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Abstract

Formal symptoms of relevance usually concern the propositional
variables shared between the antecedent and the consequent of
provable conditionals. Among the most famous results about
such symptoms are Belnap’s early results showing that for
sublogics of the strong relevant logic R, provable conditionals
share a signed variable between antecedent and consequent.
For logics weaker than R stronger variable sharing results are avail-
able. In 1984, Ross Brady gave one well-known example of such
a result. As a corollary to the main result of the paper, we
give a very simple proof of a related but strictly stronger result.
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1 Introduction

Intuitively, the logic L is a relevant logic just when ⊢L A→ B only if the con-
tent of A is somehow related to the content of B. Formal symptoms of relevance
usually concern the propositional variables shared between the antecedent and
the consequent of provable conditionals. Among the most famous results about
such symptoms are the following theorems proved in 1960 by Belnap.1

1See [1] for Belnap’s proof of what I here am calling the Strong Belnap Theorem. Since the
Weak Belnap Theorem clearly follows from the Strong Belnap Theorem, we should take this to
be the first instance of a proof of either result. Also worth noting is that the proof in [1] only

1
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Theorem 1 (The Weak Belnap Theorem) If L is a sublogic of the logic R and
⊢L A→ B, then some variable p occurs in both A and B.

Theorem 2 (The Strong Belnap Theorem) If L is a sublogic of the logic R and
⊢L A→ B, then some variable p occurs with the same sign in both A and B.

Note that the notion of ‘sign’ invoked in Theorem 2 will be explained below.
For the moment, we note only that for logics weaker than R, we can strengthen
the conditions we put on the variable being shared. One step in this direction
was taken by Brady in 1984, when he proved the following result:

Theorem 3 (The Weak Brady Theorem) If L is a sublogic of the logic DR and
⊢L A→ B, then some variable p occurs at the same depth in both A and B.

In [3], using essentially the same techniques Brady used, I proved the
following strengthening of his result:

Theorem 4 (The Strong Brady Theorem) If L is a sublogic of the logic DR and
⊢L A→ B, then some variable p occurs at the same depth and with the same sign in
both A and B.

What we will show in this paper is that the Belnap Theorems and the
Brady Theorems are more tightly connected than meets the eye. In particular
one consequence of the result I prove is that logics generated by any subset of
DR’s axioms using any subset of DR’s rules have a feature that I below call
hyperformality, and it is a consequence of hyperformality that violations of
the Weak Brady Theorem can be turned into violations of the Weak Belnap
Theorem and violations of the Strong Brady Theorem can be turned into
violations of the Strong Belnap Theorem. A nice consequence of this discussion
is that we get nice, ‘user-friendly’ proofs of Brady’s results.

2 Some Setup

We work in a standard propositional language with the connectives ∧, ∨, →,
and ¬. Our interest will center on the strong relevant logic R made famous
by [2] and the logic called DR in [4]. These logics contain the logic DW,
axiomatized below, as a common fragment:
A1. A→ A

A2. (A ∧B)→ A/B

A3. A/B → (A ∨B)

technically proves the weak Belnap theorem for subsystems of the weaker logic E, rather than
R. However, the proof in [1] is taken up nearly word-for-word as the proof Theorem 2 found in
Section 22.1.3 of [2].
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A4. ((A→ B) ∧ (A→ C))→ (A→ (B ∧C))

A5. ((A→ C) ∧ (B → C))→ ((A ∨B)→ C)

A6. (A ∧ (B ∨C))→ ((A ∧B) ∨ (A ∧C))

A7. ¬¬A→ A

A8. (A→ ¬B)→ (B → ¬A)

R1. A,B ⇒ A ∧B

R2. A,A→ B ⇒ B

R3. A→ B,C →D⇒ (B → C)→ (A→D)

DR extends DW with the following two axioms and three rules:

A9. ((A→ B) ∧ (B → C))→ (A→ C)

A10. A ∨ ¬A

R4. C ∨A,C ∨ (A→ B)⇒ C ∨B

R5. C ∨A⇒ C ∨ ¬(A→ ¬A)

R6. E ∨ (A→ B),E ∨ (C →D)⇒ E ∨ ((B → C)→ (A→D))

R instead adds these three axioms to DW:

A11. (A→ B)→ ((B → C)→ (A→ C))

A12. A→ ((A→ B)→ B)

A13. (A→ (A→ B))→ (A→ B)

It is a straightforward exercise to verify that all the axioms and rules of
DR are derivable in R, from which it follows that DR is a sublogic of R.

3 The Belnap Theorems

To begin, we recursively define the sign of an occurrence of a subformula as
follows:

• Every formula occurs positively as a subformula of itself.

• If an occurrence of B ∧C is positive, then the corresponding occurrences of
B and C are positive as well.

• If an occurrence of B ∧C is negative, then the corresponding occurrences of
B and C are negative as well.

• If an occurrence of B ∨C is positive, then the corresponding occurrences of
B and C are positive as well.

