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Abstract

J. Schauder introduced the notion of basis in a Banach space in 1927. If a
Banach space has a basis then it is also separable. The problem whether ev-
ery separable Banach space has a Schauder basis appeared for the first time in
1931 in Banach’s book "Theory of Linear Operations". If a Banach space X
has a Schauder basis it also has the approximation property. A Banach space
X has the approximation property if for every Banach space Y the finite rank
operators are dense in the closed subspace of all compact operators from Y to
X. Both problems where solved in the negative in 1972 by P. Enflo. His proof
was almost immediately simplified by A. M. Davie, who using a probabilistic
lemma constructed a separable closed subspace of `∞ without the approxima-
tion property. In this thesis we present some of the equivalent properties to
the approximation property due to A. Grothendieck, and we make a detailed
exposition of the proof by A. M. Davie.

Summary in English

The notion of a basis in a Banach space was introduced by J. Schauder in
1927. If a Banach space has a basis then it is also separable. The problem
whether every separable Banach space has a Schauder basis appeared for the
first time in 1931 in the Polish edition of Banach’s book "Theory of Linear
Operations".

It was clear to Banach, Mazur and Schauder that this question was related to
the "approximation problem". This is mentioned in Banach’s book as a remark
to the chapter on compact operators. If a Banach space X has a Schauder
basis it also has the approximation property, since the natural projections of
X onto its finite dimensional subspaces form a bounded sequence of finite rank
operators converging pointwise on X to the identity operator.

The approximation problem is equivalent to whether a Banach space has the
"approximation property". A Banach space X has the approximation property if
the identity operator on X is the limit for the topology of uniform convergence on
compact subsets of X of a sequence of finite rank operators. The approximation
property in its various forms was thoroughly analyzed by A. Grothendieck in
his thesis "Produits tensoriels topologiques et espaces nucléaires" published in
1955.
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But it was not until 1972, that P. Enflo solved both questions in the negative.
He found a subspace of co, which he showed does not have the approximation
property and consequently does not have a basis. Almost immediately, T. Figiel
and A. M. Davie greatly simplified his proof. The later using a probabilistic
lemma constructed a separable closed subspace of l∞ without the approximation
property. Moreover, they also showed that both co and every lp space with
1 ≤ p < ∞ , (p 6= 2) has subspaces without the approximation property. In
this work we present some of the equivalent properties to the approximation
property due to A. Grothendieck, and we make a detailed exposition of the
proof by A. M. Davie.

Sammanfattning på svenska
Begreppet bas för ett oändligtdimensionellt Banachrum introducerades för

första gången av J. Schauder år 1927. Om ett Banachrum har en Schauderbas
medför detta att det också är separabelt. Frågan om den omvända implikationen
också gäller i alla Banachrum, vilken senare blev känd som "basproblemet" pre-
senterades för första gången i Banachs bok 1931. Banach, Mazur och Schauder
hade klart för sig att denna fråga hade ett starkt samband med "approxima-
tionsegenskapen". Ett Banach rum X har approximationsegenskapen om iden-
titetsoperatorn på X är gränsvärdet, i topologin för likformig konvergens på
kompakta delmängder av X, av en följd av operatorer av ändlig rang.

Approximationsegenskapen utforskades grundligt på femtiotalet av A. Gro-
thendieck, som fann många ekvivalenta egenskaper till den och många kon-
sekvenser av den. Om ett Banachrum X har en Schauderbas har den också
approximationsegenskapen (man vet idag att den omvända implikation inte är
sann), eftersom projektionerna av X på dess ändligtdimensionella underrum
konvergerar punktvis mot identitetsoperatorn på X.

Det faktum att approximationsproblemet inte kunde lösas ledde till dess
berömmelse inom Banachrumsteori och det var inte förrän 1972 som P. Enflo
visade att båda frågor hade negativa svar. Han konstruerade ett underrum
till co som inte har en bas och som inte har approximationsegenskapen. Nästan
omedelbart därefter T. Figiel och A. M. Davie konstruerade ett separabelt slutet
underrum till `∞ som inte har approximationsegenskapen. A.M. Davie lyckades
genom användning av ett lemma från sannolikhetsläran förenkla Per Enflos bevis
och bevisade dessutom att co och alla `p rum för 1 ≤ p < ∞, (p 6= 2), har
underrum som saknar approximationsegenskapen.

I detta examensarbete presenterar vi några av Grothendiecks resultat och
en detaljerade presentation av A. M. Davies bevis.



Preface

My original interest for Banach space theory arose when I first took a course
in Functional Analysis at the University of Lund. One of the subjects stud-
ied in the course was the relation between compact and finite rank operators
in infinite-dimensional complete normed spaces. An important property for a
normed space is if every compact operator on that space can be uniformly ap-
proximated by finite rank operators. That property is called the approximation
property. All Hilbert spaces have the approximation property. In a Hilbert
space an operator is compact if and only if it can be approximated by finite
rank operators. When studying the proof for this theorem in Hilbert spaces
I wondered why the same proof would not work on the more general case of
Banach spaces. Later I found out that the proof was depending on the fact that
for a Hilbert space we can always find a basis. There are Banach spaces though
without bases and this is the reason why the proof would work only in one
direction for Banach spaces, namely that the limit of a sequence of finite rank
operators is compact, but not the other way around.

Trying to find out how a Banach space without the approximation prop-
erty would "look like" I noticed that almost every book on Functional Analysis
contained a reference to Per Enflo’s [E] work "A counterexample to the approx-
imation property in Banach spaces", originally published in Acta Mathematica
in 1973. This was a very important result since it showed that the set of Ba-
nach spaces without the approximation property and consequently without a
Schauder basis is not void. Even if the work was mentioned in so many refer-
ences nowhere was there a hint of what is it that makes certain Banach spaces so
to say "loose" the approximation property.

Naturally when time came for me to write my Masters thesis the first idea
was to write about the approximation property in Banach spaces. Later I found
out that the original proof by Enflo had been greatly simplified by A.M. Davie
[D] in his paper "The approximation problem for Banach spaces" published also
1973 in the Bulletin of London Math. Soc. I thought that it would be of interest
to present it with the special aim of trying to give the proof in a more easily
understandable way. The proof presented in this work is due to Davie, but in
contrast with Davie’s proof, which is only three pages and written for experts in
Banach space theory, here we try to give the proof with all details explaining the
main ideas and in this way trying to make it accessible for a broader audience.
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Chapter 1

Introduction

Banach space theory became a recognized branch of mathematics with the
appearance in 1931 of Banach’s book "Theory of Linear Operations". From its
beginning it maintained close ties with other branches of analysis. It turned out
that Banach space theory offered powerful tools to other branches of analysis.
Amongst the most useful results we mention the duality theory for operators and
spaces, infinite dimensional convexity and results connected to Baire’s category
theorem, especially the closed graph theorem.

These powerful general concepts are now well understood and appear in sev-
eral books on functional analysis. They were already well understood in the
forties and fifties, and at that time it seemed to many that Banach space theory
was a relegated branch of mathematics without any new developments on the
field. However this was not the case. The sixties, and specially the seventies
and eighties saw an upsurge in the research of Banach space theory. Many old
problems were solved and many new problems, as well as new ties with other
branches of mathematics emerged. New and more powerful methods and direc-
tions of research appeared and one could say that these developments brought
a new depth to Banach space theory.

The seventies brought something which is sometimes called the "era of coun-
terexamples". This refers to a time when negative solutions to some older prob-
lems were found. Amongst these various problems settled in the seventies, two
of the classical and most famous ones were the "basis problem " and the "ap-
proximation problem". We will try to give a brief outline of their content.

The notion of a countable infinite basis for Banach spaces was introduced by
J. Schauder in 1927 and thus got its name (Schauder basis). Since a space with
a Schauder basis is separable it was very natural to ask if the same is true for
the converse: "Does every separable Banach space possess a Schauder basis?".
This question was already raised in Banach’s book (see [B], page 68) in a slightly
different form: "It is not known if every separable Banach space has a basis."
The answer to this question was not obvious and it gave thus rise to one of the
first famous problems in Banach space theory: the "basis problem".

There are many instances in operator theory where it is convenient to rep-
resent a given linear operator as a limit of a sequence of operators with already
known properties. The best investigated classes of operators are finite rank
operators and compact operators. Therefore it is quite natural to ask whether
every continuous linear operator can be approximated by linear operators from

7



8 Chapter 1. Introduction

these classes. A Banach space has the classical "approximation property" if for
every Banach space Y the set of finite rank linear operators from Y to X is
dense in the space of compact linear operators from Y to X.

Banach, Mazur and Schauder had already observed that the approximation
problem is closely related to the problem of existence of a basis. As we will
show later (Theorem 3.15), if a Banach space X has a Schauder basis it also
has the approximation property, since any compact operator can be approxi-
mated by the projections of X on the finite dimensional subspaces spanned by
finitely many basis elements. Since every Banach space with a Schauder basis is
separable it was also natural to ask if every separable Banach space has the ap-
proximation property? This question was also originally raised by Banach in his
book (see [B], page 146). Thus Banach’s comment gave rise to another famous
problem in Banach space theory later called the "approximation problem". The
classical approximation problem is the question whether all Banach spaces have
the approximation property.

The first thoroughly detailed study of the approximation property and exis-
tence of Schauder bases was initiated by A. Grothendieck, who published in 1955
his famous work "Produits tensoriels topologiques et espaces nucléaires" [G]. In
this work, which considers the more general framework of locally convex spaces,
Grothendieck explained the fundamental role of the approximation problem in
the structure theory of Banach spaces, and presented several problems to which
the approximation property is relevant (for instance, in determining the trace
of a nuclear operator).1Even if Grothendieck did not succeed in constructing a
Banach space without a Schauder basis and without the approximation prop-
erty, many of the properties and equivalent conditions to the approximation
property, which contributed to its solution, are due to him.

The approximation problem was solved (in the negative) in 1972 by P. Enflo
[E], who constructed the first example of a Banach space which does not have
the approximation property (and consequently does not have a Schauder basis).
Enflo’s construction was quite complicated and it was almost immediately sim-
plified by others. The proof we will present in this work is due to A.M. Davie
[D], who, while still using the original ideas by Enflo, simplified the construction.

It is interesting to observe that subsequently in 1978 Szarek [Sza], con-
structed a Banach space which has the approximation property but which does
not have a Schauder basis. So the two properties are not equivalent.

1Let X, Y be Banach spaces and T ∈ B(X;Y ). If there exists a sequence {fn} ⊂ X∗, a
sequence {yn} ⊂ Y and a sequence {cn} of real numbers such that

sup
n
|fn‖ <∞, sup

n
‖yn‖ <∞,

∑
n

|cn| <∞, and

Tx = lim
m→∞

m∑
n=1

cnfn(x)yn in Y for every x ∈ X,

then T is a nuclear operator on X into Y .



Chapter 2

Compact and finite rank
operators

In this chapter we will introduce a few important notions needed for the rest
of our work in order to study the approximation property. All these different
concepts are presented in many Functional Analysis books, but we found that
it would make our work more self-contained and complete by including some
of these results. The first section will give a characterization of compact sets
in infinite dimensional spaces and some basic properties of compact operators.
The second section explains some basic facts about the topologies generated by
seminorms and locally convex spaces, specifically the topology of uniform con-
vergence on compact sets (the latter is essential for the construction of a Banach
space without the approximation property). Finally we will present a histori-
cally famous result due to Grothendieck, which gives a concrete representation
of the dual of some space of operators. Some concepts needed for the following
chapters are also introduced.

Notation: For Banach spaces X and Y , we will use the notation B(X;Y )
for the set of all bounded linear operators from X to Y , with the usual abbrevi-
ation B(X) = B(X;X). We denote X∗ the dual space of the Banach space X.
Furthermore, in a normed space we denote by B(x, ε) the closed ball of radius
ε > 0, centered at x ∈ X.

2.1 Compact sets and compact operators

DEFINITION 2.1 (Totally bounded set) Let X be a normed space. A sub-
set K ⊂ X is totally bounded if for every ε > 0, there exist points x1, x2, . . . , xn
of K such that every point x of K has distance less than ε from at least one of
x1, x2, . . . , xn of K.

In other words K is totally bounded if, for every ε > 0, K can be covered by
finitely many balls of radius ε and centers in K.

THEOREM 2.2 A subset K of a Banach space X is relatively compact if and
only if it is totally bounded.

9



10 Chapter 2. Compact and finite rank operators

Proof:
Suppose that K is relatively compact (that is, its closure is compact, or, equiv-
alently, every sequence in K has a convergent subsequence) and ε > 0 be
given. We shall show that K has a finite number of points x1, . . . , xn such

that K ⊂
n⋃
j=1

B(xj , ε). Let x1 be any point in K. If K is contained in the set

‖x − x1‖ < ε, we are done. Otherwise let x2 ∈ K be such that ‖x2 − x1‖ > ε.
If every x in K satisfies

‖x− x1‖ < ε or ‖x− x2‖ < ε (2.1)

we are again done. Otherwise, let x3 be a point of K not satisfying (2.1).
Inductively, if x1, . . . , xn are chosen and all points of K satisfies

‖x− x1‖ 6 ε, · · · , ‖x− xn‖ 6 ε (2.2)

then K is totally bounded. If not we will have to eventually stop after a finite
number of steps. Otherwise {xj} would be a sequence of elements ofK satisfying

‖xj − xk‖ > ε for j 6= k.

This sequence would have no convergent subsequence, contradicting the fact
that K is relatively compact.

Conversely, assume now that K is totally bounded. Let {xn} be a sequence
of points of K. Since K is totally bounded it is covered by a finite numbers
of balls of radius 1. At least one of these balls contains an infinite number of
elements of {xn}. Let B1 be such a ball, take out all elements of {xn} not
contained in B1 and denote the remaining sequence by {x1,n}. Similarly there
is a finite number of balls of radius 1/2 which cover K. At least one of these
contains infinitely many points of {x1,n}. Choose one ball and denote it by
B2. Take out all the points not in B2 and denote the remaining sequence by
{x2,n} ⊂ B2. Continue inductively by covering K with finitely many balls of
radius 1/2n and set yn = xnn. Then for each ε > 0 there is an integer N large
enough that all the yj ’s are in a ball of radius smaller than ε for j > N . Thus
{yn} is a Cauchy sequence in the Banach space X and as such must have a limit
in X. �

DEFINITION 2.3 (Finite rank operators) Let X be a Banach space. An
operator T ∈ B(X) is said to be of finite rank if there are {xj}Nj=1 ⊂ X such
that for any x ∈ X

T (x) =

N∑
j=1

φj(x)xj

for some {φj}Nj=1 ⊂ X∗. We will denote the space of all finite rank operators
T : X → Y , by F(X;Y ), with F(X;X) = F(X).

DEFINITION 2.4 (Compact operators) Suppose X and Y are Banach
spaces and B is the closed unit ball in X, B = {x ∈ X : ‖x‖ 6 1}. A linear
operator T : X → Y is said to be compact if the set T (B) is relatively compact
in Y .We will denote the set of compact linear operators by K(X;Y ), with the
convention that K(X;X) = K(X)
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Another equivalent way to define compact operators is to say that T is compact
if for any bounded sequence {xn}∞n=1 inX, the sequence {Txn}∞n=1 in Y contains
a subsequence that converges to a point of Y .

THEOREM 2.5 Let X and Y be normed spaces, and let T ∈ K(X;Y ) Then
T is bounded. Thus, K(X;Y ) ⊂ B(X;Y ).

