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Abstract
Firstly 1 characterize Simple Partial Logic (SPL) as the generalization and ex-
tension of a certain two-valued logic. Based on the characterization | present two
definitions of validity in SPL. Finally I show that given my characterization these two
definitions are more appropriate than other definitions that have been prevalent, since
both have some desirable semantic properties that the others lack.

1 Introduction

Partial logic is, broadly speaking, logic that allows the truth-value gap, which
means that propositions may possibly be neither true nor false. Because of the
gap, there occur, as it were, two conceptions of truth: being true and being
not false. I call the former the strong concept of truth and the latter the weak
concept of truth.

Accordingly the conceptions of validity also have similar complexity. There
are strong and weak concepts of validity of a formula: being true and being not
false respectively under all truth-valuations. As for the validity of an argument
there can be at least four concepts:®

(a) The consequence is true whenever all the premises are true.

(b) The consequence is not false whenever all the premises are true.
(c¢) The consequence is true whenever no premises are false.

(d) The consequence is not false whenever no premises are false.

Logicians have adopted different concepts of validity of arguments in partial
logic. Wang, for example, chose (a), which appeared most standard.? This con-
cept, however, has defects despite its apparent naturalness; neither (semantic)
Deduction Theorem nor Contraposition Theorem holds:

Deduction Theorem

P1,P2,—Pn EC iff E (P1AP,—AP,) — C.
Contraposition Theorem

P.1,Po,—,Pn ): C iff = C ': = (Pl/\sz/\Pn).

Improving Wang’s concept, Blamey defined validity as follows:
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1Besides these we can define other concepts of validity by making  conjunction or
disjunction out of them. Blamey’s definition shown below is an example of the conjunct
definitions. Langholm combined and generalized these definitions into a single figure and
showed the way to choose one of them. [Langhholm,T. 1996][Fenstad, . E. 1997]

2[Wang, H. 1961]



The consequence is true whenever all the premises are true, and at least one
of the premises is false whenever the consequence is false. 2

Though this modification makes Contraposition Theorem hold, Deduction
Theorem still does not hold.

Below I attempt to find better conceptions of validity in partial logic. Which
definitions of validity are better depends on what the logic concerned is for. So I
will characterize partial logic and then present two definitions of validity both of
which have their place in my characterization. At the end I prove some semantic
theorems and compare my definitions with other definitions.

2 Characterization of Simple Partial Logic

In this paper I restrict my arguments to the syntax and semantics of propo-
sitional logic. Moreover I confine myself to the simplest type of partial logic
which I call ‘Simple Partial Logic (SPL)’.

The syntax of SPL is as follows:

(1) Atomic formulae p, q, r, —, p1, P2 ,—, Pn,— are well formed formulae (wfs).

(2) If Ais a wif, = A and TA are wifs.

(3) If A and B are wifs, (AAB) is a wif (the outermost parentheses can be
omitted).

In addition I introduce the following operators by definitions (I will also add
a few more operators by definitions later in this section):

AVB =df - (- AA- B)
A—B =df - (AA- B)
A+B =df (A—»B)A(B—A)

As for semantics there are two conditions that SPL should satisfy:

1. Tt is truth-functional.*
2. It has another value (in a broader sense described below) than truth and
falsity.

However, these conditions are not proper to SPL, because the systems of
three-valued logic in general satisfy these conditions. So we have to find the
characteristics that make SPL special among the systems of three-valued logic.
The crucial point is the character of ‘another value’ in the third condition above.
Strictly speaking, the third value of partial logic is not an independent value
but the lack of the truth-values. I call the third value of partial logic the ‘gap-
value’, distinguishing it from the ‘truth-values’ which refer to truth and falsity.
Now I attempt at formulating what conditions make the third value not an
independent value but the lack of the truth-values.

T. Langhholm enumerates the following properties among those which may
be characteristic of partial logic:®

Determinablity

3[Blamey, S. 1986] p.5f. Here I described his definition in a more generalized way.

4Langholm calls this property ‘Compositionality’. [Langhholm,T. 1988] p.17f. Below I
take after most of his terminology for partial logic, except for ‘Monotonicity’, which he calls
‘Persistence’.

5[Langhholm, T. 1988]pp.3-6.