• If an occurrence of B ∨C is negative, then the corresponding occurrences of
B and C are negative as well.

• If an occurrence of B → C is positive, then the corresponding occurrence of
B is negative and the corresponding occurrence of C is positive.

• If an occurrence of B → C is negative, then the corresponding occurrence of
B is positive and the corresponding occurrence of C is negative.
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• If an occurrence of ¬B is positive, then the corresponding occurrence of B
is negative.

• If an occurrence of ¬B is negative, then the corresponding occurrence of B
is positive.

If you prefer, you can picture these rules as acting on parse trees using the
following rules:

ISPR A
+

∧+SPR A ∧B
+

⇒ A
+
∧B

+

∧−SPR A ∧B
−

⇒ A
−
∧B

−

∨+SPR A ∨B
+

⇒ A
+
∨B

+

∨−SPR A ∨B
−

⇒ A
−
∨B

−

→+SPR A→ B
+

⇒ A
−
→ B

+

→−SPR A→ B
−

⇒ A
+
→ B

−

¬+SPR ¬
+
A⇒ ¬A

−

¬−SPR ¬
−
A⇒ ¬A

+

We read these as follows: ISPR—the Initial Sign Parse Rule—says to begin
by placing a plus under the formula being examined. ∧+SPR says that a plus
placed under conjunction should lead, in the next ‘level’ of the parse tree,
to plusses under each conjunct. The remaining rules are interpreted similarly.
Both to show the rules in action and to address a common misunderstanding,
we’ll pause to look at an example.

Example 1: Consider the formula (p→ ¬q)→ (q → ¬p). If we follow the parse-tree
rules above, ISPR tells us to begin with the following:

(p→ ¬q)→ (q → ¬p)
+

We then apply the appropriate parse rule—in this case, →+SPR. The next step
thus looks like this:

(p→ ¬q)→ (q → ¬p)
+

((QQQQQQQQ

vvmmmmmmmm

p→ ¬q
−

q → ¬p
+

Continuing this process, the end result is the following labeled tree:
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(p→ ¬q)→ (q → ¬p)
+

((RRRRRRRR
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p→ ¬q
−

��<<<<

������

q → ¬p
+

��<<<<

������

p
+

�
�

¬q
−

��

q
−

�
�

¬p
+

��
p
+

q
+

q
−

p
−

Where here the dashed lines simply repeat prior information so the end result is
easier to read. End Example

Recall that the Strong Belnap Theorem said that if L is a sublogic of the
logic R and ⊢L A → B, then some variable p occurs with the same sign in
both A and B. It is easy to misunderstand the content of this theorem in a
way that makes it look like Example 1 gives a counterexample. After all, the
formula we began with clearly is a theorem—indeed, an axiom!—of R. But as
the parse tree makes clear, every atom that occurs in the antecedent is positive
in its occurrence there and no atom that occurs in the consequent is positive
in its occurrence there. And that sure seems like a clear violation of the Strong
Belnap Theorem.

To see what’s gone wrong notice that the Strong Belnap Theorem con-
cerns the signs of atomic subformulas of the antecedent as subformulas of the
antecedent and of atomic subformulas of the consequent as subformulas of the
consequent. But the sign of an occurrence of a given formula A as a subfor-
mula of some formula B will, in general, be different than the sign of the same
occurrence of A when considered as a subformula of some formula B′ that B
is itself a subformula of. In the case at hand, what matters is that the sign of
an occurrence of a variable p as a subformula of A will in general be different
than the sign of that same occurrence of p as a subformula of A→ B.

Differences in this neighborhood will cause a bit of unavoidable confusion
later, so let’s pause to make sure the point is perfectly clear. The basic point
is that Theorems 1, 2, 3, and 4 all have roughly the following form:

For appropriate logics L, if ⊢L A→ B, then the labels attached to the parse tree for
A and the labels attached to the parse tree for B have thus and such in common.

What they don’t say is anything that has this form:

For appropriate logics L, if ⊢L A→ B, then in the parse tree for A→ B, the labels
attached to the subtree under A and the labels attached to the subtree under B
have thus and such in common.
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All told, what this makes clear is that the right parse trees to look at are
these ones:

p→ ¬q
+

��====

������

q → ¬p
+

��====

������

p
−

�
�

¬q
+

��

q
−

�
�

¬p
+

��
p
−

q
−

q
−

p
−

And now the apparent counterexample vanishes. Indeed, now every variable
that occurs in the antecedent occurs with the same sign in the consequent.