Proof:
Since Y is a complete metric space, a subset K of Y is compact if its closure
is totally bounded, which means that for every ε > 0, K lies within the union
of finitely many open balls of radius ε. Let B = {x ∈ X : ‖x‖ 6 1}. Then, if
T ∈ B(X;Y ) is compact, T (B) is totally bounded, which automatically implies
that ‖T‖ <∞. �

THEOREM 2.6 If S, T ∈ K(X;Y ) and a, b ∈ C, then aS+ bT is compact or
in general a linear combination of compact operators is compact. Thus K(X;Y )
is a linear subspace of B(X;Y ).

Proof:
Let {xn}∞n=1 be bounded in X, then since S is compact {xn}∞n=1 has a subse-
quence {xnk}∞k=1 such that {Sxnk} converges in Y . But then {xnk} itself being
bounded also has a convergent subsequence {xnk(i)}∞i=1 such that {Txnk(i)}∞i=1

also converges, thus aS + bT is also compact. �

THEOREM 2.7 Let X and Y be normed spaces and T ∈ B(X;Y ). Then
(a) If T is of finite rank then T is a compact operator.
(b) If dimX or dimY is finite then T is a compact operator.

Proof:
(a) Since T is of finite rank, the space Z =Im(T ) is a finite-dimensional normed
space. Furthermore for any bounded sequence {xn} in X, the sequence {Txn} is
bounded in Z. By the Bolzano-Weierstrass theorem this sequence must contain
a convergent subsequence. Hence T is compact.
(b) If dimX is finite then rank(T ) 6 dimX, so rank(T ) is finite, while if dimY
is finite then clearly the dimension of Im(T ) ⊂ Y must be finite. Thus in both
cases it follows from (a) that T is compact. �

We will see later in Theorem 3.19 that in a Hilbert space an operator is
compact if and only if it is the limit of a sequence of finite rank operators, or in
other words that F(X) = K(X). On Banach spaces only the if part is valid (see
Theorem 2.8). Therefore there are compact operators in Banach spaces which
cannot be approximated in the norm topology by finite rank operators. In this
work we will explicitly construct such a Banach space.

THEOREM 2.8 Suppose that X, Y are Banach spaces and that the sequence
{Tn} ⊂ K(X;Y ) converges to some T ∈ B(X;Y ). Then T is compact. Thus
K(X;Y ) is a closed subspace of B(X;Y ).

Proof:
Suppose that B is the closed unit ball in X. Then B is a bounded set. Given
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an ε > 0 let n be such that ‖Tnx − Tx‖ 6 ε/3 whenever x ∈ B. Since T is a
compact operator Tn(B) is totally bounded; thus there is a finite subset F of B
such that every element of Tn(B) is within distance ε/3 of a member of T (F ). It
follows from a straightforward application of the triangle inequality that every
member of T (B) lies with distance ε of a member of T (F ), which implies that
T (B) is totally bounded and therefore T is compact. �

DEFINITION 2.9 The convex hull of a set A in a vector space X, denoted
by conv(A), is the set of all convex linear combinations of members of A, that
is, the set of all sums of the form

n∑
j=1

tjxj n ∈ N, xj ∈ A, tj > 0,

n∑
j=1

tj = 1.

Before Theorem 2.11 due to Grothendieck, which gives a characterization
of compact sets in infinite-dimensional spaces, we present Mazur’s compactness
theorem.

THEOREM 2.10 The closed convex hull of a compact subset K of a Banach
space X is itself compact.

Proof:
By Theorem 2.2 it is sufficient to prove that conv(K) is totally bounded. Let
ε > 0 and choose x1, . . . , xn in K such that

K ⊆
n⋃
j=1

B
(
xj ,

ε

4

)
(2.3)

Define the compact convex set

C = conv{x1, . . . , xn}. (2.4)

To prove that C is compact, let A ⊆ Rn

A =

{
(α1, . . . , αn), αj > 0,

n∑
j=1

αj = 1

}
.

Define f : A→ X by f(α1, . . . , αn) =
∑n
j=1 αjxj . Since f is continuous and A

is a compact set in Rn, its image C is also compact. Hence there are elements
y1, . . . , ym in C such that

C ⊆
m⋃
i=1

B
(
yi,

ε

4

)
.

If w ∈ conv(K), there is a z ∈ conv(K) with ‖w − z‖ < ε/4. Thus

z =

p∑
n=1

αnkn, where kn ∈ K,αn > 0, and
∑

αn = 1.

By (2.3), for each kn there is a xj(n) with ‖kn − xj(n)‖ < ε/4. Therefore∥∥∥z − p∑
n=1

αnxj(n)

∥∥∥ =
∥∥∥ p∑
n=1

αn(kn − xj(n))
∥∥∥ 6 p∑

n=1

αn‖kn − xj(n)‖ <
ε

4
.



2.1. Compact sets and compact operators 13

But
p∑

n=1

αnxj(n) ∈ C so there is some yi with ‖
∑p
n=1 αnxj(n) − yi‖ < ε/4. The

triangle inequality now shows that conv(K) ⊆
⋃m
i=1B(yi, ε) and so conv(K) is

totally bounded. �

THEOREM 2.11 A closed subset K of a Banach space X is compact if and
only if there is a sequence {xn}∞n=1 in X such that ‖xn‖ → 0 and K ⊂ conv{xn}∞n=1.

Proof:
By Mazur’s compactness theorem, we see that if ‖xn‖ → 0 then conv{xn}∞n=1

is compact since {0} ∪ {xn}∞n=1 is a compact set. Therefore a closed subset
K ⊂ conv{xn}∞n=1 is compact.
To prove the other implication we let K be a nonempty compact subset of X.
Since 2K = {2x : x ∈ K} is also compact and therefore totally bounded, there

is a finite set of elements {xj}n1
j=1 in 2K such that 2K ⊂

n1⋃
j=1

B
(
xj ,

1

2

)
. Let K1

be the union of translations of the sets B(xj , 1/2) ∩ 2K for all j = 1, . . . , n1,

K1 =

n1⋃
j=1

{(
B
(
xj ,

1

2

)
∩ 2K

)
− xj

}
.

Then K1 is a compact subset of B(0, 1/2). Pick next {xj}n2
j=n1+1 in 2K1 such

that 2K1 ⊂
n2⋃

j=n1+1

B
(
xj ,

1

22

)
and define

K2 =

n2⋃
j=n1+1

{(
B
(
xj ,

1

4

)
∩ 2K1

)
− xj

}
.

Then K2 ⊂ B(0, 1/4) and K2 is compact. Thus there are {xj}n3
j=n2+1 of 2K2

such that 2K2 ⊆
n3⋃

j=n2+1

B
(
xj ,

1

23

)
. Let

K3 =

n3⋃
j=n2+1

{(
B
(
xj ,

1

23
)
∩ 2K1

)
− xj

}
.

The construction of the {xj} is continued in the obvious fashion. Notice that
xn → 0 as n→∞.
Suppose now that x0 ∈ K. Then there is a j1 with 1 6 j1 6 n1 such that
2x0−xj1 ∈ K1; hence there is a j2 with n1 6 j2 6 n2 so that 4x0−2xj1−xj2 ∈ K2

and, in general,

x0 −
(xj1

2
+
xj2
22

+ · · ·+ xjm
2m

)
∈ 1

2m
Km ⊂ B

(
0,

1

4m

)
.

It follows that x0 ∈ conv{xjn ;n = 1, 2, . . .}. Since

‖xjn‖ → 0 as n→∞
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the theorem is proved. �

Thus, every compact subset of a Banach space is small in the sense that it
is included in the closed convex hull of a null sequence.

2.2 Seminorms

To introduce a topology in an infinite-dimensional linear space, it is sometimes
necessary to make use of a system of an infinite number of seminorms. Locally
convex spaces in particular can be defined through a system of seminorms sat-
isfying the axiom of separation (see Theorem 2.13). If the system reduces to
one seminorm the corresponding space is called a normed space. We shall begin
with the definition of a seminorm.

DEFINITION 2.12 (Seminorm) A real-valued nonnegative function p(x)
defined on a linear space X is called a seminorm on X, if the following condi-
tions

p(x+ y) 6 p(x) + p(y) p(αx) = |α|p(x)

are satisfied for all scalars α and all x, y ∈ X.

In order to give a better idea of how a seminorm induces a topology on a
linear space we present a few results which will be useful in our exposition. For
the complete proofs we refer to [Y], page 24.

THEOREM 2.13 Let a family {pγ(x) : γ ∈ Γ} of seminorms of a linear space
X satisfy the axiom of separation:
For any x0 6= 0, there exists pγ0(x) in the family such that pγ0(x0) 6= 0.
Take any finite system of seminorms of the family, say pγ1(x), pγ2(x), . . . , pγn(x)
and any system of positive numbers ε1, ε2, . . . , εn, and set

U = {x ∈ X : pγj (x) 6 εj (j = 1, 2, . . . , n)}.

Then U is a convex, balanced (that is x ∈ U and |α| 6 1 imply αx ∈ U), and
absorbing (that is for any x ∈ X there exist α > 0 such that α−1x ∈ U) subset
of X. Consider such a set U as a neighborhood of the vector 0 of X and define
a neighborhood of any vector x0 as a set of the form

x0 + U = {y ∈ X : y = x0 + u, u ∈ U}.

Then the open sets of X in the topology generated by this family of seminorms
is the totality {G} of such subsets G ⊂ X which contain a neighborhood of each
of its points.

DEFINITION 2.14 (The topology of uniform convergence on com-
pact sets) If X and Y are Banach spaces, we let τ denote the topology on
B(X;Y ) of uniform convergence on compact sets in X. The topology τ is the
(locally convex) topology on B(X;Y ) generated by the seminorms of the form
pK(T ) = ‖T‖K = sup{‖Tx‖ : x ∈ K}, where K ranges over the compact subsets
of X. We write (B(X;Y ), τ).
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The topology generated by these seminorms is weaker than the one generated
by the operator norm. We will give a precise characterization of this topology in
Theorem 4.1 below. Recall that given a vector space X over C and a topology
τ on X the pair (X, τ) is called a topological vector space if these two axioms
are satisfied:

(x, y) 7→ x+ y is continuous on X ×X into X

(λ, x) 7→ λx is continuous on C×X into X.

DEFINITION 2.15 (Local basis) A local basis of a topological vector space
(X, τ) is a collection B of neighborhoods of 0 such that every neighborhood of 0
contains a member of B.

DEFINITION 2.16 (Locally convex space) A topological vector space (X, τ)
is said to be locally convex if there is a basis B whose members are convex.

THEOREM 2.17 The topological vector space (B(X), τ), of bounded linear
operators on the Banach space X, where τ is the topology uniform convergence
on compact subsets of X, is a locally convex space.

Proof:
Let T ∈ B(X), then ‖T‖K = sup

x∈K
‖Tx‖, where K is a compact subset of X, and

let BKr (0) = {T ∈ B(X) : sup
x∈K
‖Tx‖ < r}. Let T, S ∈ BKr (0) and let 0 6 t 6 1.

Then since ‖T‖K is a seminorm on B(X), we can use the triangle inequality to
obtain

sup
x∈K
‖(t · T + (1− t)S)x‖ 6 t sup

x∈K
‖Tx‖+ (1− t) sup

x∈K
‖Sx‖ 6 r

Thus each of the sets BKr (0) is convex and the collection

B = {BK1/n(0), n ∈ N,K ∈ X},

where K ranges over all the compact subsets of X is a local basis at 0, whose
members are convex. �

THEOREM 2.18 Let X, Y be locally convex spaces and {p}, {q} be the system
of seminorms respectively defining the topologies of X and Y . Then a linear
operator T : X → Y is continuous if and only if , for every seminorm q ∈ {q},
there exist a seminorm p ∈ {p} and a positive number c such that:

q(Tx) 6 cp(x) for all x ∈ X.

Specifically when Y = C we get as an immediate consequence of Theorem 2.18
the following result.

THEOREM 2.19 Let X be a locally convex space, and f a linear functional
on X. Then f is continuous if and only if there exists a seminorm p from the
system {p} of seminorms defining the topology of X and a number c such that

|f(x)| 6 cp(x) for all x ∈ X.

For the proof of Theorem 2.18 see [Y], page 42.
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2.3 The dual space of (B(X;Y ), τ)

The next theorem due to Grothendieck identifies the dual space of (B(X;Y ), τ),
where τ is the topology of uniform convergence on compact subsets of X defined
above.

THEOREM 2.20 Let X and Y be Banach spaces. Let τ be the topology on
B(X;Y ) of uniform convergence on compact subsets of X. Then every contin-
uous linear functional Φ : B(X;Y ) → C on (B(X;Y ), τ) can be represented
as

Φ(T ) =

∞∑
j=1

y∗j (Txj) with
∞∑
j=1

‖xj‖‖y∗j ‖ <∞, (2.5)

and {xj}∞j=1 ⊂ X, {y∗j }∞j=1 ⊂ Y ∗.

Proof:
Assume that Φ has a representation as in (2.5). We want to show that Φ is
bounded. We may clearly assume that xj 6= 0 for every j. Let {αj}∞j=1 be a

sequence of positive scalars tending to ∞ so that
∞∑
j=1

αj‖xj‖‖y∗j ‖ = C < ∞.

Let K = {xj/‖xj‖αj}∞j=1 ∪ {0}. Then K is compact and

|Φ(T )| =
∣∣∣ ∞∑
j=1

y∗j (Txj)
∣∣∣ 6 ( ∞∑

j=1

αj‖xj‖‖y∗j ‖
)
T
( xj
αj‖xj‖

)
6

C sup
x∈K
‖Tx‖ = C‖T‖K .

Thus by Theorem 2.19, Φ is a bounded linear functional on (B(X;Y ), τ). Con-
versely, assume that Φ is a linear functional on B(X;Y ) such that |Φ(T )| 6
C‖T‖K for some constant C depending on some compact set K ⊂ X. By
Theorem 2.11 we may assume that K ⊆ conv{xn}∞n=1, where ‖xn‖ → 0. Let
(Y ⊕ Y ⊕ · · · )c0 denote the infinite direct sum of the Banach space Y in the
sense of c0 that is the spaces of all sequences y = (y1, y2, . . .), with yn ∈ Y , for
which lim

n→∞
‖yn‖ = 0, with the supremum norm. Let us define the operator S

by
S : B(X;Y )→ Z ⊂ (Y ⊕ Y ⊕ · · · )c0 , S(T ) = (Tx1, Tx2, . . .),

where Z = S(B(X;Y )). Note that the norm of S(T ) in (Y ⊕ Y ⊕ · · · )c0 is

‖S(T )‖ = sup
n>1
‖Txn‖ = ‖T‖K . (2.6)

Indeed, since x ∈ K if and only if

x = lim
k→∞

N(k)∑
n=1

λknxn for some λkn > 0 with
N(k)∑
n=1

λkn = 1,

we have that

‖Tx‖ 6 lim
k→∞

N(k)∑
n=1

λkn‖Txn‖ 6 sup
n>1
‖Txn‖.
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Since xn ∈ K we clearly have that sup
n>1
‖Txn‖ 6 ‖T‖K . Hence sup

n>1
‖Txn‖ =

‖T‖K . From (2.6) and the continuity of Φ, we infer

|Φ(T )| 6 C‖T‖K = C‖S(T )‖.

Now we will define a functional Ψ ∈ Z∗ by Ψ(S(T )) = Φ(T ). It is clear that
that Ψ is linear. To see that it is well defined, suppose that S(T1) = S(T2).
Then |Φ(T1−T2)| 6 C‖S(T1)−S(T2)‖ which implies that Φ(T1) = Φ(T2). Thus
we can view Ψ as a linear functional on Z. Since |Φ(T )| 6 C‖T‖K we have by
our definition of Ψ that

|Ψ(S(T ))| = |Φ(T )| 6 C‖S(T )‖,

Thus Ψ is a bounded linear functional on Z. Because Z is a subspace of (Y ⊕
Y ⊕ · · · )c0 , by the Hahn-Banach theorem we can extend Ψ ∈ Z∗ to a linear
functional on the whole (Y ⊕Y ⊕· · · )c0 . Since the dual of c0 is `1 (see [Y], page
114), we have

(Y ⊕ Y ⊕ · · · )∗c0 = (Y ∗ ⊕ Y ∗ ⊕ · · · )`1 .