If all the atomic formulae in a wif have truth-values, the wif itself also has a
truth-value.
Monotonicity
If a wif that includes gap-valued (gapped) atomic formulae has a truth-value,
that truth-value will not be changed by giving a truth-value to a gapped atomic
formula.

In the following I modify these two properties to fit in with my characteri-
zation of SPL.
First I adopt the following usage of terms:

Total valuation: the valuation which assigns a gap-value to no atomic for-
mulae.
Total logic: the logic which contains no gapped wifs.

Partial valuation and partial logic are their negations.

(1’) Reliable Determinability (Reliability)

First of all I characterize SPL as a generalization of a certain total (two-
valued) logic. In other words, SPL presupposes a particular total logic. I call the
presupposed total logic the ‘basic logic’ of the SPL concerned and the operators
included in the basic logic the ‘basic operators’.

By ‘generalization’ I mean, in the first place, the partialization of valuation,
namely the allowance of the truth-value gap in valuation. In total logic every
formula must have a truth-value. In contrast a formula in partial logic does
not necessarily have a truth-value. The truth-tables of partial logic do not only
determine the conditions as to when a formula is true (or false), but also the
conditions as to when the formula has a truth-value. Secondly the truth-tables
that define the meanings of the basic operators in SPL have to coincide with
those of its basic logic under total valuation. In other words, the truth-value
of the formula that includes only the basic operators have the same truth-
value with that of basic logic, if all the atomic formulae included have truth-
values. This is a restriction of determinability defined above. I call such property
‘Reliable Determinability’ or ‘Reliability’ in short.

(2’) Weak Monotonicity

Blamey restricted the operators of partial logic to monotonic operators.® I
agree with him on the basic operators. The basic operators should have the
property of monotonicity as well as reliability. However, I do not think that
SPL should exclude all the non-monotonic operators, because there are useful
and significant ones for partial logic among them. For example, the following
Truth-operator that Woodruff adopted for his System Q, which can be taken as
a kind of SPL, is useful for expressing significant concepts which are related to
partiality:’

Using this Truth-operator we can also define the following operators:

FA =df T- A (A is false.)
LA =df TAVFA (A has a truth-value.)
A—B =df LA—TB (A presupposes B.)

8

6[Blamey, S. 1986]p.9.

7[Woodruff, P. 1970]

8[Woodruff, P. 1970] For ‘= ’, 'V’ and ‘=’ Woodruff adopted the definitions of Kleene’s
strong three-valued logic shown in §4 below.
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These operators are common in that they always bring about a truth-value
under partial valuation. In my view, they express a kind of (extensional) modal-
ity which results from partial valuation. I call the operators which always bring
about a truth-value under partial valuation the ‘modal operators’ (In the fol-
lowing I call the formulae that do not include modal operators ‘basic formulae’).
Adding these operators to the basic operators means that SPL is an extension
of some total two-valued logic as well as its generalization.

Though the modal operators destroy the monotonicity of partial logic, I do
not think that they make the ‘spirit’ of partial logic totally lost, for the mono-
tonicity still remains at the basic level and it is no wonder that the propositions
which describe the modal facts in terms of partiality itself are non-monotonic.
Partiality implies that there are cases where a gapped proposition gets a truth-
value by adding some information. Therefore, for example, the proposition ‘-
LA’ (A has no truth-value, A is gapped), which includes a modal operator, may
well have opportunities to change its truth-value from truth to falsity.

Moreover the modal operators keep a weakened monotonicity in the following
sense:

If a formula that includes gapped atomic formulae has a truth-value, it does
not make its truth-value lost (namely, be changed to gap-value) by altering the
gap-value to a truth-value.

I call such a monotonicity ‘weak monotonicity’.

To summarize, SPL is defined as a three-valued logic (in a broader sense) that
includes the basic operators and the modal operators; the former are monotonic
and coincidental with a certain total two-valued logic under total valuation,
while the latter are weakly monotonic and always bring about a truth-value
under partial valuation. By this definition, SPL is characterized both as the
generalization and extension of a total two-valued logic; SPL is its generalization
in the sense that SPL introduces the partiality of truth-valuation and is its
extension in the sense that SPL includes modal operators that describe the
modality related with partial valuation.

