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Chapter 10
Laws, Models, and Theories in Biology:
A Unifying Interpretation

Pablo Lorenzano and Martin Andrés Diaz

10.1 Introduction

Three metascientific concepts subject to philosophical analysis are law, model, and
theory. Throughout the twentieth and twenty-first centuries, three general concep-
tions of scientific theories can be identified: the “classical (or received)” view, the
“historical (or historicist)” view, and the “semantic (or model-theoretic)” view.

For the classical view, in its most general approach, theories should be repre-
sented as deductively or axiomatically organized sets of statements. Laws, on the
other hand, are an essential component of these: they constitute the axioms by
means of which they are metatheoretically represented (Carnap 1939, 1956). In the
beginnings of the classical view, models were conceived as marginal phenomena of
science (Carnap 1939). Subsequent authors (Braithwaite 1953; Nagel 1961) strive
to incorporate the models into the framework of this classical view and recognize
their importance.

Historicist philosophers of science, with their alternative notions to the classical
concept of theory (pattern of discovery in Hanson 1958, ideal of natural order in
Toulmin 1961, paradigm or disciplinary-matrix in Kuhn 1970, research program in
Lakatos 1970, and research tradition in Laudan 1977), let shine a certain concep-
tion about the laws different from the classical one. At the same time, alternative
proposals to the classical one developed, which highlight the function of models in
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scientific practice (Achinstein 1968; Hesse 1966; Harré 1970), as well as investigat-
ing what role analogies and metaphors play in the construction of models (Black
1962; Hesse 1966) or of other components, linked to these, raised by historicist
philosophers, such as exemplars (Kuhn 1970).

At the present time, the importance of models in scientific practice is being
emphasized. The semantic view—which deals with the subject matter of models
within the framework of a general conception of scientific theories—is being
imposed as an alternative to the classical and historicist views of scientific theories,'
and model views of science are being developed—which deal with questions of the
relationship between models and experience and between models and general theo-
ries independently of a general metatheory of science (Cartwright et al. 1995;
Morrison 1998, 1999; Cartwright 1999; Sudrez and Cartwright 2008).

According to the semantic view of theories, concepts relative to models are much
more fruitful for the philosophical analysis of theories, their nature, and function
than concepts relative to statements; the nature, function, and structure of theories
can be better understood when their metatheoretical characterization, analysis, or
reconstruction is centered on the models that they determine and not on a particular
set of axioms or linguistic resources through which they do it.?> Therefore, the most
fundamental component for the identity of a theory is a class (set, population, col-
lection, family) of models. With the emphasis on models, one might think that not
only can the term, or the concept, of “law” be disposed of® but also that the issue of
laws should not be discussed. However, models must be identified in some way. And
in the semantic view this is usually done through the laws or principles or equations
(what they are called is the least important issue) of the theory to which they belong
(thus, models would constitute the semantic or model-theoretic counterpart of such
laws or principles or equations). On the other hand, for model views, models do not
form part of theories (in some usual, encompassing sense of the term), and they are
independent—*"“autonomous”—with respect to them. Yet, models would also be rep-
resented, or be identified, by means of principles, equations or laws, although not
universally so.

The aim of this article is to present the explication of the concepts of law, model,
and theory, and of their relationships, made within the framework of Sneedian or
metatheoretical structuralism and of their application to a case from the realm of
biology: population dynamics. The analysis carried out will make it possible to sup-
port, contrary to what some philosophers of science in general and of biology in

““Over the last four decades, the semantic view of theories has become the orthodox view on
models and theories” (Frigg 2006, p. 51).

2This idea has been developed in different particular ways, giving rise to different approaches,
variants, or versions, which despite their differences constitute a family, the semantic family. For a
characterization of this family, and of some of its members as well as a reference to many of them,
see Lorenzano (2013) and Ariza et al. (2016).

3For skeptical positions about any notion of law and the substitution of the term “law” by other
notion, such as “(fundamental) equations” or “(basic) principles,” see Cartwright (1983, 2005),
Giere (1995), and van Fraassen (1989). By the way, Carnap himself had already considered the
possibility of dispensing with the term “law” in physics (Carnap 1966, p. 207).
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particular hold, the following claims: (a) there are “laws” in biological sciences, (b)
many of the heterogeneous and different “models” of biology can be accommodated
under some “theory”, and (c) this is exactly what confers great unifying power to
biological theories.

To begin with, the structuralist explication of the metascientific concepts of law,
model, and theory and their application to population dynamics* will be presented
successively.

Next, the relevance of the previous analysis to the issues of the existence of laws
in biological sciences, the place of models in theories of biology, and the unifying
power of biological theories will be stressed. Finally, the chapter will conclude with
a discussion of the presented analysis.

10.2 The Concept of Law from the Point of View
of Metatheoretical Structuralism®

In scientific as well as in philosophical literature, many authors speak not just
plainly about laws but about natural laws, or laws of nature, on the one hand, and
about scientific laws, or laws of science, on the other hand, too. Such expressions,
besides, are commonly used as if the expressions belonging to one pair were inter-
changeable with the expressions belonging to the other pair, i.e., as if they were
synonymous or had the same meaning. However, we consider it convenient to dis-
tinguish the first pair from the second one since they correspond to different
approaches or perspectives (e.g., Weinert 1995). The first pair corresponds to an
approach of an ontological kind—corresponding to how things themselves are—
while the second one corresponds to an approach of an epistemic kind—centered in
what we know.

Some philosophers have argued that a philosophical treatment of laws should be
given only for the laws of nature and not for the laws of science. While others con-
sider it more appropriate to refer to the laws of science than (only) to the laws of
nature because, in any case, it is the laws of science that would provide important
keys to understanding what a law of nature is.

In what follows when we speak about laws, we will be talking about scientific
laws, or laws of science, and not about natural laws, or laws of nature.

At least as of 1930 the problem of what a law is, i.e., the problem of finding the
necessary and sufficient criteria or conditions which a statement should satisfy in
order to be considered or in order to function as a law, is discussed.

According to the classical view (Hempel and Oppenheim 1948), a law is a true
lawlike statement that has the following properties: it is universal with an unlimited

*The analysis of population dynamics is based on Diaz and Lorenzano (2017).
3See Balzer et al. (1987) for a complete and technically precise presentation of this metatheory.

SFor a more extensive discussion about the nature of laws as well as an analysis of natural laws
within the framework of metatheoretical structuralism, see Forge (1986, 1999) and Lorenzano
(2014-2015).
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or at least unrestricted scope of application; it does not refer explicitly or implicitly
to particular objects, places, or specific moments; it does not use proper names; and
it only uses “purely universal in character” (Popper 1935, sects. 14—15) or “purely
qualitative” predicates (Hempel and Oppenheim 1948, p. 156).

Despite successive and renewed efforts there is not a satisfactory adequate set of
precise necessary and sufficient conditions as a criterion for a statement to be con-
sidered a “(scientific) law.””

The discussions in the field of general philosophy of science have also been held,
and have taken place, in the special field of philosophical reflection on biology and
its different areas such as classical genetics, population genetics, evolutionary the-
ory, and ecology, among others.

Some authors deny the existence of laws in biology in general, and in ecology in
particular. Two main arguments have been put forward against the existence of laws
in biology. The first one is based on the alleged locality or non-universality of gen-
eralizations in biology (Smart 1963); the second one is based on the alleged (evolu-
tionary) contingency of biological generalizations (Beatty 1995).

At least three responses to these arguments can be found. The first one consists in
submitting them to a critical analysis. This approach is chosen by Ruse (1970),
Munson (1975), and Carrier (1995), among others. The second one is to defend the
existence of laws, or principles, in biology but arguing that they are non-empirical, a
priori. This strategy is followed by Brandon (1978, 1981, 1997), Sober (1984, 1993,
1997), and Elgin (2003). The third one is to defend the existence of empirical laws, or
principles, in biology but arguing for a different explication of the concept of law or
of non-accidental, counterfactual supporting, generalizations (Carrier 1995; Mitchell
1997; Lange 1995, 2000; Dorato 2005, 2012; Craver and Kaiser 2013). Our proposal
will be of this third kind. But in such a manner that it will allow to consider “theoreti-
cal pluralism,” “relative significance” controversies and some kind of contingency as
not exclusive of biology (agreeing with Carrier 1995 on this) and to understand better
the role played by different laws or lawlike statements of different degrees of general-
ity in biology (capturing some of the points made by Ruse 1970 and Munson 1975) as
well as the “a priori” component pointed out by Brandon, Sober, and Elgin.?

With respect to the existence of laws in ecology in particular—and taking into
account the classical proposal of differentiating between two types of genuine laws:
on the one hand, laws of unlimited, unrestricted scope or fundamental laws and, on
the other, laws of limited, restricted scope or derivative laws that would follow from
more fundamental laws (Hempel and Oppenheim 1948, p. 154)—we must distin-
guish the claim that there are no laws in ecology at all, which is hardly tenable given
at least the so-called “Malthus law” of exponential population growth (Ginzburg
1986; Turchin 2001; Berryman 2003) and the more asserted and discussed claim

7See Stegmiiller (1983) and Salmon (1989) for an analysis of the difficulties of the classical expli-
cation of the notion of scientific law.

8For a more detailed discussion of the two first kinds of responses, see Lorenzano (2006, 2007,
2014-2015), Diez and Lorenzano (2013, 2015).
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that there are no fundamental and/or general nomological principles in ecology (see
e.g. Peters 1991; Lawton 1999).

Ecologists and philosophers of ecology have taken part in the debate, resulting in a
large number of publications on the subject. Following Linquist et al. (2016), we can
distinguish three main reactions to the denial of the existence of fundamental laws in
ecology in a similar way as we did in the case of biology in general: either to take issue
with the kind of evidence used to justify Lawton’s skeptical claims (Linquist 2015) or
to cite examples of candidates for laws (Murray Jr. 1979, 1992, 1999, 2000, 2001;
Turchin 2001; Berryman 2003; Ginzburg and Colyvan 2004), or to reject the concept
of law that Lawton and other skeptics employ (Cooper 1998; Colyvan and Ginzburg
2003; Lange 2005). Our position will be, again, of this last kind. And, once more, in
such a way that it will allow to understand better the role played by different laws or
lawlike statements of different degrees of generality in ecology.

With respect to the non-universality of biological generalizations, we contend
that universality is a too demanding condition. What matters is not strict universality
but rather the existence at least of non-accidental, counterfactual supporting, gener-
alizations, which we take as uncontroversial present in biology, though generally
more domain restricted and ceteris paribus than in other areas of science such as
mechanics or thermodynamics.

As many philosophers of biology and of physics, we also accept a broader sense
of lawhood that does not require non-accidental generalizations to be universal and
with no exceptions in order to qualify as laws.

This minimal characterization of laws as counterfactual-supporting facts is simi-
lar to the one defended in Dorato (2012), and it is also compatible with some pro-
posals about laws in biology in particular, such as the “paradigmatic” (Carrier 1995)
and “pragmatic” (Mitchell 1997) ones.

Whether one wants to call these non-accidental, domain restricted, generaliza-
tions “laws” is a terminological issue we will not enter here. What matters is, tagged
as one wills, that these non-accidental generalizations play a key role in biology in
general and in ecology in particular. We will show that in the case of population
dynamics (PD).

Within the structuralist tradition, when dealing with the subject of laws,
discussions, even from their beginnings with Sneed (1971), though not with
that terminology, focus on those scientific laws which, starting with Stegmiiller
(1973), are called “fundamental laws” of a theory.

