
SEMANTICS FOR SECOND-ORDER RELEVANT LOGICS

SHAY ALLEN LOGAN

Abstract. In this paper we extend Kit Fine’s semantics for first-order rele-
vant logic so as to treat dyadic second-order logic. Along the way we discuss
how to understand the semantics, problems one encounters in extending it
to account for various sorts of comprehension, and partial solutions to those
problems.

NOTE: This is a preprint of a chapter to appear in the forthcom-
ing collection New Directions in Relevant Logic. Please cite the
published version!

1. Preamble

Here’s the thing: when you look at it from just the right angle, it’s entirely
obvious how semantics for second-order relevant logics ought to go. Or at least, if
you’ve understood how semantics for first-order relevant logics ought to go (those
seeking a gentle introduction might find the discussions in [10] or [13] helpful),
there are perspectives like this. What’s more is that from any such angle, the
metatheory that needs doing can be summed up in one line: everything is just as
in the first-order case, but with more indices.

Of course, it’s no small matter finding the magical angle from which everything
becomes obvious. And even having found this perspective, one cannot assume one’s
audience will find things as obvious as oneself. All that to say this: if the results in
the paper below strike you as obvious, pay attention to the perspective that makes
that possible. And if they don’t, feel free to ignore this preamble in its entirety.

2. The Language

We will work in a somewhat idiosyncratic setting: dyadic second-order logic.
I’ve chosen this setting not for technical reasons but for reasons of pedagogical
expediency. I’ve explained this material to a number of people and have found the
following:

• Monadic second-order logic, while easiest to understand, doesn’t leave ev-
eryone clear on what to do when it comes to extending yet higher.

• Third-(or higher-)order logic has too much machinery for any but the de-
vout to make it through. Those that do, though, are left able to see their
way anywhere they want.

• Dyadic second-order logic is a middle ground—even the apostate are usually
able to tolerate working through it if they decide they really care. And
seeing one’s way from dyadic second-order logic to third-order logic and
higher is usually doable in a matter of days.

That said, we explicitly define the language L as follows:
1
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Vocabulary: The set of symbols of L consists of
• Countably many individual constants (c1, c2, . . . ), the set of which we

denote by Con0;
• Countably many unary predicate constants (P1, P2, . . . ), the set of

which we denote by Con1;
• Countably many binary predicate constants (Q1, Q2, . . . ), the set of

which we denote by Con2;
• Countably many individual variables (x1, x2, . . . ), the set of which we

denote by Var0;
• Countably many unary predicate variables (X1, X2, . . . ), the set of

which we denote by Var1;
• Countably many binary predicate variables (Y1, Y2, . . . ), the set of

which we denote by Var2;
• The connectives ¬, ∧, ∨, and →; and
• The quantifiers ∀ and ∃.

Grammar: L, understood as its set of formulas, is then defined as follows:
• If T ∈ Con1∪Var1 and t ∈ Con0∪Var0, then Tt is a(n atomic) formula;
• If T ∈ Con2 ∪ Var2 and ti ∈ Con0 ∪ Var0, then Tt1t2 is an atomic

formula;
• If A and B are formulas, then so are ¬A, (A ∧ B), (A ∨ B), and
(A → B);

• If A is a formula and x is an individual variable, then ∀xA and ∃xA
are formulas;

• If A is a formula and X is a unary predicate variable, then ∀XA and
∃XA are formulas; and

• If A is a formula and Y is a binary predicate variable, then ∀Y A and
∃Y A are formulas.

I will usually stick to the metavariable conventions implicitly specified in the above
definition. We’ll also occasionally use ↔, defined in its usual way. Free and bound
occurrences of a variable are also defined in the expected ways; for substitution, we
write A(x/t) (resp. A(X/T ); A(Y/S)) for the formula that results from replacing
each free occurrence of x (resp. X; Y ) in A with an occurrence of t (resp. T ; S).
With respect to such substitutions, we define what it means for t (resp. T ; S) to
be free for x (resp. X; Y ) in A in the expected ways. Finally, where A is a formula
and x1 is an individual variable (resp. x1 and x2 are individual variables), we write
B(X/A(x1)) (resp. B(Y/A(x1, x2))) for the formula that results from replacing,
for each individual term t (resp. for each pair of individual terms t1 and t2) each
occurrence of Xt (resp. Y t1t2) in B in which the ‘X’ (resp. ‘Y ’) is occurring freely
with an occurrence of A(x/t) (resp. A(x1/t1, x2/t2)). We extend the notion of ‘free
for’ from variable-substitutions to formula-substitutions in the obvious way.

We write L for the language so-defined. Where F0, F1, and F2 are pairwise
disjoint sets of symbols not found in our language and F = 〈F0, F1, F2〉, we take
L(F ) to be the extension of L that adds the members of F0 as additional individual
constants, adds the members of F1 as additional unary predicate constants, and
adds the members of F2 as additional binary predicate constants. An L(F )-sentence
is an L(F )-formula in which no variables occur free.
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3. The Logic

The propositional (or zero-order) fragment of each of the logics we discuss in this
paper is the weak relevant logic B discussed in (among many other places) §4.3 of
[15]. This is also the base logic for which Kit Fine first defined stratified semantics
in [8].1 The reader interested in extending the results of this paper to logics with
stronger propositional fragments will find that the tools for doing so introduced by
Fine are sufficient. On the other hand, the reader interested in extending my results
by including further types of quantification will have to piece together how to do
so on their own; I nonetheless think that anyone who takes the time to properly
understand what I’ve done here will find doing so entirely straightforward.