3 Definitions of Validity in SPL

To define validity in SPL, I first define two concepts of satisfiability in SPL:

(1) Strong Satisfiability

The set of formulae ¥ is strongly satisfiable. =df There is a partial valuation
which makes all the formulae in ¥ true.

(2) Weak Satisfiability

The set of formulae X is weakly satisfiable. =df There is a partial valuation
which makes no formulae in X false.



Based on these definitions, we can define the following definitions of unsat-
isfiability (Notice that the order of strength reverses):

(1a) Weak Unsatisfiability

The set of formulae ¥ is weakly unsatisfiable. =df There are no partial
valuations which make all the formulae in 3 true.

(2a) Strong Unsatisfiability

The set of formulae X is strongly satisfiable. =df There are no partial
valuations which make no formulae in X false.

Finally we can define the following definitions of validity:®

(1b) Weak Validity

The argument that has the set of premises ¥ and the consequence C is
w-valid (¥ w C). =df The set of formulae ¥ U{ = C} is weakly unsatisfiable.

(When ¥ is empty, we say that the formula C is w-valid and call C ‘Weak
tautology’.)

(2b) Strong Validity

The argument that has the set of premises ¥ and the consequence C is
s-valid(X s C). =df The set of formulae ¥ U{ = C} is strongly unsatisfiable.

(When X is empty, we say that the formula C is s-valid and call C ‘Strong
tautology’.)

Here we are required to define the truth-condition of the negation operator.
If we choose classical logic as the basic logic, there can be only one monotonic
negation operator:

(A~ A
t | f

t

| 1

Adopting this truth-table, we can paraphrase the above definitions of validity
in the following way:

(1c) ¥ Ew C iff whenever all the formulae in ¥ are true, C is true or gapped
(i.e. C is not false).

(2¢) ¥ s C iff whenever all the formulae in ¥ are true or gapped (i.e.
whenever no formulae in ¥ are false), C is true.

Compared with the naturalness of (1a), (2a) and (1b), (2b), they may seem
somewhat arbitrary because of the asymmetry between the premises and the
consequence in terms of being gapped. Indeed I believe that it is the reason why
these definitions have not attracted much attention from logicians. However,
if we take the essential features of partial logic into consideration, I think that
these definitions should be accepted.

In the semantics of total (two-valued) logic there is only one axis of valuation:
which truth-value a formula has, namely truth or falsity. In the semantics of
partial logic, on the other hand, there is another axis of valuation presupposed:
whether a formula has a truth-value or not. I give other definitions here:

9Fenstad also used the symbol ‘=w’ and ‘=s’. However, he meant Wang’s validity by the
latter. [Fenstad, . E. 1997]p.670.



Weak formula: the formula which does not always have a truth-value under
partial valuation

Strong formula: the formula which always has a truth-value under partial
valuation

We have to take both of these axes into consideration when we define the
concept of validity. For example, we should distinguish between the following
concepts of validity of a formula (these are respectively the explanatory mean-
ings of ‘C is true or gapped’ and ‘C is true’ in the above definitions (1c) and

(2¢)):
Weak tautology: the formula which is always true if it has a truth-value

Strong tautology : the formula which always has a truth-value and is always
true

Considering these points, the explanatory meaning of weak and strong va-
lidity of arguments are as follows ((b) is logically equivalent to (a)):

Weak validity
(a)Whenever all the premises have a truth-value and are true, the conse-
quence is, if it has a truth-value, true.
(b)If all the formulae in the argument have a truth-value, whenever all the
premises are true, the consequence is true.
Strong validity
(a)Whenever all the premises which have a truth-value are true, the conse-
quence has a truth-value and is true.
(b)At least one formula in the argument always has a truth-value. Among
the formulae which have a truth- value, whenever all the premises are true, the
consequence is true.

Weak validity means that if we assume that all the formulae in ¥ and the
negation of C have truth-values, they cannot be true at the same time. To say
that the negation of C is true, assuming that it has a truth-value, is the same as
saying that the negation of C has the value of truth (strong concept of truth).
Accordingly ‘the negation of C cannot be true’ here means that ‘the negation of
C cannot have the value of truth’, namely, ‘the negation of C must be gapped
or has the value of falsity’. This is equivalent to ‘C must be gapped or have the
value of truth’, namely, ‘if it has a truth-value, C must be true (weak concept
of truth)’.