The Belnap Theorems are really quite useful. To see this, let’s have a look
at another example:

Example 2: Since (p → q) ∨ (q → r) is a theorem of classical logic, the following
is as well:

p→ ((p→ q) ∨ (q → r))

But anyone with even a hint of relevant scruples ought to hope that it isn’t a
theorem of R. And, indeed, it isn’t. But in any of the usual model theoretic seman-
tic theories for R, providing a countermodel would be a nontrivial—not to mention
annoying—exercise. Luckily, the parse-tree method of checking for strong variable
sharing is quick and painless. For convenience, here are the necessary parse trees:

p
+

�
�
�
�
�

(p→ q) ∨ (q → r)
+

((PPPPPPPP

vvnnnnnnnn

p→ q
+

��7777

������

q → r
+

��7777

������

p
+

p
−

q
+

q
−

r
+

And there we have it: no signed variable is shared from antecedent to consequent.
Thus p → ((p → q) ∨ (q → r)) is not a theorem of R or any of its sublogics. End
Example

In spite of their usefulness, however, the Belnap Theorems really do only
manage to give necessary and not sufficient conditions for R-theoremhood. For
example, p → (q → p) is canonically a non-theorem of R. But it does have a
positive occurrence of p in both antecedent and consequent. Thus, while failing
to share a (signed) variable rules out a conditional as a theorem of R, sharing
a (signed) variable doesn’t rule in a conditional as a theorem of R.

We’ll now turn to thinking about Belnap’s proof of the Strong Belnap
Theorem. It has roughly the following structure:

• First, he defines a class of interpretations of the language that take values
in certain lattice known as M0.

• With the interpretations on hand, he then proves two key lemmas:
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1. All Theorems of R are assigned a designated value on each interpretation.
2. If A and B don’t share a signed variable, then there is an interpretation that

assigns A→ B a non-designated value.
• Together, the lemmas show that if A and B don’t share a signed variable,
A→ B isn’t a theorem of R.

• Contraposing finishes the job.

This is an argument structure logicians should, generally speaking, feel com-
fortable with. What’s more is that the two main characters here—the lattice
M0 and the class of interpretations of our language into M0—are themselves
pretty friendly. More to the point, M0 has the following Hasse diagram.

+3

CCCCCCCC

{{{{{{{{

+1

CCCCCCCC −0

{{{{{{{{

CCCCCCCC +2

{{{{{{{{

−1

CCCCCCCC +0 −2

{{{{{{{{

−3

This lattice is very familiar from the algebraic study of relevant logics. In
fact, when Anderson and Belnap first introduce M0 in Entailment Volume 1,
they say the following:

Stone 1936 showed that a maximal filter of a Boolean algebra B determines a
homomorphism of B into the particularly simple two-element Boolean algebra. We
are about to prove an analogous theorem for intensional lattices, but first we must
characterize the particular simple intensional lattice, which we call M0, that is
used in our theorem.[2, S18.4]

The class of interpretations Belnap actually gives are also quite nice. To begin,
say that an assignment is a function v that maps propositional variables into
M0. Belnap then extends each assignment to a function v+ mapping arbitrary
formulas into M0 by the following—pretty vanilla looking—recursive clauses:

• v+(¬A) = −1 ⋅ v+(A);
• v+(A ∧B) = inf(v+(A), v+(B));
• v+(A ∨B) = sup(v+(A), v+(B));
• v+(A→ B) =m→(v

+
(A), v+(B)) where m→ has the following matrix:



Springer Nature 2021 LATEX template

8 Depth Relevance and Hyperformalism

y
+3 +3 +3 +3 +3 +3 +3 +3 +3
+2 +3 +2 −3 −3 +2 −3 +2 −3
+1 +3 −3 +1 −3 +1 +1 −3 −3
+0 +3 −3 −3 −3 +0 −3 −3 −3
−0 +3 +2 +1 +0 −0 −1 −2 −3
−1 +3 −3 +1 −3 −1 −1 −3 −3
−2 +3 +2 −3 −3 −2 −3 −2 −3
−3 +3 −3 −3 −3 −3 −3 −3 −3

m→(x, y) −3 −2 −1 −0 +0 +1 +2 +3 x

m→ is not the weirdest function to interpret the arrow, but I do think it stands
in need of some justification.

To provide such justification, it helps to think of the elements of M0 as
having the form σn where σ ∈ {+,−} and n ∈ {0,1,2,3}, and to interpret these
values in the following way:

• ‘formula A having value +3’ is interpreted as ‘A is totally true’; A having
other positive values is interpreted as other ways for A to be (less than
totally) true.

• ‘formula A having value −3’ is interpreted as ‘A is totally false’; A having
other negative values is interpreted as other ways for A to be (less than
totally) true.

With all that on board, here are two observations. First, m→ is almost the
function defined as follows:

m∗
→(σ1a, σ2b) =

⎧
⎪⎪⎪
⎨
⎪⎪⎪
⎩

+max(a, b) if σ2b ≥ σ1a
−max(a, b) if σ2b < σ1a

−3 otherwise

Second, m∗
→ can intuitively be understood to be evaluating conditionals in the

following way:

• A→ B is as false as possible when A and B can’t be compared. Otherwise,
• A → B is as close to being totally true/totally false as the closer of its two

arguments; and

– A→ B is true when it should be—that is, when we don’t decrease in truth
value when we pass from A to B; and

– A → B is false otherwise—that is, when we do decrease in truth value as
we pass from A to B.