However, accepting the problems for finding a definition of the concept of a law,
when the criteria for a statement to be considered a fundamental law of a theory are
discussed within the framework of metatheoretical structuralism, one tends to speak
rather of “necessary conditions” (Stegmiiller 1986, p. 93), of “weak necessary con-
ditions” (Balzer et al. 1987, p. 93), or, better still, only of “symptoms”, some even
formalisable (Moulines 1991, p. 233), although

in each particular case of reconstruction of a given theory, it seems, as a general rule, to be
relatively easy to agree, on the basis of informal or semi-formal considerations (for example,
on its systematizing role or its quasi-vacuous character), that a given statement should be
taken as the fundamental law of the theory in question (Moulines 1991, p. 233).
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On the other hand, metatheoretical structuralism draws a distinction between
the so-called fundamental laws (or guiding principles) and the so-called special
laws. This distinction, which will be developed later, elaborates the classical dis-
tinction between two kinds of laws with different degrees of generality in a differ-
ent way as well as the Kuhnian distinction between the symbolic generalizations
— “generalization-sketches” (Kuhn 1974), “schematic forms” (Kuhn 1974), “law
sketches” (Kuhn 1970, 1974) or “law-schema” (Kuhn 1970) — and their “particu-
lar symbolic forms” (Kuhn 1974) adopted for application to particular problems in
a detailed way.’

Very briefly, five criteria can be mentioned as necessary conditions, weak neces-
sary conditions or “symptoms” for a statement to be considered a fundamental law/
guiding principle in the structuralist sense:

1. Tts cluster or synoptic character. This means that a fundamental law should
include “all the relational terms (and implicitly also all the basic sets) and, there-
fore, at the end, every fundamental concept that characterize such a theory”
(Moulines 1991), “several of the magnitudes,” “diverse functions,” “possibly
many theoretical and non-theoretical concepts” (Stegmiiller 1986), “almost all”
(Balzer et al. 1987), “at least two” (Stegmiiller 1986).

2. To be valid in every intended application. According to this, it is not necessary
that fundamental laws have an unlimited scope, apply every time and every-
where, and possess as universe of discourse something like a “big application,”
which constitutes an only one or “cosmic’” model, but it rather suffices that they
apply to partial and well-delimited empirical systems: the set of intended appli-
cations of the theory (Stegmiiller 1986).1°

3. Its quasi-vacuous character. This means that they are highly abstract, schematic,
and contain essential occurrences of T-theoretical terms, which in a structuralist
sense are terms whose extension can only be determined through the application
of a theory’s fundamental law(s)!! so that they can resist possible refutations, but
which nevertheless acquire specific empirical content through a non-deductive
process known as “specialization” (Moulines 1984).

4. Its systematizing or unifying role. Fundamental laws allow including diverse
applications within the same theory since they provide a guide to and a conceptual
framework for the formulation of other laws (the so-called “special laws™), which
are introduced to impose restrictions on the fundamental laws and thus apply to

?On the other hand, the expressions “fundamental law” and “special law” are not used here in
Fodor’s sense (Fodor 1974, 1991)—the former for laws of basic or fundamental sciences, the latter
for laws of special sciences—but rather in the sense used by structuralists, i.e., for different kinds
of laws within a theory.

10The validity of laws can be regarded as exact—and thus as strict or non-interferable laws—or,
rather, to the extent that they usually contain not only abstractions but also various idealizations,
as approximate, as already pointed out by Scriven (1959) and more extensively by Cartwright
(1983)—and so as non-strict or interferable laws, and compatible with various specific treatments
of this situation, such as those referring to ceteris paribus clauses (Cartwright 1983), “provisos”
(Coffa 1973 and Hempel 1988), or “normicity” (Schurz 2009).

"'For more on the structuralist T-theoretical/T-non-theoretical distinction, see Sect. 10.3.
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particular empirical systems (Moulines 1984).!2 It is clear that the distinction
between fundamental and special laws is relative to the considered theory.

5. To possess modal import. Fundamental laws express non-accidental regularities,
are able to give support to counter-factual statements (if they are taken “together-
with-their-specializations” within a theory, in the sense that we will introduce later
of theory-net), even when they are context-sensitive and with a domain of local
application, and that, in its minimal sense, instead of attributing natural necessity,
necessity of the laws is attributed, and, in that sense, they should be considered as
necessary in their area of application, even when outside such an area it does not
need to be that way (Lorenzano 2014-2015; Diez and Lorenzano 2013).

Fundamental laws/guiding principles are “programmatic” or heuristic in the
sense that they tell us the kind of things we should look for when we want to explain
a specific phenomenon. But, as said before, taken in isolation, without their special-
izations, they say empirically very little. They can be considered, when considered
alone, “empirically non-restrict.” In order to be tested/applied, fundamental laws/
guiding principles have to be specialized (“concretized” or “specified”). These spe-
cific forms adopted by the fundamental laws are the so-called “special laws.”

It is worth emphasizing that the top-bottom relationship established between
laws of different levels of generality is not one of implication or derivation but of
specialization in the structuralist sense (Balzer et al. 1987, Chap. 4): bottom laws
are specific versions of top ones, i.e., they specify some functional dependencies
(concepts) that are left partially open in the laws above. That is the reason why they
are called “special laws” instead of “derivative laws” like in the classical view of
laws according to which the laws with a more restricted or limited scope are assumed
to be logically derived or deduced from the fundamental laws. Actually, “special
laws” are not derived or deduced literally from the fundamental laws (at least are
not derived or deduced only from them) without considering some additional prem-
ises. Formally speaking, the specialization relation is reflexive, antisymmetric, and
transitive and does not meet the condition of monotonicity.

When the highest degree of concretization or specificity has been reached, i.e.,
when all functional dependencies (concepts) are completely concretized or specified,
“terminal special laws” are obtained. This kind of special laws, proposed to account for
particular empirical situations, can be seen as particular, testable and, eventually, refut-
able hypotheses to which to direct “the arrow of modus tollens” (Lakatos 1970, p. 102).

10.2.1 Laws in Population Dynamics

Population dynamics is a part of population ecology that studies the variation in the
number of individuals in a population over time. Although during the nineteenth
century it began with the works of Malthus and Verhulst, we can affirm that it had

2By saying it in a model-theoretic way, fundamental laws determine the whole class of models of
a theory while special laws determine only some of them, which constitute a subclass of the class
of models.
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its formal beginnings in the first decades of the twentieth century, when the ecolo-
gists adopted a vision centered on populations, by means of which they tried to
explain using mathematical equations their behavior over time. In this way the most
important developments of population dynamics have been made when the equa-
tions of competition and predation of Lotka (1925) and Volterra (1926), and the
curves of Pearl (1925), among others, were added to the exponential equations of
Malthus (1798) and the logistic equation of Verhulst (1845). These authors sought
to determine how the number of individuals or size of the population was modified
based on certain characteristics of the species and factors external to the population.

Population dynamics (PD) studies the changes in population size over time. It is
about populations, defined as the set of organisms of the same species that inhabit a
given area, whose sizes (N), i.e., the number of individuals, change (AN) over time
(fromttot+ 1) (i.e., from N, to N, , ;). It talks about populations (POP)—organisms
(0), or, better, sets of organisms Po#(O) belonging to the same species which make
up populations, where pop symbolizes a population (pop C Por(O)) and POP the
set of populations such that pop € POP—and of the size of populations (N) that
changes (AN) over time (from 7 to ¢ + 1) (i.e., from N, to N, . ;), depending on the
demographic processes (DP) of birth (B), death (D), immigration (/), and emigra-
tion (E).

The connections between its different components can be graphically repre-
sented in the following way (see Fig. 10.1):

Population dynamics (PD) intends to account for changes in population size over
time, i.e., for organisms that make up a population in which a set of demographic
processes occur (birth, death, emigration, and immigration) that determine that the
size of the population is modified in a given interval of time.

Examples of cases of closed populations (i.e., of populations in which neither
immigration nor emigration occur) are the following:

1. The post-glacial expansion of Corylus avellane population in Nortfolk, UK

2. The decrease of the population of North Atlantic northern right whale (Eubalaena
glacialis)

The post-glacial expansion of Pinus sylvestris population in Nortfolk, UK

The fluctuation of the Australian sheep bow-fly (Lucilia cuprina)

5. The growth of adult carob trees (Prosopis flexuosa) population

Eali

A 4

pop:={01, 02,044 — DP={B,D,I E} popt1=Nt+B—-D+I—-E

Fig. 10.1 Connections between different components of population dynamics
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6. The competitive system of the species Drosophila willistoni and D.
pseudo-obscura

7. The interspecific competition between juvenile Hobsonia florida (Polychaeta,
Ampharetidae) and oligochaetes

8. The cycling of predator and prey populations of the Canada Lynx (Lynx cana-
diensis) and its principal prey, the snow-shore hare (Lepus americanus)

For every specific case ecologists have to postulate specific biotic and other pop-
ulation factors" that act together with specific demographic factors as well as the
specific manner of their combination in the rate of population change'* that accounts
for the observed (or estimated) change in population size.

This means that in order to account for the observed (or estimated) change in
population size, the following parameters have to be specified:

(i) Types and numbers of components of the rate of population change (RPC) act-
ing together (i.e., types and numbers of demographic processes (DP) and of
population factors ((F}); <1)), and

(i1) (a) The specific mathematical form assumed by RPC and (b) the specific math-
ematical form assumed by the equation in which all basic concepts occurred
(being it continuous, discrete, exponential, linear, logistic, etc.)

Thus, ecologists propose equations, which contain these two types of
specifications.

B There are different ways of classifying the different types of factors that affect demographic
processes. For instance, Krebs (2008) distinguishes two types of factors, external and internal,
while Berryman (2003) distinguishes three types of factors, biotic, genetic, and abiotic. We follow
this tripartite distinction but with a slightly different denomination. So, members of the set of
population factors ((F;), <) are the so-called set of environmental factors (F,,) (such as physical
and chemical conditions of the environment and resources), set of genetic factors (F,.) (related to
genetic properties of the distinct individuals that place them in different classes with respect to age,
sex, or size), and set of biotic (or biological) factors (Fy;,) (variables or “parameters” like carrying
capacity, competition coefficient, capture efficiency, and conversion efficiency of predator, which
measure the biotic interactions such as predation, parasitism, and intra- or interspecific competi-
tion). While the extension of the concepts environmental and genetic factors can be determined
independently from population dynamics, and thus are PD-non-theoretical, the extension of most
of biotic factors can only be determined by means of PD and in that sense a subset of them are
PD-theoretical.

'4The rate of population change (RPC) is a functional whose domain is the set of demographic
processes (DP), the size of the population (N,), and the whole of population factors ((F;);<;) in an
instant of time (7)), and its co-domain is the set of real numbers: RPC: DP X N, X (F});<; X T — R.
It is definitely a PD-theoretical concept: its extension can only be determined by applying the very
same PD.
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The following are the specifications introduced to account for the above exam-
ples and the respective equations to which they give rise'*:

1. The post-glacial expansion of Corylus avellana population is (i) not affected by
population factors and (ii) has no population limitations of continuous and expo-
nential variation: dN/dt = (b — d) - n, (Bennett 1983).

2. The population of the North Atlantic northern right whale is (i) affected by
genetic factors and has a (ii) continuous and exponential variation:
dN/dr=[nY." b(x)d(x)/G]-n, (Caswell etal. 1999).