That is, there exists a sequence {y∗n}∞n=1 in Y ∗ so that
∞∑
n=1

‖y∗n‖ < ∞ and

Φ(T ) =

∞∑
n=1

y∗nT (xn). �

This theorem will be used will be used later in the proof of Theorem 3.17
on the equivalence of different formulations of the approximation property.
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Chapter 3

Schauder bases and the
approximation property

Since Schauder bases are closely related to the approximation property in
this chapter we will start by giving a short introduction about such bases and
their relation with the approximation property. We will also present a proof
that a Hilbert space always has the approximation property. Some equivalent
formulations of the approximation property are also given.

3.1 Schauder bases in Banach spaces

The notion of algebraic basis (Hamel basis), in a finite dimensional linear
space, or of orthonormal basis, in a Hilbert space, are essential tools for the
study of these spaces. Therefore, if we want to investigate the structure of
general Banach spaces, it is natural to try to find a corresponding notion. A
way to extend the notion of algebraic bases from finite dimensional spaces to
infinite dimensional ones is by using Zorn’s lemma or the axiom of choice to
assert the existence of a Hamel basis for any given Banach space.

DEFINITION 3.1 (Hamel basis) A Hamel basis for a Banach space X is
a set of vectors B such that very element x ∈ X can be written in an unique
way as a finite linear combination of elements of B.

But in the case of infinite dimensional spaces the existence of such a basis
does not provide satisfactory information about the space, and therefore its
usefulness is mainly of a theoretical value for a few reasons which we will try to
present.

1- By Baire’s category theorem it is easy to see that a Hamel basis in a Ba-
nach space with infinitely many linearly independent vectors cannot be count-
able, even if the space is separable.

2- The proof of the existence of a Hamel basis is not constructive so that
in practice it is impossible to find an explicit Hamel basis for most infinite
dimensional Banach spaces.

19
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3- Besides these two disadvantages, a Hamel basis is not linked with the
topology of the space. More precisely let {xα}α∈A be a Hamel basis in a Banach
space X, and let {zn}n∈N be a sequence of points in X converging to some point
z. Each of the zn’s as well as z have finite decompositions: zn =

∑
α∈A

c(n)α xα,

z =
∑
α∈A

cαxα. However most of the coefficient functionals associated to the

basis are discontinuous.
In order to solve the above problems inherent to Hamel bases, it would be

helpful to replace the notion of a Hamel basis, where only finite sums are used,
by another one, where each vector will be represented as the sum of an infinite
series. This notion of a countable infinite basis (Schauder basis) for Banach
spaces was introduced by J. Schauder in 1927.

DEFINITION 3.2 (Schauder basis) A sequence {xn}∞n=1 in a Banach space is
called a Schauder basis of X if for any x ∈ X, there exists a unique sequence of
scalars {an}∞n=1 such that

x =

∞∑
n=1

anxn,

the convergence of the series being that of the norm of X, that is

lim
N→∞

∥∥∥x− N∑
n=1

anxn

∥∥∥ = 0.

A sequence {xn}∞n=1 which is a Schauder basis of its closed linear span is called
a basic sequence.

In this work when referring to a basis we always mean a Schauder basis. It
is important to notice that for describing a Schauder basis one has to de-
fine the basis vectors not only as a set but also as an ordered sequence. For

x =

∞∑
n=1

anxn the maps x∗n : X → C, defined by x∗n(x) = an are called the coef-

ficient functionals associated to the basis and the projections {Pn}∞j=1, defined

by Pn

( ∞∑
j=1

ajxj

)
=

n∑
j=1

ajxj are called the natural projections associated to

{xn}∞n=1. A basis {xn}∞n=1 is called normalized if ‖xn‖ = 1 for all n. Clearly,
whenever {xn}∞n=1 is a Schauder basis of X, the sequence {xn/‖xn‖}∞n=1 is a
normalized basis of X.

An important characteristic of a Schauder basis is that the coefficient func-
tionals associated with the basis are continuous. This result was proved origi-
nally by Banach (see [B], page 68). We present the proof with the help of the
following lemma.

LEMMA 3.3 Let {xn}∞n=1 be a normalized Schauder basis in a Banach space X,
and let Y be the linear space of sequences of scalars

Y =

{
{aj} ⊂ C :

∞∑
j=1

ajxj converges in X

}
(3.1)
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endowed with the norm

|||{aj}||| = sup
n

∥∥∥∥∥
n∑
j=1

ajxj

∥∥∥∥∥ = sup
n
‖Sn‖. (3.2)

Then Y is Banach space.

Proof:

As in the statement let Sn =

n∑
j=1

ajxj . Since the sequence {‖Sn‖}∞n=1 is conver-

gent the real number supn ‖Sn‖ is finite. Since all xn 6= 0, (3.2) is a norm on
the linear space Y . Let {ak,n}∞k=1 be a Cauchy sequence in Y . This sequence
will have as elements

a1,n = (a1,1, a1,2, a1,3, . . . )

a2,n = (a2,1, a2,2, a2,3, . . . )

a3,n = (a3,1, a3,2, a3,3, . . . )

...

Then for every ε > 0 there is a positive integer N such that

|||{ak,n} − {am,n}||| = sup
n

∥∥∥∥∥
n∑
j=1

ak,jxj −
n∑
j=1

am,jxj

∥∥∥∥∥ = (3.3)

sup
n

∥∥∥∥∥
n∑
j=1

(ak,j − am,j)xj

∥∥∥∥∥ < ε (k,m > N). (3.4)

Hence

||(ak,n − am,n)xn|| 6

∥∥∥∥∥(
n∑
j=1

(ak,j − am,j)xj
)
−
( n−1∑
j=1

(ak,j − am,j)xj
)∥∥∥∥∥ 6∥∥∥∥∥

n∑
j=1

(ak,j − am,j)xj

∥∥∥∥∥+

∥∥∥∥∥
n−1∑
j=1

(ak,j − am,j)xj

∥∥∥∥∥ < 2ε (k,m > N).

Since all xj 6= 0 it follows that

|ak,n − am,n| <
2ε

‖xn‖
(k,m > N).

Consequently for each fixed n > 1 the sequences of scalars {ak,n}∞k=1 are Cauchy
sequences and converge to a scalar an. Hence from inequality (3.4), by letting
m→∞ we obtain∥∥∥∥∥

n∑
j=1

(ak,j − aj)xj

∥∥∥∥∥ 6 ε (k > N, n > 1).

We also note that for n, p > 1∥∥∥∥∥
n+p∑
j=1

(ak,j − aj)xj

∥∥∥∥∥ 6 ε and

∥∥∥∥∥
n∑
j=1

(ak,j − aj)xj

∥∥∥∥∥ 6 ε.
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Writing
n+p∑
j=1

ajxj =

n+p∑
j=1

(aj − ak,j)xj +

n+p∑
j=1

ak,jxj

we get that ∥∥∥∥∥
n+p∑
j=n+1

ajxj

∥∥∥∥∥ 6 2ε+

∥∥∥∥∥
n+p∑
j=n+1

ak,jxj

∥∥∥∥∥ (k > N).

Since the series
∞∑
j=1

ak,jxj is convergent and since X is complete, we deduce that

∞∑
j=1

ajxj also converges. Thus Y is a Banach space since

|||{ak,n} − {an}||| 6 sup
n

∥∥∥∥∥
n∑
j=1

(ak,j − aj)xj

∥∥∥∥∥.
�

THEOREM 3.4 Let {xn}∞n=1 be a Schauder basis in a Banach space X. Then
the coefficient functionals associated with that basis are continuous.

Proof:
Let Y be the Banach space in Lemma 3.3. For each sequence of scalars a =
(a1, a2, . . .) ∈ Y define T : Y → X by

T (a) = T (a1, a2, . . .) =

∞∑
j=1

ajxj = x.

The operator T thus defined is a bounded linear operator because ||T (a)|| 6
|||a|||, and as it maps Y bijectively onto X. By the open mapping theorem, its
inverse T−1 is also a bounded linear operator. Let

fj(x) = aj , where x =

∞∑
j=1

ajxj .

Since

‖ajxj‖ =
∥∥∥ n∑
j=1

ajxj −
n−1∑
j=1

ajxj

∥∥∥ 6 ∥∥∥ n∑
j=1

ajxj

∥∥∥+
∥∥∥ n−1∑
j=1

ajxj

∥∥∥ 6 2|||a|||

and a = T−1x it follows that fj is bounded

|fj(x)| = |aj | 6
2

‖xj‖
|||a||| 6 2

‖xj‖
‖T−1‖‖x‖.

�
An immediate consequence of the existence of a Schauder basis is that if a Ba-
nach space X has a Schauder basis {xn}, then it is also separable, since the
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set of all convergent linear combinations
∞∑
j=1

rjxj , where the real and imaginary

parts of rj are rational numbers is a countable dense subset in X. Note that a
nonseparable Banach space cannot have a Schauder basis.

The first idea which arises quite naturally in connection with the "basis
problem" is to examine whether or not the various concrete separable Banach
spaces occurring in practice possess a basis. We will give a few examples.

EXAMPLE 3.5 If X is c0 or `p such that 1 6 p <∞, then it is easy to check
that the sequence {xn}∞n=1,

xn = {δnj}∞j=1

of standard unit vectors of X is a basis for X. Indeed if x = {an} ∈ c0 we have

∥∥∥∥x− N∑
n=1

anxn

∥∥∥∥ = sup
N+16n<∞

|an| → 0 for n→∞.

For x = {an} ∈ `p we have

∥∥∥∥x− N∑
n=1

anxn

∥∥∥∥ =

( ∞∑
n=N+1

|an|p
) 1
p

→ 0 if n→∞.

EXAMPLE 3.6 Consider the Banach space C[0, 1] of all continuous scalar
valued functions on the closed interval [0, 1] under the usual addition of func-
tions and multiplication by scalars. Schauder, besides defining the notion of
Schauder basis, also constructed a basis for C[0, 1]. To see how such a basis for
C[0, 1] is constructed we refer to [Meg], page 352. That C[0, 1] has a basis is of
great interest because C[0, 1] plays a central role in the theory of Banach spaces.
One special property of C[0, 1], which makes it usable in different connections
is its universality amongst separable Banach spaces: every separable Banach
space is isometrically isomorphic to a closed subspace of C[0, 1] (see [B], page
113). The fact that "every" infinite dimensional separable Banach space can be
embedded in C[0, 1] and C[0, 1] has a basis was one of the immediate reasons
for the appearance of the "basis problem".

EXAMPLE 3.7 The space of functions analytic on the open unit disk and
continuous up to the boundary (this is the disc algebra A) has a Schauder basis.
This has been proved originally by Bochkarev’s [Bo] in 1974, who built a basis
for the disc algebra A based on the Franklin system (i.e. the Gram-Schmidt
orthogonalization of Schauder’s system for C[0, 1] in the Hilbert space L2[0, 1]).

EXAMPLE 3.8 `∞, being a non-separable Banach space cannot have a Schauder
basis.
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3.2 The approximation property

The first systematic study of the approximation property was initiated by
Grothendieck in 1955 [G]. Grothendieck found many equivalent conditions to
the approximation property. One of his main motivations in studying and in-
troducing an equivalent definition of the approximation property and in raising
"the approximation problem" was the Example 3.10 below, which relates this
problem to the considerably older problem of uniform approximability of com-
pact linear operators on Banach spaces by finite rank operators. The question
was originally raised in Banach’s book (see [B], page 146):

"According to a remark of S. Mazur we have the following theorem: If {Tn}
is a sequence of compact linear operators, defined in a Banach space X and such
that lim

n→∞
Tnx = x for every x ∈ X, a necessary and sufficient condition for a set

K ⊆ X to be compact is that the convergence be uniform. A space for which
such a sequence of operators exists is separable 1. The question of if, conversely
every separable Banach space X admits such a sequence of operators, remains
open".

A result which goes back to the beginnings of functional analysis asserts that
the compact operators on a Hilbert space are exactly those operators which are
limits in norm of operators of finite rank. One part of the assertion, namely
that every T ∈ B(X;Y ) for which ‖T −Tn‖ → 0 for a suitable sequence of finite
rank operators {Tn}∞n=1 ∈ B(X;Y ) is compact, is true for every pair of Banach
spaces X and Y . It was realized long ago that the converse is also true for
many examples of Banach spaces X and Y besides Hilbert spaces, but there was
some indication that there could exist Banach spaces without the approximation
property. Grothendieck also showed that some common separable spaces, which
appear in analysis have the approximation property, and as a matter of fact even
have a Schauder basis (see [S], page 718). Historically, the motivating example
is the following one.

EXAMPLE 3.10 For each positive n, define

Pn : `2 → `2

by the formula
Pn({aj}) = (a1, . . . , an, 0, 0, . . .).

Then each Pn is a bounded linear projection from `2 onto

{{aj} : {aj} ∈ `2, an+1 = an+2 = · · · = 0}.

Suppose now that K is a nonempty relatively compact subset of `2. This means
that any sequence {αn}∞n=1 in K has a convergent subsequence. We claim that

1

THEOREM 3.9 The range of any compact operator T is separable.

Proof:
The set Fn = {Tx : ‖x‖ 6 n} is relatively compact and therefore separable, and hence so is
the set ∪∞n=1Fn, which is equal to the range of T . �
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for each positive ε, there must be a positive integer nε depending on the set K,
but not depending on the specific elements of K, such that( ∞∑

j=nε+1

|αk,j |2
)1/2

< ε (3.5)

whenever αk ∈ K, where αk,j are the elements of the sequence αk ∈ K ⊂ `2.
We will show that if (3.5) is not true, then we could construct a sequence in
K without a convergent subsequence. Let us suppose that (3.5) is false. This
means that there is an ε > 0 such that for every n ∈ N there is an αk ∈ K with( ∞∑

j=n+1

|αk,j |2
)1/2

> ε.

Since we are in `2, given any ε > 0 and any α ∈ K, there is an n1 with( ∞∑
j=n1+1

|αj |2
)1/2

<
ε

2
.

Start with some α1 ∈ K and choose n1 as above. Then, by our assumption, we
can find an α2 ∈ K and an n2 > n1 with( ∞∑

j=n1+1

|α2,j |2
)1/2

> ε and
( ∞∑
j=n2+1

|α2,j |2
)1/2

<
ε

2
.

Continuing this process we can choose an α3 ∈ K and n3 > n2 such that( ∞∑
j=n2+1

|α3,j |2
)1/2

> ε and
( ∞∑
j=n3+1

|α3,j |2
)1/2

<
ε

2
.

and so on. Then we get that

‖α1 − α2‖ =

( ∞∑
j=1

|α1,j − α2,j |2
) 1

2

>

( ∞∑
j=n1+1

|α1,j |2
) 1

2

−
( ∞∑
j=n1+1

|α2,j |2
) 1

2

>
ε

2

In an exactly similar way we can show that ‖α2−α3‖ >
ε

2
, and in general ‖αk−

αm‖ >
ε

2
for k 6= m. Then {αn} ⊆ K would have no convergent subsequence,

which contradicts the relative compactness of K. This completes the proof of
(3.5). Hence

lim
n→∞

{ sup
α∈K
{‖(I − Pn)(α)‖2}} = 0.

