics, including genotypic fit-
nesses, depend on what other genotypes are present in the population at
that time (1974). Thus, we must conclude that the fixed genotypic fitnesses
that we are accustomed to seeing in population genetic models are at best
approximations, as close to the truth as we can afford at a given level of
mathematical precision.
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5. Problematic Claims. One widely repeated set of claims has revolved
around Dugatkin and Reeve’s (1994) assessment of the mathematical
equivalence of a wide variety of population genetic models (Sterelny 1996,
577; Sober and Wilson 1998, 57, 98-99; Sterelny and Griffiths 1999, 168—
169, 172; Kerr and Godfrey-Smith 2002, 479, 508; Waters 2005, 312).

5.1. Dugatkin and Reeve’s Formulation of Allelic Equivalence. Dugatkin
and Reeve claim:

A number of theoretical investigations (Alexander and Borgia 1978;
Uyenoyama and Feldman 1980; Wilson 1980; Colwell 1981; Crow and
Aoki 1982; Michod 1982; Wade 1985; Maynard Smith 1987; Queller
1992a, 1992b) have shown that the mathematics of the gene-, individ-
ual-, kin-, and new group-selection approaches are equivalent. . . . We
will show . . . that this must be the case. (1994, 108)

They do this with a pair of inequalities (1994, 109). Dugatkin and Reeve
claim that their inequality (2) “encompasses both broad-sense individual
selection and any form of trait-group selection that one may care to
envision.” Moreover, they conclude, “If broad-sense individual selection,
genic selection, and trait-group selection all can be represented by a single
condition based only on allele frequencies, then they cannot fundamentally
differ from one another” (1994, 109; their emphasis). But there are serious
problems here. The first is that their inequalities (1) and (2) hide completely
the causes of why the numbers of alleles change.
Their inequalities (1) and (2) state

20N Z.p.N,
> s
SN SN

(DR)

where p, and p/ are the frequencies of the allele in group i before and after
selection, respectively, and N, and N/ are the corresponding group sizes.
Of course, inequality (DR) is misleading and illustrates the importance
of both dynamic and parametric sufficiency. Hidden in (DR) is a “fitness’
of p, namely, N,/ZN, but N, changes to N/ over a generation, which
requires an additional dynamic relationship and assumptions on the rule
of demographic change.

For a true haploid dynamic, we would usually write, for one locus with
alleles 4 and « and p, the frequency of 4 in population i,
wp! = pwi, (H
where W' = pw{ + wi(1 — p,), and w| and w} represent the fitnesses of
alleles A and « in population i, and the prime indicates the next generation.
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For the diploid one-locus case, we again write
wp, = plwip+wi(1 = p)l. (2)
where
W= plwi + 2p,(1 = p)wi, + (1 = p)’wi,

is the mean fitness in group i, and wi,, w,, wi, are the fitnesses (viabilities)
of AA, Aa, aa in group i. As in equation (1) it may seem that we can
write

wipl = p, (©)

where w’ = pw{ + (1 — p,) wi. But now we are dealing with haploid allelic
parameters, wi, w5, for the fitnesses of 4, a in population i. Of course,
although these appear to be haploid parameters they are actually ex-
pressible as

W= pwi + (1= phwp, (42)

wy = pwi, + (1 = p)ws,, (4b)

which involve genotypic parameters (as well as allelic frequencies). In
other words, the apparently purely-allelic parameters depend crucially on
genotypic fitnesses—but these values are completely hidden. The assump-
tion of Mendelian transmission is also made in deriving (3) (see also
Godfrey-Smith and Lewontin 1993). For this two-allele diploid case, if
meiotic drive were introduced, one more parameter, k, giving the prob-
ability that A4 is produced by Aa heterozygotes, would be necessary.