3. The post-glacial expansion of Pinus sylvestris population in Norfolk, UK, is (i)
affected by environmental and biotic factors and has (ii) carrying capacity and
continuous logistic variation with linear dependence between b, d and N;:
dN/dt = [(b — d)(1 — n/K)] - n, (Bennett 1983).

4. The population of Australian sheep bow-flies is (i) affected by environmental
and biotic factors and has (ii) carrying capacity and continuous logistic variation
with linear dependence between b, d and the population size in an instant of time
previous to t: dN/dt = [(b — d)(1 — n,_ /K)] - n, Nicholson 1957).

5. The population of adult carob trees is (i) affected by environmental and biotic
factors (carrying capacity and critical population size) and follows (ii) carrying
capacity and continuous logistic variation with non-linear dependence between
b, d, N, and C: dN/dt = [(b — d)(1 — n/K)(1 — C/n,))] - n, (Aschero and Vazquez
2009).

6. The competitive system of populations of species Drosophila willistoni and D.
pseudoobscura is (i) affected by environmental and biotic factors and has (ii)
carrying capacity and continuous logistic variation with linear dependence
between b, d and N;: dN/dt = [(b — d)(1 — n/K)®] - n, (Gilpin and Ayala 1973).

7. The interspecific competition between populations of juvenile Hobsonia florida
and oligochaetes is (i) affected by biotic factors (populations of other species
with carrying capacity and competition factors) and follows (ii) carrying capac-
ity and continuous logistic variation with dependence on b and d with N,;, K|, N,
and a: dN,/dt = (b, — d)[(K, — n;; — an,)/K,] - n, (Gallagher et al. 1990).

8. The cycling of predator and prey populations of the Canada Lynx and its princi-
pal prey, the snow-shore hare is (i) affected by biotic factors (populations of
other species with capture efficiency and conversion efficiency of predator) and
follows (ii) exponential continuous variation and therefore demographic pro-

131t is worth noting in relation to the equations mentioned in these examples that different authors
usually designate the same base sets or functions of population dynamics by different terms and
symbols. For N and the demographic processes (b, d, i, and e) its use is generalized and uniform,
but for the population factors there is much diversity of terms and symbols between the different
authors, especially in what we label the “rate of population change” (and symbolize by RPC
instead of by r as in Turchin 2001, p. 19) as well as in the presentation of the so-called “Lotka-
Volterra equations.” This generates the coexistence of different terminology and symbology for the
same factors or rates and the erroneous impression that the concepts are different as well as the
distinct formulations of the equations in which they occur. In order to avoid this impression and
ambiguity we have unified the use of terms and symbols.
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cesses without dependence on population size: dN/dt = [(b — d) — aP] - n, (for
prey) and dN/dt = [(—d) + pV] - n, (for predator) (Gotelli 2001).

In the terminology of metatheoretical structuralism each specific equation, which
applies to a particular case, should be considered a special law; moreover, to the
extent that all concepts are completely concretized or specified, each equation
should be seen as a rerminal special law.

In all these cases, it happens that the value of the rate of population change
(RPC), calculated out of the values of chosen types and numbers of population fac-
tors ((F)); <1), multiplied by the size of the population at instant 7 (or initial instant)
(N,) matches or fits (exactly or approximately) with the values of the changes in
population size over time (AN).

So far, we have identified some of the different equations or special laws that
have been proposed in population dynamics.

In order to try to identify some fundamental law/guiding principle in population
dynamics, the strategy we will use is to ask what all the different equations/special
laws of PD have in common.

It is worth noting that the key metatheoretical question is not “from what funda-
mental laws or general principles or equations are all specific equations or special
laws of PD deduced?” but “what do all specific equations/special laws of PD have
in common?”’

Answering this question is not only a feasible task; it will also shed light on the
relationship between laws of PD, and moreover, as we shall see later, on the rela-
tionship between models of PD, and PD as a theory, in the sense of a theory-net, and
on the unifying power of PD in particular and of theories in general.

One might respond to this question by denying that there is one particular feature
(or set of features) that all equations/special laws of PD share and argue that the
case of ecological laws is analogous to Wittgenstein’s games (1953, § 66 and ff.):
what ties different equations/special laws together and what makes them belong to
PD is some kind of family resemblance between them rather than the existence of a
fixed set of shared features, providing necessary and sufficient conditions for mem-
bership to them.

However, this answer begs another question because we still want to know in
what sense the different equations/special laws of PD are similar to each other.

It seems unlikely that the desired similarities can be read off from the mere
appearance of them, and this is all that the Wittgensteinians can appeal to. Moreover,
what matters is not that they are similar to each other in appearance but rather that
they share certain structural features: the equations/special laws of PD possess the
same structure (of the same logical type), meaning that they all are specifications/
specializations of one and the same fundamental law/guiding principle of PD,
respectively. And thus, as we shall see later, they form a theory or, better, a theory-
net, the theory-net to which they all belong.

In specific PD applications only specific laws or equations appear, and that is
all that we have in standard textbooks. However, we would like to suggest that
they are specific versions of a general, fundamental law or a guiding principle for
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the application in question. Nevertheless, in contrast to other empirical theories
like those that belong to physics such as classical particle mechanics or
thermodynamics,' the fundamental law/guiding principle of PD is not “observed”
in the standard literature, but it is only “implicit” there. Thus, population dynam-
ics (PD) is guided by a general guiding principle implicitly presupposed in spe-
cific applications. Roughly, this fundamental law/guiding principle (PDGP) states
the following:

PDGP: The change in the size of a population in a given time interval is due to the
presence of a set of (types of) demographic processes (birth, immigration,
death, emigration), i.e., demographic functions, and of a set of (types of)
population factors (environmental, genetic and biotic), i.e., population
factors, such that the observed (or estimated) change in the size of the
population in a certain period of time corresponds to the product of the
rate of population change multiplied by the size of the population at the
beginning of the time interval.

All interconnected concepts of PD can be graphically depicted as follows (see
Fig. 10.2, where besides the components already present in Fig. 10.1 appears a sym-
bolic representation of the set of (types of) population factors (F) at the top and of
the fundamental law/guiding principle of PD (PDGP), in which also occurs the
concept of rate of population change (RPC), at the bottom):

| Fi = {Famb, Fbio, Fgen} |

I

pop: = {01, 02, 0k} |—| DP={B, D, I, E} |—>| popu1=Nt+B—-D+I/—E |

v

Fig. 10.2 Graphical depiction of the elements of PD

1For an analysis of these theories from a structuralist point of view, see among others Balzer et al.
(1987).
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As mentioned before, fundamental laws/guiding principles are programmatic/
heuristic in the sense that they tell us the kind of things we should look for when we
want to apply the theory to a specific phenomenon. In the case of PD fundamental
law/guiding principle, its heuristic character can be read as follows:

PDGP: When population size changes over time, look for (types of) biotic and
other population factors (environmental and genetic) that acting together
with (types of) demographic processes (natality, immigration, mortality,
emigration) in the rate of population change, which, multiplied by the
population size at the initial time, “match”/“fit” the observed (or esti-
mated) change in population size.

As we already mentioned, in every specific case ecologists have to look for spe-
cific biotic and other population factors that act together with specific demographic
factors and discover the specific manner of their combination in the rate of popula-
tion change that accounts for the observed (or estimated) change in population size.

This means that PD fundamental law/guiding principle guides the process of
specialization, since, as we saw before, in order to obtain special laws that account
for the observed (or estimated) change in population size, (i) types and numbers of
components of the rate of population change (RPC) that act together (i.e., types and
numbers of demographic processes and of population factors), and (ii) (a) the spe-
cific mathematical form assumed by RPC, and (b) the specific mathematical form
assumed by the fundamental law/guiding-principle (being it continuous, discrete,
exponential, linear, logistic, etc.) have to be specified.

10.3 The Concept of Model from the Point of View
of Metatheoretical Structuralism

The use of the term “model” is not restricted to scientific contexts. On the contrary,
it is used in all kinds of everyday situations, being used, moreover, as much to refer
to the thing “painted” or modeled as for the “painting” or model of some original. In
the sciences it began to be used towards the end of the nineteenth century, through
the allusion to “mechanical models” or, with different terminology, “mechanical
analogies”, proposed and discussed, among others, by Maxwell (1855, 1861),
Thomson (1842, 1904), and Boltzmann (1902) and Duhem (1906), or, in the context
of German physics, where the term “Bild”, in singular, or “Bilder”, in plural was
usual (Helmholtz 1894; Hertz 1894; Boltzmann 1905, who discussed the “models”
and developed a “Bild conception” of physics in particular and of science in general).

Its use, however, was not limited to the field of physics, but extended to other
domains of science, being of central importance in many scientific contexts. But
neither in colloquial contexts nor in the diverse scientific contexts is the term
“model” used in a non-unitary way, but rather it is an ambiguous, multivocal or
polysemic expression that expresses more than one concept. At the same time, as we
pointed out, it must be taken into account that different terms, such as the mentioned
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“Bild” or “analogy” as well, have been used to refer to models. The term model
applies to a bewildering set of objects from mathematical structures, graphical rep-
resentations, computer simulations, to specific organisms or objects. And the means
by which scientific models are expressed goes from sketches and diagrams to ordi-
nary text, graphics and mathematical equations — just to name some of them.

In biology in general and ecology in particular the term model is used in different
ways, calling “models” different entities, whether the equations themselves, ideal-
ized representations of empirical systems, organisms or physical objects, among
other things. Thus, in biology, for instance, it is standard practice to speak about the
Lotka-Volterra model of predator-prey interaction or the double helix model of
DNA or models organisms or models “in vivo” or “in vitro”.

On the other hand, different authors have proposed different typologies and clas-
sifications (neither necessarily exhaustive nor, much less, exclusive) in order to ana-
lyze models and to understand their nature and function in science.

But although the literature in philosophy of science has concentrated mainly on
the so-called “theoretical models” (Black 1962), not everyone agreed with the exact
role that models played in the empirical sciences nor with their relevance for them,
as well as with their relation with the laws and empirical theories and the eventual
need to take them into consideration as components of the latter.

Nowadays, as it Jim Bogen states in the back cover of the book Scientific Models
in the Philosophy of Science (Bailer-Jones 2009), “The standard philosophical lit-
erature on the role of models in scientific reasoning is voluminous, disorganized,
and confusing.”

Despite this, one of the axis already mentioned that would enable the organiza-
tion at least part of such a literature, and with which the book ends, is what is identi-
fied as one of the “contemporary philosophical issues: how theories and models
relate each other” (Bailer-Jones 2009, p. 208). On this issue, and regardless of dif-
ferences in particular developments, we have to main positions: the aforementioned
model views, for which models do not form part of theories (in some usual, encom-
passing sense of the term), but they are rather independent—*"“autonomous”—with
respect to them, and the semantic view, for which the most fundamental component
for the identity of a theory is a class (set, population, collection, family) of models.

But whether within model or semantic views, there is an attempt to understand
not only what they are, but also how they work and even how models are con-
structed from detailed case studies belonging to different sciences.