Now to business. For each language L(F ) (including L = L(〈∅, ∅, ∅〉)), the dyadic
second-order logic B2Q(F ) is defined to be the logic axiomatized by the L(F )-
instances of the following axioms and rules:

A1 A → A

A2 (A ∧B) → A

(A ∧B) → B

A3 ((A → B) ∧ (A → C)) → (A →
(B ∧ C))

A4 A → (A ∨B)

B → (A ∨B)

A5 ((A → C)∧(B → C)) → ((A∨B) →
C)

A6 (A∧ (B ∨C)) → ((A∧B)∨ (A∧C))

A7 ¬¬A → A

A8 ∀xA → A(x/t)

∀XA → A(X/T )

∀Y A → A(Y/S)

A9 ∀x(A → B) → (A → ∀xB)

∀X(A → B) → (A → ∀XB)

∀Y (A → B) → (A → ∀Y B)

A10 ∀x(A ∨B) → (A ∨ ∀xB)

∀X(A ∨B) → (A ∨ ∀XB)

∀Y (A ∨B) → (A ∨ ∀Y B)

A11 A(t/x) → ∃xA

A(T/X) → ∃XA

A(S/Y ) → ∃Y A

A12 (A ∧ ∃xB) → ∃x(A ∧B)

(A ∧ ∃XB) → ∃X(A ∧B)

(A ∧ ∃Y B) → ∃Y (A ∧B)

R1 A A → B
B

R2 A B
A ∧B

R3 A → B C → D
(B → C) → (A → D)

R4 A → ¬B
B → ¬A

R5 A
∀xA

R6 A
∀XA

R7 A
∀Y A

R8 ∀x(B → A)

∃xB → A

R9 ∀X(B → A)

∃XB → A

R10 ∀Y (B → A)

∃Y B → A

Note that we do not take ∃ to be a defined connective here, which partially
explains some of the apparent redundancies in this presentation. Also note that

1This is not, strictly speaking, correct, as a referee has pointed out. Fine’s system included the
law of excluded middle, which is not typical for B. These days, B extended to include excluded
middle is usually called BX.
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in A8 and A11, we require that t (resp. T ; S) be free for x (resp. X; Y ), and
in A9, A10, A12, and in R8-R10, we require that x (resp. X; Y ) not occur free
in A. Finally, note that there is an asymmetry in our treatment of intensional
confinement for universals in A9 and our treatment of intensional confinement for
existentials in R8-R10. This is done to preserve the usual negation duality between
the existential and the universal in the presence of rule contraposition (rule R4)
rather than axiomatic contraposition.

Recall that a comprehension axiom for A is a formula of one of the following
forms:

∃X∀x(Xx ↔ A)

∃Y ∀x1∀x2(Y x1x2 ↔ A)

We implicitly assume when discussing comprehension axioms that X (resp. Y ) does
not occur freely in A. Given a set A of formulas, the logic B2QA(F ) augments
B2Q(F ) with comprehension axioms for each A ∈ A.

For any of the above logics L, we write `L A to mean that there is a sequence of
formulas B1, . . . , Bn with Bn = A so that for 1 ≤ i ≤ n, either Bi is an instance of
an L-axiom or Bi follows from previous members of the sequence using one of the
L-rules. We write X `L A to mean that there is a sequence of formulas B1, . . . , Bn

with Bn = A so that for 1 ≤ i ≤ n, either Bi is a member of X or there are j < i
and k < i so that Bi = Bj ∧Bk or there is j < i such that ` Bj → Bi.

Given a set of formulas Γ, we say that Γ is disjunctively closed when A ∈ Γ and
B ∈ Γ only if A ∨ B ∈ Γ. We say that Γ is prime when A ∨ B ∈ Γ only if either
A ∈ Γ or B ∈ Γ. We say that Γ is an L-theory when Γ `L A only if A ∈ Γ.

4. Semantics

We define an F -premodel to be a tuple 〈T, P, `,v, ·, ?, v〉 where ` ∈ T ⊇ P , v is
a partial ordering of T , · is a binary operation on T , ? is a unary operation on P ,
and v is a function mapping t ∈ T to a set of atomic L(F ) sentences. Note that
for a more traditional presentation of things, one can recover from v functions v1

and v2 that (respectively) map each unary F -predicate constant to a function from
theories to sets of names and map each binary F -predicate constant to a function
from theories to sets of pairs of names. Explicitly, we have

v1(P, t) ={c : Pc ∈ v(t)}
v2(Q, t) ={〈c1, c2〉 : Qc1c2 ∈ v(t)}

We define t vP q to mean t v q and q ∈ P . An F -model is an F -premodel that
satisfies the following conditions:

• Covariance: If s v t, then
– u · s v u · t,
– s · u v t · u, and
– v(s) ⊆ v(t).

• Minimality: If s · t vP p, then
– There is s vP q so that q · t v p and
– There is t vP r so that s · r v p.

• If A ∈ v(p) for all t vP p, then A ∈ v(t).
• ` · t = t
• p?? = p
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• If P 3 p vP q, then q? v p?.
• For all t there is p so that t vP p.

As the reader can verify, aside from the fact that we are working in a language
with additional structure, an F -premodel is exactly a model in the sense of Fine’s
[7], with two modifications: first, we’ve dropped the requirement that primes above
the logic be above their duals (that is, if ` vP p, then p? v p). Second, we’ve
added (in the final bullet above) the requirement that all theories be extended by
some prime. The first change reflects our rejection of A ∨ ¬A as an axiom. The
second change makes no difference at all in the logic. This isn’t hard to see: since
it amounts to a restriction on the class of models, the soundness proof still goes
through, and since the language L(F ), thought of as a theory, is obviously prime,
the canonical model verifies the condition and the completeness proof will still go
through as well.