This is an intelligible and not immediately ridiculous way to evaluate the
truth of conditionals. The resulting matrix has the following form, where I’ve
underlined the nine entries that are different from the corresponding entries
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in m→:
y
+3 +3 +3 +3 +3 +3 +3 +3 +3
+2 +3 +2 −3 −3 +2 −3 +2 −3
+1 +3 −3 +1 −3 +1 +1 −3 −3
+0 +3 −3 −3 −3 +0 −1 −2 −3
−0 +3 +2 +1 +0 −3 −3 −3 −3
−1 +3 −3 +1 −1 −3 −1 −3 −3
−2 +3 +2 −3 −2 −3 −3 −2 −3
−3 +3 −3 −3 −3 −3 −3 −3 −3

m∗
→(x, y) −3 −2 −1 −0 +0 +1 +2 +3 x

So Belnap’s interpretation of the conditional is almost the intuitive under-
standing just given. But the difference is needed. For example, suppose v takes
the following values: v(p) = +1, v(q) = −1, and v(r) = +0. If we compute
v+(((p → q) ∧ (p → r)) → (p → (q ∧ r))) using m∗

→ to interpret the arrow, the
result (as we leave the reader to check) is −3 which is not a designated value.
But if we evaluate it using m→, as Belnap suggested, we instead get +3, which
is.

Altogether the point is this: Belnap’s proof of the Strong Belnap theorem
has a familiar form. The characters inhabiting the proof are also mostly famil-
iar. The one exception—the function m→—isn’t so bad, being a mere tweak
away from something we can make sense of.

4 The Brady Theorems

We’ll now turn to looking at the Brady Theorems. For convenience, we begin
by restating them:

Weak Brady Theorem If L is a sublogic of the logic DR and ⊢L A → B, then
some variable p occurs at the same depth in both A and B.
Strong Brady Theorem If L is a sublogic of the logic DR and ⊢L A→ B, then
some variable p occurs at the same depth and with the same sign in both A
and B.

The notion of depth deployed here is defined as follows::

• A occurs at depth 0 in A.

• Given a depth n occurrence of ¬A in C, the corresponding occurrence of A
in C is a depth n occurrence as well.

• Given a depth n occurrence of A∧B in C, the corresponding occurrences of
A and of B in C are depth n occurrences as well.

• Given a depth n occurrence of A∨B in C, the corresponding occurrences of
A and of B in C are depth n occurrences as well.

• Given a depth n occurrence of A → B in C, the corresponding occurrences
of A and of B in C are depth n + 1 occurrences.
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Again we can see these as parse tree rules. Stated using the same notation
(and with essentially the same reading) as before, they look like this:

• A
0

• ¬A
n
⇒ ¬A

n

• A ∧B
n

⇒ A
n
∧B

n

• A ∨B
n

⇒ A
n
∨B

n

• A→ B
n

⇒ A
n+1
→ B

n+1

Either way we look at it, the important part is that depth measures how
‘→-nested’ a subformula is.

At a casual glance, The Strong Brady Theorem might seem like it’s nothing
more than the conjunction of the Weak Brady Theorem and the restriction
of the Strong Belnap Theorem to sublogics of DR. But this is incorrect: the
Strong Brady Theorem is in fact strictly stronger than this conjunction. To
see this, note that if we conjoin the Weak Brady Theorem and the restricted
Strong Brady Theorem, the result is a theorem of the following form:

Whenever L is a sublogic of DR and ⊢L A → B, some variable p occurs at the
same depth in both A and B and some variable q occurs with the same sign in
both A and B.

And while this is a consequence of the Strong Brady Theorem, the Strong
Brady Theorem guarantees strictly more; in particular, it guarantees that the
very same variable occurs with (simultaneously) the same depth and the same
sign in both A and B. This strengthening turns out to be useful, as we will
make clear by examining an example. As a warning, we will have reason to
think about this very same example later in the paper.

Example 3: Consider the following formula:

(r ∧ (s→ p))→ ((p→ q) ∨ (q → r))

Note that, for the same reasons as in Example 2, this is a theorem of classical
logic. If we apply both parse tree procedures at once in a natural way, the end
result is the following tree:

r ∧ (s→ p)
+0

�������
%%JJJJJJ

(p→ q) ∨ (q → r)
+0

''NNNNNNN

wwppppppp

r
+0

�
�

s→ p
+0

������
��3

333
p→ q
+0

��3
333

������

q → r
+0

��3
333

������

r
+0

s
−1

p
+1

p
−1

q
+1

q
−1

r
+1

From this we can see that the formula does share a signed variable between
antecedent and consequent because r has a positive occurrence in each. And it does
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share a variable at the same depth between antecedent and consequent because
p has a depth 1 occurrence in each. But no variable has an occurrence that is
simultaneously at the same depth and of the same sign in both antecedent and
consequent.