Now suppose that T is a compact operator from a Banach space X into `2. Let
Tn = PnT for each n. Then Tn is a bounded finite rank linear operator. Let
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BX be the closed unit ball in X centered at zero. Then T (BX) is a relatively
compact set in `2, and

0 = lim
n→∞

{ sup
α∈T (BX)

‖(I − Pn)(α)‖2} =

lim
n→∞

{ sup
x∈BX

{‖(T − Tn)(x)‖2} =

lim
n→∞

‖T − Tn‖.

This proves that every compact linear operator from a Banach space into `2 is
the limit of a sequence of bounded finite rank linear operator from that Banach
space into `2. Since for a Banach space X finite-rank linear operators are com-
pact (F(X) ⊂ K(X) by Theorem 2.7), another way of expressing this is to say
that `2 has the following property.

DEFINITION 3.11 (Banach’s approximation property) A Banach space
X has the approximation property if for every Banach space Y , the set of finite
rank operators F(Y,X) is dense in K(Y ;X).

The argument that proves the following result is essentially the same as the
one used in our example above for the space `2.

THEOREM 3.12 The spaces `p for 1 6 p <∞ have the approximation prop-
erty.

The basis property and the approximation property are closely related and
in fact a Banach space X with a Schauder basis also has the approximation
property (see Theorem 3.15). We would like to point out that it is usually
much easier to verify that a given space has the approximation property than
to construct a Schauder basis for that space. We illustrate this by considering
the disc algebra A (defined in Example 3.7). As mentioned above (Example
3.7) the disc algebra has a basis. However it was not easy to construct such a
basis and this was an open problem for a very long time. On the other hand
it is relatively easy to verify that A has the approximation property. Indeed
for f(z) = a0 + a1z + a2z

2 + . . . ∈ A let Sn = a0 + a1z + . . . + anz
n and let

σnf = (S1f +S2f + . . .+Snf)/n, n = 1, 2, . . .. A classical result of Fejer states
that ‖σn‖ 6 1 for all n and that ‖σnf − f‖ → 0 for every f ∈ A (see [Z], page
89). This shows that the disc algebra has the approximation property.

The definition of the approximation property given above is the historical
one. The definition commonly encountered today is an equivalent one due to A.
Grothendieck, which we will call the "approximation property in the sense of
Grothendieck". That definition has the advantage of being based on the intrinsic
properties of the Banach space X in question rather than on the property that
involves every Banach space Y as well as X and every compact operator from
Y to X. The equivalence of the two definitions will be proved in Theorem 3.17.
Grothendieck’s definition of the approximation property is also the one which
we will use in the construction of a Banach space without the approximation
property.

DEFINITION 3.13 (Grothendieck’s approximation property) A Ba-
nach space X is said to have the approximation property if, for every compact
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set K in X and every ε > 0, there is an operator T : X → X of finite rank such
that ‖Tx− x‖ 6 ε for every x ∈ K.

The above definition can be restated as: the identity operator I : X → X
can be approximated, uniformly on every compact subset K of X, by linear
operators of finite rank.

THEOREM 3.14 Let X be a Banach space with a Schauder basis {xn}∞n=1.
Then X has the approximation property in the sense of Grothendieck.

Proof:
Let {Sn} denote the partial sum operators associated with the basis {xn} that
is,

Snx =

n∑
k=1

αkxk whenever x =

∞∑
k=1

αkxk ∈ X.

Then Sn : X → X is linear and of finite rank and thus a compact operator. Thus
‖Sn‖ < ∞ and by the Banach-Steinhaus theorem supn ‖Sn‖ is also bounded,
since lim

n→∞
‖Snx − x‖ = 0 by the definition of Schauder basis. Denote this

supremum by s. Let K be a compact subset of X. Since K is compact we can
can cover K with finitely many balls of radius

ε

2(1 + s)
centered at {yj}mj=1.

Let both x ∈ K and ε > 0 be arbitrary. Then there exists an yj such that
‖x− yj‖ <

ε

2(1 + s)
and a positive integer N such that ‖yj − Sn(yj)‖ < ε

2 , for

j = 1, . . . ,m, whenever n > N . Thus

‖x− Sn(x)‖ 6 ‖x− yj‖+ ‖yj − Sn(yj)‖+ ‖Sn(x)− Sn(yj)‖ 6

‖x− yj‖(1 + s) + ‖yj − Sn(yj)‖ <
ε

2
+
ε

2
= ε (n > N),

As x ∈ K and ε > 0 have been chosen arbitrarily, we infer that

lim
n→∞

sup
x∈K
‖x− Sn(x)‖ = 0

which completes the proof. �
In the next theorem we will show that if X has a Schauder basis then X has
Banach’s approximation property.

THEOREM 3.15 Let X be a Banach space with a Schauder basis {xn} and
let Y be an arbitrary Banach space. Then every compact linear operator T ∈
K(Y ;X) can be uniformly approximated by linear operators of finite rank.

Proof:
Let T ∈ K(Y ;X) be arbitrary and let {Sn} be the sequence of partial sum
operators associated with the basis {xn}. If BY is the closed unit ball in Y
centered at the origin, then the set K = T (BY ) ⊂ X is compact, whence, by
Theorem 3.14,

‖T − SnT‖ = sup
‖y‖61

‖Ty − SnTy‖ = sup
x∈K
‖x− Snx‖ → 0 as n→∞.

Since SnT ∈ B(Y ;X) is of finite rank, this completes the proof. �
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3.3 Equivalent formulations of the approximation
property

Our purpose in this section is to present several conditions equivalent to the
approximation property, all due to Grothendieck [G].

THEOREM 3.16 Let X be a Banach space. Then the following assertions
are equivalent:
(i) X has the approximation property in the sense of Grothendieck.
(ii) For every Banach space Y the finite rank operators are dense in B(Y ;X)
in the topology τ of uniform convergence on compact sets.
(iii) For every Banach space Y the finite rank operators are dense in B(X;Y )
in the topology τ of uniform convergence on compact sets.

Proof:
With X = Y it is clear that (ii) and (iii) imply (i), since the identity operator
I ∈ B(X). To see that (i) implies (ii), let T ∈ B(Y ;X). For every compact set
K ⊂ Y , the set T (K) ⊂ X is also compact in X. Hence, given ε > 0, we have
by (i) that there is a finite rank operator T1 : X → X such that

‖T1Ty − Ty‖ = ‖T1x− x‖ 6 ε for y ∈ K (or for x ∈ T (K) with x = Ty).

Since T1T is of finite rank we have proved (ii). To prove that (i) implies (iii)
let T ∈ B(X;Y ) with T 6= 0, let K be a compact set in X and let ε > 0. By
(i) there is a finite rank operator T1 : X → X such that ‖T1x− x‖ 6 ε/‖T‖ for
x ∈ K. Then

‖TT1x− Tx‖ 6 ε, x ∈ K,

which proves (iii) since T1T ∈ F(X;Y ). �

THEOREM 3.17 Let X be a Banach space. Then the following assertions
are equivalent:
(i) X has the approximation property in the sense of Grothendieck.
(ii) For each choice of {xn}∞n=1 ⊂ X, and {x∗n}∞n=1 ⊂ X∗ such that the sum
∞∑
n=1

‖x∗n‖‖xn‖ <∞ and
∞∑
n=1

x∗n(x)xn = 0 for all x ∈ X, we have
∞∑
n=1

x∗n(xn) = 0.

(iii)For every Banach space Y , every compact T ∈ K(Y ;X) and every ε > 0
there is a finite rank operator T1 ∈ B(Y ;X) with ‖T − T1‖ < ε.

Proof:
Let us first prove that (i) is equivalent to (ii). By definition, (i) means that
the identity operator is in the τ -closure of the subspace of finite rank linear
operators F(X) ⊂ B(X). By the Hahn-Banach theorem this happens if and
only if every τ -continuous functional on B(X), which vanishes on finite rank
operators also vanishes on the identity I. By Theorem 2.20, any τ -continuous
functional on B(X) has the form

Φ(T ) =

∞∑
j=1

y∗j (Txj).
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If T is of rank one then for all z ∈ X we can write Tz = y∗(z)x for some x ∈ X
and y∗ ∈ X∗. If

Φ(T ) =

∞∑
j=1

y∗j (Txj) =

∞∑
j=1

y∗j (x)y∗(xj) = 0

for all x ∈ X and y∗ ∈ X∗, then by the linearity of y∗ we have

y∗
( ∞∑
j=1

y∗j (x)xj
)

= 0 for all y∗ ∈ X∗.

This implies that
∑∞
j=1 y

∗
j (x)xj = 0 for all x ∈ X. Thus if (ii) holds, the pre-

vious considerations show that if Φ is a τ -continuous functional on B(X) which
vanishes on rank one operators, then

∑∞
j=1 y

∗
j (xj) = 0 or Φ(I) = 0. Hence (ii)

implies (i). Conversely, if (i) holds, then any τ -continuous functional on B(X)
which annihilates finite rank operators annihilates the identity I. Clearly, Φ
vanishes on finite rank operators if and only if it vanishes on operators of rank
one since any operator of finite rank is a finite sum of operators of rank one.
The above considerations show therefore that (i) implies (ii).

Let us now prove the equivalence between (i) and (iii). Assume that (i) holds
and let T : Y → X be a compact operator. Then with BY denoting the closed
unit ball in Y (centered at zero), TBY = K is a compact subset of X and
hence by (i) for every ε > 0, there is a finite rank operator T0 on X so that
‖T0x− x‖ 6 ε for x ∈ K. If T1 = T0T , then

‖T1 − T‖ = sup
y∈BY

{‖(T1 − T )y‖} = sup
x∈TBY

{‖(T0x− x‖} 6 ε.

Since T1 is of finite rank, (iii) holds. Conversely, assume now that (iii) holds and
let K be a compact subset of X and ε > 0. By Theorem 2.11 we may assume
without loss of generality that K = conv{xn}∞n=1, with ‖xn‖ ↓ 0 and ‖x1‖ 6 1,
‖xn‖ > 0 for n > 1. Let

U = conv

{
±xn
‖xn‖

1
2

}∞
n=1

. (3.6)

Clearly U is a compact convex set in X, which is symmetric with respect to the
origin. Moreover, since ‖xn‖ 6 1 and ‖xn‖ ↓ 0 we have that 0 ∈ K and

xn =
[
‖xn‖

1
2

xn

‖xn‖
1
2

+ (1− ‖xn‖
1
2 ).0

]
∈ K so that K ⊆ U.

Let Y be the linear span of U in X, i.e. Y =

∞⋃
n=1

nU , and introduce in Y the

norm |||.||| which makes U its unit ball. That is, we define the norm of Y to be
the Minkowski functional relative to the set U ,

|||y||| = inf{λ > 0;
y

λ
∈ U}. (3.7)

(The proof that (Y, |||.|||) is Banach space is given in Lemma 3.18). With X and
Y normed as above the formal identity map I : Y → X is compact since it maps
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U ⊂ Y (the unit ball in (Y, |||.|||) into a compact subset U of (X, ‖.‖). Thus by
(iii), given an ε > 0 there is a finite rank operator T1 ∈ F(Y ;X), {y∗n}mn=1 ⊂ Y ∗
and {zn}mn=1 ⊂ X a basis for T1(Y ) such that

T1x =

m∑
j=1

y∗j (x)zj for all x ∈ Y,

and ∥∥∥T1x− x∥∥∥ =
∥∥∥ m∑
j=1

y∗j (x)zj − x
∥∥∥ 6 ε

2
for every x ∈ K ⊂ U.

Note that the functionals {y∗n}mn=1 are continuous with respect to the |||.|||-norm,
but need not be continuous with respect to the ‖.‖-norm and thus are not in
general restrictions of elements of X∗ to Y ∗.
In order to conclude the proof it is enough to verify that there exists an F ∈

F(X) and {x∗n}mn=1 ⊂ X∗ with F =

m∑
j=1

x∗jzj and

∥∥∥Fx− x∥∥∥ =
∥∥∥ m∑
j=1

x∗j (x)zj − x
∥∥∥ 6 ε for all x ∈ K ⊂ U.

This will be done once it is shown that given any y∗ ∈ Y ∗ and a δ > 0 (in our case
we take δ =

ε

2m ·max ‖zj‖
) there is an x∗ ∈ X∗ such that |y∗(z) − x∗(z)| < δ

for all z ∈ K. If we can find such a x∗ then for elements x∗1, x∗2, . . . , x∗m of X∗
near to y∗1 , y∗2 , . . . , y∗m of Y ∗ respectively, it would follow that for each z in K,∥∥∥Fz − z∥∥∥ =

∥∥∥Fz − T1z + T1z − z
∥∥∥ 6∥∥∥ m∑

j=1

x∗j (z)zj −
m∑
j=1

y∗j (z)zj

∥∥∥+
∥∥∥T1z − z∥∥∥ <

m∑
j=1

(
|x∗j (z)− y∗j (z)|

)
‖zj‖+

ε

2
<
ε

2
+
ε

2
= ε.

By construction ‖xn‖ 6 1 and xn/‖xn‖1/2 ∈ U , which is the unit ball in

(Y, |||.|||). Hence
|||xn|||
‖xn‖1/2

6 1 and thus |||xn||| 6 ‖xn‖1/2 for every n > 1.

Consequently |||xn||| → 0. Since xn → 0 in both norms, by the continuity of y∗,
we can find an n0 such that for n > n0 we have |y∗(xn)| < δ/2. Let

K0 =
2

δ
conv{±xn}∞n=n0+1 ⊂ Y.

K0 is compact in Y by Theorem 2.11 and by the compactness of the identity
map from Y into X, this is the same convex hull when taken in X. Indeed, if

2

δ

N(k)∑
n=n0+1

λknxn → x, in Y with λkn > 0 and
N(k)∑

n=n0+1

λkn = 1,
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then convergence holds also in X. Thus K0 is contained in the convex hull in
X and is also compact in X. Moreover, K0 is convex in X, so K0 is precisely
the convex hull in X since 2

δxn ∈ K0 for n > n0 + 1. Let

C = {x : x ∈ span{xn}n0
n=1,Re y

∗(x) = 1}.

Then C is a closed subset of a finite dimensional subspace of Y . Thus C closed
in Y and in X.

If x1, x2, . . . , xn0
∈ Ker(y∗), then by letting x∗ be the zero functional in

X∗ it would follow that |y∗(xn) − x∗(xn)| = |y∗(xn)| < δ/2 for all n > 1 and
hence for all x ∈ K. We may therefore assume that at least one of y∗(xj) with
j ∈ {1, . . . , n0} is nonzero and therefore C 6= ∅. By our definition of K0 this
implies that if x0 ∈ K0 then |y∗(x0)| < 1 and |y∗(x)| > 1 when x ∈ C so
K0 ∩ C = ∅. The sets C and K0 are disjoint and by the geometric version of
the Hahn-Banach theorem (see [Meg], page 180) there is a x∗ ∈ X∗ such that

max{Re x∗(z) : z ∈ K0} < inf{Re x∗(z) : z ∈ C}.

Actually Re x∗(z) must be constant throughout C. Indeed, note that if x1, x2 ∈
C, then y∗[(nx1) − (n − 1)x2] = 1, so nx1 − (n − 1)x2 ∈ C. Suppose that
Re x∗(x1) > Re x∗(x2). Then

Re x∗(nx1 − (n− 1)x2) = nRe x∗(x1)− (n− 1)Re x∗(x2)

= (n− 1)[Re x∗(x1)− Re x∗(x2)] + Re x∗(x2)→∞ as n→∞,

which is a contradiction. Since 0 ∈ K0 and x∗(0) = 0, it may be assumed that

Re x∗(z) = 1, z ∈ C.

It follows that for z in the linear span of {xj}n0
j=1, Re x

∗(z) = Re y∗(z) = 1.
Since K0 is balanced, we deduce that for x0 ∈ K0,

|x∗(x0)| < inf{Re x∗(z) : z ∈ C} = 1.

