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Abstract
I explore the logic of ground. I first develop a logic of weak ground. This logic
strengthens the logic of weak ground presented by Fine in his ‘Guide to Ground.’
This logic, I argue, generates many plausible principles which Fine’s system leaves
out. I then derive from this a logic of strict ground. I argue that there is a strong
abductive case for adopting this logic. It’s elegant, parsimonious and explanatorily
powerful. Yet, so I suggest, adopting it has important consequences. First, it means
we should think of ground as a type of identity. Second, it means we should reject
much of Fine’s logic of strict ground. I also show how the logic I develop connects
to other systems in the literature. It is definitionally equivalent both to Angell’s logic
of analytic containment and to Correia’s system G.

Keywords Logic of ground · Grounding · Identification · Analytic containment

1 Introduction

Many philosophers think there is a distinctive type of non-causal explanation. The
term ‘in virtue of ’ can express this type of explanation. But it is now commonly
expressed with the term ‘grounds.’ We can locate the intended notion by pointing to
paradigmatic examples. Consider the relationship between sets and their members.
The existence of these members is thought to explain the existence of sets. This
explanatory connection is a connection of ground. The same is true of the relation
between composite objects and their parts and between abstracta and concreta. The
existence of parts is often thought to explain the existence of wholes. The existence
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of concreta is often thought to explain the existence of abstracta. These explanatory
connections are connections of ground. We also express such connections when we
say that the physical explains the mental, the natural explains the normative and the
determinate explains the determinable. These are all connections of ground.

Many philosophers think ground is important. Several think it has general appli-
cation throughout philosophy. Several think it plays a central role in metaphysics.
Some think that metaphysics should aim to determine what grounds what. Some think
that we should state key metaphysical theories in terms of ground. Some think that
questions of ground play a crucial role in determining what is real.1 If any of this
is right, it’s important to gain a theoretical understanding of ground. In this paper I
aim to contribute to such an understanding. In particular, I aim to explore the logic
of ground. The logic of ground comprises general claims about what grounding con-
nections things stand in. I’ll focus on what grounding connections truth-functional
propositions stand in. For instance, perhaps disjunctions are grounded in their dis-
juncts. Perhaps conjunctions are grounded in their conjuncts.2 To explore the logic
of ground is to explore this kind of claim.

The most influential logic of ground is the one Kit Fine develops in ‘Guide to
Ground.’3 Fine takes a specific notion of ground –weak ground– as fundamental. I
will do the same. I aim to first get the logic of weak ground right. I then define other
notions of ground in terms of weak ground. In Section 3 I’ll outline Fine’s logic of
weak ground. In Sections 4 and 5 we’ll look at various pressures to strengthen Fine’s
system. In Section 5 we’ll also see the most interesting consequence of strengthen-
ing Fine’s system: it pushes us to think of ground as a type of identity. I sum up the
strengthened system –called LWG– in Section 6. In Section 8 we’ll see the logic of
strict ground this system generates. In Sections 7, 9 and 10 we’ll see how it con-
nects to others in the literature. In Section 7 we’ll see it’s definitionally equivalent to
Angell’s logic of analytic containment. In Section 9 we’ll see it’s incompatible with
almost all the rules Fine thinks govern strict full ground. And in Section 10 we’ll
see that it’s definitionally equivalent to the system Correia considers in [2]. In some
sense, then, I will present a case for a reformulation of the system Correia considers.
But before doing all that we better make clear a few distinctions between different
notions of ground.

2 Distinctions of ground

Several distinctions between notions of ground will be important to this paper. The
most important such distinction is between strict ground and weak ground. Strict
ground never holds between a proposition and itself. Weak ground always holds
between a proposition and itself. It is the latter which is most central to the system
Fine presents in [13]. He proposes we understand strict ground as asymmetric weak
ground: A strictly grounds B iff A weakly grounds B and B doesn’t even help weakly

1See [19], [18, 110-14] and [10] for defences of each claim.
2Rosen [18, 117], Schnieder [20, 449], Fine [13] and Correia [3] all suggest this.
3See [13].
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ground A. Weak ground will also be central to my system. I aim to first formulate a
logic of weak ground (Sections 3–6) and then derive from this a logic of strict ground
(Section 8).

We can characterize weak ground a couple ways. One nice characterization is in
terms of strict ground and identification. On this characterization, A weakly grounds
B iff A strictly grounds B or for A to be the case just is for B to be the case.4 The
idea is that weak ground is strict ground or identification. What is identification? It’s
an identity-like connection between sentences. It’s the notion expressed by claims
like ‘for water to be wet just is for H2O to be wet’ and ‘for there to be squares just
is for there to be rectangular equilaterals.’ In these claims ‘water is wet’ is identified
with ‘H2O is wet’ and ‘there are squares’ with ‘there are rectangular equilaterals.’
Like identity, identification is reflexive, symmetric and transitive. And, like identity,
identification obeys a version of Leibniz’s Law. We’ll see what version in Section 5.
If the reader doesn’t get the notion, they can consult [9].

Let’s give a second characterization of weak ground. This turns on explanatory
subsumption. On this characterization, A weakly grounds B iff A explains everything
B explains.5 A weak ground of a proposition shares that proposition’s explanatory
role. We could take the relevant explanations to just be ground-theoretic explanations.
Then, this allows us to define weak ground solely in terms of strict ground. We can
say that A weakly grounds B iff A strictly grounds everything B strictly grounds. So
we have two ways to think of weak ground.6

Another important distinction is between factive and non-factive ground. Fac-
tive ground connects only truths. Non-factive ground also connects falsehoods. One
can define factive (full) ground in terms of non-factive ground. The definition is: A
factively grounds B iff A non-factively grounds B and A obtains. It doesn’t seem
possible to define non-factive ground in terms of factive ground. This provides rea-
son to take non-factive ground as more basic. The greater elegance of the rules for
non-factive ground provides more reason. Quite generally, if we have the rule: A
non-factively grounds B, then we have the rule: if A, then A factively grounds B. The
rules for factive grounds are just restrictions of the rules for non-factive ground. As a
result up until Section 10 I will be entirely concerned with non-factive ground. Only
in Section 10 will we consider any rules for factive ground.