Thus while neither the Strong Belnap Theorem nor the Weak Brady Theorem
nor their conjunction will rule this theorem of classical logic out as a theorem of
DR, the Strong Brady Theorem does. End Example

That’s not to say that Strong Brady is somehow perfect. It’s not—just
as with all the other theorems we’re discussing, it gives a necessary but not
sufficient condition for membership in the class of theorems in question. For
example, if we switch s and p in the antecedent of the formula in Example
3, the resulting formula remains a theorem of classical logic and does have a
negative, depth 1 occurrence of p in both antecedent and consequent despite
not being a theorem of R (or of any of its sublogics).

So the Brady Theorems—and especially the Strong Brady Theorem—while
still not perfect, are nonetheless useful. It’s thus unfortunate that the proofs
we have of them are not as nice as the proofs we have of the Belnap Theorems.
In particular, the proofs we have rely on evaluating formulas not in individual
assignments of values to variables, but in slightly more than infinitely long
sequences (ω+1 sequences, to be precise) of assignments of values to variables,
and then relying on something vaguely supervaluation-looking to wrap them
all up into a single value.

However, because it’s not necessary for the paper to be self-contained, and
because it would take up to much space, I won’t go into any more detail here.
The interested reader is instead referred to [4] and [3]. In the remainder of the
paper, I instead provide an alternative, and much simpler proof of a result to
which the Strong Brady Theorem (and thus the Weak Brady Theorm as well)
is a straightforward corollary. The proof I give has another virtue as well: it
shows that the Brady Theorems are, in a sense we can make precise, a natural
extension of the Belnap Theorems to the setting of sufficiently weak logics.

5 The Brady Theorems

We’ll now turn to looking at the Brady Theorems. For convenience, we begin
by restating them:

Weak Brady Theorem If L is a sublogic of the logic DR and ⊢L A → B, then
some variable p occurs at the same depth in both A and B.

Strong Brady Theorem If L is a sublogic of the logic DR and ⊢L A→ B, then
some variable p occurs at the same depth and with the same sign in both A
and B.

The notion of depth deployed here is defined as follows::

• A occurs at depth 0 in A.
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• Given a depth n occurrence of ¬A in C, the corresponding occurrence of A
in C is a depth n occurrence as well.

• Given a depth n occurrence of A∧B in C, the corresponding occurrences of
A and of B in C are depth n occurrences as well.

• Given a depth n occurrence of A∨B in C, the corresponding occurrences of
A and of B in C are depth n occurrences as well.

• Given a depth n occurrence of A → B in C, the corresponding occurrences
of A and of B in C are depth n + 1 occurrences.

Again we can see these as parse tree rules. Stated using the same notation
(and with essentially the same reading) as before, they look like this:

• A
0

• ¬A
n
⇒ ¬A

n

• A ∧B
n

⇒ A
n
∧B

n

• A ∨B
n

⇒ A
n
∨B

n

• A→ B
n

⇒ A
n+1
→ B

n+1

Either way we look at it, the important part is that depth measures how
‘→-nested’ a subformula is.

At a casual glance, The Strong Brady Theorem might seem like it’s
nothing more than the conjunction of the Weak Brady Theorem and the
Strong Belnap Theorem. But this is incorrect: the Strong Brady Theorem is
in fact strictly stronger than this conjunction. To see this, note that if we
conjoin the Weak Brady Theorem and the Strong Brady Theorem, the result
is a theorem of the following form:

Whenever L is a sublogic of DR and ⊢L A → B, some variable p occurs at the
same depth in both A and B and some variable q occurs with the same sign in
both A and B.

And while this is a consequence of the Strong Brady Theorem, the Strong
Brady Theorem guarantees strictly more; in particular, it guarantees that the
very same variable occurs with (simultaneously) the same depth and the same
sign in both A and B. This strengthening turns out to be useful, as we will
make clear by examining an example. As a warning, we will have reason to
think about this very same example later in the paper.

Example 3: Consider the following formula:

(r ∧ (s→ p))→ ((p→ q) ∨ (q → r))

Note that, for the same reasons as in Example 2, this is a theorem of classical
logic. If we apply both parse tree procedures at once in a natural way, the end
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result is the following tree:

r ∧ (s→ p)
+0

�������
%%JJJJJJ

(p→ q) ∨ (q → r)
+0

''NNNNNNN

wwppppppp

r
+0

�
�

s→ p
+0

������
��3

333
p→ q
+0

��3
333

������

q → r
+0

��3
333

������

r
+0

s
−1

p
+1

p
−1

q
+1

q
−1

r
+1

From this we can see that the formula does share a signed variable between
antecedent and consequent because r has a positive occurrence in each. And it does
share a variable at the same depth between antecedent and consequent because
p has a depth 1 occurrence in each. But no variable has an occurrence that is
simultaneously at the same depth and of the same sign in both antecedent and
consequent.

Thus while neither the Strong Belnap Theorem nor the Weak Brady Theorem
nor their conjunction will rule this theorem of classical logic out as a theorem of
DR, the Strong Brady Theorem does. End Example

That’s not to say that Strong Brady is somehow perfect. It’s not—just
as with all the other theorems we’re discussing, it gives a necessary but not
sufficient condition for membership in the class of theorems in question. For
example, if we switch s and p in the antecedent of the formula in Example
3, the resulting formula remains a theorem of classical logic and does have a
negative, depth 1 occurrence of p in both antecedent and consequent despite
not being a theorem of R (or of any of its sublogics).