We intuitively interpret the members of T as theories, the members of P as prime
theories, ` as the logic, v as the containment relation among the theories, · as the
application operation, ? as the dual of a theory, and v as the function mapping
each theory to its set of atomic members. For more detail on these interpretations,
see e.g. [7], [11], or [13].

4.1. The Base System. As in [8], so also here a stratified model is essentially a
poset of F -models. Fine, in constructing stratified models for first-order quantifi-
cation, gave models that were ‘fibered along’ a poset D of what he called domains.
But there was nothing all that ‘domain-y’ about D—its underlying class was just
a class of sets satisfying the following:

• Extendibility: For all α ∈ D, there is β ∈ D so that β ) α.
• Upper Bound: For all α ∈ D and β ∈ D, there is γ ∈ D so that α ∪ β ⊆ γ.
• Reversibility: if α ∈ D, β ∈ D, γ ∈ D, and α ⊆ β ⊆ γ, then α∪ (γ−β) ∈ D

as well.
Thinking of the members of D as sets of names, we can justify these conditions as
follows:

• Extendibility: language is indefinitely extensible; no matter how many
names we’ve added to our vocabulary, we can always add more.

• Upper Bound: No two ways of adding names to our language are incom-
patible with each other.

• Reversibility: Given any two sets of names we might add to our language,
we can add them in either order without consequence.

We can generalize these to the case at hand by ‘fibering along’ not just a poset
of sets of names, but along a poset of vocabularies, now understood to include
not just names, but also predicate symbols and relation symbols. Of course, we’ll
have to require that such a poset satisfy the obvious analogues of the conditions
Fine gave. This does not introduce as much new complexity as one would expect,
especially once we take the step of extending set-theoretic notions from sets to
triples of sets in the expected ways—that is, by defining e.g. F ⊆ F ′ to mean
that F0 ⊆ F ′

0, F1 ⊆ F ′
1, and F2 ⊆ F ′

2 and, for F ⊆ F ′, by defining F − F ′ to
be the triple 〈F0 − F ′

0, F1 − F ′
1, F2 − F ′

2〉. With this in hand, we define the (oh
so) technical term ‘appropriate class of vocabularies’ by saying that an appropriate
class of vocabularies is any class V of triples F = 〈F0, F1, F2〉 of sets such that
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• Extendibility: For each F ∈ V , there are (not necessarily distinct) F ⊆
G ∈ V , F ⊆ H ∈ V and F ⊆ K ∈ V so that F0 ( G0, F1 ( H1, and
F2 ( K2.

• Upper Bound: For all F ∈ V and G ∈ V , there is H ∈ V with F ∪G ⊆ H.
• Reversibility: if F ∈ V , G ∈ V , H ∈ V , and F ⊆ G ⊆ H, then F∪(H−G) ∈
V as well.

To define stratified models we begin by settling on a particular appropriate class
of vocabularies V such that no member of any component of any member of V
occurs as a symbol in L. We then define a V -stratified premodel to be a tuple
〈M,⇑,⇓, J−K〉 where

• M is a function that maps each F ∈ V to a F -model M(F ) = 〈TF , PF , `F ,vF

, ·F , ?F , vF 〉;
• ⇑ is a set containing one function ↑F ′

F
: TF −→ TF ′ for each pair 〈F, F ′〉

with F ⊆ F ′.
• ⇓ is a set containing one function ↓F ′

F
: TF ′ −→ TF for each pair 〈F, F ′〉

with F ⊆ F ′.
• J−K is a set containing one function [−]σ1,σ2

F
: TF −→ TF for each triple

〈F, σ1, σ2〉 with 〈σ1, σ2〉 ∈ (Con0 ∪ F0)
2 ∪ (Con1 ∪ F1)

2 ∪ (Con2 ∪ F2)
2.

Intuitively, each model M(F ) is a space of theories in the language L(F ), each
function ↑F ′

F
maps the L(F )-theory t to the L(F ′)-theory t↑F ′

F
that t generates

under `F ′ , each function ↓F ′

F
maps the L(F ′)-theory t to the L(F )-theory t∩L(F ),

and each function [−]σ1,σ2

F
maps the L(F )-theory t to the L(F )-theory [t]σ1,σ2

F
that

we get by extending t so as to make σ1 and σ2 indistinguishable. We extend all of
these functions from functions from theories to theories to functions from sets of
theories to sets of theories in the obvious ways.

Given 〈σ1, σ2〉 ∈ (Con0 ∪ F0)
2 ∪ (Con1 ∪ F1)

2 ∪ (Con2 ∪ F2)
2 and a formula

A ∈ L(V ), a 〈σ1, σ2〉-variant of A is a formula that results from replacing zero
or more occurrences of σi in A with σj , where i 6= j ∈ {1, 2}. Now consider the
function Σ〈σ1,σ2〉 from subsets of L(V ) to subsets of L(V ) defined by

Σ〈σ1,σ2〉(Γ) =
⋃
A∈Γ

{B : B is a 〈σ1, σ2〉-variant of A}

Σ〈σ1,σ2〉(Γ) is the symmetrization of Γ at 〈σ1, σ2〉. We say that Γ is symmetric when
Σ〈σ1,σ2〉(Γ) = Γ.

A V -stratified model is a V -stratified premodel that meets the following condi-
tions:

(1) Covariance: If s vF t, then
• s↑F ′

F
vF ′ t↑F

′

F
, and

• s↓F
F ′ vF ′ t↓FF ′ .