Thus, we note that in describing the algebra, many discussions of allelic
models and their algebra obscure the origins of that algebra and all the
information it contains and represents. A common move is to infer that
the genic state space, and its basic entity, the allele, have a metaphysically
fundamental and autonomous character (Sterelny 1996). This is both bi-
ologically and mathematically problematic. Biologically, the changes rep-
resented are dependent on all changes in the entire generational cycle
reviewed above, represented in the variety of spaces and parameters.
Mathematically, because genic space is dynamically insufficient for rep-
resenting many system changes, and because in diploids there are no allelic
transition laws within allelic space with allelic parameters, there is nothing
autonomous about it; thus, it cannot support the metaphysical inferences
based on its supposed autonomy (see Section 4 above and Lloyd 2005).
But there is another account available which might be thought to avoid
some of the above problems.
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5.2. Kerr and Godfrey-Smith’s Formulation of Allelic Equivalence. Echo-
ing Dugatkin and Reeve’s claims of equivalence, which they endorse, Kerr
and Godfrey-Smith (2002) similarly appear to be claiming parametric
sufficiency for allelic fitnesses in the diploid one-locus population genetic
model, but in a different fashion. They introduce interchangeable sets of
parameters {«;, 3;} and {w, ¢,} to describe the expected numbers of alleles
in groups of size n. In the standard diploid population genetic model with
Mendelian segregation, groups are of size 2 and the relative fitnesses of
AA, Aa, and aa are in Kerr and Godfrey-Smith’s notation 7, = 26, =
Wy, T = a; + 3, = wp,, T, = 2a, = W,,. An additional parameter, ¢,,
analogous to k in the case of meiotic drive, completes the four-parameter
specification. Note that in the Mendelian case, three parameters are nec-
essary to describe the fitnesses of the genotypes. The statement by Kerr
and Godfrey-Smith that “the fitnesses of, for example, allele 4 in a given
genotypic context is given by the « terms” and therefore “the dynamics
of the population genetic model can be redescribed using the fitnesses of
alleles” (2002, 499), gives the impression that only two parameters, prop-
erties of alleles A and a are sufficient, and is misleading.

In their footnote 27 they admit that their use of the term allelic fitness
departs from the standard marginal fitness of alleles (given by the w,
above). But their “context-dependent fitness” requires that a parameter
be assigned to an allele for each “genotypic environment” in which it
appears. Thus, in terms of parametric sufficiency, there are no allelic
properties that are independent of genotypic properties. In other words,
in their formulation, allelic fitnesses are not parametrically sufficient
whereas genotypic fitnesses are.

Higher-level properties must be specified even in the case of meiotic
drive where, in addition to the three genotypic fitnesses of 44, Aa, and
aa, a fourth parameter is needed to specify the chance, &, that Aa produces
gamete A. Marginal fitnesses of alleles 4 and a can be legitimately com-
puted, but they are not parametrically sufficient because they are ‘stated’
or ‘defined’ in terms of w,,, w,,, w,, and k. Empirically, of course, it is
these four biological parameters that can be measured, whereas Kerr and
Godfrey-Smith’s o; and 8, confound genotypic and gametic contributions
to fitness. It is certainly not parsimonious to introduce allelic properties
of genotypes that are made up of combinations of genotypic properties
(of genotypes) and allelic properties (of gametes), which together make
up a parametrically sufficient set of property values for use in the dynamics
of the evolutionary process.

5.3. Group Selection/ Altruism’s Claimed Reduction to Allelic Formu-
lation. One of Dugatkin and Reeve’s most important and widely-repeated
claims has been that “new-group selection” approaches are mathemati-
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cally equivalent to kin- and individual-selection models (Sterelny 1996,
577; Sober and Wilson 1998, 57, 98-99; Sterelny and Griffiths 1999, 168—
169, 172; Kerr and Godfrey-Smith 2002, 479, 508; Waters 2005, 312). But
Cavalli-Sforza and Feldman showed the contrary in 1978, and the paper
cited by Dugatkin and Reeve in their own support by Uyenoyama and
Feldman (1980) reflected on this very result.