Although other authors had already pointed out the importance of models in biol-
ogy and had tried to analyze them (Beckner 1959; Beament 1960; Holling 1964; or
later Schaffner 1980, 1986, 1993), Levins (1966) occupies a central place in the
discussion about models and model building in biology in general and ecology.
From then on his proposal about the existence of a three-way trade-off between
generality, realism, and precision, such that a model builder cannot simultaneously
maximize all of these desiderata, has been much discussed (e.g. Orzack & Sober
1993; Levins 1993; Orzack 2005; Odenbaugh 2003; Weisberg 2006; Matthewson &
Weisberg 2009).
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Returning to the issue of the relationships between models and theories, the dis-
cussion in ecology continues nowadays with authors who strongly criticize the dis-
cipline affirming that it is an accumulation of models without any connection (as in
the case of Roughgarden 2009) but on the other hand many ecologists maintain the
existence of a common core of biological assumptions (Cooper 2003; Levins 1993)
and that the differences in different components result in a family of mathematical
equations (or “models”, as the ecologists call them) (Cooper 2003). The latter has
led many authors to argue that theoretical unification in ecology is possible through
an iterative process that includes recognizing similarities between ostensibly com-
peting models (Cooper 2003; Lange 2005; Sagoff 2003), developing a common
theoretical framework and constructing a new super model within that framework
(Fox et al. 2011).

As would be expected, being a member of the semantic family, the structuralist
view shares with all the other family members the fundamental thesis on the central-
ity of models for metatheoretical analysis. But, on the other hand, it can differ from
other members of the semantic family in its characterization of the precise nature of
these entities that are called models, although eventually sharing it with some
of them.

A model, in its minimal informal meaning, is a system or structure which intends
to represent, in a more or less approximative way, a “portion of reality,” made up by
entities of various kinds, which makes true a series of claims, in the sense that in this
system “what the claims say occurs,” or more precisely, the claims are true in
this system.

Models are conceived as systems or structures, i.e., mathematical structures. In
the standard version of metatheoretical structuralism, these structures are set-
theoretical or relational structures of a certain kind,!” constituted by a series of basic
domains (sets of objects) and of relations (or functions) over them, i.e., as entities of
the form: (D;,..., D, Ry,..., R,), where R; C D;; x ... X Dy.) (the D;’s represent the
so-called “base sets,” i.e., the “objects” the theory refers to, its ontology, whereas

Tn trying to be as precise as possible, metatheoretical structuralism prefers the use of (elemen-
tary) set theory—whenever possible—as the most important formal tool for metatheoretical analy-
sis. However, this formal tool is not essential for the main tenets and procedures of the structuralist
representation of science (other formal tools such as logic, model theory, category theory, and
topology as well as informal ways of analysis are also used). Besides, there are also uses of a slight
variant of Bourbaki notion of “structure species” in order to provide a formal basis of character-
izing classes of models by means of set-theoretic predicates (Balzer et al. 1987, Ch. 1) and of a
version of the von Neumann-Bernays-Godel-type of language including urelements for providing
a purely set-theoretical formulation of the fundamental parts of the structuralist view of theories
(Hinst 1996). There is even a “categorial” version of metatheoretical structuralism that casts the
structuralist approach in the framework of category theory rather than within the usual framework
of set theory (see Balzer et al. 1983; Sneed 1984; Mormann 1996). The choice of one formal tool
or another or of a more informal way of analysis is a pragmatic one, depending on the context
which includes the aim or aims of the analysis and the target audience. Nonetheless, in standard
expositions of metatheoretical structuralism, as well as in the presented here, models are conceived
of as set-theoretical structures (or models in the sense of formal semantics), and their class is
identified by defining (or introducing) a set-theoretical predicate, just as in the set-theoretical
approach of Patrick Suppes (1957, 1969, 1970, 2002; McKinsey et al. 1953).
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the R/’s are relationships or functions (set-theoretically) constructed out of the
base sets).!®

In order to provide a more detailed analysis of empirical science, metatheoretical
structuralism distinguishes three kinds of (classes, sets, populations, collections or
families of) models. Besides what are usually called (the class, set, population, col-
lection or family of) “theoretical models” or simply (the class, set, population, col-
lection or family of) “models”—also called (the class of) “actual models” in
structuralist terminology—, the so-called (class of) “potential models” and (class
of) “partial potential models” are taken into account.

To characterize these structuralist notions, two distinctions are to be considered:
the distinction between two kinds of “conditions of definition” (or “axioms”, as they
are also called) of a set-theoretical predicate, and the distinction between the
T-theoretical/T-non-theoretical terms (or concepts) of a theory T. According to the
first distinction, the two kinds of conditions of definition of a set-theoretical predi-
cate are (1) those that constitute the “frame conditions” of the theory and that “do
not say anything about the world (or are not expected to do so) but just settle the
formal properties” (Moulines 2002, p. 5) of the theory’s concepts and (2) those that
constitute the “substantial laws” of the theory and that “do say something about the
world by means of the concepts previously determined” (Moulines 2002, p. 5).

According to the second distinction, which replaces the traditional, positivistic
theoretical/observational distinction, it is possible to establish, in (almost) any ana-
lyzed theory, two kinds of terms or concepts, in the sense delineated in an intuitive
formulation by Hempel (1966, 1969, 1970) and Lewis (1970): the terms that are
specific or distinctive to the theory in question and that are introduced by the theory
T—the so-called “T-theoretical terms or concepts”—and those terms that are
already available and constitute its relative “empirical basis” for testing—the so-

'8In a complete presentation, we should include, besides the collection of so-called principal base
sets D,..., D;or D;,..., Dy, also a second kind of base sets, namely, the so-called auxiliary base sets
A,,..., A,. The difference between them is the difference between base sets that are empirically
interpreted (the principal ones) and base sets that have a purely mathematical interpretation, like
the set N of natural numbers, or the set R of real numbers (the auxiliary ones). Here, auxiliary
(purely mathematical) base sets are treated as “antecedently available” and interpreted, and only
the proper empirical part of the models is stated in an explicit way.

On the other hand, in philosophy of logic, mathematics, and empirical science has been inten-
sively discussed what would be a better way of understanding the nature of sets occurring in the
relational structures and of the models themselves. In relation to sets, according to the standard
interpretation of “sets-as-one” (Russell 1903) or “the highbrow view of sets” (Black 1971) or
“sets-as-things” (Stenius 1974) sets themselves, though not necessarily their elements which may
refer to concrete entities, should be considered as abstract entities, while according to the interpre-
tation of “sets-as-many” (Russell 1903) or “the lowbrow view of sets as collections (aggregates,
groups, multitudes)” (Black 1971) or “sets-of”” (Stenius 1974) sets have not to be interpreted that
way. For theoretical models, even though they are usually considered as abstract entities, there is
no agreement about what kind of abstract entities they are, i.e., what is the best way of conceive
them—either as interpretations (Tarski 1935, 1936) or as representations (Etchemendy 1988,
1990), or as fictional (Godfrey-Smith 2006; Frigg 2010), or as abstract physical entities (Psillos
2011). However, due to space limitations, we will not delve into these issues.
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called “T-non-theoretical terms or concepts,” which are usually theoretical for other
presupposed theories T', T”, etc.

According to the standard structuralist criterion of T-theoreticity (originated in
Sneed 1971 and further elaborated in detail in the Structuralist program; see Balzer
etal. 1987, Ch. II), a term is T-theoretical (i.e., theoretical relative to a theory T) if
every method of determination (of the extension of the concept expressed by the
term) depend on T, i.e., if they are T-dependent, if they presuppose or make use
some law of T; otherwise, a term is T-non-theoretical, i.e., if at least some method
of determination (of the extension of the concept expressed by the term) does not
presupposes or make use of some law of T, if it is T-independent.

Now we are in a position to characterize these structuralist basic notions:

1. The class of potential models of the theory M, is the total class of structures that
satisfy the “frame conditions” (or “improper axioms”) that just settle the formal
properties of the theory’s concepts, but not necessarily the “substantial laws” of
the theory as well.

2. The class of (actual) models of the theory M is the total class of structures that
satisfy the “frame conditions,” and, in addition, the “substantial laws” of the
theory. If A,,..., A, are certain formulas (“proper axioms” or simply “axioms’)
that represent the laws of the theory, models of the theory are structures of the
form (D,,..., Dy, Ry,..., R,) that satisfy the axioms A,,..., A,. (And that is the
reason why, as it was mentioned before, models may be considered the model-
theoretic counterpart of theory’s laws.)

3. The class of partial potential models M,,, are obtained by “cutting off” the T-
theoretical concepts from the potential models M, (M, := r(M,), where r, the
“restriction” function, is a many-one function such that M, — M,,,). If potential
models are structures of type x (x = (D,,..., Dy, R,,..., R,)), partial potential
models M, are structures of type y (y = (D’y,..., D, R’\,..., R’,)), where each
structure of type y is a partial substructure of a structure x.'° (And let us call a
specific structure of type y, with specific instances of the T-non-theoretical con-
cepts, a “data model” of T).

Now, let us identify all these kinds of models in population dynamics, starting
with data models and then moving on to potential models first and then to theoreti-
cal models that result in successful applications to end with the classes of potential
models, models, and partial potential models.

19A structure y is a substructure of another structure x (in symbols: y C x) when the domains of y
are subsets of the domains of x and, therefore, the relationships (or functions) of y are restrictions
of the relationships (or functions) of x. A structure y is a partial substructure of x (also symbolized
by y C x) when, besides being a substructure of x, there is at least one domain or relationship (or
function) in x that has no counterpart in y. The important thing is that the partial substructure y
contains less components — domains or relationships (or functions) — than the structure x. Thus,
structures x and y are of different logical types. If y is a substructure (either partial or not) of x, it
is also said, inversely, that x is an extension of y.
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10.3.1 Models in Population Dynamics

If the examples of closed population cases given above (in Sect. 10.2.1) are to be
represented in the structuralist format, they should be conceived as data models of
PD. That is, they should be conceived as structures of type y of partial potential
models: y=(0, T, <, N,, B, D, E, I), with specific values adopted by the concepts that
occur there—organisms (O) belonging to the same species which make up popula-
tions; the size of populations (/) that changes (AN) over time (from #to t + 1), i.e.,
from N, to N, 1; and the demographic processes (DP) of birth (B), death (D), immi-
gration (/), and emigration (E)—in each of the given examples. Structures of type y
are used to represent in a model-theoretic, structuralist way those empirical phenom-
ena that PD intends to account for—i.e., organisms that make up a population in
which a set of demographic processes occur (birth, death, emigration and immigra-
tion) that determine that the size of the population is modified in a given interval of
time, or changes in population size over time, for short—, which also constitute what
allows us to test population dynamics, i.e., its “(empirical) basis of testing.”

Let us consider the case of Pinus sylvestris in more detail though. The system under
consideration is constituted by a set of organisms O of the same species (set of individu-
als of Pinus sylvestris).*° They form the objects involved in this intended application.
Thus, O, = {oy,..., 0,} are the set of organisms in a determined interval of time, {#,, .}
The population size is measured in #, and in #,, |, and its difference between the two
instants of time (AN) is calculated; in this particular case, the population size is the esti-
mated number of pollen grains accumulated in a sedimentary environment per unit area
per unit time, i.e. the so-called “the pollen accumulation rate”; this value is 6.3 in 7,
(where 7, =9,500 B.P.), which changed to 49,000 in ¢, , ; (where ¢, ; = 9,000 B.P.), giving
a difference (AN) of 48,993.7 (where the unit of measurement used for the pollen accu-
mulation rate is grains/cm? X year). Regarding demographic processes (DP) of birth (B),
death (D), immigration (/), and emigration (E) what is important in this example is (1)
the difference between birth and death (b — d), which is = 0.945 and (2) that E =1 = 0.
We can now represent the data model for the case of Pinus sylvestris for (O, T, <, N,, B,
D, E, I) with what one likes to explain, i.e., the changes in population size of 48,993.7
fromrtot + 1,i.e., from N, to N, , | as follows: ({oy,..., 0,}, 9,500; 9,000, {6.3; 49,000;
48,993.7}, {0.945}, {0}, {0}). Let us then call such a structure “the data model for PD
of population dynamics of Pinus sylvestris,” or DMyp(PDP) for short.