To the contrary, strong validity means that even if we do not assume that
all the formulae in ¥ and the negation of C have truth-values, they cannot be
true at the same time. To say that the negation of C is true, without assuming
that it has a truth-value, is the same as saying that the negation of C is gapped
or has the value of truth (weak concept of truth). Accordingly ‘the negation of
C cannot be true’ here means that ‘the negation of C can neither be gapped
or have the value of truth’, namely, ‘the negation of C must have the value of
falsity’. This is equivalent to ‘C must have the value of truth’, namely, ‘C has
a truth-value and is true (strong concept of truth).

Some readers may still be irritated by the remaining asymmetry in our two
definitions. If so, I want to point out that at least these definitions result from
two natural notions of unsatisfiability shown above. In my view, the relation of
logical consequence or validity in a truth-functional logic cannot but be unsat-
isfiability.



I am not sure as to whether these two definitions can capture the features of
our ordinary inferences better than others. My principal concern is the general-
ization of total logic. I want to show that total logic is, as it were, a specialized
partial logic. The more these two logics share properties, the better for me.
Therefore if the apparent naturalness of other definitions is the only reason to
adopt them, I would prefer the definitions described in this paper, as they re-
tain some advantageous semantic properties which the others lack. In the next
section I will explore those properties. To say in advance, the holding of se-
mantic deduction theorem is one of them. Thanks to deduction theorem we
can also grasp w-valid and s-valid arguments as the arguments which make the
corresponding conditional formula a weak and strong tautology respectively.

Before moving to the next section, it should be noticed that the above justifi-
cation of the two definitions of validity crucially depends on my characterization
of partial logic. For my justification presupposes that in SPL there is only one
negation operator, which is reliable and monotonic. If we admit another nega-
tion operator such as external negation, which is non-monotonic, we can equally
justify other definitions of validity.1°

4 Semantic Theorems

We can easily prove the following semantic theorems:

Thl XsC=3%EwC
[proof] It results from the definitions of validity. m

Df
Y E C =df The argument which derives C from ¥ is valid in the basic
logic.
(This implies that the argument includes only the basic formulae.)

Th.2  If an argument includes only the basic formulae,

YEwC=XEC

[proof] It results from reliable determinability. m

Now I prove Deduction Theorem and Contraposition Theorem. For that we
have to choose the basic logic and define the truth-conditions for other basic
operators in addition to the negation operator above. Here I adopt classical
logic as the basic logic and the truth-tables which Kleene defined for his strong
three-valued logic. 11

[AAB [t ]-]f] [AVB [t [- | f] [A-Bt[-]f]
t t]-]f t t]t]t t t -]t
- -T-Tf - t - |- - t -]~
f flf]|f f t |- | f t]t] s

These operators have another desirable property for partial logic that is
called ‘strength’; an operator is stronger than another under partial valuation
iff the former gives a truth-value to the formula which it bounds whenever the

10External negation is the one defined by the table 1.1 in the Appendix of this paper:[Busch,
D. 1996]p.58.
11[Kleene, S. C. 1952] The truth tables of ’AVB’ and 'A—B’ result from their definitions.



latter gives one to the same formula. Kleene’s operators above are the strongest
definitions that are both reliable and monotonic relative to classical logic.'?

Th.3w  Weak Deduction Theorem (WDT)
P.1,P2,—,Pn ':W C iff (Pj_ A Pz—/\Pn) — C

Th.3s  Strong Deduction Theorem(SDT)
P1,P2,—Pn s C iff =s (P1AP,—APR) — C

Th.4w  Weak Contrapostition Theorem(WCT)
P1,P2,—,Pn ':W C iff = C |:W - (Pl/\Pz—/\Pn)
Th.4s  Strong Contrapostition Theorem(SCT)
P1,P2—-Pn s C iff = Cls = (P1AP2—APR)
[proof]
(1) When n=1, the theorems above are expressed in the following way:

T1P w C iff Fw P—C
T2P s C iff =s P—C
T3PEwC iff ~ CEw- P
TAP s C iff - Cls- P

We can confirm them by the truth-table below:

|P|C[[P=-C[-C]|-P]

t |t t f f
t |- - - f
t | f f t f
- |t t f -
- f - t -
f ]t t f t
f |- t - t
f|f t t t

(2) We can prove that when n22, both WDT and SDT hold in the following
way:

(i) In the case that (P1AP2—APR_1) is true,

All the premises P1,P,,—,Pp are true iff Py, is true. So

P1,P;,—Pn Ew C iff P Ew C.