(2) Identity: t↑F
F
= t↓F

F
= t.

(3) Transitivity: t↑F ′

F
↑F ′′

F ′ = t↑F ′′

F
and t↓F

F ′↓F
′

F ′′ = t↓F
F ′′ .

(4) Extension-Restriction: t↑F ′

F
↓F ′

F
= t, but t↓F

F ′↑FF ′ v t.
(5) Vertical Atomic Heredity: vF ′(t↓FF ′) = vF (t) ∩ L(F ′).
(6) Primes Down: PF ↓

F
F ′ ⊆ PF ′ .
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(7) Prime Restriction Down: If q ∈ PF and p v q↓F
F ′ , then there is r ∈ PF ,

with r↓F
F ′ = p and r v q.

(8) Prime Extension Down: If t↓F
F ′ vP

F ′ p, then there is t vPF
q with q↓F

F ′ = p.
(9) Duality Down: p?F ↓F

F ′ = (p↓F
F ′)

?
F ′ .

(10) Distribution Up: (t ·F u)↑F ′

F
= t↑F ′

F
·F ′ u↑F

′

F
.

(11) Distribution Down: (t ·F u↑F
F ′)↓FF ′ = t↓F

F ′ ·F ′ u.
(12) Logics Up: `F ↑

F ′

F
= `F ′ .

(13) Bracket is a Closure Operator:
• t vF [t]σ1,σ2

F
;

• If s vF t, then [t]σ1,σ2

F
vF [s]σ1,σ2

F
; and

• [[t]σ1,σ2

F
]σ1,σ2

F
= [t]σ1,σ2

F
.

(14) Bracket Duality: [([t]σ1,σ2

F
)?F ]σ1,σ2

F
= ([t]σ1,σ2

F
)?F

(15) Bracket Application: [s ·F t]σ1,σ2

F
vF [s]σ1,σ2

F
·F [t]σ1,σ2

F
vF [s]σ1,σ2

F
·F t

(16) Bracket Up: [t↑F
F ′ ]

σ1,σ2

F
= [t]σ1,σ2

F ′ ↑F
F ′

(17) Bracket Down: If σ1 ∈ Fi − F ′
i and σ2 ∈ F ′

i , then [t↑F
F ′ ]

σ1,σ2

F
↓F
F ′ vF ′ t

(18) Bracket Symmetry: [t]σ1,σ2

F
is symmetric in σ1 and σ2.

(19) Symmetric Prime Extension: If v(t) is symmetric in σ1 and σ2 and t vPF
p,

then there is a q so that v(q) is symmetric in σ1 and σ2 and t vPF
q vPF

p.

The forcing relation, which holds between triples 〈S, F , t〉—where S is a V -
stratified model, F ∈ V , and t ∈ MS(F )—and L(F )-sentences (not formulas!) is
then defined as follows:

• S, F , t � Pt iff Pt ∈ vF (t).
• S, F , t � Qt1t2 iff Qt1t2 ∈ vF (t).
• S, F , t � A ∧B iff S, F , t � A and S, F , t � B
• S, F , t � A ∨B iff for all t vPF

p, S, F , p � A or S, F , p � B

• S, F , t � ¬A iff for all t vPF
p, S, F , p?

F
6� A.

• S, F , t � A → B iff for all u ∈ TF , if S, F , u � A, then S, F , t ·F u � B.
• S, F , t � ∀xA iff for some G ) F and g ∈ G0 − F0, S,G, t↑G

F
� A(x/g).

• S, F , t � ∃xA iff for all t vPF
p there are G ⊇ F , q ∈ PG, and g ∈ G0 so

that q↓G
F
= p and S,G, q � A(x/g).

• S, F , t � ∀XA iff for some G ) F and G ∈ G1 − F1, S,G, t↑G
F
� A(X/G).

• S, F , t � ∃XA iff for all t vPF
p there are G ⊇ F , q ∈ PG, and G ∈ G1 so

that q↓G
F
= p and S,G, q � A(X/G).

• S, F , t � ∀Y A iff for some G ) F and G ∈ G2 − F2, S,G, t↑G
F
� A(Y/G).

• S, F , t � ∃Y A iff for all t vPF
p there are G ⊇ F , q ∈ PG, and G ∈ G2 so

that q↓G
F
= p and S,G, q � A(Y/G).

Letting Ω = 〈Ω0,Ω1,Ω2〉, with Ωi = ∪F∈V Fi, we say that an L(Ω)-sentence
A is valid in S when S, F , `F � A whenever A ∈ L(F ). We say that a formula
A(Λ1, . . . ,Λn) in which the Λi occur free is valid in S when all its substitution
instances are valid in S. We say that A is V -valid when A is valid in every V -
stratified model S and that A is valid when A is V -valid for every appropriate
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class of vocabularies V . Finally, where t ∈ TF for some F ∈ V , we write t for
{A : S, F , t � A}. In the remainder, when they are abundantly clear from context,
we will drop some of the subscripts to enhance readability.

We now record a few important facts about the semantics:

Lemma 1.
• If s vF t and S, F , s � A, then S, F , t � A.
• If S, F , p � A for all t vPF

p, then S, F , t � A as well.
• If v(t) is symmetric in σ1 and σ2, then t is symmetric in σ1 and σ2.
• If F ⊆ G and A ∈ L(F ), then S,G, t � A iff S, F , t↓G

F
.

• If F ⊆ G and A ∈ L(F ), then S, F , t � A iff S,G, t↑G
F

.
• If S, F , t � ∀xA (resp. S, F , t � ∀XA; S, F , t � ∀Y A) and f ∈ F0 (resp. F ∈
F1; F ∈ F2), then S, F , t � A(x/t).