So the Brady Theorems—and especially the Strong Brady Theorem—while
still not perfect, are nonetheless useful. It’s thus unfortunate that the proofs
we have of them are not as nice as the proofs we have of the Belnap Theorems.
In particular, the proofs we have rely on evaluating formulas not in individual
assignments of values to variables, but in slightly more than infinitely long
sequences (ω+1 sequences, to be precise) of assignments of values to variables.
And the semantic clauses by which we evaluate formulas in such sequences
are also a bit odd. In particular the →-clause is troubling, as it takes different
forms at the initial element of the sequence, at elements in the middle of the
sequence, and at the final element of the sequence.

Because it’s not necessary for the paper to be self-contained, and because
it would take up to much space, I won’t provide proofs of the Brady theorem’s
here. The interested reader is instead referred to [4] and [3]. In the remainder
of the paper, I instead provide an alternative, and much simpler proof of a
result in the neighborhood of the Brady Theorems which also captures all of
the important applications of the latter. The proof I give has another virtue
as well: it shows that the Brady Theorems are, in a sense we can make precise,
a natural extension of the Belnap Theorems to the setting of sufficiently weak
logics.
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6 Depth Substitutions

Our initial inspiration comes from an observation Brady makes in the course
of proving the Weak Brady Theorem:

The depth relevance condition suggests that there are levels of implication corre-
sponding to the depths of sentential variable occurrences in a formula and that
implication differs from level to level.[4, p. 65]

Personally, I find it hard to see either Brady Theorem showing this. The Weak
Brady Theorem says that when A → B is provable, A and B share a variable
at some depth. According to the Strong Brady Theorem, we can take this
variable to have the same sign in both occurrences. I’ll grant that these say
something about how depth and implication interact. But so far as I can tell,
they say nothing about there being different depths or ‘levels’ of implication.

For my money, for a system to recognize different ‘levels of implication’,
it would need to be the case that if some formula C occurs as a subformula
of A twice, once at one depth and once at some other depth, then these two
occurrences of C would have to be seen—or at least ‘seen for the purposes of
implication—as occurrences not of the same formula at different depths, but
in some sense as occurrences of two entirely different formulas. This is clearly
a very loose idea, not least because I’m not all sure what it means for a logic
to “see” things as different or the same. But, taken to the extreme, this loose
idea becomes usable.

What I have in mind is this: rather than talking about different occurrences
of an arbitrary subformula C, let’s focus on the simplest and most fundamental
case: occurrences of variables. Here the loose notion outlined above becomes
this: a system recognizes different ‘levels of implication’ when any time some
variable p occurs as a subformula of A at two different depths, these two
occurrences of p are seen as occurrences of different formulas. This, like I said,
is something I think we can make sense of. We’ll need a few definitions first,
beginning somewhere quite familiar:

• A uniform substitution is a function mapping each variable to a formula.
• If f is a uniform substitution and A is a formula, A[f] is the formula that

we get by replacing each occurrence of p in A with an occurrence of f(p).

Typically, we require formal logics to be closed under uniform substitutions in
the sense that whenever we have that ⊢L A, we also have that ⊢L A[f] for all
uniform substitutions f . The basic thought to have is this: we require this of
formal logics because we require them to ‘see’ variables as schematic formulae.2

Thus, intuitively, a logic that ‘sees’ an occurrence of the same variable at
two different depths as occurrences of two different variables should, by anal-
ogy, allow substitutions that vary depending on depth. To make this concrete
we need a couple more definitions:

2This plausibly follows from taking logics to be either 2-formal or 3-formal in the sense of
[5]. Given the content of what I’m about to say, there’s clearly something very interesting and
worthwhile to investigate here. Equally clear, however, is that such an investigation is beyond the
scope of this particular paper.
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• A depth substitution is a function mapping pairs ⟨p, n⟩ with p a variable and
n ∈ N to formulas.

• If d is a depth substitution and A is a formula, A[d] is the formula that we
get by replacing each depth-n occurrence of p with an occurrence of d(p, n).

Following the convention above, say that a set of formulas S is closed under
depth substitutions when for any depth substitution d, if φ ∈ S then φ[d] ∈ S as
well. Note that each uniform substitution f is naturally seen as a degenerate
depth substitution df where we take df(p, n) = f(p) for all n. Thus, any
set of formulas that is closed under depth substitutions is also closed under
uniform substitutions. Since closure under uniform substitution is an analogue
of formality, we will call any logic that is closed under the more inclusive class
of depth substitutions a hyperformal logic.

A rather unexpected result is that an enormous array of weak relevant
logics, including DR and the sublogics of DR that are typically considered
in the literature, are hyperformal. To be a bit more concrete, we make the
following observations.