In particular this implies |x∗(xn)| < δ
2 for n > n0. Now, if z ∈ K, then

z ∈ conv{xn}∞n=1 so that

z = lim
k→∞

N(k)∑
n=1

λknxn with λkn > 0 satisfying
∞∑
n=1

λkn = 1.

We deduce that

|x∗(z)− y∗(z)| = lim
k→∞

∣∣∣N(k)∑
n=1

λkn
[
x∗(xn)− y∗(xn)

]∣∣∣ 6
lim
k→∞

N(k)∑
n=n0

λkn

∣∣∣x∗(xn) + y∗(xn)
∣∣∣ < δ

completing the proof. �

LEMMA 3.18 The space (Y, |||.|||), where Y is the normed space defined in
the proof of Theorem 3.17 with the norm given in (3.7) is a Banach space.
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Proof:
We want to prove that the metric induced by the Minkowski functional relative
to the set U defined in (3.7) is complete. Suppose it is not. Let {zn}∞n=1 be a
nonconvergent Cauchy sequence in BY = U . Since {zn} is also Cauchy in X and
lies in a compact subset U ⊂ X, there is some z ∈ X such that ‖z − zn‖ → 0.
Now define a new sequence wn = zn − z. This sequence is nonconvergent in Y
by our assumption and ‖wn‖ → 0 in X. It follows that there is a subsequence
{wnk} of {wn} and an ε > 0 such that |||wnk ||| > ε for all k. Letting

yk =
wnk
|||wnk |||

gives a Cauchy sequence whose elements all have norm 1 in Y , but which,
when viewed as sequence in X, converges to 0. Let k0 be an integer such that
|||yk− yj ||| 6 1/2 whenever j, k > k0. Then 2(yk0 − yk) ∈ U for k > k0, because
2|||yk − yj ||| 6 1 and U is the unit ball of Y . Since yk → 0 in X and U is
closed in X it follows that 2yk0 ∈ U . This implies that |||yk0 ||| 6 1/2, which is
a contradiction. Thus the normed space (Y, |||.|||) is a Banach space. �

3.4 The approximation property on Hilbert spaces
Let H be a Hilbert space. If H is separable, then it has a countable orthonormal
basis. This is also a Schauder basis. Since Banach spaces with a Schauder
basis are separable, we see that non-separable Hilbert spaces cannot have a
Schauder basis (see [C], pages 14-17). The next result shows that any Hilbert
space has the approximation property.

THEOREM 3.19 Let H be a Hilbert space and T a linear operator in B(H).
T is compact if and only if there is sequence of finite rank operators Tn : H → H
with ‖Tn − T‖ → 0.

Proof:
Since finite rank operators are compact by Theorem 2.7 and the subspace K(H)
is closed in B(H) by Theorem 2.8 it follows that the limit of a sequence of finite
rank operators is compact. Conversely, let B = {x ∈ H : ‖x‖ 6 1} and let K
be the closure of T (B). Since T is a compact operator the closure of its image
K is a compact subset of H, thus totally bounded. Therefore, for every ε > 0
we can find finitely many yi ∈ K with

K ⊂
n⋃
j=1

B(yj , ε).

Let Y be the finite dimensional space generated by the yj ’s and let PY be the
orthogonal projection of H → Y . Then ‖PY ‖ 6 1. The operator TY = PY ◦T is
of finite rank since TY (H) = Y . If y ∈ B then there is some yk, for k = 1, . . . , n
such that ‖Ty−yk‖ 6 ε

2 . This implies that ‖PY (Ty−yk)‖ 6 ε
2 or ‖TY y−yk‖ 6

ε
2 . From this we deduce that

‖Ty − TY y‖ 6 ‖Ty − yk‖+ ‖TY y − yk‖ 6 ε.

Thus ‖T − TY ‖ 6 ε. �



Chapter 4

A space without the
approximation property

4.1 Background

The approximation problem was completely solved in the negative by P.
Enflo who published his solution in May 1973. Enflo constructed an example of a
closed reflexive subspace of c0, which does neither have a Schauder basis nor the
approximation property. Actually, P. Enflo proved that there exists a separable
reflexive Banach space X, with a sequence {Xn} of finite dimensional subspaces
satisfying limn→∞ dimXn = ∞ and a constant C, such that for every finite
rank operator F ∈ B(X)

‖F − I‖|Xn > 1− C‖F‖
log dimXn

, (n = 1, 2, . . .);

hence X does not have the approximation property. Closed subspaces of c0 are
good candidates for Banach spaces lacking the approximation property. This
follows by results by Grothendieck and Figiel (see [F]) on the factorization of
compact operators, which however is beyond the scope of this work.

Various authors subsequently simplified the construction of P. Enflo and
using still the same basic ideas obtained other Banach spaces, which do not have
the approximation property. The proof presented here is due to A. M. Davie.
The separable Banach space X constructed by Davie is not a subspace of c0
like Enflo’s example, but a space which can be identified with a closed subspace
of `∞. The existence of separable Banach spaces without the approximation
property has also other applications. For example, this fact implies, that there
exist Banach spaces with bases, whose dual is separable and fails to have the
approximation property. This latter result can be used to show that there exists
a separable Banach space X with the approximation property, having no basis
and having X∗ separable (see [S] II, page 308).

33
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4.2 Idea of the construction
In this section we will present a series of results explaining the basic ideas,

which will be used in the construction of a Banach space without the approxi-
mation property. We will denote by τ -topology the topology of uniform conver-
gence on compact subsets of X (Definition 2.12) generated by the seminorms
‖T‖K = sup

x∈K
‖Tx‖, where K ranges over all the compact sets of X. Since the

definition of the approximation property in the sense of Grothendieck is given
in terms of uniform convergence on compact subsets, in the next theorem which
is based on the Banach-Steinhaus theorem, we will start by investigating this
notion.

THEOREM 4.1 Let X be a Banach space, {Tn}∞n=1 a sequence of bounded
linear operators on B(X), T ∈ B(X) and D a dense subset of X. Then the
following statements are equivalent:
(i) Tn → T uniformly on every compact subset K ⊂ X, or ‖Tn − T‖K → 0 as
n→∞,
(ii) sup

n
‖Tn‖ <∞ and Tnx→ Tx for all x ∈ D

Proof:
To prove that (i) implies (ii), letM = {K ⊂ X : K is compact}, and suppose
that for every K inM we have ‖Tn − T‖K → 0 as n→∞. Since the singleton
{x} is compact this implies that Tnx → Tx for all x ∈ X, and consequently
for all x ∈ D. Besides if {Tn}∞n=1 is a sequence of bounded linear operators on
X converging to T on compact subsets of X, then by the compactness of {x},
the sequence of real numbers {‖Tnx‖}∞n=1 is bounded for every x ∈ X, thus by
the Banach-Steinhaus theorem supn ‖Tn‖ is also bounded and the implication
is proved.
Let us prove that (ii) implies (i). Let supn ‖Tn‖ 6 C. If Tnx → Tx for all
x ∈ D, then by the continuity of the norm

‖Tx‖ = lim
n→∞

‖Tnx‖ 6 sup
n
‖Tn‖‖x‖ = C‖x‖. (4.1)

Now in order to prove that ‖Tn − T‖K → 0, as n → ∞, consider a K ∈ M.

Since K is compact there are yj ’s in X and m ∈ N, such that K ⊂
m⋃
j=1

B(yj ,
ε

3
).

Since D is dense in X, there exist xj ’s ∈ D such that

m⋃
j=1

B(yj ,
ε

3
) ⊂

m⋃
j=1

B(xj ,
ε

2
).

For any xj ∈ D we have that Tnxj → Txj , or equivalently, there is a N ∈ N,
such that

‖(Tn − T )xj‖ 6
ε

2
, for n > N, (j = 1, 2, . . . ,m).

Let x be an arbitrary element in K ⊂ X, since D is dense in X then there is an
xj ∈ D such that

‖x− xj‖ <
ε

4C
.
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Thus,

sup
x∈K
‖(Tn − T )x‖ = sup

x∈K
‖(Tn − T )xj + (Tn − T )(x− xj)‖ 6

sup
x∈K
‖(Tn − T )xj‖+ sup

x∈K
‖(Tn − T )(x− xj)‖ 6

ε

2
+ ‖Tn − T‖

ε

4C
6
ε

2
+
(
‖Tn‖+ ‖T‖

) ε
4C

< ε

or ‖Tn − T‖K → 0. �

THEOREM 4.2 Let X be a Banach space, let D be a dense subset of X, and
let F(X) be the subspace of all finite rank operators in B(X). Let A(D) be
defined as

A(D) =

{
A ∈ B(X) : A(y) =

N∑
j=1

Φj(y)xj for xj ∈ D, y ∈ X and Φj ∈ X∗
}
.

Then A(D) is dense in F(X) in the operator norm topology and consequently
in the (weaker) topology of uniform convergence on compact subsets of X.

Proof:
The set A(D), which also appears in Enflo’s proof is called the set of finite
expansion operators. We have to prove that given any F ∈ F(X) and any
ε > 0, there is an operator A ∈ A(D), such that ‖A − F‖ < ε. Let F ∈ F(X)
and y ∈ X then by Definition 2.3

F (y) =

N∑
j=1

Φj(y)yj , yj ∈ X, Φj ∈ X∗

Since D is dense in X, for each yj ∈ X we can choose xj ∈ D such that

‖xj − yj‖ 6
ε

N ·max ‖Φj‖
.

For each y ∈ X let

A(y) =

N∑
j=1

Φj(y)xj , xj ∈ D, Φj ∈ X∗.

Then, by definition of the operator norm

‖A− F‖ = sup
‖y‖61

∣∣∣∣∣∣
N∑
j=1

Φj(y)(xj − yj)

∣∣∣∣∣∣ 6 sup
‖y‖61

N∑
j=1

‖Φj‖.‖xj − yj‖ < ε

�
As proved in Theorem 2.17 (B(X); τ) is a locally convex space. By the Hahn-
Banach theorem whenever Y is a subspace of B(X) and T ∈ B(X) such that
T does not belong to the closure of Y , there is a functional Φ : B(X) → C
linear and continuous in τ such that Φ(Y ) = {0} and Φ(T ) = 1. The converse
being immediate by the continuity of the linear functional Φ. The next theorem
provides a natural way to construct linear functionals on B(X), which annihilate
the finite rank operators, but not the identity operator.
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THEOREM 4.3 Let X be a separable Banach space and {x1, x2, . . . , xn, . . .}
a countable set of unit vectors in X such that their linear span D is dense in
X. Let αn ∈ X∗ have the property that αn(xj) = δnj ({xn, αn} is usually called
a biorthogonal system), and suppose that sup

n
‖αn‖ <∞. Let L be defined by

L : B(X)→ `∞ L(T ) = {αn(Txn)}∞n=1.

Then
(i) L is continuous in the operator norm topology,
(ii) L(F(X)) ⊂ c0, and L(I) = (1, 1, . . .), where I is the identity operator in
B(X),
(iii) Consequently, given a γ ∈ (`∞)∗, such that γ(c0) = {0}, and γ(1, 1, . . . ) = 1
the functional β ∈ (B(X))∗ defined by β(T ) = γ(L(T )), satisfies β(I) = 1 and
β(F(X)) = 0.

Proof:
(i) To see that L is continuous in the operator norm topology, let T ∈ B(X).
Since ‖xn‖ = 1 and sup

n
‖αn‖ are bounded we have

‖L(T )‖∞ = sup
n
|αn(Txn)| 6 sup

n
‖αn‖‖T‖.

(ii) Any operator A in A(D) is a finite sum of rank one operators that is

A(y) =

N∑
j=1

Φj(y)xj =

N∑
j=1

Tj(y),

where Tj is a rank one operator in A(D) given by Tj(y) = Φj(y)xj . By Theorem
4.2 A(D) is dense in F(X) in the operator norm topology. By (i) L is a bounded
linear operator on B(X). Thus, since c0 is a closed subspace of `∞ it suffices to
prove that for a rank one operator T ∈ A(D) we have L(T ) ∈ c0. If T is a rank
one operator in A(D) and y ∈ X then

Ty = Φ(y)x x ∈ D Φ ∈ X∗.

By the definition of the operator L and Txn = Φ(xn)x we have

L(T ) = {αn(Txn)}∞n=1 = {Φ(xn)αn(x)}∞n=1 ∈ `∞. (4.2)

Since D is the linear span of {xn}, x can be written as

x =

N∑
n=1

znxn zn ∈ C

Since Φ is bounded and αn(xk) = 0 for all n > N by (4.2) it is clear that
L(T ) ∈ c0 consequently by taking linear combinations and by the reasoning in
the beginning of the proof L(A(D)) and L(F(X)) ⊂ c0. It is clear from the
definition of L that L(I) = (1, 1, . . .).
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(iii) Given a γ ∈ (`∞)∗, such that γ(c0) = {0}, γ(1, 1, 1, ....) = 1 let β ∈ (B(X))∗

defined as β = γ ◦ L, and apply the definition of β to obtain

β(T ) = γ(L(T )) = γ
(
{αn(Txn)}∞n=1

)
.

Since c0 ⊆ Ker(γ) and L(F(X) ⊂ c0 it follows that β(F(X)) = 0. Similarly,
one can easily see that

β(I) = γ(L(I)) = γ{αn(xn)}∞n=1 = γ(1, 1, 1, ....) = 1.

�
The most common examples of functionals γ as considered in the above theo-
rem are the so-called Banach limits. Banach limits are special extensions of the
notion of limit to sequences which do not converge. The existence of these func-
tionals is a direct application of the Hahn-Banach theorem. There are several
different ways of defining such functionals, which will be illustrated below.

EXAMPLE 4.4 If x ∈ c, where c ⊂ `∞ is the subspace of all convergent
sequences in `∞ then we can define the functional

γ : c→ C by γ(x) = limxn.

The functional γ is well defined for all elements x ∈ c and satisfies |γ(x)| 6 ‖x‖.
By the Hahn-Banach theorem, γ can be extended to a linear functional γ̂ on the
whole of `∞ with ‖γ‖ = ‖γ̂‖ = 1. Also, it is immediate that for any sequence
x0 ∈ c0, lim(x0) = γ(c0) = 0 thus c0 ⊂ Ker(γ̂) (see [C], page 82).

EXAMPLE 4.5 Another way to define a Banach limits is to consider

γn(x) =
x1 + . . .+ xn

n

and let
s = {x ∈ `∞ : lim γn(x) = γ(x) exists}.

If p is seminorm on s defined as

p(x) = lim sup
n→∞

|γn(x)| we have |γ(x)| 6 p(x)

and by the Hahn-Banach theorem we can extend the functional γ from s to the
whole of `∞ (see [R], page 85).

EXAMPLE 4.6 The third way to define a Banach limit is important for our
construction of a Banach space without the approximation property. Let {Mk}
be a family of subsets of the natural numbers such that lim

k→∞
|Mk| =∞ with |Mk|

denoting the cardinality of the set Mk. Define for each x = (x1, x2, . . .) ∈ `∞

γk(x) =
1

|Mk|
∑
j∈Mk

xj .

As above, let s = {x ∈ `∞ : limk→∞ γk(x) = γ(x) exists} and apply the Hahn-
Banach theorem to obtain a Banach limit γ on `∞. By Theorem 4.3, γ induces
a nonzero functional β on B(X) and the difficulty consists in showing that this
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functional is continuous with respect to the topology τ . To this end, we will
approximate β by the functionals βk induced by γk in a similar way. Recall
that if X is a Banach space and {xn, αn} is the biorthogonal system where
{xn} ⊂ X, {αn} ⊂ X∗ are as in Theorem 4.3 the functionals βk = γk ◦ L have
the form

βk(T ) =
1

|Mk|
∑
n∈Mk

αn(Txn). (4.3)

The values on the right hand side of (4.3) are usually called the average trace
of the operator T over the set {xj}j∈Mk

where the subset Mk is a finite non-
empty subset of the index set N. As pointed out here the functionals βk play
an essential role for our purposes.