Proof. By induction on A starting at the top of the list and working to the bottom
of the list. In each case, the proof is exactly as in [8] except in the case of the
existentials and in each the proof for existentials is essentially immediate. �

Theorem 2. B2Q is sound for the semantics.

Proof. By induction on the complexity of the proof. Again, almost everything goes
as it did in [8]. We’ll look only at one instance each of A11 and A12, since those
are newish, and also at R10, just to round things out.

For A11, we examine the individual existential. So let A(t/x) → ∃xA ∈ L(F )
and S, F , s � A(t/x). Then for all s vPF

p, S, F , p � A(t/x). Thus, letting G = F ,
q = p and g = t and recalling that ↓F

F
is the identity function, we have that for all

t vPF
p there is G ⊇ F , q ∈ PG and g ∈ G0 so that q↓F

G
= p and S,G, q � A(g/x).

So S, F , s � ∃xA. If follows that S, F , `F � A(t/x) → ∃xA.
For A12 we examine the relation existential. So, let (A∧ ∃Y B) → ∃Y (A∧B) ∈

L(F ) and S, F , t � A ∧ ∃Y B. Choose t vPF
p. Clearly p � A and p � ∃Y B.

So there is G ⊇ F , G ∈ G2, and q ∈ PG with q↓G
F

= p and q � B(Y/G). Since
q↓G

F
= p, q ⊇ q↓G

F
↑G
F

= p↑G
F

. Thus since A ∈ L(F ), q � A. So q � A ∧ B(Y/G) =
(A ∧B)(Y/G). So t � ∃Y (A ∧B).

For R10, we examine the predicate existential. So, let ∀X(B → A) ∈ L(F )
and suppose S, F , `F � ∀X(B → A). To see that S, F , `F � ∃XB → A, let
S, F , t � ∃Xt. Choose t vPF

p. Then there is G ⊇ F , q ∈ PG, and G ∈ G1 so
that q↓G

F
and S,G, q � B(X/G). Since S, F , `F � ∃XB → A we also have that

S,G, `G � ∃XB → A. So S,G, `G � B(X/G) → A Thus S,G, q � A. And since
A ∈ L(F ), and q↓G

F
= p, it then follows that S, F , p � A. So all prime extensions of

t verify A and thus S, F , t � A. �

Lemma 3 (Deduction). If A ` B, and A → B ∈ L(F ), then A → B ∈ B2Q(F ).

Proof. By induction along `; see e.g. [8]. �

Lemma 4 (Lindenbaum). Let t be an L(F )-theory, ∆ ⊆ L(F ) be closed under
disjunction, and t∩∆ = ∅. Then there is a prime L(F )-theory p ⊇ t with p∩∆ = ∅

Proof. In the usual way; see e.g. [8]. �
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Corollary 5. If t is an L(F )-theory and PrF is the set of prime L(F )-theories,
then t =

⋂
t⊆p∈PrF

p.

Theorem 6. B2Q is complete for the semantics.

Proof. By a canonical model construction. In case it’s not clear, the key is to use
the appropriate class of vocabularies given by the finite triples of sets of variables
and then—surprise surprise—to do what Fine did, one more time.

The only interesting thing worth pausing to verify is that in the key lemma
(which says that t � A iff A ∈ t) the induction still goes through in the existential
cases. We’ll prove this for the individual existential since the other cases are exactly
parallel.

So, let C be the canonical model, t be an L(F )-theory, and t � ∃xA. Choose
t ⊆ p ∈ PrF . Then since t � ∃xA, there is G ⊇ F , g ∈ G0, and q ∈ PrG
so that q ∩ L(F ) = p and q � A(x/g). But then by the inductive hypothesis,
A(x/g) ∈ q. So since A(x/g) → ∃xA is a theorem, ∃xA ∈ q. But also ∃xA ∈ L(F ),
so ∃xA ∈ q ∩ L(F ) = p. Thus, ∃xA is in every prime extension of t and thus in t.

Now suppose that ∃xA ∈ t. Choose t ⊆ p ∈ PrF and let pcF = LF − p. Choose
g ∈ Ω0 − F0 and let G = F ∪ {g}. I claim that

q = {B ∈ L(G) : p ∪ {A(x/g)} ` B} ∩ pcF = ∅.

To see this, suppose to the contrary that for some B, p∪{A(x/g)} ` B and B ∈ pcF .
Then there will be some C ∈ p so that C ∧ A(x/g) ` B. Thus (C ∧ A(x/g)) →
B ∈ B2Q(G). It follows that ∀g(¬B → ¬(C ∧ A(x/g))) ∈ B2Q(G). But then
since A and B are in L(F ), confining the universal twice (first intensionally, then
extensionally) we get that ¬B → (¬C ∨ ∀g¬A(x/g)) ∈ B2Q(G). But then we also
get that (C ∧∃xA) → B ∈ B2Q(F ), and thus since C ∈ p and ∃xA ∈ t ⊆ p, B ∈ p,
which is a contradiction.

Thus, since it is obvious that pcF is closed under disjunctions and q is a theory
that contains A(x/g) (and thus that, by the inductive hypothesis, q � A(x/g))
there is, by the Lindenbaum Lemma, a prime q′ ∈ PrG with q′ ∩ L(F ) = p and
q′ � A(x/g). So t � ∃xA. �

4.2. Adding Comprehension. B2Q is a second-order logic in only the most
technical sense. Lacking comprehension axioms, it’s really just a many-sorted first-
order logic with a complicated vocabulary. In order to add comprehension axioms,
we of course have to restrict the class of models we allow.