Lemma 5 Let S be a set of formulas and S+ be the smallest set that contains S
and also contains the conclusion of each instance of R1-R6 whose premises it also
contains (in other words, let S+ be the closure of S under R1-R6). Then if S is closed
under depth substitutions, so is S+.

Proof If B+
∈ S+, then for some n ≥ 0, B+ is the result of applying n instances of rules

R1-R6 to some B ∈ S. We prove by induction on n that for any depth substitution
d, B+

[d] ∈ S+.
The result holds by assumption for n = 0. The induction step splits into six cases

depending on the last rule applied. We consider only the R2 (modus ponens) case,
the others being either similar or simpler. So, suppose the last instance of a rule we
applied was the following:

A,A→ B+
⇒ B+

Let d be a depth substitution. Our goal is to show B+
[d] ∈ S+. Define the depth

substitution d − 1 as follows:

(d − 1)(p,n) = {
p if n = 0

d(p,n − 1) otherwise

Note that (A → B+
)[d − 1] = A[d] → B+

[d]. By the inductive hypothesis, for any
depth substitutions e and e′, A[e] ∈ S+ and (A → B+

)[e′] ∈ S+. Thus in particular
A[d] and (A→ B+

)[d − 1] = A[d]→ B+
[d] are in S+. So B+

[d] ∈ S+ as required.
�

From this we have the following corollary:

Corollary 6 Let L be a logic generated from the set of axioms Ax using the set of
rules Ru. Then if Ax is closed under depth substitutions and Ru ⊆ {R1, . . . ,R6}, then
L is hyperformal.
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Corollary 7 DR is hyperformal.

Proof By inspection, DR’s axioms are closed under depth substitutions, so the pre-
vious corollary gives the result. �

Say that a subsystem of a logic L is a logic generated from some subset of
L’s axioms and rules. We then have

Theorem 8 If L is a subsystem of DR, then L is hyperformal.

7 Connecting the Pieces

In the introduction we said that we’d give simplified proofs of results that
subsumed the main application of Brady’s results. It’s time to make good on
this promise.

The basic idea is simple enough: the fact that DR is hyperformal lets us
transform any purported violation of the Strong Brady Theorem in DR into a
violation of the Strong Belnap Theorem in DR and any purported violation of
the Weak Brady Theorem in DR into a violation of the Weak Belnap theorem
in DR. But DR is a sublogic of R. So by the Belnap Theorems there can be
no such violations. QED.

The proof we give will give below is actually a proof of the contrapositive
result. Nonetheless, the idea that Brady-counterexamples give rise to Belnap-
counterexamples is at its heart.

In spite of how long you’ve been waiting, I won’t dive straight into the
proof here. This is because the proof is actually quite straightforward, provided
the idea of it is completely clear. So it’s useful to spend a moment working
through some nice, concrete examples to see the idea in action.

To help in the discussion, we will first define the following phrases:

• We say that A→ B has the variable sharing property when some variable p
occurs in both A and B.

• We say that A → B has the strong variable sharing property when some
variable p occurs in both A and B with the same sign

• We say that A → B has the depth relevance property when some variable p
occurs at the same depth in both A and B.

• We say that A → B has the strong depth relevance property when some
variable p occurs at the same depth in both A and B with the same sign.

Thus the Weak Belnap Theorem amounts to the claim that every provable
conditional of every sublogic of R has the variable sharing property; the Strong
Belnap Theorem to the claim that every provable conditional of every sublogic
of R has the strong variable sharing property; the Weak Brady Theorem to the
claim that every provable conditional in every sublogic of DR has the depth
relevance property; and the Strong Brady Theorem to the claim that every
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provable conditional in every sublogic of DR has the strong depth relevance
property.

It will also help our discussion to settle on a particular injective (i.e. one-
one) depth substitution whose range includes only variables. For this purpose,
we will use the function d that is defined as follows:

p1 p2 p3 p4 p5 p6 . . .
0 p1 p3 p6 p10 p15 p21 . . .
1 p2 p5 p9 p14 p20 . . .
2 p4 p8 p13 p19 . . .
3 p7 p12 p18 . . .
4 p11 p17 . . .
5 p16 . . .
⋮ ⋮

The claim I want to defend is that whenever A→ B lacks the depth relevance
property, (A→ B)[d] will lack the variable sharing property and that
whenever A→ B lacks the strong depth relevance property, (A→ B)[d] will
lack the strong variable sharing property. As mentioned, it’s useful to first
look at some examples. But first a note: unlike in the case of our proofs of
the Belnap Theorems, when we apply a depth substitution to a conditional
formula, we do not ignore the arrow in the middle. Thus, as a rather
elementary example, while p1[d] = p1, (p1 → p1)[d] = p2 → p2.

Example 4: Consider first the bane of the Strong Belnap Theorem: p1 → (p2 →

p1). This formula has the strong variable sharing property, since p1 occurs posi-
tively in both its antecedent and its consequent. But it lacks the depth relevance
property, since p1 is a depth 0 subformula of the antecedent but not of the
consequent.