And if we now want to represent in a structuralist format the different ways in
which the given examples of cases of closed populations are accounted for by intro-
ducing types and numbers of components of the rate of population change (RPC)
that act together (types and numbers of demographic processes (DP) and population
factors ((F)); <x)) and the specific mathematical form that the rate population change
adopts in the respective equations, we should consider these first as “potential models”
of PD that, by adding the specific equations, result then in “theoretical (or actual or

Tn this work a palynological study of the expansion of Pinus sylvestris in the geological stage
after the last glaciation is carried out. The pollen grains contained in each sample are taken as
organisms of the population.



10 Laws, Models, and Theories in Biology: A Unifying Interpretation 181

simply) models” of PD and lastly in successful applications. That is, they should be
conceived as structures of type x of potential models: x = (O, T, <, (F}); < N, B, D,
E, I, RPC) that are extensions of the structures of type y, which contain, besides
specific instances of the concepts occurring in these structures, also specific
instances of the concepts of population factors ((F,); <)) and of rate of population
change (RPC), and where the different specific equations postulate a “match” or
“fit” between the observed (or estimated) change in population size and the rate of
population change, multiplied by the population size at the initial time; if the
“match” or “fit” can be established, they result in successful applications (as they
actually do in the treatment of the examples presented in Sect. 10.2.1).

Returning to the case of Pinus sylvestris, there it is hypothesized (i) that there is
only one population factor involved in RPC: the carrying capacity or load capacity
or the largest population size that a given environment can support indefinitely
(symbolized by K; and if the population is pop,, it is symbolized by K(pop,)); in our
case, where pop, symbolizes the population of Pinus sylvestris, K(pop,) = 47,018
grains/cm? X year; and (ii) (a) the specific value calculated for RCP, which in this
case is of 0.873 grains/cm? x year, and (b) that the population of Pinus sylvestris
constitutes a case of continuously varying populations whose demographic pro-
cesses are dependent on population size that does not remain constant over time and
give logistic form: dN/dt = [(b — d)(1 — n/K)] - n,.

If we put all the information of (i) and (ii) (a) together, i.e., the specifications for
the PD-non-theoretical as well as for the PD-theoretical concepts together, we
obtain the following structure of type x = (O, T, <, (F\); < N,, B, D, E, I, RPC) for
pop,: ({o1,..., 0,}, {9,500; 9,000}, {47,018}, {6.3;49,000; 48,993.7}, {0.945}, {0},
{0}, {0.873}). Let us then call it “the potential model for PD of population dynam-
ics of Pinus sylvestris,” or PMpp(PDP) for short.

If, in addition, it is required that this structure satisfies (ii) (b), i.e., the linear
logistic equation dN/dt = [(b — d)(1 — n/K)] - n,, we obtain what we call “the theo-
retical (actual or simply) model for PD of population dynamics of Pinus sylvestris,”
or TMpp(PDP) for short.

In a similar way, as in the case of the different equations/laws, one can ask now
what all these data models, all these theoretical models and all these successful
applications have in common. And the answer to these questions is straightforward,
using the notions of class of partial models, of potential models, and of models
introduced in the previous section.

What all these data models have in common is that they are specifications of
partial potential models of PD; what all these theoretical models have in common is
that they are specifications first of potential models of PD and then of models of PD
that result in successful applications.

We will next identify such classes of types of models in PD, starting with the
class of potential models, continuing with the class of models, and concluding with
the class of partial potential models.

The class of potential models of population dynamics (M,(PD)) is constituted
by the total class of structures that satisfy the “frame conditions” that just settle
the formal properties of PD’s concepts but not necessarily the “substantial laws”
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of PD as well and for which it makes sense to wonder if they are actual mod-
els of PD.

We can put together all PD’s basic concepts in one structure x, which thus con-
tains the “conceptual framework” of PD: x = (O, T, <, (F)); < N, B, D, E, I, RPC),
and then formulate the “frame conditions” (or “improper axioms”) for PD’s basic
concepts as follows (by means of the introduction or definition of the set-theoretical
predicate “being a potential model of population dynamics”):

Definition 1
M,(PD):x=(0, T, <, (F)i<w N, B, D, E, I, RPC) is a potential model of population
dynamics (x € My(DP)) if and only if

1. O 1is a non-empty, finite set (“organisms”: variable o)

2. (T, <) is a dense linear order (“time”: variable 7)

3. (F); <x a non-empty, finite set (“types of population factors”: variable f;)
4. N, POPxT— R

5. B:POPxT—N

6. D: POPxT— N

7. E:POPxT—N

8. I POPxT—N

9. RPC:DP x N, x (F); ;1 xT—R

The objects that occur in the predicate may be interpreted as follows:

1. A set of organisms (O), or, better, of sets of organisms Po#(O) belonging to the
same species which make up populations, where pop symbolizes a population
(pop C Pot(0)) and POP the set of populations such that pop € POP.

2. The time, represented by a dense linear order (7, <), on the set of instants 7,
where < represents the temporal relationship “is posterior to”; (7, <) is isomor-
phic with the pair (R, <), consisting in the set of real numbers R and in the
relation-less-than on the real numbers <. It is possible to define a distance func-
tion for real numbers, establishing that d(a, ) = la — fl, where a, p € R and | | is
the function of absolute value. In addition, one can add real numbers and define
the derivative for functions of R in any numerical spaces. If we interpret R by
means of 7, the distance between instants is what is known as “lapse,” “duration”
or “interval.” Each interval goes from ¢ to #,; where ¢ coincides with the begin-
ning of the interval and ¢,; coincides with the end of the interval, being then
AT=t, —t.

3. A set of types of population factors ((F); <;). Every set F; has to be considered as
a type of population factor and its members f; € F; as variables or expressions of
population factors of this type. Each of the “types of population factors” is a set
of variables that can modify the intensity of population processes. A very com-
mon way to classify them is in the following subsets: F,,;, or “environmental
factors,” which would be variables that represent some components of the envi-
ronment of organisms, such as resources and physical and chemical conditions
of the environment; F,, or “genetic factors,” which would be variables related to
genetic structure, social structures and physiological characteristics, and, finally,
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Fy;, or “biotic (or biological) factors,” which would be variables that measure
biotic interactions such as predation, parasitism, and intra- or interspecific
competition.

The functions that occur in the predicate are interpreted as follows:

4. N, is a function that assigns to a population (set of organisms) in a given time ¢
the population size (or cardinality of the set), expressed in natural numbers:
N(pop, t) = n,,; N, is usually written for the function that assigns a value to the
population (set of organisms) at a given time ¢, and that represents the number of
organisms that make up that set (population) at that instant of time, and n, for the
value assumed by that function.

5. Bis afunction that assigns to a population (set of organisms) at a given time ¢, its
natality (or cardinality of the set) expressed in natural numbers: B(pop, t) = b;; B
is usually written for the function that assigns a value to the population (set of
organisms) at a given time ¢, and that represents the number of born organisms
(0,) that make up that set at that instant of time, and b, for the value assumed by
that function.

6. D is a function that assigns to a population (set of organisms) at a given time f,
its mortality (or cardinality of the set) expressed in natural numbers: D(pop,
1) =d,;; D is usually written for the function that assigns a value to the population
(set of organisms) at a given time ¢, and that represents the number of death
organisms (O,) that make up that set at that instant of time, and d, for the value
assumed by that function.

7. E1is afunction that assigns to a population (set of organisms) at a given time ¢, its
emigration (or cardinality of the set) expressed in natural numbers: E(pop, t) = e;;
E is usually written for the function that assigns a value to the population (set of
organisms) at a given time #, and that represents the number of emigrated organ-
isms (O,) that make up that set at that instant of time, and e, for the value assumed
by that function.

8. I1is afunction that assigns to a population (set of organisms) at a given time ¢, its
immigration (or cardinality of the set) expressed in natural numbers: I(pop,
1) = i;; I is usually written for the function that assigns a value to the population
(set of organisms) at a given time ¢, and that represents the number of immigrated
organisms (0;) that make up that set at that instant of time, and i, for the value
assumed by that function.

Auxiliar definition:

DP = {B U D U E U I}, demographic processes, is the union of all demo-
graphic processes (death, birth, emigration and immigration).

Auxiliar definition:

DF:= DPI/(N, - AT). Demographic functions (Lotka 1925) are the functions
that express through rates the values of demographic processes (death, birth,
emigration and immigration). It assigns to a demographic function its expression
per capita and per time lapse by means of the equation DF = DP/N(pop, t) - (AT).

9. The rate of population change RPC is a function that calculates a real number
that represents the variation in the number of individuals per individual from the
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set of demographic processes (DP), the size of the population (&,), and the set of
population factors ((F;); <;) in an instant of time (7).

We can now define the class of (actual) models of population dynamics (M(PD)),
which is the total class of structures that satisfy the “frame conditions” and, in addi-
tion, the “substantial laws” of PD through the set-theoretical predicate “being a
model of population dynamics” as follows:

Definition 2
M(PD): Ifx=(O, T, <, (F);< N, B, D, E, I, RPC), then x is a model of population
dynamics (x € M(DP)) if and only if

1. For every ¢, t,, € T: pop,, pop,.: € POP, and being N(pop, t) = n, and N(pop,
t,1) = n,, such that AN = n,,; — n,, for every DP, and being DF = fiDP, N, T)
and for every f; € (F)); <, there exist a RCP({fd,,..., fd,), n,, {fi,..., ), ) (in R)
such that:

AN = RCP({fd,..... fd, ), e f.)o)- N,

The condition of definition, or axiom, 1 formulates in a more formal way the
fundamental law/guiding principle of population dynamics (PDGP) of Sect. 10.2.1,
which establishes that a “match” or “fit” takes place between the observed (or esti-
mated) change in population size over time and the rate of population change, mul-
tiplied by the population size at the initial time. Every structure of type x that
satisfies it is an (actual) model of PD.

The class of partial potential models of PD characterizes the point of departure
for population dynamics. It is constituted by that which is intended to systematize,
explain, and predict. In order to characterize this class, it is necessary to distinguish
between theoretical and non-theoretical concepts within PD, i.e., between specific
concepts of population dynamics (or PD-theoretical) and non-specific concepts of
population dynamics (or PD-non-theoretical).

A detailed discussion of the application of the T-theoreticity criterion to every
PD’s term (or concept) is beyond the aim of this paper. We conjecture that the con-
cepts of “biotic (or biological) factors” (Fy;,) among the population factors ((F); <;)
and of rate of population change (RPC), which inherits its theoreticity from the
biotic (or biological) factors of the population factors, are PD-theoretical while the
rest of the concepts are PD-non-theoretical.

We are now able to characterize the class of partial potential models of PD
through the set-theoretical predicate “being a partial potential model of population
dynamics” as follows:

Definition 3
M,,(DP): y =(O, T, <, N,, B, D, E, I) is a partial potential model of population
dynamics (y € M,,,(PD)) if and only if exists an x such that

1. x=(0,T,<,(F)i<w N, B, D, E, I, RPC) is a M,(DP)
2. y=(O,T,<,N,B,D, E, ).



10 Laws, Models, and Theories in Biology: A Unifying Interpretation 185

10.4 The Concept of Theory from the Point of View
of Metatheoretical Structuralism

In the same way that in the case of law discussed above there has long been the
problem of establishing the nature and structure of a scientific theory. After decades
of discussion, different conceptions coexist, often at odds, of what a theory is and
whether there is a theory structure that is shared by all scientific disciplines.