There’s also a complication to consider that arises in logics that don’t admit
axiomatic transitivity; that is in which the following are not theorems:

(A → B) → ((B → C) → (A → C))

(B → C) → ((A → B) → (A → C))

The problem is this: one of the key uses to which one puts comprehension axioms
is in proving that second-order universals are well-behaved. As a particular case of
the general phenomenon, it is typically the case in second-order systems that once
one has added comprehension axioms for B, one can then derive all instances of
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∀XA → A(X/B(y)) in which B(y) is free for X.2 This is a fairly natural thing to
want of one’s second-order universals.

The natural way to go about deriving all such formulas is by first doing something
like this:

∀XA → A A(X/B) → A(X/B)

(A → A(X/B)) → (∀XA → A(X/B))

∀X[(A → A(X/B)) → (∀XA → A(X/B))]

∃X(A → A(X/B)) → (∀XA → A(X/B))

All one has to do then is derive the antecedent; viz. ∃X(A → A(X/B)). Now, if A
is atomic, there’s no problem here: either X occurs in A (so A has the form Xa for
some a) or it doesn’t. In the latter case, A = A(X/B), so by a degenerate instance
of A11 and the fact that A → A is an axiom, ∃X(A → A(X/B)) is provable.
In the former case, ∃X(A → A(X/B)) is (essentially) one half of an instance of
comprehension.

For complex A, the case where X doesn’t occur in A goes through as before.
But for the other case things are trickier. After poking at the problem a bit, one
sees that the right approach is to prove something slightly stronger; viz. that all
instances of ∃X(A ↔ A(X/B)) are theorems. And since comprehension gives us
this for atoms, the natural way to proceed is by induction on the complexity of A.
The inductive hypothesis then gives that all formulas of the form ∃X(A ↔ A(X/B))
are theorems when A has at most k connectives and quantifiers. There are then
induction cases for each connective and each quantifier. For most of these, elbow
grease is sufficient to get things done. For the conditional, it’s not.

To say more, let’s make a few assumptions. For simplicity, we’ll consider a
conditional A1 → A2 in which X doesn’t occur free in A1. Our goal is to show
that we can derive ∃X[(A1 → A2) ↔ (A1 → A2)(X/B)]. Given our assumption,
though, this is just ∃X[(A1 → A2) ↔ (A1 → A2(X/B))].

Now, as we’ll leave the reader to check, if we have axiomatic transitivity on
board, we can then prove that the following is a theorem:3

(A2 ↔ A2(X/B)) → ((A1 → A2) ↔ (A1 → A2(X/B)))

And from here it’s not hard at all to get to the following:
∃X(A2 ↔ A2(X/B)) → ∃X((A1 → A2) ↔ (A1 → A2(X/B)))

And induction can do the rest of the job from there.
The problem, now returning to the thread, is what to do if (as in the case at

hand) we don’t have the transitivity axioms in the logic we’re working with. It’s
clear (in a highly suggestive comment that we’ll be returning to below) that if
we were working not with existentials but instances, the induction could still be
done. That is, if rather than having ∃X(A2 ↔ A2(X/B)) as a theorem, we had
(e.g.) A2(X/P ) ↔ A2(X/B)(X/P ) as a theorem, then there would be no problem.4
Indeed, were this the case, the derivation would be straightforward: just apply R3
to A1 → A1 and the two halves of A2(X/P ) ↔ A2(X/B)(X/P ) to get the two

2See e.g. [14] for a discussion.
3Actually, you only need one of the two forms of axiomatic transitivity to do this. But the

argument corresponding to the one I’m giving but assuming that X isn’t free in A2 relies on the
other form of axiomatic transitivity so the point is moot.

4It’s worth pointing out that A2(X/B)(X/P ) needn’t reduce to A2(X/B) since X might occur
free in B.
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halves of (A1 → A2(X/P )) ↔ (A1 → A2(X/B)(X/P )), which is an instance of
what we’re looking for. Note that this argument will work given absolutely any
particular instance, but it doesn’t work if all we know is that there is an instance—
that is if all we know is the existential ∃X(A2 ↔ A2(X/B)). The problem, in short
is that absent transitivity axioms we just lack any resources that would let us ‘pass’
this fact about A2 outside the scope of the existential.

We’ll be returning below to the strange and suggestive bits of the above dis-
cussion. For now we’ll note that what we can conclude is the following: if we in-
deed want a decently well-behaved universal on hand—one for which we can prove
∀X(A → A(X/B)), then we need fuller-than-full comprehension; not just compre-
hension for every formula in the language, but also comprehension within every
formula of the language. More helpfully, what’s needed to ensure a well-behaved
universal is something that ensures all of the following comprehension-esque sen-
tences are theorems:

∃X∀y1 . . . ∀yn(B ↔ B(X/A(z)))

Where the yi are the variables that occur free in B. Call such a sentence a com-
prehension axiom for A along B. Note that in the case where B = Xy, this just
is ordinary comprehension for A, so ordinary comprehension is just comprehension
along atoms.

It remains unclear to me exactly how to model, semantically, a system incorpo-
rating comprehension not only for all formulas but also along all formulas. So, for
the time being, we’ll focus on what needs to be done to semantically model com-
prehension along atoms. And since there’s nothing particularly interesting that’s
different between how things go in the unary case and how things go in the binary
case, we’ll present only the former.

To that end, let A be the set of formulas one wishes to adopt comprehension
axioms for. Choose an appropriate class of vocabularies V and for each A ∈ A,
each variable y, and each F ∈ V , let inF (A, y) be the set of formulas that result
from replacing free variables in A with appropriate members of (components of) F
until at most y remains free in A.

