

[philosophy] Diamond Open Access

[awaiting peer review]

The Existence of Axioms is an Axiom

Open Philosophy Collaboration*

June 26, 2024

Abstract

We introduce the axiom of the existence of axioms and discuss its implications for logical systems and beyond.

 $\mathbf{Keywords}:$ existence, axioms, loops, decidability, philosophical logic

The most updated version of this white paper is available at https://doi.org/10.5281/zenodo.12557660

Introduction

1. This work emerged from the mathematical insights gained following the study of these books [1–11].

Definitions

- 2. We adopt the following definitions.
- 3. **axiom** := a proposition that is impossible to prove mathematically, even with an infinite number of axioms and rules of inference.
- 4. theorem := a proposition proven using axioms and rules of inference.

^{*}All authors and their affiliations are listed at the end of this white paper.

Two Mutually Exclusive Axioms

- 5. A_1 : Axioms exist.
- 6. A_0 : Axioms do not exist.
- 7. Considering classical logic, either A_1 is true or A_0 is true.

Decomposition

- 8. Assuming A_1 is true, axioms are atomic, meaning they cannot be broken down into smaller units composed of other axioms.
- 9. If A_0 is true, then we call something an axiom simply because we do not know how to demonstrate it.
- 10. Moreover, if A_0 is considered true, it implies that what we call an axiom could potentially be decomposed infinitely into smaller units of theorems.
- 11. Here, 'decomposed' means that there is an underlying demonstration for what was initially thought to be an axiom.

Axioms and Rules of Inference

12. An axiomatic system is a logical system composed of axioms, as defined in (3), and rules of inference.

Theorems and Rules of Inference

- 13. A theorematic system is a logical system composed exclusively of theorems, as defined in (4), and rules of inference.
- 14. If A_0 is true, then A_0 becomes a theorem, which can be decomposed, through rules of inference, into infinitely smaller theorems.

Loops

- 15. $\ell := 100p :=$ a sequence of applications of rules of inference on axioms or theorems, such that the same object proves itself.
- 16. L := loops exist, regardless of whether A_0 or A_1 is true.
- 17. If L, is it possible to construct an abstract structure \mathcal{A} from ℓ , such that the structure of \mathcal{A} is independent of ℓ ?
- 18. If so, is it possible that the abstractions \mathcal{A} could be used to prove theorems?
- 19. Does \mathcal{A} contain information about the rules of inference?

Rules of Inference

- 20. Can a rule of inference be decomposed into smaller units?
- 21. If yes, then are there atomic rules of inference, that is, rules that cannot be decomposed?
- 22. Following this line of reasoning, we can consider the decomposition of rules of inference as an axiom, as described below.
- 23. R_1 : Rules of inference can be decomposed into smaller units.
- 24. R_0 : Rules of inference cannot be decomposed into smaller units.

Existence

25. Is existence a definition, an axiom, a theorem, a rule of inference, or some other type of abstraction?

Decidability

- 26. [12–15]
- 27. Assume that mathematics is consistent.

- 28. Undecidable propositions, that is, true propositions that cannot be proven within an axiomatic system, differ from the definition of axioms (A_1) as given in (5).
- 29. This distinction arises because, in the context of undecidability, as stated in Gödel's incompleteness theorem [12], the axiomatic system is considered to be finite.

Final Remarks

- 30. In a scenario where axioms do not exist fundamentally, mathematics would permanently abandon axiomatic systems and shift to operating exclusively within the framework of theorematic systems.
- 31. The existence of abstract structures built from logical loops could foster revolutions in mathematics, science, and philosophy.
- 32. If the rules of inference can be decomposed, whether finitely or infinitely, it will open a path of study for mathematicians and philosophers regard-ing their axiomatic nature.
- 33. If the rules of inference can be decomposed, whether finitely or infinitely, it will open new avenues of research for mathematicians and philosophers concerning their axiomatic nature.

Open Invitation

Review, add content to, and co-author this white paper [16,17]. Join the Open Philosophy Collaboration.

Supplementary Files

[18]

How to Cite this White Paper

https://doi.org/10.5281/zenodo.12557660

Acknowledgements

- + Zenodo https://zenodo.org
- + OpenAI (GPT-4) https://chat.openai.com
- + PhilArchive https://philarchive.org

Agreement

All authors are in agreement with the guidelines presented in [17].

License

CC-By Attribution 4.0 International [19]

References

- [1] Stillwell, John. *Reverse Mathematics: Proofs from the Inside Out.* Princeton University Press, 2019.
- [2] Stillwell, John. Roads to Infinity: The mathematics of Truth and Proof. CRC Press, 2010.
- [3] Leary, Christopher C., and Lars Kristiansen. A friendly introduction to mathematical logic, 2nd edition, 2015. https://knightscholar.geneseo.edu/geneseo-authors/6/
- [4] Ono, Hiroakira. Proof Theory and Algebra in Logic. Singapore: Springer, 2019.
- [5] Gabbay, Dov M., and Franz Guenthner, eds. Handbook of Philosophical Logic. Vol. 1. Dordrecht: Kluwer Academic Publishers, 2001.

- [6] De Swart, Harrie. *Philosophical and Mathematical Logic*. Springer International Publishing, 2018.
- Buss, Samuel R. "An introduction to proof theory." Handbook of Proof Theory 137 (1998): 1-78. https://bit.ly/3BnmMrk
- [8] Girard, Jean-Yves, Paul Taylor, and Yves Lafont. *Proofs and types*. Cambridge: Cambridge university press, 1989.
- [9] Girard, Jean-Yves. "A new constructive logic: classic logic." *Mathematical structures in computer science* 1.3 (1991): 255-296.
- [10] Indrzejczak, Andrzej. Sequents and Trees. Springer International Publishing, 2021. https://doi.org/10.1007/978-3-030-57145-0
- [11] Rasga, João, and Cristina Sernadas. *Decidability of Logical Theories* and Their Combination. Springer International Publishing, 2020.
- [12] Gödel, Kurt. "On Formally Undecidable Propositions of Principia Mathematica and Related Systems". Courier Corporation, 1992.
- [13] Nagel, Ernest, and James R. Newman. *Godel's Proof.* Routledge, 2012.
- [14] Hofstadter, Douglas R. Gödel, Escher, Bach: an eternal golden braid. New York: Basic books, 1979.
- [15] Lobo, Matheus P. "Mathematics Beyond Axioms." OSF Preprints, 5 Sept. 2019. https://doi.org/10.31219/osf.io/adrjq
- [16] Lobo, Matheus P. "Microarticles." OSF Preprints, 28 Oct. 2019. https://doi.org/10.31219/osf.io/ejrct
- [17] Lobo, Matheus P. "Simple Guidelines for Authors: Open Journal of Mathematics and Physics." OSF Preprints, 15 Nov. 2019. https://doi.org/10.31219/osf.io/fk836
- [18] https://doi.org/10.5281/zenodo.12557660
- [19] CC. Creative Commons. CC-By Attribution 4.0 International. https://creativecommons.org/licenses/by/4.0

The Open Philosophy Collaboration

Matheus Pereira Lobo¹ (matheusplobo@gmail.com) https://orcid.org/0000-0003-4554-1372

¹Federal University of Northern Tocantins (Brazil)