As it was already said three main philosophical conceptions about scientific the-
ories have been developed during the twentieth and the twenty-first century so far:
the “classical (or received)” view, the “historical (or historicist)” view and the
“semantic (or model-theoretic)” view.

The main representative of the classical view in biology during the first half of
the twentieth century was J. H. Woodger, who aimed to apply and develop the phi-
losophy of the science of logical positivism for the specific field of biology (Woodger
1937, 1939, 1952, 1959, 1965).

In relation now to the general adequacy of the classical view for the analysis of
biological theories, we could say that, though scientists like C.H. Waddington
(1968-1972) promoted and employed such a view, among philosophers, and despite
the efforts outlined, opinion about the applicability of the classical view to biology
was divided. Thus, Morton Beckner (1959) did not accept the classical view, but
assumed that its application to biology was, at best, limited and, with its treatment
of biological theories as families of models, anticipated to some extent the analysis
of such theories later carried out within the framework of the semantic conceptions.
Thomas Goudge (1961, 1967), for his part, was quite explicit in pointing out that,
regardless of the applicability that this conception might have in physics, it would
not capture important features of biological theories and explanations. On the other
hand, Michael Ruse (1973) and Alexander Rosenberg (1985) were two philosophers
who during the seventies and eighties sustained the applicability of the classical
view of theories to biology. Other philosophers, on the other hand, argued in favor
of the relevance of this conception for biological theorization, although with vary-
ing degrees of caveats and subtleties (e.g., Hull 1974).

Even though it is admitted that “[t]here are many ideas about the nature of theory
in scimence and in philosophy” and that “[i]n ecology, there is currently no consen-
sus regarding the definition, role, and generality of theories” and “ecologists use the
label theory to refer to many things” (Marquet et al. 2014, p. 701), there are authors
who have assumed the classical view of theories (Marquet et al. 2014; Murray 2001;
Peters 1991; Roughgarden 1998). On the other hand, there are authors who consider
that taking this option in some disciplines like ecology is not adequate (Castle 2001;
Sagoff 2003; Pickett et al. 2007).

With regard to the historicist view, although Kuhn (1970) and Laudan (1977)
themselves consider Darwinism to be a paradigm and a research tradition, respec-
tively, they do not carry out a systematic analysis of it using such notions. And even
though there are many authors who follow them and consider Darwinism or other
developments within biology, such as Mendelism, a paradigm or disciplinary
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matrix, a research tradition or, in the terminology of Lakatos (1970), a research
programme, there are not many detailed analyses, in terms of these concepts, of
these fields in particular or of biology in general. On the other hand, as Jean Gayon
points out, while there are authors who are rather skeptical about the usefulness of
the category of ‘paradigm’ for the history of Darwinism (e.g. Greene 1971; Mayr
1972), Burian (1989) suggests “that the ‘Darwinism’ at the end of the 19th century
was a genuine ‘paradigm’ in the initial sense given to the word by Thomas Kuhn (an
exemplary model of scientific research), but certainly not in the sense of a ‘disci-
plinary matrix’” (Gayon 1998, f.n. 19, p. 409). Other authors follow Burian’s path,
but in other areas of biology, and accept the character of ‘shared examples’ or
‘exemplars’ of many achievements in biology, but not necessarily their character of
‘disciplinary matrices’ (Darden 1991; Schaffner 1986, 1993). In fact, taking the
historical character of entities such as disciplinary matrices, research traditions and
research programmes, it is more usual to affirm and discuss the revolutionary or
evolutionary character of certain proposals in the field of biology and their develop-
ment over time (see, among others, Ruse 1979, 2005; Oldroyd 1980; Maienschein
etal. 1981; Cohen 1985; Bowler 1988) than to clearly identify their components as
disciplinary matrices, research traditions, or research programmes.

However, we also find some attempts to apply, even systematically, such notions
to biology—so, e.g., the Lakatosian concept of scientific research programme is
used by Michod (1981) for the analysis of the history of population genetics, by
Meijer (1983), Van Balen (1986, 1987) and Lorenzano (2013) for the analysis of the
history of so-called “classical”, “formal” or “Mendelian” genetics, by Torres (1996)
for the analysis of the origin of life and by Denegri (2008) for the analysis of para-
sitology; we can also mention that Pickett et al. (2007) use some Kuhnian ideas to
analyze the paradigm changes in ecology.

The semantic view has had an impact in diverse areas of biology, and some of its
versions have been applied to them. For example, Suppe (1974) tries to shed light
on some philosophical problems related to speciation and taxonomy through the use
of his own version of the semantic view. And Giere (1979) exemplifies his own ver-
sion of the semantic view with the most basic part of classical (or Mendelian) genet-
ics. In addition, attempts have also been made to apply in a systematic way van
Fraassen’s state-space approach to the analysis of the structure of the theory of
evolution, and thus eventually of population genetics (Beatty 1980, 1981; Lloyd
1984, 1986; Thompson 1983, 1986). This, in turn, has motivated the position taken
by authors such as Sloep & van der Steen (1987a, b) and Ereshefsky (1991) and the
response and/or further developments of Beatty (1987), Lloyd (1987, 1988) and
Thompson (1987, 1989, 2007). This variant of semantic view has also been applied
to the analysis of theories of sex and gender (Crasnow 2001) and of ecology (Castle
2001). We also find the use of the axiomatization a la Suppes for attempting to iden-
tify the class of models of the theory of evolution by natural selection and of popula-
tion genetics (Magalhdes & Krause 2000).

However, it is metatheoretical structuralism that has produced the greatest number
of analyses of particular theories belonging to the biological sciences. Just to mention
a few, in the field of evolutionary biology, we can see the analyses of the structure of
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the theory of evolution by natural selection made by Ginnobili (2016), Ginnobili &
Blanco (2017), Diez & Lorenzano (2013, 2015), as well as of the theory of common
descent made by Blanco (2012); in the field of inheritance and genetic theories (classi-
cal, molecular and population genetics), the works of Balzer & Dawe (1986, 1990),
Balzer & Lorenzano (2000), Casanueva (1997), Casanueva & Méndez (2005) and
Lorenzano (1995, 2000, 2014); cellular and tissue theories have been the object of
structuralist analysis by Astia & Klimovsky (1987, 1990), as has the theory of excitable
membranes by Miiller & Pilatus (1982), and of neuroendocrinology by Bernabé (2019).

Finally, we can say that in ecology in particular, the analyses have made their
historical journey parallel to the philosophy of science. In the first place, as we have
already mentioned authors who, starting from the analysis of the theories of the
discipline from the received view, have made severe criticisms (see Ibarra &
Larrafiaga 2011; Lawton 1999; Marquet et al. 2014; Roughgarden 2009). But on the
other hand we can point to authors who have analyzed the discipline from other
views and have led to the reconstruction of theories of ecology in recent decades
(Castle 2001; Scheiner & Willig 2011; Diaz & Lorenzano 2017).

The point of departure of the structuralist explication of the concept of a theory is
the recognition that the term “scientific theory” is ambiguous, or better, polysemic,
in its pre-systematic use. Sometimes it means just one law (like when one speaks
indistinctly of the law of gravitation or of the theory of gravitation). This sense is not
explicated by the structuralist concept of a theory, but by the structuralist concept of
alaw. Sometimes, the use of the term “scientific theory” corresponds to what is expli-
cated by the structuralist notion of theory-element. In this sense, a theory-element is
the smallest portion of science that seems to possess all the characteristics usually
associated to theories. However, even this smallest sense of theory cannot be identi-
fied with a class (or set or population or collection or family) of models, although it
can be identified mainly through them. Despite the fact that such a class is the most
basic component for the identity of a theory, it is not the only one. A theory-ele-
ment—i.e., the simplest kind of set-theoretical structure that can be identified with,
or can be used as a rational reconstruction of, or can be regarded as a formal explica-
tion of, a theory (in an informal, intuitive sense)—can be identified, as a first approxi-
mation, with an ordered pair consisting of the “(formal) core,” symbolized by K, and
the theory’s “domain of intended applications,” symbolized by I: T = (K, I).

The core K constitutes the formal identity of any empirical theory with a certain
degree of complexity, which is composed by the ordered classes of potential mod-
els, actual models, partial potential models, constraints, and links, i.e., K= (M,, M,
M,,. C,L).

In the previous section we already introduced the classes of potential models,
(actual) models, and partial potential models.

While the inner theoretical relationships between the different models of a theory
are represented by the so-called constraints C, the intertheoretical relationships are
represented by the so-called (intertheoretical) links L. They characterize the theo-
ry’s “essential” relationships to other theories by connecting the T-non-theoretical
terms with the theories they come from.
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Any empirical theory is related to “reality” or “outside world,” i.e., to some spe-
cific phenomena or empirical systems submitted to some specific conditions, to
which it is intended to be applied and for which it has been devised. These empirical
systems also belong to a theory’s identity because otherwise we would not know
what the theory is about, for the class of models contains “all” models, intended as
well as non-intended. They constitute what is called the theory’s domain of intended
applications 1. The domain of intended applications of a theory, even when it is a
kind of entity strongly depending on pragmatic and historical factors that, by their
very nature, are not formalizable, is conceptually determined through concepts
already available, i.e., through T-non-theoretical concepts; thus, each intended
application may be conceived as an empirical (i.e., T-non-theoretical) system repre-
sented by means of a structure of the type of the partial potential models M,,. All
we can formally say about I is, thus, that it is a subset of the class of partial potential
models M,

Theories are not statements but are used to make statements or claims, which
then have to be tested. The (empirical) statements (or claims) made by means of
scientific theories are, intuitively speaking, of the following kind: that a given
domain of intended applications may actually be (exactly or approximately)
subsumed (or embedded) under the theory’s principles (laws, constraints, and
links). Normally, in any “really existing” theory, the “exact version” of the so-
called central empirical claim of the theory—that the whole domain of intended
applications may actually be (exactly) subsumed (or embedded) under the theo-
ry’s principles—will be strictly false. What usually happens is that either there
is a subclass of intended applications for which the empirical claim is true or
that the central empirical claim is, strictly speaking, false but approxi-
mately true.”!

Some “real-life” examples of scientific theories can actually be reconstructed
as one theory-element, but usually single theories in the intuitive sense have to
be conceived as aggregates of several (sometimes a great number of) theory-
elements. These aggregates are called theory-nets. This reflects the fact that
most scientific theories have laws of very different degrees of generality within
the same conceptual setting. Usually there is a single fundamental law or guid-
ing principle “on the top” of the hierarchy and a vast array of more special
laws—which apply to specific situations—with different degrees of
specialization.

Each special law determines a new theory-element. What holds together the
whole array of laws in the hierarchy is, first, the common conceptual framework
(represented in a model-theoretic way by the class of potential models), second, the
common T-theoretical and T-non-theoretical distinction, and third, the fact that
they are all specializations of the same fundamental law.

2I'For a structuralist approach to features of approximation and a precise formal explication of the
notion of the approximative empirical claim, see Balzer et al. (1987), chapter VII.
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The theory-element containing the fundamental law(s)/guiding principle(s) is
called the “basic theory-element” of the theory, i.e., of the theory-net. The other
theory-elements of the theory-net are specializations or “specialized
theory-elements.”