The semantic condition we then require is this:
• For all A ∈ A and B ∈ inF (A, y), if F ( G and F1 ( G1, then there is G ∈
G1 and H ) G with h ∈ H0 −G0 so that Gh ∈ vH(t) iff S,H, t � B(y/h).

The loose idea of the condition is this: at every level G, and for every instance
B of a formula we want comprehension over that is defined at one of the levels F
preceding G, we require that there be a predicate G ∈ G1 and a fresh constant h
so that Gh is equivalent to B(y/h).

Call a V -stratified model satisfying the above condition an A, V -stratified model
Theorem 7. Every theorem of B2QA is valid in every A, V -stratified model.
Proof. Clearly the only thing to check is whether the comprehension axioms are
valid. To that end, suppose A ∈ A and S is an A, V -stratified model. Then
∃X∀y(Xy ↔ A) is valid in S just if all of its substitution instances are valid. In turn,
this happens just if, for all F ∈ V and B ∈ inF (A), S, F , `F � ∃X∀y(Xy ↔ B).

Note by Extendibility there is G ∈ V with F ( G and F1 ( G1. Thus, by the
new semantic condition, there is G ∈ G1 and H ) G with h ∈ H0 − G0 so that
Gh ∈ vH(t) iff t � B(y/h). Choose `F vPF

p. By Prime Extension Down, there is
then `G v q with q↓G

F
= p. But since `G v q, `H v q↑H

G
.
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Now, since Gh ∈ vH(t) iff S,H, t � B(y/h), S,H, `H � Gh ↔ B(y/h). So since
`H v q↑H

G
, S,H, q↑H

G
� Gh ↔ B(y/h). Thus S,G, q � ∀y(Gy ↔ B). It follows that

S, F , `F � ∃X(Xy ↔ B). �

Theorem 8. If C is a nontheorem of B2QA, then there is an A, V -stratified model
in which C isn’t valid.

Proof. Extend the usual canonical model by adding to the language designated
predicates that do what we need. �

4.3. The ‘Full’ Semantics. Call a function TF −→ 2F0 a generalized formula.
Loosely, a generalized formula represents a way an atomic formula might have been
interpreted. In the full semantics, at every level, every generalized formula in fact
represents an atom; more to the point, we require that the following be satisfied:

• If φ : TF −→ 2F0 is a function, then there is F ∈ F1 so that Fh ∈ vF (t) iff
h ∈ φ(t).

Clearly full models are A,V-stratified models for all A. Equally clear is that, qua
models of language, they’re quite odd: each language at each level has uncountably
many predicates, and if F0 ( G0, then G is uncountably enriched over F . But such
are the wages of sin.

Let’s write B2Qfull for the set of formulas that are valid in all full models.
Whether B2Qfull admits a recursive axiomatization at all is not clear to me. There
are well-known reasons for suspecting it isn’t that I won’t rehearse. But there is also
surprising evidence on the other side; e.g. in [9] it’s shown that the second-order
version of FDE (which many take to be a relevant logic) is recursively axiomatizable.

In fact, [9] proves a range of interesting things about second-order FDE (and
about second-order LP) and it would be a fun project to see exactly which of them
remain true about second-order B—or other second-order relevant logics, for that
matter. But those are jobs for the future.

5. Adding Metarules

Let’s return to the funny business involving comprehension and look at a con-
crete example of what goes wrong. So, suppose we wanted to prove the following
was a theorem of the system we get by adding ∃X∀y(Xy ↔ Ray) as our lone
comprehension axiom:

∃X∀y1∀y2((Xy1 → Xy2) ↔ (Ray1 → Ray2))

A natural thought is that we would prove this by showing it follows from the only
thing it really could follow from (namely the comprehension axiom we’ve added)
and that we’d accomplish this goal by proving the following:

∃X∀y(Xy ↔ Ray) → ∃X∀y1∀y2((Xy1 → Xy2) ↔ (Ray1 → Ray2))

This, in turn would most naturally be proved by using R9 applied to the following:

∀X[∀y(Xy ↔ Ray) → ∃X∀y1∀y2((Xy1 → Xy2) ↔ (Ray1 → Ray2))]

Of course, the right way to prove a universal is by universalization, so we expect to
first prove the following:

∀y(Xy ↔ Ray) → ∃X∀y1∀y2((Xy1 → Xy2) ↔ (Ray1 → Ray2))
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And, since the existential consequent here follows from an instance, we expect to
prove that by proving this:

∀y(Xy ↔ Ray) → ∀y1∀y2((Xy1 → Xy2) ↔ (Ray1 → Ray2))

But this is really just a universalized version of axiomatic transitivity. Thus, one
obvious way to get from ordinary comprehension to all the fancy comprehension
we really want is by adding axiomatic transitivity to our logic.

But this isn’t the only way to go; an alternative way to do things is to add
Bradian metarules.

Before doing so, a confession: I’ve always been a bit befuddled by Brady’s
metarules. So what I’d like to do here is describe how I’ve come to understand
what they mean. And since we’re at the confessing game, I’ll also go ahead and
tell you that since what I’m about to say is a bit complicated and what Brady
usually says (see e.g. [1] or [2] or [3]) isn’t, I worry that maybe I’m getting things
wrong. I suppose if that is the case, then what we need isn’t Bradian metarules,
but pseudoBradian metarules.