Moreover the value of ¢(P1AP,—APy) —C’ coincides with that of ‘P, —C’.
So

':W (Pl/\Pz—/\Pn) —C iff ‘:W Ph—C

By T1, Pn =w C iff =w Ph—C.

Therefore, P1,P,— P Ew C iff E=w (P1AP,—APL) — C.

This is WDT. Similarly for SDT.

(ii) In the case that (PiAP;—APR_1) is false, (P1AP,—APy) is also false.
So both ‘P1,Pp,—Pn Ew C’ and ¢ =w (PiAP,—APR) —C trivially hold. So
WDT holds. Similarly for SDT.

(iii) In the case that (P;AP,—APp/_1)is gapped, the value of (P;AP;—APR)
coincides with that of Pn. If Pn is true or false, it is the same as (i) and (ii)

12 [Langhholm, T. 1996]p.11f. Blamey and Wang also adopted Kleene’s operators.



respectively. If it is gapped, both of ‘P1,Py,— Py Ew C’ and ¢ Ew (P1AP,—
APpr) —C’ trivially hold. So WDT holds. As for ‘P1,P2,— Py =s C” and * |=s
(P1AP2—APR) —C, both of them hold iff C is true. So SDT holds.

By(i),(ii) and (iii), WDT and SDT hold in any case when n=2.
By (1) and (2), WDT and SDT hold for any natural number n. m

We can also prove Contraposition Theorems in the similar way. However I
omit the part (2) of their proof for brevity.
Using Deduction Theorems we can prove the following theorems:

Th.5  If an argument includes only the basic formulae,

YEC=YXkFEwC

[proof] (by Reductio ad Absurdum)

Assume that ¥={P;,P,,—,Pn}. By WDT, ¥ =w C iff Ew (P;AP,—AP) —C.
If Thb5  does not hold, it means that there are cases where ‘> = C’ holds
but ‘¥ =w C’ does not. Because of reliable determinability it is possible only
if there is a valuation which makes ‘(P;AP>—APy) —C’ false. But this contra-
dicts the monotonicity of the basic operators, since under total valuation the
formula is true. So Th.5  holds. =

By Th.2 and Th.5 we can conclude that the validity of classical
logic coincides with the weak validity of SPL restricted to basic operators. We
can say that it is another way to hold classical validity allowing the truth-value
gap as well as supervaluational logic.13

Th.6  There are no s-valid arguments which include only the basic
formulae.*

[proof] (by Reductio ad Absurdum)

Assume that ‘P1,P,,—,Pn |=s C’ is such an argument. By SDT, P1,P,—Pp
Es C iff s (PiAP,—APR) —C. It implies that there is a partial valuation
which makes ‘(P1AP,—APR) —C’ true, while all the atomic formulae in it are
gapped. But no monotonic operators make such a valuation possible. Therefore
Th.6 holds. m

If we adopt the modal operators given in §2 together with Kleene’s, the
following are among s-valid arguments:

TA Es A (cf. Afs A, AEs TA)
LAEsAV- A (cf s Av- A)
s TAv- TA

(A—B) A LA =s TB

We can take these s-valid arguments as showing the validity which is proper
to SPL, in contrast with w-valid arguments.

131t has merits in that it keeps extensionality and does not include the quantification over
valuations in the valuation of a formula.[Woodruff, P. 1984] [Langhholm,T. 1988]p.8.

148trictly speaking, this theorem presupposes that the basic operators do not include the
truth-constant operator, which always brings about truth under any partial valuation, though
it is also monotonic.



5 Comparison with other Definitions of Validity

Weak, Strong and Wang’s validity are three of the four conceptions of validity
I enumerated in the introduction. The final one is the following:

(d) The consequence is not false whenever no premises are false.