When the highest degree of concretization or specificity has been reached, i.e.,
when all functional dependencies (concepts) are completely concretized or speci-
fied, “terminal special laws,” which determine the most specific class of (theoreti-
cal) models, are obtained. The empirical claims associated to the corresponding
“terminal specialized theory-elements” can be seen as particular, testable and, even-
tually, refutable hypotheses, which enables the application of the theory to particu-
lar empirical systems.? In the simplest model-theoretic way of representing these
particular empirical claims, they state following: “data model” d of T can actually
be (exactly or approximately) extended to, or subsumed or embedded in, the “theo-
retical model” m of T.

The resulting structure of a theory may be represented as a net where the nodes
are given by the different theory-elements, and the links represent different relations
of specialization (see Fig. 10.3).

A theory-net N is the standard structuralist conception of a theory from a static
or synchronic point of view. In this sense, a theory is a complex, strongly hierarchi-
cal, and multi-level entity.

But a theory can also be conceived as a kind of entity that develops over time. A
theory in the diachronic sense is not just a theory-net, which exists in the same form
through history, but a changing theory-net, which grows and/or shrinks over time.
Such an entity is called a theory-evolution E. It is basically a sequence of theory-

Fig. 10.3 Theory-net

22This is the model-theoretic, semantic, in particular, structuralist version of what has been said in
Sect. 10.2 about the testability and eventually refutability of particular hypotheses/terminal special
laws. While in the classical approach of testing the particular hypotheses/terminal special laws are
the entities to be tested, in the structuralist approach the “empirical claims” associated to terminal
special laws are the entities that carry the weight of testing and to which it is able to direct “the
arrow of modus tollens” (Lakatos 1970, p. 102).
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nets satisfying two conditions: at the level of cores, it is required for every new
theory-net in the sequence that all its theory-elements are specializations of some
theory-elements of the previous theory-net; at the level of intended applications, it
is required that the domains of the new theory-net have at least some partial overlap-
ping with the domains of the previous theory-net.

Finally, it can be said that the structuralist view has been proposed to represent
not just intratheoretical changes that occur in science (by means of the concept of a
theory-evolution) but also different types of intertheoretical changes, such as crys-
tallization, embedding, and replacement with (partial) incommensurability. It is
worth noting that the process of crystallization of a theory would allow the treat-
ment of the role of models (in the sense of laws or theory-elements) in the genesis
of new empirical theories (in the sense of theory-nets and, later, of theory-evolutions)
within the structuralist framework.

10.4.1 The Theory-Net of Population Dynamics

According to our proposal, and as any other robust unified theory such as classical
mechanics or thermodynamics, PD can also be better analyzed as a theory-net.

The Basic Theory-Element of Population Dynamics

The “basic theory-element” of PD consists of its “(formal) core,” symbolized by
K(PD), and its “domain of intended applications,” symbolized by I(PD).

The Basic Core of Population Dynamics

The basic core of population dynamics K(PD), which constitutes its formal identity,
is composed by the ordered classes of potential models, actual models, partial
potential models, constraints, and links.

In the previous section we already defined the classes of potential models
M, (PD), (actual) models M(PD), and partial potential models M,,(PD).

In a truly complete reconstruction of PD we should include the constraints and
the links this theory has to other (underlying) theories. However, due to space limi-
tations, we will not discuss them or make them explicit. So the basic core of popula-
tion dynamics (K(DP)) will be characterized as follows:

Definition 4

K(DP):=(M, (DP),M(DP).M,, (DP)).
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The Intended Applications and the Basic Theory-Element of Population
Dynamics

The domain of intended applications constitutes the class of those empirical sys-
tems to which one wishes to apply the fundamental law/guiding principle of the
theory. They cannot be characterized by purely formal means. All we can say from
a formal point of view is that an intended application is a partial potential model,
which means that I(DP) € M,,,(DP). Members of I(DP)—to which one wishes to
apply the fundamental law/guiding principle of DP—are empirical systems, charac-
terized in DP-non-theoretical terms—i.e., systems represented by structures/data
models of type y (O, T, <, N,, B, D, E, I)) where certain organisms that make up a
population in which a set of demographic processes (birth rate, mortality, emigra-
tion, and immigration) that determine the population size is modified in a certain
interval of time, or, for short, where changes in population size over time take place.

Now the basic theory-element of population dynamics (T(PD)) can be character-
ized as follows:

Definition 5

T(PD):=(K(PD).I(PD))

The Empirical Claim of Population Dynamics

Population dynamics (PD) pretends that certain empirical systems such as those char-
acterized above, characterized in DP-non-theoretical terms, satisfy the conditions
imposed by PD in the following sense: those are the data of the experience that should
be obtained if reality behaves as PD says. This pretension is asserted by the empirical
claim of population dynamics, which may be formulated in the following way:

(I Any given intended system can be, adding a set of PD-theoretical components
(F); < and RPC to the PD-non-theoretical part of the corresponding theory-core
(0, T, <, N, B, D, E, I)), (exactly or approximately) extended to, or subsumed or
embedded in, a PD (actual) model.

This claim may be trivial if the conditions imposed by the core on the PD-
theoretical components are weak. But this should not be a reason for rejecting the
core as trivial. This core serves as a basic core for all the intended applications of
population dynamics. Interesting, non-trivial claims may be obtained by incorporat-
ing additional restrictions through the so-called “specializations.”

Specializations of Population Dynamics

There are different possible ways of specializing population dynamics. As already
advanced in Sect. 10.2.1, specializations consist of specifications of
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Fig. 10.4 Theory-net of population dynamics

(1) Types and numbers of components of the rate of population change (RPC) act-
ing together (i.e., types and numbers of demographic processes (DP) and of
population factors ((F}); <)), and of

(i1) (a) the specific mathematical form assumed by RPC and (b) the specific math-
ematical form assumed by the fundamental law/guiding-principle (being it con-
tinuous, discrete, exponential, linear, logistic, etc.)

The diverse possibilities of specialization can be partially or totally realized in an
isolated or joint way. One specialization of PD in which the two types of specifica-
tion have been fully realized is denominated terminal specialization.

The theory-net of population dynamics (N(PD)) looks as follows—with the “basic
theory-element” of PD at the top and in which are only depicted “specialized theory-
elements” of PD corresponding to the examples given in Sect. 10.2.1 (Fig. 10.4):

On a first level of specialization of PD theory-net we have either that RPC only
depends on the demographic processes of birth and mortality and is not affected by
population factors (“Malthusian populations™) (M) or that RPC depends on the
demographic processes of birth and mortality and is affected by genetic factors
(“structured populations”) (S) or that RPC depends on the demographic processes
of birth and mortality and is affected by environmental and biotic factors (““Verhulst
populations”) (V) or that RPC depends on the demographic processes of birth and
mortality and is affected by biotic factors that also involve a population of another
species (“interspecific populations”) (I). On a second level of specialization of PD
theory-net we reach the level of terminal specializations by specifying RPC math-
ematical form, i.e., the specific equations. If M is further specialized, we have a case
of no population limitations of continuous and exponential variation (MC) (see case
1 from Sect. 10.2.1). If S is further specialized, we have a case of continuous and
exponential variation (SC) (see case 2 from Sect. 10.2.1). If V is further specialized,
we can have either a case of carrying capacity and continuous logistic variation with
linear dependence between b, d and N, (VL) (see case 3 from Sect. 10.2.1), or a case
of carrying capacity and continuous logistic variation with linear dependence
between b, d and the population size in an instant of time previous to # (VR) (see
case 4 from Sect. 10.2.1), or a case of carrying capacity and continuous logistic
variation with non-linear dependence between b, d, N, and C (VA) (see case 5 from
Sect. 10.2.1), or a case of carrying capacity and continuous logistic variation with
linear dependence between b, d and N, (VT) (see case 6 from Sect. 10.2.1). Finally,
if I is further specialized, we can have either a case of carrying capacity and con-
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tinuous logistic variation with dependence on b and d with N,;, K, N, and a (IC)
(see case 7 from Sect. 10.2.1), or a case of exponential continuous variation and
demographic processes without dependence on population size, for prey (IV), and
for predator (IP) (see case 8 from Sect. 10.2.1).%

10.5 Making Them Explicit: Laws and the Connection
of Models to Theories: Discussion on the Basis
of Previous Analysis

We would like to discuss now the issues of (a) the existence of laws in biological
sciences, (b) the place of models in theories of biology, and (c) the unifying power
of biological theories, in the light of the analyses carried out.

10.5.1 On Claim (a) That There Are “Laws” in Biological
Sciences

It is worth mentioning that in the literature it has been recognized that there exist
certain areas of science where fundamental laws/guiding principles—though
maybe with another terminology, such as “basic principles” or “fundamental equa-
tions”—occur explicitly formulated in linguistic terms and sometimes even in an
axiomatic or quasi-axiomatic way. Newton’s Second Law is an example of that,
i.e., of a fundamental law/guiding principle explicitly formulated in linguistic
terms, even in an axiomatic way since its first public occurrence, in the first edition
of Principia Mathematica Philosophia Naturalis (Newton 1687) although it was
mistakenly ranked at the same level of the other two “Axioms, or Laws of Motion™:
the Law of Inertia and the Law of Action and Reaction.

On the other hand, in the literature of philosophy of science it has also been
pointed out that there are other areas of science where fundamental laws/guiding
principles do not occur explicitly and clearly formulated in linguistic terms. An
example of one of these areas is evolutionary biology and the so-called “principle of
natural selection.” In biology textbooks (beginning with Darwin’s Origin of Species)
we cannot find nor “observe” that principle formulated in all their generality,
abstraction and schematization, although there is an agreement about the fact that a
fundamental law/guiding principle “is there” and a lot of discussion about the right
and convenient way of identifying and formulating it.>*

#The theory-net of PD is a clear example of Levins’ following claim: “This is a modeling sequence
from the general to the particular, adapting general knowledge to particular cases by successive
specifications that might reach the end point of assigning numerical values. At each stage of speci-
fication the model is more precise and realistic but less general (Levins1993, p. 551):

*For a discussion and a proposal on this issue from a structuralist point of view, see Ginnobili
(2016) and Diez and Lorenzano (2015).
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However, philosophers of science have also pointed out to other areas of science
where nothing can be found or “observed” at all that possesses the criteria men-
tioned in Sect. 10.2 and that would, therefore, be considered a fundamental law/
guiding principle in a plausible way. And precisely the field of population dynamics
is an example of that. If we consider what is sometimes called a “law” in the area of
population dynamics, namely, the so-called “Malthus law” (or “equation”) or
“Lotka-Volterra equations,’ it is easy to recognize that neither Malthus’ law nor
the equations of Lotka and Volterra are schematic and general enough to connect all
or almost all of the terms of their theories nor to be accepted by their respective
scientific communities as valid for all applications, with modal import, and as pro-
viding a conceptual framework adequate to formulate all the special laws of popula-
tion dynamics. These laws, therefore, cannot be considered fundamental laws of
population dynamics. That is to say no such law can be “observed” in the literature
of ecology (Lockwood 2008; Ibarra and Larrafiaga 2011).

We grant that, sometimes, we cannot “observe” (explicit linguistic formulations
of) general laws (or guiding principles) in the standard presentations of the respec-
tive theories, i.e., in the different texts (either journal articles, manuals, or text-
books) written by scientists or science teachers.

Nevertheless, this article has argued for the existence of a fundamental law/guid-
ing principle of population dynamics that even though not stated explicitly in bio-
logical literature underlies implicitly the usual formulations of the theories,
systematizing them, making sense of ecologists’ practice, and unifying the different
and heterogeneous models under just one theory.