4.3 The Banach Space X

For n = 0, 1, 2, . . . let Gn be the commutative groups with 3 · 2n elements

and let G =

∞⋃
n=0

Gn, be the disjoint union of the groups Gn. Thus

G = {g01 , g02 , g03 , g11 , . . . , g16 , . . . , gn1 , . . . , gn3·2n , . . .}.

Let `∞(G) be the Banach space of all functions x : G→ C such that

‖x‖`∞(G) = ‖{x(g)}‖∞ = sup
g∈G
|x(g)| <∞ (4.4)

and give `∞(G) the structure of a linear space in the usual way by defining
pointwise addition and multiplication by scalars. We want now to define a spe-
cial subspace of `∞(G).

For each n, let Hn be the set of characters of Gn, that is, the set of homo-
morphisms x of Gn into S1

Hn = {x : Gn → S1},

where S1 = {z ∈ C : |z| = 1}. By Theorem A.2 Hn is a commutative group.
For g ∈ Gn and for every x ∈ Hn we define the inverse x−1(g) = x(g−1) = x(g),
where x(g) is the complex conjugate of x(g). Since Gn is abelian we have by
Theorem A.3 that |Hn| = |Gn| = 3 · 2n for each n ∈ N. We will use both these
facts in the following proofs (see also Appendix A).

We can partition the elements of Hn in two disjoint subsets W+
n and W−n with

cardinality 2n and 2n+1 respectively such that W+
n ∪W−n = Hn. For each n let

us denote by σn1 , . . . , σn2n the elements of W+
n and by τn1 , . . . , τn2n+1 the elements

W−n respectively. Now we will define the set of functions, which span the space
X. For each n = 0, 1, 2, . . . and each j = 1, . . . , 2n we define xnj : G→ S1 by

xnj (g) =


τn−1j (g) if g ∈ Gn−1 (n > 1)

εnj σ
n
j (g) if g ∈ Gn
0 if g ∈ G�(Gn−1 ∪Gn),

(4.5)
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where εnj = ±1 will be chosen below. We shall consider the closed subspace X
of `∞(G) defined by

X =
∨{

xnj , n > 0, j = 1, 2, . . . , 2n
}
, (4.6)

where the xnj ’s are the functions in (4.5). It is important to notice that the space
X will depend on the way we partition the elements of each group Hn as well as
on the choices of εnj . Note that there are 2n distinct σnj ’s and 2n different τn−1j ’s
and all are used in the definition of xnj . These xnj will play a role similar to the
vectors xn defined in Theorem 4.3. Also by (4.5) |xnj (g)| = 1 if g ∈ Gn−1 ∪Gn
and that xnj (g) 6= 0 only for g ∈ Gn−1 ∪ Gn. Naturally, the subsets where the
xnj 6= 0 cannot be pairwise disjoint, since if they were we could form a basis for
X. We will keep the notations Hn, σnj , τnj and εnj in what follows.

PROPOSITION 4.7 Let X be the space defined in (4.6). Then X is a sepa-
rable Banach space.

Proof:
An element x in the linear span of {xnj } can be written as

x(g) =

M∑
n=1

2n∑
j=1

znj x
n
j (g) znj ∈ C, g ∈ G where M is a positive integer.

(4.7)
Since the linear span of {xnj } is dense in X and each znj ∈ C can be approxi-
mated by a corresponding complex number rnj with rational real and imaginary
parts arbitrarily near znj then X is separable. Since X is a closed subspace of a
Banach space it also a Banach space. �

We have defined the Banach space X and by using the basic ideas from Section
4.2 we will prove in several steps the following result

THEOREM 4.8 Let X be the separable complex Banach space defined above.
Then there exists a choice of εnj in (4.5) and partitions W+

n and W−n of Hn such
that X does not have the approximation property.

4.4 The biorthogonal functionals αnj ∈ X∗

It is important to notice at this point that the characters of each group Gn
are mutually orthogonal by Theorem A.5. Since the groups Gn are pairwise
disjoint, it follows from (4.5) that {xnj } is an orthogonal system in `2(G) with
the scalar product defined by

(x, z) =
∑
g∈G

x(g)z(g). (4.8)

for x, z ∈ X.

Now for n > 0 and 1 6 j 6 2n we define for each x ∈ X the functionals

αnj (x) =
1

3 · 2n
∑
g∈Gn

εnj σ
n
j (g−1)x(g) =

1

3 · 2n
∑
g∈Gn

εnj σ
n
j (g)x(g). (4.9)
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PROPOSITION 4.9 The functionals αnj : X → C are bounded linear func-
tionals on X with ‖αnj ‖ 6 1.

Proof:
Let x be an element of X. Since |εnj | = 1 and |σnj (g)| = 1 for all g ∈ Gn we have

|αnj (x)| 6 1

3 · 2n
∑
g∈G
|x(g)| 6 sup

g∈G
|x(g)| = ‖x‖∞

for any x ∈ X, and the proof is complete. �

PROPOSITION 4.10 (i) For each n > 0 and j = 1, . . . , 2n the system {xnj , αnj },
is a biorthogonal system or equivalently αnj (xmi ) = δijδmn.
(ii) If n > 1, 1 6 j 6 2n αnj satisfies the following identity

αnj (x) =
1

3 · 2n−1
∑

g∈Gn−1

τn−1j (g−1)x(g) =
1

3 · 2n−1
∑

g∈Gn−1

τn−1j (g)x(g). (4.10)

Proof:
(i) By construction we have that |Gn| = 3 · 2n and by (4.5) we have for g ∈ Gn,
xnj (g) = εnj σ

n
j (g), with |σnj (g)| = 1 and (εnj )2 = 1. Apply (4.9) to x = xnj to

obtain

αnj (xnj ) =
1

3 · 2n
∑
g∈Gn

εnj σ
n
j (g)xnj (g) =

1

3 · 2n
∑
g∈Gn

(εnj )2|σnj (g)|2 = 1. (4.11)

By (4.9) we have for an arbitrary function xmi

αnj (xmi ) =
1

3 · 2n
εnj
∑
g∈Gn

σnj (g)xmi (g). (4.12)

We distinguish the following cases.
Case 1: If n /∈ {m,m − 1}, then Gn ∩ (Gm−1 ∪ Gm) = ∅, by the definition of
xnj , xmi (g) = 0 for g /∈ Gm−1 ∪Gm we infer that αnj (xmi ) = 0.
Case 2: If n = m− 1, then by (4.5) xmi (g) = τm−1i (g) = τni (g) for g ∈ Gm−1 =
Gn, from (4.12) and the orthogonality of the characters of Gn we infer:

αnj (xmi ) = αnj (xn+1
j ) =

1

3 · 2n
εnj
∑
g∈Gn

σnj (g)τni (g) = 0.

Case 3: If n = m, then since xmi (g) = εmi σ
m
i (g) = εni σ

n
i (g) for g ∈ Gm = Gn

from (4.12) and the orthogonality of the characters of Gn we obtain

αnj (xmi ) =
1

3 · 2n
εnj ε

n
i

∑
g∈Gn

σni (g)σnj (g) = 0 for i 6= j. (4.13)

This proves (i).
(ii) Let us denote the right hand side of (4.10) by α̃nj (xnj ) and calculate its value
for x = xnj and g ∈ Gn−1. Note that xnj (g) = τn−1j (g). Then

α̃nj (xnj ) =
1

3 · 2n−1
∑

g∈Gn−1

τn−1j (g)xnj (g) =
1

3 · 2n−1
∑

g∈Gn−1

|τn−1j (g)|2 = 1.
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so for x = xnj we have αnj (xnj ) = α̃nj (xnj ) = 1. Moreover if x = xmi with i,m
arbitrary

α̃nj (xmi ) =
1

3 · 2k−1
∑

g∈Gk−1

xmi (g)τn−1j (g), (4.14)

then by a similar computation we obtain again that α̃nj (xmi ) = 0 for all n 6= m
and all i, j as well as for n = m and i 6= j. This proves our assertion above
that αnj (xmi ) = α̃nj (xmi ) = δijδmn. Hence by linearity and continuity αnj = α̃nj . �

4.5 The functionals βn on B(X)

For each n > 0 we define the subspace Xn of X as the linear span of {xnj }2
n

j=1

by
Xn =

∨
{xn1 , . . . , xn2n} dimXn 6 2n

For n > 0 we will define the average trace functionals βn ∈ (B(X))∗ by

βn(T ) =
1

2n

2n∑
j=1

αnj (Txnj ) xnj ∈ X, (4.15)

where the αnj ’s are defined by (4.9) or equivalently by (4.10). Since {αnj , xnj } is
a biorthogonal system we can use Theorem 4.3 and the observation following it
to see that each βn is induced by a functional γn on `∞ of the following form

βn(T ) = γn(L(T )) = γn{αnj (Txnj )}∞n=1 xnj ∈ X.

Clearly and in accordance with notations used in the previous and in this section
βn = γn ◦L, where the γn is a functional on `∞ of the type described in the Ex-
ample 4.6, with |Mn| = |Xn| = 2n. These functionals can be easily computed
explicitly using an enumeration of the index set {(j, n), n > 0, 1 6 j 6 2n}.
Recall that our goal is to construct a functional β which is τ -continuous and
induced by a Banach limit. In other words, β needs to be approximated by the
functionals βn in an appropriate way. To this end we need a good estimate of
the consecutive difference βn+1 − βn. Technically speaking, this is the heart of
the proof and we will need several technical lemmas gathered in the next section
in order to produce the desired estimate.

Using (4.9) for αnj and the linearity of the operator T we obtain

βn(T ) =
1

2n

2n∑
j=1

αnj (Txnj ) =
1

2n

2n∑
j=1

1

3 · 2n
∑
g∈Gn

εnj σ
n
j (g−1)(Txnj )(g) =

1

3 · 22n
∑
g∈Gn

T

( 2n∑
j=1

εnj σ
n
j (g−1)xnj

)
(g) (T ∈ B(X), n = 0, 1, 2, . . .). (4.16)
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By applying (4.10) we obtain

βn+1(T ) =
1

2n+1

2n+1∑
j=1

αn+1
j (Txn+1

j ) =
1

2n+1

2n+1∑
j=1

1

3 · 2n
∑
g∈Gn

τnj (g−1)(Txn+1
j )(g) =

1

3 · 22n+1

∑
g∈Gn

T

( 2n+1∑
j=1

τnj (g−1)xn+1
j

)
(g) (T ∈ B(X), n = 0, 1, 2, . . .).

(4.17)
Hence by (4.16) and (4.17) for each n = 0, 1, 2, . . . we have

βn+1(T )− βn(T ) =
1

3 · 2n
∑
g∈Gn

T (φng ), (4.18)

where, for the sake of simplicity, we have denoted

φng =
1

2n+1

2n+1∑
j=1

τnj (g−1)xn+1
j − 1

2n

2n∑
j=1

εnj σ
n
j (g−1)xnj ∈ X, g ∈ Gn. (4.19)

So each φng is the difference of an element of Xn+1 and one of Xn and in partic-
ular elements of the Banach space X. Use (4.18) and recall that the group Gn
has 3 · 2n elements to obtain the following inequality

|βn+1(T )− βn(T )| =
∣∣∣∣ 1

3 · 2n
∑
g∈Gn

T (φng )

∣∣∣∣ 6 sup
g∈Gn

‖Tφng ‖, g ∈ Gn (4.20)

In the next Proposition using the definition of xnj given by (4.5) we will calculate
φng (h) for g ∈ Gn and for h ∈ G.

PROPOSITION 4.11 Let n > 0 and g ∈ Gn. Then for h ∈ G =

∞⋃
n=0

Gn we

have

φng (h) =



(i)
1

2n+1

2n+1∑
j=1

εn+1
j τnj (g−1)σn+1

j (h) (h ∈ Gn+1)

(ii)
1

2n

(
1

2

2n+1∑
j=1

τnj (g−1h)−
2n∑
j=1

σnj (g−1h)

)
(h ∈ Gn)

(iii) − 1

2n

2n∑
j=1

εnj σ
n
j (g−1)τn−1j (h) (h ∈ Gn−1, n > 0)

(iv) 0 otherwise
(4.21)

(v) In particular |φn−1g (h)| = |φnh−1(g−1)| for g ∈ Gn−1, h ∈ Gn.

Proof:
(i) We start by considering an h ∈ Gn+1. From (4.5) we have

xn+1
j (h) =


τnj (h) h ∈ Gn
εn+1
j σn+1

j (h) h ∈ Gn+1

0 otherwise,
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and

xnj (h) =


τn−1j (h) h ∈ Gn−1
εnj σ

n
j (h) h ∈ Gn

0 otherwise.

Thus, for any g ∈ Gn

φng (h) =
1

2n+1

2n+1∑
j=1

τnj (g−1)xn+1
j (h)− 1

2n

2n∑
j=1

εnj σ
n
j (g−1)xnj (h) =

1

2n+1

2n+1∑
j=1

εn+1
j τnj (g−1)σn+1

j (h),

where we have used the fact that xnj (h) = 0 for h ∈ Gn+1.
(ii) for h ∈ Gn we have

φng (h) =
1

2n+1

2n+1∑
j=1

τnj (g−1)xn+1
j (h)− 1

2n

2n∑
j=1

εnj σ
n
j (g−1)xnj (h)

=
1

2n+1

2n+1∑
j=1

τnj (g−1)τnj (h)− 1

2n

2n∑
j=1

εnj σ
n
j (g−1)σnj (h)

=
1

2n

(
1

2

2n+1∑
j=1

τnj (g−1h)−
2n∑
j=1

σnj (g−1h)

)
.

(iii) For h ∈ Gn−1, n > 1 xnj (h) = τn−1j (h) and the first sum in (4.19) is
identically zero. Thus we get

φng (h) = − 1

2n

2n∑
j=1

εnj σ
n
j (g−1)xnj (h) = − 1

2n

2n∑
j=1

εnj σ
n
j (g−1)τn−1j (h)

(iv) Clear.
(v) The verification of this equality is straightforward and has been omitted. �

4.6 Probability and partition lemmas

We start by proving two inequalities which we will need for the proof of
Lemma 4.13

LEMMA 4.12 For t ∈ R we have:

cosh t 6 et
2

, (4.22)

and

1

3
e2t +

2

3
e−t 6 e2t

2

. (4.23)
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Proof:
Note that

cosh t =
et + e−t

2
=

1

2
(1 + t+

t2

2
+ . . .) +

1

2
(1− t+

t2

2
− . . .) =

∞∑
n=0

t2n

(2n)!
6
∞∑
n=0

t2n

n!
= et

2

,

which proves (4.22).
Since 2t 6 2t2 and −t 6 2t2 for t > 1, the following inequality

1

3
e2t +

2

3
e−t 6 e2t

2

t > 1

holds.
For t < 1, we have that

e2t + 2e−t =

∞∑
n=0

(2t)n + 2(−t)n

n!
=

∞∑
n=0

(2t)2n + 2(−t)2n

(2n)!
+

∞∑
n=0

(2t)2n+1 + 2(−t)2n+1

(2n+ 1)!
=

3 + 3t2 + t3 +

∞∑
n=2

(
22n + 2

(2n)!
+

22n+1 − 2

(2n+ 1)!
t

)
t2n

Now, since t < 1, for the factors inside brackets the following inequalities hold

22n + 2

(2n)!
+

22n+1 − 2

(2n+ 1)!
t <

22n+1

(2n)!
+

22n+1

(2n+ 1)!
=

22n+1(2n+ 1) + 22n+1

(2n+ 1)!
=

22n+1(2n+ 2)

(2n+ 1)!
<

3.22n(2n+ 2)

(2n+ 1)!
=

3.2n

n!
.