Now let’s apply d to it:

(p1 → (p2 → p1))[d] = d(p1,1)→ (d(p2,2)→ d(p1,2))

= p2 → (p8 → p4)

As promised, this formula lacks the variable sharing property. End Example

Example 5: Now consider (a version of) the formula we used to show that the
Strong Brady Theorem was stronger than the conjunction of the Weak Brady
Theorem and the Strong Belnap Theorem:

(p1 ∧ (p2 → p3))→ ((p3 → p4) ∨ (p4 → p1))

As we mentioned in Example 3, this formula has both the strong variable sharing
property and the depth relevance property. But it lacks the strong depth relevance
property. While I’ll leave it to the reader to check my work, when we apply d to
this formula the result is the following:

(p2 ∧ (p8 → p13))→ ((p13 → p19) ∨ (p19 → p4))
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This formula does have the variable sharing property because p13 occurs in both
the antecedent and the consequent. But it does not have the strong variable sharing
property—the instance of p13 in the antecedent occurs positively as a subformula
of the antecedent while the instance in the consequent is negative as a subformula
of the consequent. Thus, as claimed, applying d to a formula that lacked the strong
depth relevance property resulted in a formula that lacked the strong variable
sharing property. End Example

In order to turn these examples into an actual proof, we need to make a
few observations. First, notice that applying a depth substitution to a formula
leaves the skeleton of that formula—roughly speaking, the arrangement of
connectives and parentheses in the formulas—intact. Second, note that when I
apply d, each instance of a variable in the image is the image of an instance of
a variable with the same sign in the original formula. For example, looking at
example 4, notice that the instance of p8 in the image of p1 → (p2 → p1) under
d—that is to say, in p2 → (p8 → p4)—is the image of p2. And, just as p8 occurs
negatively in p2 → (p8 → p4), so also p2 occurs negatively in p1 → (p2 → p1).
It’s not hard to see that in fact this is always the case. These observations will
suffice for the proof.

Theorem 9 Provable conditionals in hyperformal sublogics of R have the strong
variable sharing property.

Proof Suppose L is a hyperformal sublogic of R and ⊢L A→ B. Consider (A→ B)[d].
By our above observations, for some C and D, (A→ B)[d] will have the form C →D.
Since L is hyperformal, ⊢L (A → B)[d], which is to say that ⊢L C → D. Since L
is a sublogic of R, it follows from the Strong Belnap Theorem that some variable q
occurs with the same sign σ in both C and D.

Since q occurs in C with sign σ, there is a variable rA that occurs at depth nA
with sign σ in A such that d(rA, nA + 1) = q.3 Similarly, since q occurs in D with
sign σ, there is a variable rB that occurs at depth nB with sign σ in B such that
d(rB , nB + 1) = q. But then d(rA, nA + 1) = q = d(rB , nB + 1). So by the injectivity
of d, rA = rB and nA = nB . Thus some variable r = rA = rB occurs with sign σ at
the same depth, n = nA = nB in both A and B. So A → B has the strong variable
sharing property. �

As a corollary we have

Corollary 10 (The Strong Brady Theorem) If L is a sublogic of the logic DR and
⊢L A→ B, then some variable p occurs at the same depth and with the same sign in
both A and B.

3Since rA occurs at depth nA in A it occurs at depth nA + 1 in A→ B.
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Proof Clearly if L is a sublogic of D and ⊢L A → B, then ⊢DR A → B as well. By
Corollary 7, DR is hyperformal. So by Theorem 9, if ⊢DR A → B, then A → B has
the strong variable sharing property, which was what we wanted to show. �

Finally, note that we managed this result without any of the odd machinery
required in the proof of the Brady Theorems. I take this to be an advantage.

8 Conclusion

The Belnap Theorems say something about relevance qua variable sharing.
So do the Brady Theorems. The Brady Theorems are stated for sublogics of
DR. But the sublogics of DR we are mostly interested in are all subsystems of
DR. And it turns out that subsystems of DR are hyperformal. In the presence
of hyperformality, the Brady Theorems reduce to the Belnap Theorems in
the sense that any violation of the former can be turned into a violation of
the latter. It follows that the Brady Theorems are in a sense the natural
hyperformal analogue of the Belnap Theorems.

What remains is to plumb the philosophical significance of hyperformality.
Prior to stating and proving the Strong Belnap Theorem in [2], Anderson
and Belnap say that it shows that ‘if A → B is provable. . . then A and B
share intensional content, in the sense that they share a variable.’ (emphasis
added). Presumably the Brady Theorems thus demonstrate that A and B share
something stronger than whatever ‘intensional content’ means to Anderson
and Belnap. It seems that hyperformality could shed light on what, exactly
this strong shared-something is. I haven’t yet thought hard enough about it
to say whether this intuition is correct. But DR is fairly close to Brady’s logic
of meaning containment MC (see [6]) which is in turn explicitly designed to
capture the notion of intensional content. Thus, a plausible way we might shed
light on this subject is by examining MC.
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