Whichever way it is, we need some definitions. We define the terms ‘derivation
of A’ and ‘metaderivation of R in which x/X/Y has/hasn’t been universalized’ by
simultaneous recursion as follows:

• Each instance of one of A1-A12 is a derivation of itself.
• Each instance of one of R1-R4 and R8-R10 is a metaderivation of itself in

which nothing has been universalized.
• Each instance of R5 is a metaderivation of itself in which x has been uni-

versalized.
• Each instance of R6 is a metaderivation of itself in which X has been

universalized.
• Each instance of R7 is a metaderivation of itself in which Y has been uni-

versalized.
• If ∆ is a metaderivation of A1 . . . An

B
and δ1, . . . , δn are derivations of

A1, . . . , An, then ∆[δ1, . . . , δn] :=
δ1 · · · δn

B
is a derivation of B.

• If ∆1 is a metaderivation of A1 · · ·An

B
and ∆2 is a metaderivation of

B C1 · · ·Cm

D
then ∆3 :=

( A1 · · ·An

B C1 · · ·Cm

D

)
is a metaderiva-

tion of A1 · · ·An C1 · · ·Cm

D
. x (resp. X; Y ) has been universalized

in ∆3 iff it has been universalized in ∆1 or in ∆2.
• If δ is a derivation of A and ∆1 is a metaderivation of A B1 · · ·Bn

C

then ∆2 :=

(
δ B1 · · ·Bn

C

)
is a metaderivation of B1 · · ·Bn

C
. x

(resp. X; Y ) has been universalized in ∆2 iff it has been universalized in
∆1.5

5Note that using the generalization rules in the derivation δ does not make it the case that
one has used generalization in ∆2.
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• If ∆ is a metaderivation of A
B

in which x (resp. X; Y ) has not been

universalized, then ∃xA
∃xB (resp. ∃XA

∃XB
; ∃Y A

∃Y B
) is a metaderivation of

itself in which x (resp. X; Y ) has not been universalized.

We say that A is a theorem just if there exists a derivation of A.
The ‘metarule’ bit is in the last bullet in the above list. The idea is that we close

the set of rules under a metarule that roughly looks like this:

If A ⇒ B, then ∃xA ⇒ ∃xB

Recall now, if you will, the funny business about comprehension from the previous
section. The issue was this: to get a well-behaved universal, we need our logic to
contain as theorems not only all instances of comprehension for all formulas, but
also along all formulas. We also saw that, provided we had axiomatic transitivity
along, giving ourselves access to comprehension for all formulas along atoms—which
is to say, giving ourselves what’s usually called ‘full’ comprehension—sufficed for
ensuring all instances of comprehension both for and along all formulas.

The argument establishing this broke if we didn’t have transitivity. But as we
noted, there was something a bit fishy going on—a slightly different argument did
work given any particular instance, but not if all we knew was that there was an
instance.

Examining the explanation of the metarule above, one suspects that it directly
gets around this issue. Indeed, what the metarule seems to say is that anytime you
have an argument that works when given an instance, you’re allowed to conclude
that its existential analogue works.

Happily, this suspicion turns out to be correct: B2Q(F ) contains a metaderiva-
tion of the following in which no predicate universalization at all occurs:

∀y(Xy ↔ A(y))

∀y1∀y2((Xy1 → Xy2) ↔ (A(y1) → A(y2)))

Thus, the metarule on board, the following is a metaderivation of itself:

∃X∀y(Xy ↔ A(y))

∃X∀y1∀y2((Xy1 → Xy2) ↔ (A(y1) → A(y2)))

So if we write B2QE for B2Q plus the existential metarule, then if A ∈ A, then
∃X∀y1∀y2((Xy1 → Xy2) ↔ (A(y1) → A(y2))) is a theorem of B2QEA. And
from here, we can very easily finish the job we started in §4.2 of showing that
∀X(A → A(X/B)) is a theorem.

In short, adding the metarule lets us bootstrap our way from comprehension
along atoms to comprehension along formulas of arbitrary complexity, and thus to
a well-behaved universal.

Here are two more fun facts about Bradian metarules. Fun fact the first: I don’t
know how to modify my semantic story to accommodate this metarule. Fun fact
the second: it’s entirely clear how to modify the semantics to accommodate the
other Bradian metarule; viz. the metarule ‘if A ⇒ B, then C ∨ A ⇒ C ∨ B’. I’ll
leave the proof to the reader, but all it takes to model this is adding the condition
` ∈ P to the semantics. So I suspect that there is a natural way to accommodate
the above metarule in the semantics, I just haven’t figured out what it is yet.
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6. Conclusion

Some natural options for next steps include adding λ terms, exploring second-
order analogues of various relevant theories—arithmetic comes to mind, given [6]—
and a rethinking of identity using higher-order resources. Of course, the most
glaring thing to do as a next step is to figure out exactly what to do about com-
prehension.

An alternative next step would be to attempt to work backwards from an appro-
priate second (or higher) order relevant logic to a relevant set theory of some sort.
It’s been shown (see [5]) that such theories aren’t going to work in exactly the way
one might have hoped. But there’s also good reason (see e.g. [4]) to think such
theories have some promise.

All of this points to a general thing worth keeping in mind: there are a range
of interesting expressive extensions of the usual languages that relevance logicians
concern themselves with that are massively, embarrassingly underexplored. The
problem seems to be essentially the one we encountered with comprehension above:
in many cases, the classical logicians have set the syllabus and decided not just
how things ought to be explored, but what there is to explore in the first place.
But we’re not in school anymore, and thus there’s no real reason to stick to the
syllabus. So go on; explore the strange rich expressive potential we’ve been gifted.
And when you come back, tell us how the semantics goes.
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