4n

(n+ 2) . . . (2n+ 1)
<

3 · 2n

n!

for all n > 2.
Considering that for t 6 1 the inequality t3 6 0 6 3t2 is valid and is equivalent
to 3t2 + t3 6 6t2 we get that

e2t + 2e−t 6 3 + (3t2 + t3) + 3

∞∑
n=2

2n

n!
t2n

6 3 + 6t2 + 3

∞∑
n=2

2n

n!
t2n =

∞∑
n=0

2n

n!
t2n = 3e2t

2

which proves (4.23). �

The following Lemma was originally proved by Kahane in [Ka]. It will be used
to show that there are choices of εnj and suitable partitions of each character
group Hn in such a way that we will be able to get good estimates for the
differences |βn+1 − βn|.
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LEMMA 4.13 (a) Let α1, . . . , αN be complex numbers and let ε1, . . . , εN be
chosen independently at random, taking the values +1 or −1, each with proba-
bility 1

2 . Then

P


∣∣∣∣∣∣
N∑
j=1

αjεj

∣∣∣∣∣∣ > 3
√

3

 N∑
j=1

|αj |2 logN

 1
2

 < 3
√

3

N3
. (4.24)

(b) Let α1, . . . , αN be complex numbers and let ρ1, . . . , ρN be chosen indepen-
dently at random, taking the values +2 or −1, each with probability 1

3 and 2
3

respectively. Then

P


∣∣∣∣∣∣
N∑
j=1

αjρj

∣∣∣∣∣∣ > 3
√

3

 N∑
j=1

|αj |2 logN

 1
2

 < 3
√

3

N3
. (4.25)

Proof:
(a) In order to prove the above lemma, part (a), assume first that the αj ’s are
real and

∑N
j=1 |αj |2 = 1. Let (Ω, P ) be the probability space, X a (measurable)

random variable from Ω taking the values +1 and -1, and let E(X) be the
expectation of the random variable X. Then

E(X) = P (X = 1) + P (X = −1) = 0.

Since X is measurable so is eX . Using the inequality

e|t| 6 et + e−t, t ∈ R,

we have for all t ∈ R and for λ > 0,

E
(
eλ|

∑N
j=1 αjεj|

)
6 E

(
eλ

∑N
j=1 αjεj

)
+ E

(
e−λ

∑N
j=1 αjεj

)
=

N∏
j=1

E(eλαjεj ) +

N∏
j=1

E(e−λαjεj ) = 2

N∏
j=1

(
1

2
eλαj +

1

2
e−λαj

)
. (4.26)

Using the independence of the random variables eλαjεj . Note that

N∏
j=1

(
1

2
eλαj +

1

2
e−λαj

)
=

N∏
j=1

coshλαj 6
N∏
j=1

e(λαj)
2

in view of (4.22). Since
∑N
j=1 |αj |2 = 1, we get

E(eλ|
∑N
j=1 αjεj |) 6 2

N∏
j=1

e(λαj)
2

= 2eλ
2 ∑N

j=1 |αj |
2

= 2eλ
2

.

Consequently,

E(eλ|
∑N
j=1 αjεj |−λ

2−6 logN ) = e(−λ
2−6 logN)E(eλ|

∑N
j=1 αjεj | 6

e(−λ
2−3 logN) · 2eλ

2

6 2e−6logN =
2

N3
.



46 Chapter 4. A space without the approximation property

With λ =
√

3 logN , we obtain

E(e
√
3 logN |

∑N
j=1 αjεj |−9 logN ) 6

2

N3
(4.27)

We shall now use the observation that for any random variable X and any
λ > 0 we have P (X > 0) 6 E(eλX). Applying this inequality to X =

|
∑N
j=1 αjεj | − 3

√
3 logN and λ =

√
3 logN , we get that

P

∣∣∣∣∣∣
N∑
j=1

αjεj

∣∣∣∣∣∣− 3
√

3 logN > 0

 6 (4.28)

E(e
√
3 logN |

∑N
j=1 αjεj |−9 logN ) 6

2

N3
<

3
√

3

N3
,

which proves the lemma for
∑N
j=1 |αj |2 = 1, αj ∈ R.

Now for any real α1, . . . , αN not all zero we have

P

∣∣∣∣∣∣
∑N
j=1 αj√∑N
k=1 |αk|

2
εj

∣∣∣∣∣∣ > 3
√

3 logN

 =

P


∣∣∣∣∣∣
N∑
j=1

αjεj

∣∣∣∣∣∣ > 3
√

3 logN

 N∑
k=1

|αk|
2
 1

2


which proves that the lemma holds for any real α1, . . . , αN .
Assume that the αj ’s are complex numbers , say αj = sj + itj , (j = 1, . . . , N).
Hence |αj |2 = |sj |2 + |tj |2 (j = 1, . . . , N) and

∣∣∣ N∑
j=1

αjεj

∣∣∣2 =
∣∣∣ N∑
j=1

sjεj

∣∣∣2 +
∣∣∣ N∑
j=1

tjεj

∣∣∣2
Let

B1 =
{
ω ∈ Ω : |

N∑
j=1

sjεj(ω)|2 > 27

N∑
j=1

|sj |2 logN
}
,

B2 =
{
ω ∈ Ω : |

N∑
j=1

tjεj(ω)|2 > 27

N∑
j=1

|tj |2 logN
}
,

B =
{
ω ∈ Ω : |

N∑
j=1

αjεj(ω)|2 > 27

N∑
j=1

|αj |2 logN
}
.

Then B ⊆ B1∪B2, which implies by the subadditivity of the probability measure
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P that P (B) 6 P (B1) + P (B2). Thus by inequality (4.28) above, we have

P


∣∣∣∣∣∣
N∑
j=1

αjεj

∣∣∣∣∣∣
2

> 27

N∑
k=1

|αj |2 logN

 6 P
| N∑

j=1

sjεj |2 > 27

N∑
k=1

|sj |2 logN

+

P

| N∑
j=1

tjεj |2 > 27

N∑
k=1

|tj |2 logN

 6 2

N3
+

2

N3
6

3
√

3

N3
.

This proves part (a) of the lemma for all complex numbers α1, . . . , αN .
(b) Replacing the εj by ρj , the first part of the proof is similar to part (a) until
(4.26) which becomes

E
(
eλ|

∑N
j=1 αjρj|) 6 N∏

j=1

E(eλαjρj ) +

N∏
j=1

E(e−λαjρj ) =

N∏
j=1

(
1

3
e2λαj +

2

3
e−λαj ) +

N∏
j=1

(
1

3
e−2λαj +

2

3
eλαj ).

Assuming as in (a) that all αj ∈ R with
∑N
j=1 |αj |

2
= 1, and using (4.23) we

obtain

E(eλ|
∑N
j=1 αjρj |) 6

N∏
j=1

e2(λαj)
2

+

N∏
j=1

e2(λαj)
2

= 2eλ
2 ∑N

j=1 α
2
j = 2e2λ

2

.

Consequently,

E
(
eλ|

∑N
j=1 αjρj |−2λ

2−3 logN
)

= e−2λ
2−3 logNE

(
eλ|

∑N
j=1 αjρj |

)
6 2e−3logN =

2

N3
,

whence, putting λ =
√

3 logN , we obtain

E(e
√
3 logN |

∑N
j=1 αjρj |−9 logN ) 6

2

N3

This completes the proof for
∑N
j=1 |αj |2 = 1. The rest of the proof, i.e. gen-

eralization to all real and complex numbers is done as in the proof of part (a),
thus completing the proof of (b). �

LEMMA 4.14 For each n ∈ N let Gn be an abelian group with 3 · 2n elements
and let Hn be the set of all characters of Gn. Then for each n there exist two
disjoint subsets W+

n , W−n of Hn with cardinalities satisfying

|W+
n | = 2n, |W−n | = 2n+1 = 2 · 2n, (4.29)

(hence W+
n ∪W−n = Hn), such that∥∥∥∥∥∥2

∑
w∈W+

n

w −
∑

w∈W−n

w

∥∥∥∥∥∥
∞

6 36(n+ 1)
1
2 2

n
2 . (4.30)
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Proof:
Let Hn = {w1, . . . , w3·2n} be the group of all characters of Gn. We claim that
there exist number ρ1, . . . , ρ3·2n with ρj = 2 or ρj = −1, (j = 1, . . . , 3 ·2n), such
that ∣∣∣∣∣

3·2n∑
j=1

ρjwj(g)

∣∣∣∣∣ 6 36(n+ 1)
1
2 2

n
2 , g ∈ Gn. (4.31)

To prove this let ρ1, . . . , ρ3·2n be chosen independently at random, taking the
values 1

3 and 2
3 respectively. For any fixed g ∈ Gn we have by (4.25) with

N = 3 · 2n and αj = wj(g) (hence |αj | = |wj(g)| = 1 for j = 1, . . . , 3 · 2n)

P


∣∣∣∣∣∣
3·2n∑
j=1

wj(g)ρj

∣∣∣∣∣∣ > 3
√

3

3·2n∑
j=1

log 3 · 2n
 1

2

 < 3
√

3

27 · 23n

so that

P


∣∣∣∣∣∣
3·2n∑
j=1

wj(g)ρj

∣∣∣∣∣∣ > 3
√

3

3·2n∑
j=1

log 3 · 2n
 1

2

for some g ∈ Gn

 6
∑
g∈Gn

P


∣∣∣∣∣∣
3·2n∑
j=1

wj(g)ρj

∣∣∣∣∣∣ > 3
√

3

3·2n∑
j=1

log 3 · 2n
 1

2

 < 3 · 2n

27.23n
3
√

3 < 1.

Thus

P


∣∣∣∣∣∣
3·2n∑
j=1

wj(g)ρj

∣∣∣∣∣∣ 6 3
√

3

3·2n∑
j=1

log 3 · 2n
 1

2

for all g ∈ Gn

 > 0.

Consequently there exists a choice of numbers ρ1, . . . , ρ3·2n with ρj = 2 or
ρj = −1, (j = 1, . . . , 3 · 2n), such that

∣∣∣ 3·2n∑
j=1

wj(g)ρj

∣∣∣ 6 3
√

3
( 3·2n∑
j=1

log 3 · 2n
) 1

2

=

9
√

2n(log 3 + n log 2) 6 18 · 2n2 (n+ 1)
1
2 g ∈ Gn, (4.32)

since log 3 + n log 2 6 4(n+ 1). This proves (4.31).
Now we shall show that by changing some of the ρj ’s (so as to be still either 2
or -1) and increasing the constant 18 appearing in (4.32), we can obtain both
(4.30) and

3·2n∑
j=1

ρj = 0. (4.33)

This would complete the proof since among the ρ1, . . . , ρ3·2n there must be
exactly 2n which are equal to 2 and exactly 2 ·2n = 2n+1 which are equal to −1.
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Applying (4.32) to the unit g = e ∈ Gn, since wj(e) = 1 for all j = 1, . . . , 3 · 2n,
we obtain ∣∣∣∣∣

3·2n∑
j=1

ρj

∣∣∣∣∣ =

∣∣∣∣∣
3·2n∑
j=1

ρjwj(e)

∣∣∣∣∣ 6 18 · 2n2 (n+ 1)
1
2 . (4.34)

Let us denote by m and k respectively the number of those ρj ’s which are equal

to 2, respectively equal to −1, then
3·2n∑
j=1

ρj = 2m−k and k = 3 · 2n−m, whence

3·2n∑
j=1

ρj = 2m− k = 3m− 3 · 2n = 3(m− 2n). (4.35)

Ifm = 2n, we are done since 3(m−2n) = 0 implies that |W+
n | = 2n = m, |W−n | =

2n+1, thus∣∣∣∣∣
3·2n∑
j=1

ρj

∣∣∣∣∣ =

∣∣∣∣∣
3·2n∑
j=1

ρjwj(e)

∣∣∣∣∣ =

∥∥∥∥∥∥2
∑

w∈W+
n

w −
∑

w∈W−n

w

∥∥∥∥∥∥
∞

6 18(n+ 1)
1
2 2

n
2 ,

and we get (4.30).
Assume that m > 2n. Select any set S of indices such that |S| = m − 2n and
ρj = 2 for all j ∈ S and put

ρ̃j =

{
1− ρj = −1 for j ∈ S

ρj for j ∈ {1, . . . , 3 · 2n}�S (4.36)

Then using the definition of ρ̃j , the fact that |wj(g)| = 1, from (4.34) and (4.35)
we obtain ∣∣∣ 3·2n∑

j=1

ρjwj(g)−
3·2n∑
j=1

ρ̃jwj(g)
∣∣∣ =

∣∣∣∑
j∈S

ρjwj(g)−
∑
j∈S

ρ̃jwj(g)
∣∣∣

since they are only different on S, and then∣∣∣∑
j∈S

(ρj − (1− ρj))wj(g)
∣∣∣ =

∣∣∣∑
j∈S

(2ρj − 1)wj(g)
∣∣∣ =

∣∣∣∑
j∈S

3wj(g)
∣∣∣ 6 (4.37)

3|S| = 3(m− 2n) =
∣∣∣ 3·2n∑
j=1

ρj

∣∣∣ 6 18(n+ 1)
1
2 2

n
2 . (4.38)

By (4.32), we deduce that∣∣∣ 3·2n∑
j=1

ρ̃jwj(g)
∣∣∣ 6 36(n+ 1)

1
2 2

n
2 , g ∈ Gn.

On the other hand by the definition of ρ̃j and (4.35), we have

3·2n∑
j=1

ρj −
3·2n∑
j=1

ρ̃j =
∑
j∈S

(2ρj − 1) =
∑
j∈S

3 =

3|S| = 3(m− 2n) =

3·2n∑
j=1

ρj
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so that
3·2n∑
j=1

ρ̃j = 0

and hence we have (4.33) for ρj replaced by ρ̃j . Finally in the case when
m − 2n < 0 the argument is similar: we choose a set of indexes T such that
|T | = 2n −m and choose ρj = −1 for ρj ∈ T and then replace 2n −m num-
bers ρj ’s which are -1 by ρ̃j = 2. This completes the proof of the Lemma 4.14. �

4.7 The τ -continuity of the functional β
Let W+

n and W−n be the partition of Hn given by Lemma 4.14. As before, for
each n let us denote by σn1 , . . . , σn2n , and τn1 , . . . , τn2n+1 the elements of W+

n and
W−n respectively. Thus, with A1 > 36 we can write (4.30) in the form∣∣∣∣∣2

2n∑
j=1

σnj (g)−
2n+1∑
j=1

τnj (g)

∣∣∣∣∣ 6 A1(n+ 1)
1
2 2

n
2 , (4.39)

Recall also the functions φng defined by (4.19)

φng =
1

2n+1

2n+1∑
j=1

τnj (g−1)xn+1
j − 1

2n

2n∑
j=1

εnj σ
n
j (g−1)xnj ∈ X, g ∈ Gn.

PROPOSITION 4.15 Let φng be as above. Then there exists choice of εnj =
±1 such that

‖φng ‖ 6 A2
(n+ 1)

1
2

2
n
2

,

where A2 is an absolute constant.

Proof:
Recall that for g ∈ Gn, n > 0 we have by (4.4)

‖φng ‖ = sup
h∈G
|φng (h)|.