In Sect. 10.3 a fundamental law/guiding principle in this area has been made
explicit against what can be called “narrow inductivism” or “restricted empiricism”
in metascience.”® And it is easy to realize that in the formulated fundamental law/

2«

2 The equations are named within ecology as “laws,”, “rules,
tinct and confused way.

2

models,” or “theories” in an indis-

2Nowadays, it can be considered a truism in philosophy of science that empirical science goes
beyond “appearances,” “phenomena,” or “facts” in order to understand them better. Empirical sci-
ence postulates, in addition, a realm of entities that are not directly empirically accessible, but they
are accepted, at least inasmuch as the linguistic frameworks or theories in which they essentially
occur are accepted as well (Carnap 1950). Thus, for instance, electric fields and wave functions are
accepted, at least inasmuch as the theories of electromagnetism and quantum mechanics, respec-
tively, are accepted. And scientists had good reasons to do so. Let us call that view on science
“non-narrow inductivism” (inspired by Hempel 1966) or “non-restricted empiricism” (inspired by
Carnap 1956). The analyses (explications) of (metascientific) concepts, such as law, model, or
theory, can be considered as forming interpretative schemes or explanatory models—in the sense
of Hintikka (1968) within epistemic logic, and of Stegmiiller (1979) and Moulines (1991, 2002)
within philosophy of science—of a philosophical nature, which propose or exhort us to “see the
world” of science in a certain way. And a philosopher of science who uses one of these explanatory
models overcomes narrow inductivism and restricted empiricism on a metascientific level in a
similar way to what has been said and recommended for the case of the scientist. She/he interprets
in a non-narrow inductive or non-restricted empiricist way what scientists do: not because we do
not (directly) “see” their “fundamental laws/guiding principles,” they are not “(in some sense)
there” to be seen. As Goodman says, “We see what we did not see before, and see in a new way.
We have learned” (Goodman 1978, p. 173).
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guiding principle we can identify all criteria of fundamental laws/guiding principles
indicated in Sect. 10.2. First, PD fundamental law/guiding principle can be seen as
a synoptic law because it establishes a substantial connection between the most
important terms of PD in a “big” formula. It contains all the important terms that
occur in PD, both the PD-theoretical ones (the set of biotic factors and the rate of
population change) and the PD-non-theoretical ones, which are empirically more
accessible (populations and their sizes, time, the demographic processes, and the
sets of environmental and genetic factors). Second, PD fundamental law/guiding
principle has been implicitly accepted as valid in every intended application of the
theory by the respective community of scientists, i.e., by the community of ecolo-
gists who accept or use PD. In fact, accepting PD implies accepting PD fundamen-
tal law/guiding principle while rejecting PD fundamental law/guiding principle
implies rejecting PD. And of course ecologists may not succeed in applying PD to
particular empirical systems and may decide to use another theory with another
fundamental law/guiding principle. But to the extent that they work with PD, they
accept as valid, even though just implicitly, PD fundamental law/guiding principle.
Third, PD fundamental law/guiding principle is highly schematic and general and it
possesses very little empirical content that it is, when considered in isolation, irre-
futable or “empirically non-restrict” (Moulines 1984) (i.e., it has a “quasi-vacuous”
character). Because to examine the empirically determined (or estimated) change of
population size and the theoretically postulated population factors and the rate of
population change, and to set out to test what the law claims—namely, that the
observed (or estimated) change in the size of the population in a certain period of
time corresponds to the product of the rate of population change multiplied by the
size of the population at the beginning of the time interval—without introducing
any kind of further restrictions, amounts to a “pencil and paper” exercise that does
not involve any empirical work. Nevertheless, fourth, as we would expect in the
case of any fundamental law/guiding principle, despite being irrefutable, it provides
a conceptual framework in which all special laws can be formulated; that is, special
laws with an increasingly high degree of specificity and with an ever more limited
domain of application, until we reach “terminal” specializations whose associated
empirical claims can be seen as particular, testable and, eventually, refutable hypoth-
eses, which enables the application of PD to particular empirical systems (its sys-
tematizing or unifying role). And fifth, PD fundamental law/guiding principle
expresses a non-accidental regularity that is able to give support to counter-factual
statements (if it is taken “together-with-their-specializations” within the corre-
sponding theory-net), even when it is context-sensitive and with a domain of local
application, and that, in its minimal sense, what is attributed is the necessity of the
models, and, in that sense, it should be considered as necessary in its area of appli-
cation (i.e., it possesses modal import). This means that when the theory-net of PD
contains an application with s as the relevant specialization of PD fundamental law/
guiding principle and i as the empirical system/application, then, given the constric-
tions that the specialization s determines at the PD-non-theoretical level, a certain
data model should be obtained for the empirical system i to which the theory-net of
PD is intended to apply, i.e., the empirical system i to which the theory-net of PD is
intended to apply should behave in a certain way—represented by the correspond-
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ing data model. Recalling that any specialization presupposes all that is “above” it
in the corresponding branch of the theory-net of PD, notably the fundamental law/
guiding principle, the counterfactual “if s were the case, then i (i.e., its correspond-
ing data model) would be the case” is true according to the theory-net of PD.

On the other hand, it is easy to realize that Malthus’ law and the equations of
Lotka and Volterra should be considered special laws of PD.

10.5.2 On Claim (b) That Many of the Heterogeneous
and Different “Models” of Biology Can
Be Accommodated Under Some “Theory”

Let us suppose that a theory (a theory-net in the structuralist sense) is not clearly
visualized and, nevertheless, certain “laws” or “equations” or “models” are clearly
identified, but they cannot be taken as fundamental laws/guiding principles or
“models” of a theory; they are rather considered “autonomous” with respect to “the-
ories” and do not cover the entire supposed domain of application of the corre-
sponding realm.

This situation could arise under the following two circumstances:

The first occurs when these laws, equations, or models are indeed isolated laws
or equations or models. This circumstance can occur in a synchronic or in a dia-
chronic way. Both situations are ‘“entirely compatible” with metatheoretical
structuralism.

In fact, the law of ideal gases and Ohm’s law are mentioned in the structuralist
literature (Balzer 1996) as examples of isolated laws. Even though they are not part
of theory-nets, they are perfectly conceptualizable in structuralist terms, namely, as
theories that can actually be reconstructed as only one theory-element (see Fig. 10.5).

On the other hand, this “isolation” of the theory-elements, in the structuralist
terminology (or “autonomy” of the “models” in the model views terminology), can-
not only be systematically and synchronously established but can also remain dia-
chronically invariable or not.

If it were the last thing, it could be a case where “a law is in search of a funda-
mental law/guiding principle, of which it becomes a special law” or, in other words,
where “a model is in search of its theory (i.e., its theory-net) to which it can be
incorporated” (see Fig. 10.6).

Or it could be a case where “a law, or a model, from which—together with many
other things—a theory (i.e., a theory-net) is developed (and, finally, ends up consoli-
dating or crystallizing)” (see Fig. 10.7).

And although this can only be determined retrospectively, all these circum-
stances, whether it be an isolated law or model, which so remains, or an isolated (or
incipient) law or model, which is later incorporated into a theory or from which a
theory is developed and ends up crystallizing a theory (theory-net), would be
susceptible of being represented by the structuralist metatheory, through their con-
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Fig. 10.5 Theory-net with
only one theory-element

Fig. 10.6 Model in search
of a fundamental law/
guiding principle

Fig. 10.7 A law from
which a theory-net is
developed

ceptualization as an isolated theory-element (the simplest and smallest notion of
theory) or as its incorporation (or reduction, exact or approximate) to a theory-net
(as specialization) or as part of a crystallization process, respectively.?’

Another circumstance occurs when the laws, equations, or models, despite their
appearance of “autonomy” from “theories” and from any fundamental law/guiding
principle, are not, in fact, autonomous in a sense that can be made precise as fol-
lows. Here we would be faced with cases of laws, equations, or models, which
would be special cases of fundamental laws/guiding principles that are not
“observed” in their greater generality and schematism, but which, whether or not
their existence is accepted in the usual way, “are there,” being susceptible of
becoming explicit. As it has been argued above, the really different and heteroge-
neous models (laws, equations) of population dynamics can be accommodated
under one theory, i.e., one theory-net. Despite the differences and heterogeneity of
the models presented in Sect. 10.3, they can be placed in the theory-net of popula-
tion dynamics.

»For a systematic treatment of this less known metascientific concept, see Moulines (2014).
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10.5.3 On Claim (c) about the Unifying Power of Biological
Theories

As stated before, what all models of population dynamics share is that they appeal
to the same theory, i.e., theory-net. Such models may differ substantially in their
form. In fact, the laws obtained by specialization from the fundamental law/guiding
principle do not preserve the logical or mathematical form.

The theory-net of population dynamics arises from the specification received of
the concepts of population factors and of rate of population change. In each specific
case, specific population factors and the specific way in which they are combined
with specific demographic processes by the rate of population change should be
searched for in order to account for the specific changes in the size of the popula-
tion. The different ways in which population dynamics can be applied are estab-
lished by the different special laws of the theory.

The interrelations between different theory-elements allow them to be seen as
parts of “something unitary.” In other words, the relation of specialization in a
theory-net seems to be a guarantee of cohesion and allows a better understanding of
what the valuable unification of bona fide scientific theories consists of.

The unifying power of a theory depends not only on the number of successful
applications/models but also (and more prominently) on how heterogeneous such
applications/models are. Therefore, the evaluation of the unifying capacity of a
theory must take into account the heterogeneity of cases in which it is applied,
through the heterogeneity of the different specializations, of the different specifica-
tions that the concepts of the theory receive. Population dynamics applies to a het-
erogeneity of cases—from the PD “empirical”’/non-theoretical level—thanks to the
heterogeneous way in which the concepts of biotic factors and rate of population
change—from the PD-theoretical level—are specified. The reason why population
dynamics is unifying is because it constitutes a collection of theory-elements that
deal with different types of cases by subsuming or embedding them in some line of
specialization of its theory-net, which is the “multidirectional development” of a
common fundamental law/guiding principle.

10.6 Conclusion

In this chapter a unifying analysis of the concepts of law, model, and theory has
been first presented and then applied to population dynamics. In this area a funda-
mental law/guiding principle and special laws as well as its theory-net have been
identified and made explicit. Finally, the consequences of the analysis were drawn
in favor of the ideas that there are “laws” in biology (special and fundamental laws/
guiding principles where a theory-net has been identified) that many of the hetero-
geneous and different models of biology can be accommodated under some “the-
ory” (in case a theory-net has been identified), and that theory-nets in biology
possess unifying power.
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What an approach to the theme of the unifying power of science must achieve is
not only to show how more cases of those already known are incorporated but rather
the association in the same framework of different parcels of the world. This is, we
insist, where the true unifying power of theories resides. With its notion of theory-
net metatheoretical structuralism is the perspective that most clearly captures both
the different successful applications/models of a theory and what they all have
in common.

Just as the unifying capacity counts as an epistemic virtue when choosing
between conflicting theories, the ability to explicate that merit may well count as a
virtuous criterion for the choice of metascientific approaches to such theories at the
same time. Something similar can be said about the very unifying power of the
metatheoretical view. And metatheoretical structuralism has shown its unifying
power with the unifying analysis (explication) of the (metascientific) concepts of
law, model, and theory presented here.

In any case, such an analysis proposes or exhorts us to “see the world” of science
in a certain way. We hope to have contributed with the present chapter to the plausi-
bility of such a way of seeing the world of science and to encourage other philoso-
phers of biology to do the same.?®
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