Consider the following model in which + is the fitness loss by ‘doing
altruism’ and B measures the gain in fitness. In the case of parent-to-
offspring altruism where 44 is an altruist, 4a is an altruist with probability
h, and aa is selfish, and the fitness loss and gain are additive, we have,
writing x, y, z for AA, Aa, aa frequencies and p, ¢ for allele frequencies
of A, a, with primes indicating the next generation,

ox' = p*(1 —y) + pB(x + hyl2), (5a)
oy’ = 2pq(1 — hy) + B(xq + hyl2), (5b)
oz' = (¢* + Bhyql2), (50)

where ¢ is the sum of the right sides. This is a case where if we add
x"+ y'I2 to get p’, the frequency of A in the next generation, it cannot
be expressed solely in terms of p (Cavalli-Sforza and Feldman 1978). The
allele frequencies are not dynamically sufficient; genotype frequencies
must be used.

Later, Uyenoyama and Feldman (1980) showed what the consequences
of this dynamical insufficiency of allelic frequencies could be in generating
different outcomes in the genotypic analysis from those obtained under
the ‘allelic sufficiency’ assumption that x = p*, y = 2pq, z = ¢*in 5a, b,
¢). Thus, in true kin selection modeling there is neither dynamical suffi-
ciency of alleles nor parametric sufficiency, because we need both geno-
typic fitnesses and donor and recipient fitness (or group-context) infor-
mation. In other words, these models involve an interaction between
genotypes, and not just a simple downward effect on genic frequency or
even on genotypic frequency. Thus, these early models show that evolu-
tionary dynamics of allele frequencies that are derived by approximating
genotype frequencies are not equivalent to the dynamics of the genotypes
when they are correctly counted.

Thus, empirical differences between systems in nature are involved in
the models, and underlie the reasons that higher-level fitness and other
parameters are introduced into the models in the first place, for the sake
of dynamical sufficiency unattainable through other means (see Sections
5.1-5.3). To emphasize this important result: the claim that no higher-
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level parameters are needed for the empirical sufficiency of multi-level or
“new group selection” models is untrue. The biology involved in these
models demands the measurement of higher-than-individual-genotype val-
ues; specifically, the properties of genotypes must be measured within their
genotypic context.

Thus, we conclude that there are fundamental differences between many
of the models that have explicitly been claimed to be ‘mathematically
equivalent’ or ‘empirically equivalent’. These models are neither dynam-
ically nor empirically equivalent, and thus are not equivalent in any mean-
ingful way.

6. Conclusion. We emphasize the necessity of considering biological facts
from the subcellular and allelic level all the way up to the population
level, when evaluating the appropriateness and adequacy of population
genetic models. We focus attention on the biological objects involved in
population genetic models, for which the parameters are specified or de-
rived. Whether a model includes or omits particular parameters can have
decisive consequences for its representational adequacy, a notion that we
define in terms of dynamical and parametric sufficiency. The demands of
representational adequacy for population genetics often go beyond cal-
culational adequacy of allele frequencies; when the biology is different in
different evolutionary systems, we may need to use different population
genetic models.

Knowing and incorporating the actual biology of the objects of the
model is always relevant to a successful model. Generally, representational
adequacy of models in many cases rests on making assumptions that
involve dynamical and parametric sufficiency, the state space, and the
detailed structure of the laws that—while they may be fulfilled in the
normal course of events—cannot be taken for granted. Any given evo-
lutionary system may be represented in any of the six spaces used in
calculating its generational change. Without the information from the
seven-stage cycle of spaces often needed for each generational genetic
calculation, correct parameter values and the correct mathematical form
of the law for a given space are simply not available, and the transition
laws will not work.

In sum, through focusing on biological objects and their properties, we
conclude that there are fundamental differences between many of the
models that have been claimed to be mathematically equivalent. The mod-
els are neither dynamically nor empirically equivalent, and thus are not
meaningfully equivalent in population genetics. We have not ruled out all
instances of equivalence among models in all classes, only some of the
more prominent claims. A pragmatic pluralism regarding which model to
develop and pursue, given that we don’t know ahead of time which model
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will fit a given case, has much to recommend it, as Dugatkin and Reeve
argue at length. It might also be fruitful to explore the extent to which
some limited classes of models may be intertranslatable, as for example,
equivalences between kin and group selection models (see Uyenoyama
and Feldman 1980).
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