We will consider different cases.
Case 1: Suppose that g, h ∈ Gn and apply Lemma 4.14 to obtain

|φng (h)| =
∣∣∣∣ 1

2n

(
1

2

2n+1∑
j=1

τnj (g−1h)−
2n∑
j=1

σnj (g−1h)

)∣∣∣∣ =

∣∣∣∣ 1

2n+1

( 2n+1∑
j=1

τnj (g−1h)− 2

2n∑
j=1

σnj (g−1h)

)∣∣∣∣ 6
2
n
2

2n+1
A1(n+ 1)

1
2 6 A1

(n+ 1)
1
2

2
n
2

Case 2: Recall first that by Proposition 4.11 |φn−1g (h)| = |φnh−1(g−1)| for g ∈
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Gn−1, h ∈ Gn. Thus for any fixed g ∈ Gn−1 and h ∈ Gn, apply Lemma 4.13 to
obtain

P


∣∣∣∣∣∣
N∑
j=1

αjεj

∣∣∣∣∣∣ > A1

 N∑
j=1

|αj |2 logN

 1
2

 < A1

N3
.

with N = 2n and αj = τnj (g−1)σnj (h) (thus
∣∣αnj ∣∣ = 1 for j = 1, 2, . . . , 2n),

P1(g, h) = P


∣∣∣∣∣∣
2n∑
j=1

εnj τ
n−1
j (g−1)σnj (h)

∣∣∣∣∣∣ > A1

 2n∑
j=1

log 2n

 1
2

 < A1

23n
,

and hence, considering αj , for any fixed g ∈ Gn and h ∈ Gn−1 we get

P2(g, h) = P


∣∣∣∣∣∣
2n∑
j=1

εnj σ
n
j (g−1)τn−1j (h)

∣∣∣∣∣∣ > A1

 2n∑
j=1

log 2n

 1
2

 < A1

23n
,

whence since |Gn−1| = 3.2n−1 and |Gn| = 3.2n we obtain for n large enough:

P

either

∣∣∣∣∣∣
2n∑
j=1

εnj τ
n−1
j (g−1)σnj (h)

∣∣∣∣∣∣ > A1

( 2n∑
j=1

log 2n
) 1

2

for some g ∈ Gn−1, h ∈ Gn

or

∣∣∣∣∣∣
2n∑
j=1

εnj σ
n
j (g−1)τn−1j (h)

∣∣∣∣∣∣ > A1

( 2n∑
j=1

log 2n
) 1

2

, for some g ∈ Gn, h ∈ Gn−1

 =

∑
g∈Gn−1

∑
h∈Gn

P1(g, h) +
∑
g∈Gn

∑
h∈Gn−1

P2(g, h) <

3 · 2n−1
∑
h∈Gn

P1(g, h) + 3 · 2n
∑

h∈Gn−1

P2(g, h) < 3 · 2n−1 A1

23n
+ 3 · 2n A1

23n
< 1,

that is for n large enough we have,

P


∣∣∣∣∣∣
2n∑
j=1

εnj τ
n−1
j (g−1)σnj (h)

∣∣∣∣∣∣ 6 A1

( 2n∑
j=1

log 2n
) 1

2

for all g ∈ Gn−1, h ∈ Gn and

∣∣∣∣∣∣
2n∑
j=1

εnj σ
n
j (g−1)τn−1j (h)

∣∣∣∣∣∣ > A1

( 2n∑
j=1

log 2n
) 1

2

for all g ∈ Gn, h ∈ Gn−1

 > 0
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Consequently, for n large enough, say n > n0, there exist signs εnj = ±1,
(j = 1, 2, . . . , 2n) such that∣∣∣∣∣∣

2n∑
j=1

εnj τ
n−1
j (g−1)σnj (h)

∣∣∣∣∣∣ 6 A1

 2n∑
j=1

n log 2n

 1
2

=

A1(2nn log 2)
1
2 = A22

n
2 n

1
2 (g ∈ Gn−1, h ∈ Gn),∣∣∣∣∣∣

2n∑
j=1

εnj σ
n
j (g−1)τn−1j (h)

∣∣∣∣∣∣ 6 A1

 2n∑
j=1

log 2n

 1
2

=

A1(2nn log 2)
1
2 6 A22

n
2 (n+ 1)

1
2 (g ∈ Gn, h ∈ Gn−1)

where A2 = (2 log 2)
1
2A1. But since each Gn is a finite set, the same inequalities

hold for n = 0, 1, 2, . . . , n0 by increasing A2 if necessary. By the definition of
φng ’s given in (4.21) above and by (4.7) we can infer that for any g ∈ Gn, and
n = 0, 1, 2, . . . we have

|φng (h)| 6 1

2n
A3(n+ 1)

1
2 2

n
2 = A3

(n+ 1)
1
2

2
n
2

Thus, there is a choice of ε = ±1 such that

sup
h∈G
|φng (h)| = ‖φng ‖ 6 A3

(n+ 1)
1
2

2
n
2

where A3 is an absolute constant. �

Consider the following subset K ⊂ X:

K = {x01} ∪ {(n+ 1)2φng : g ∈ Gn, n > 0} ⊂ X. (4.40)

We want to show that K is relatively compact. We apply Theorem 2.11. Since

‖φng ‖ 6 A3
(n+ 1)

1
2

2
n
2

, then (n+ 1)2‖φng ‖ 6 A3
(n+ 1)

5
2

2
n
2

→ 0 as n→∞,

which means that K is relatively compact.

PROPOSITION 4.16 With the above partition and choices of εnj = ±1 let

βn(T ) =
1

2n

2n∑
j=1

αnj (Txnj ), xnj ∈ X

then
β(T ) = lim

n→∞
βn(T ). (4.41)

exists for every T ∈ B(X) and defines a τ -continuous linear functional on B(X).

Proof:
By (4.20) we have the following inequality

|βn+1(T )− βn(T )| 6 sup
g∈Gn

‖Tφng ‖.
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Thus, for an element x ∈ K as in (4.40),

sup
g∈Gn

(n+ 1)2‖Tφng ‖ 6 sup
x∈K
‖Tx‖

or
sup
g∈Gn

‖Tφng ‖ 6 sup
x∈K

‖Tx‖
(n+ 1)2

.

We can thus conclude that

|βn+1(T )− βn(T )| 6 sup
x∈K

‖Tx‖
(n+ 1)2

for all T ∈ B(X). From here we will deduce that

(i) lim
n→∞

βn(T ) exists, and
(ii) β is τ -continuous.

To see (i) observe that since
∞∑
n=1

[
βn+1(T )−βn(T )

]
is absolutely convergent the

sequence

βN (T ) = β0(T ) +

N−1∑
n=1

[
βn+1(T )− βn(T )

]
(4.42)

is convergent that is the limit β(T ) exists.

To prove (ii) we first observe that

|β0(T )| = |α0
1(Tx01)| =

∣∣∣∣13ε01σ0
1(g−1)Tx01(g)

∣∣∣∣ =
1

3
‖Tx01‖ 6

1

3
sup
x∈K
‖Tx‖.

Hence, for all T ∈ B(X) by (4.42)

|β(T )| =
∣∣∣β0(T ) +

∞∑
n=1

(
βn+1(T )− βn(T )

)∣∣∣ 6 (4.43)

|β0(T )|+
∞∑
n=1

1

(n+ 1)2
sup
x∈K
‖Tx‖ 6 3 sup

x∈K
‖Tx‖ (4.44)

Thus by Theorem 2.19, β is τ -continuous and the proof is complete. �

Now the argument following Theorem 4.3 (see Example 4.6) shows that β is
a τ -continuous functional with β(I) = 1 and β(T ) = 0 for all T ∈ F(X). Con-
sequently the identity operator cannot be uniformly approximated by finite rank
operators in the topology τ , that means that the separable Banach space X does
not have the approximation property. This concludes the proof of Theorem 4.8.

Remark For convenience the above construction was carried out using complex
scalars. One can see that X also fails to have the approximation property has
a real Banach space. Using the fact that if T is a real-linear operator then

x→ 1

2

(
Tx− iT (ix)

)
is complex-linear.
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Appendix A

The characters of a group

In this appendix we will introduce some notions about the characters of a
group which are used in Chapter 3.

DEFINITION A.1 Let G be a group (not necessarily abelian) and let H =
Hom(G,S1), where S1 = {z ∈ C : |z| = 1} be the set of homomorphisms
from the group G to the multiplicative group S1 considered along with point-
wise multiplication

(χ1 ∗ χ2)(g) = χ1(g)χ2(g), χj ∈ H, g ∈ G. (A.1)

H is called the character group of G over C.

THEOREM A.2 The set H of all characters of G is an abelian group called
the character group of G. H has as the identity element the constant function
e : G→ S1, defined by e(g) = 1 for g ∈ G. And for each χ the inverse χ−1 = χ̄,
where χ̄ is the complex conjugate of χ.

THEOREM A.3 Let G be an abelian group with character group H. Then the
cardinalities of the groups G and H are equal and the two groups are isomorphic.

For the proofs of the above two theorems see [K], pages 438-439.

DEFINITION A.4 Let G be a finite group and define on its characters the
following natural scalar product

(x, z) =
1

|G|
∑
g∈G

x(g)z(g). (A.2)

THEOREM A.5 Let x and z be characters of G. Then (x, z) = 0 if x 6= z
and (x, z) = 1 if and only if x = z. Thus the characters of a group form an
orthogonal set.

Proof:
For h ∈ G we have

(x, z) =
∑
g∈G

x(g)z(g) =
∑
g∈G

x(hg)z(hg) = x(h)z(h)
∑
g∈G

x(g)z(g)

so that
∑
g∈G

x(g)z(g)(1− x(h)z(h)) = 0
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This implies that either ∑
g∈G

x(g)z(g) = 0

or for all h ∈ G x(h)z(h) = 1 i.e. x = z. �

EXAMPLE A.6 Let m > 1,m ∈ N, and consider the finite cyclic group Zm,
which we represent as {0, 1, . . . ,m − 1} with addition modulo m. The map-
ping k → e(

2πik
m ) is a character of Zm. Using Theorem A.3 we see that every

character of Zm has the form k → e(
2πikl
m ), where l is a fixed integer such that

0 6 l 6 m− 1.



Appendix B

Axioms of Probability

We present some basic concepts from probability theory. Let X be an arbitrary
set. A collection A of subsets of X is a σ-algebra on X if
a) X ∈ A,
b) for each set A that belongs to A, the set Ac belongs to A,

c) for each infinite sequence {Ai} ⊂ A, the set
∞⋃
i=1

Ai belongs to A,

Thus a σ-algebra on X is a family of subsets of X that contains X and is closed
under complementation, under the formation of countable unions, and under
the formation of countable intersections.

DEFINITION B.1 A probability measure defined on σ-algebra A of Ω is a
function P : A → [0, 1] that satisfies:
(a) P (∅) = 0 and P (Ω) = 1
(b) For every countable sequence {An}n>1 of elements of A, pairwise disjoint,
(i.e. An ∩Am = ∅ if n 6= m) one has

P (

∞⋃
n=1

An) =

∞∑
n=1

P (An)

Axiom (b) above is called countable additivity.

DEFINITION B.2 (a) Two events A and B (an event is a set in A) are
independent if

P (A ∩B) = P (A)P (B).

(b) A (possibly infinite) collection of events (Ai)i∈I is an independent collection
if for every finite subset J of I, one has

P (
⋂
i∈J

Ai) =
∏
i∈J

P (Ai).

DEFINITION B.3 A complex random variable is a measurable function X
from a probability space (Ω,A, P ) into C, that is X−1(G) ∈ A whenever G is
open in C.
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A random variable X represents an unknown quantity that varies with the out-
come of a random event. Before the random event, we know which values X
could possible assume, but we do not know which one it will take until the ran-
dom event happens. A random variable X is often thought of as representing a
numerical quantity connected to the outcome of a random experiment. If one
repeats the experiment, one will see values ofX corresponding to the frequencies
of the outcomes they represent. These frequencies are modelled by the proba-
bility measure. Thus in the long run, one would expect X to be the weighted
average of its values, with weights corresponding to the probability of attaining
those values. This motivates the name and definition of the expectation of X.

DEFINITION B.4 Let X be a real-valued random variable on a countable
probability space Ω = {ω1, ω2, . . .}. The expectation of X, denoted by E(X), is
defined as

E(X) =
∑
i

X(ωi)pi, where pi = P (ωi),

provided the series is absolutely convergent or X > 0.

THEOREM B.5 The expectation of a random variable is a linear operator.

THEOREM B.6 If X and Y are two independent real-valued random vari-
ables, then

E(XY ) = E(X)E(Y ),

or more generally if Xj’s are a family of random independent variables such
that each Xj has a finite expectation, then

E
( N∏
j=1

Xj

)
=

N∏
j=1

E(Xj).



Bibliography

[B] S. Banach, Theory of Linear Operations, North-Holland 1987.

[Bn] J. Bourgain and O. Reinov, On the approximation properties for the space
H∞, Math. Nachr. 122 (1985), pp. 19-27.

[Bo] S. Botchkarev, Existence of a basis in the space of functions analytic in
the disk, Mat. Sb. 95 (137)(1974), pp. 3-18.

[C] J. Conway, A Course in Functional Analysis, Springer-Verlag, New York
1990.

[D] A. Davie, The approximation property in Banach spaces , Bull. London
Math. Soc. 5 (1973), pp. 261-266.

[E] P. Enflo, A counterexample to the approximation problem in Banach
spaces, Acta Math. 130 (1973), pp. 309-317.

[F] T. Figiel, Factorization of compact operators and applications to the ap-
proximation property, Studia Math. 45 (1973), pp. 191-210.

[FW] T. Figiel and W. Johnsson, The approximation property does not imply
the bounded approximation property, Proc. Amer. Math. Soc. 41 (1973),
pp. 197-200.

[Fr] A. Friedman, Foundations of Modern Analysis, Dover Publications, 1982.

[G] A. Grothendieck, Produits tensoriels topologiques et espaces nucléaires.
Mem. Amer. Mat. Soc. 16, Ch. I pp. 1-191. Ch. II pp. 1-140 (1955).

[J] J. Jacod and P. Protter, Probability Essentials, Springer Verlag, Berlin
1992.

[Ka] J.-P. Kahane and R. Salem, Some Random Series of Functions, Cam-
bridge University Press, 1993

[K] A. I. Kostrikin, Introduction to Algebra, Springer Verlag, Berlin 1982.

[L] J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces, Springer Ver-
lag, Berlin 1977.

[Lu] W. Lusky, On Banach spaces with the commuting bounded approximation
property, Arch. Math. (Basel) 58 (6) (1992), pp. 568-574.

[M] D. Mauldin, The Scottish Book, Birkhäuser 1981.

59



60 BIBLIOGRAPHY

[Meg] R. Megginson, An Introduction to Banach Space Theory, Springer Verlag,
New York 1998.

[N] O. Nygård, Approximation, boundedness, surjectivity, Dr. scient. thesis,
Bergen Univ. 2001.

[R] W. Rudin, Functional Analysis, McGraw- Hill, New York 1973.

[Sc] H. Schaeffer, Topological Vector spaces, Springer Verlag, New York 1999.

[Sch] J. Schauder, Zur Theorie stetiger Abbildungen in Funktionalräumen,
Math. Zeit. 26 (1927) 47-65, pp. 417-431.

[S] I. Singer, Bases in Banach Spaces, Springer Verlag, Berlin 1970.

[Sz1] A. Szankowski, Subspaces without the approximation property, Israel J.
Math 30 (1978), pp. 123-129.

[Sz2] A. Szankowski, B(H) does not have the approximation property, Acta
Math. 146 (1981), pp. 89-108.

[Sza] S. Szarek, A Banach space without a basis, which has the bounded ap-
proximation property, Acta Math. 159 (1987), pp. 81-98.

[Y] K. Yosida, Functional Analysis, Springer Verlag, Berlin 1980.

[Z] A. Zygmund, Trigonometric Series, Cambridge University Press.