Blamey'’s validity is the conjunction of Wang’s and (d). Wang’s validity and
(d) cannot be ordered in terms of strength. Accordingly we can make two order
sequences of strength:

Weak validity =~ Wang’s validity =~ Blamey’s validity =~ Strong validity
Weak validity  (d)  Blamey’s validity ~ Strong validity

Based on these orders, I rename here the intermediate concepts of validity
in the following way:

Blamey’s validity : Medium validity, being m-valid, Fm
Wang’s validity: Lowl validity, being 1;-valid, El;
(d) : Low2 validity, being 1,-valid, El,

Among them Contraposition Theorem holds only in Weak, Medium and
Strong validity. Deduction Theorem holds only in Weak and Strong validity.

As for Medium validity, if we adopt Lukasiewicz’s conditional instead of
Kleene’s, Deduction Theorem holds. However, as Lukasiewicz’s conditional is
non-monotonic, Blamey cannot adopt it, because he insists that the operators
of partial logic should be monotonic.*®

Blamey gives two theorems which make his definition preferable:

Df A==B =df A and B always have the same value under partial
valuation.

Thml A==B if AFmBand BFmA

Th.m2 A==(AAB) iff B==(AVB) iff A Fm B

Neither of them holds in Weak nor Strong validity. However, the following
theorems which correspond to  Th.ml  hold in both:

Thmlw FwA< B iff AEwBand BEwA
Thmls |FsA <+ B if A=sBand Bls A

In my view, this formulation is more appropriate for partial logic than
Blamey’s. ‘A==B’ is the so called three-valued equivalence, which requires the
coincidence of gap-values besides truth-values. This implies that the gap-value
is treated as an equally qualified value as the truth-values. In fact if we express
it by an operator in the object language it has to be non-monotonic, which is
against Blamey’s characterization of partial logic. That is why he defined the
equivalence in the meta-language. On the contrary, our formulation requires

15T ukasiewicz’s implication is the one defined by the table 1.2 in the Appendix. It differs
from Kleene’s strong implication only at the underlined value, which make this implication
non-monotonic.

If we adopt Schmitt’s implication, Deduction Theorem holds for Lowl-validity (Wang’s
validity). Schmitt’s implication is the one defined using external negation and Kleene’s strong
disjunction as follows:

ADB =df ~AVB

However, this implication is also non-monotonic.[Busch, D. 1996]p.58f.
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only the coincidence of truth-values and the equivalence can be expressed by a
basic operator in the object language.

As for Th.m2 | the following Th.m2w , which is modified in the
same way with ~ Th.ml | holds, while Th.m2s does not:

Th.m2w |w A < (AAB) iff =w B < (AVB) iff A =wB
Th.m2s |=s A + (AAB) iff =sB <> (AVB) iff A =sB

However, if we scrutinize the way in which Th.m2s fails, we can confirm
that it is not against the point of the theorem, which requires the coincidence
of the truth-values of A and AAB and the truth-values of B and AVB, iff A |=s
B:

The value assignment which makes the theorem fail is the following:

(1)When A is gapped and B is true, A <+ (AAB) is gapped.
(2)When A is false and B is gapped, A < (AVB) is gapped.

However, in these cases the following hold:

(1a) When A is gapped, AAB is also gapped.
(2a) When B is gapped, AVB is also gapped

So these cases do not contradict the point of the theorem at all, even if it
required the coincidence of the gap-value, too.

6 Conclusion

SPL can be characterized as the generalization and extension of a total two-
valued logic to deal with partiality of truth-valuation. It consists of basic op-
erators, which are monotonic and reliable in relation with its basic logic, and
modal operators, which are weakly monotonic and always bring about truth-
values under partial valuation.

Given such a characterization, Weak and Strong validity as defined above
are more appropriate than other definitions of validity in partial logic. If we
adopt Kleene’s definitions of basic operators, which have an additional desir-
able property of strength, (semantic) Deduction Theorem and Contraposition
Theorem hold. In this case Weak validity coincides with classical validity if
its operators are restricted to the basic operators. So SPL can be viewed as
an alternative to supervaluational logic to retain classical validity allowing the
truth-value gap. By contrast no valid arguments in classical logic are strongly
valid. Strong validity shows the validity of arguments which are proper to SPL.
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