The third important distinction is between partial and full ground. I’ll say A is
a partial ground for B iff A, perhaps together with some other propositions, fully
grounds B. In this case, A helps ground B. For example, A might partially ground

4Correia makes the same suggestion in [5, 516].
5Amongst theorists of ground, deRosset has expressed the most scepticism of weak ground in print [8].
He points out that this characterization may be problematic when the generalization is satisfied vacu-
ously [8, 16-7]. For instance, suppose there are only three propositions, A, B and A ∧ B. Then plausibly
both A and A ∧ B strictly fully ground nothing, and so strictly fully ground the same things. Hence, by
this characterization, they weakly ground one another. But this seems implausible. Although insightful, I
think this is non-problematic. As deRosset also points out, we can escape this particular problem by stip-
ulating that every proposition strictly grounds some further proposition. This makes the denuded worlds
deRosset envisages impossible. Moreover, this is a straightforward implication of popular rules such as

A < ¬¬A which are in Fine’s original system. With this rule, A would strictly ground ¬¬A, and A∧B

would not.
6Fine [13, 51-2] gives some more characterizations of weak ground.
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A ∧ C without fully grounding A ∧ C. This is because A, C fully ground A ∧ C. Up
until Section 7 we will only be concerned with full ground. Only when deriving the
logic of strict ground in Section 8 will partial ground become important.

These three distinction will play an important role in this paper. Some theorists
think there are further important distinctions between notions of ground. The most
influential such distinction is probably that between worldly and representational
ground.7 Correia describes the distinction as follows:

The two kinds of conceptions differ to an important extent in how fine-grained
they take grounding to be. Assuming grounding to be a relation, on a worldly
conception it is natural to take the items related to be worldly items, say states
of affairs or situations, whereas on a representational conception it is natural to
take them to be representations, say propositions of some kind [5, 508].

I take no stand on whether we should make this further distinction. But if we do
the following questions arises: for which notion of ground do I aim to provide a
logic for? My answer is: whatever notion the explanatory claims at the start of this
paper express. This answer is insufficient only if those claims are ambiguous between
worldly and representational ground. But I doubt that those claims are so ambiguous.
This is because they fail the standard tests of ambiguity and, as Grice says, ‘senses
are not to be multiplied beyond necessity.’8 We should not posit ambiguity unless
we have compelling theoretical or intuitive reason to do so. So I will assume that the
explanatory claims with which we began are univocal. They express the target notion
of ground. It is for this notion which I will provide a logic. Perhaps there is some
other important notion of ground for which a different logic would be appropriate. But
if there is it would not seem to be the one at work in these central explanatory claims.

3 Fine’s logic of weak ground

We can now start exploring the logic of ground. I’ll begin by presenting a version
of Fine’s logic. This version will include those of Fine’s rules which deal with weak
full ground and some anodyne additions.9 It is this version which I think we should
strengthen. I will restrict myself to the truth-functional case. The vocabulary of this
systems contains the truth-functional connectives ¬ (negation), ∧ (conjunction) and
∨ (disjunction), with A → B (material implication) defined as ¬A ∨ B and A ↔ B

(material biconditional) defined as A → B ∧ B → A. Finally, we take ≤ to express
weak full ground.

We then define basic formulas as follows:10

7See [2, 255-57], [5, 508], [6, 58]. See also [3, 31-32] for a distinction between metaphysical, conceptual
and logical ground and [13, 38-40] for a distinction between metaphysical, natural and normative ground.
8For the tests see [22]. The quote expresses Grice’s ‘Modified Occam’s Razor’ from [15, 47]. Kripke
articulates similar sentiments in [16, 278].
9It also allows truth-functional compounds of grounding statements (e.g. ¬(A ≤ B)). This is necessary
for articulating adequate introduction rules for strict ground in Section 7.
10My definition is quite similar to Correia’s in [2, 259].
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– a, b, c . . . with or without numerical subscripts are basic formulas
– If a and b are basic formulas, then so are (a ∧ b), (a ∨ b) and ¬a

Now let a list consist of a sequence of any finite number of basic formulas sepa-
rated by ‘,’. Such sequences may contain just a single formula, or even no formulas
whatsoever. We also interpret the grammar of ‘,’ such that lists are invariant under
both permutation and repetition: a, b, c. . ., for instance, is treated as the same list as
c, b, a. . . and a is treated as the same list as a, a, a. . ..

We define well-formed formulas as follows:

– The basic formulas are wffs
– If � is a list and c is a basic formula, then (� ≤ c) is a wff11

– If A and B are wffs, then (A ∧ B), (A ∨ B) and ¬A are wffs

I use A, B, C . . . to indicate arbitrary formulas, �, � . . . for arbitrary lists (with or
without numerical subscripts) and will often omit brackets for readability. I will also
often write �1, �2 to denote the list consisting of all the sentences in �1 and �2.

With grammar established, we move on to proof theory. Fine presents a system of
natural deduction. Derivations take the form of a tree:

�1; �2 . . .

�

Nodes in the tree are expressions of the grounding language. � is the root of the
tree. The leaves of the tree are either inferred by rules of the form � or from
hypotheses �1; �2 . . . via the rules below. The intended interpretation of these trees
is ordinary validity: if the outermost leaves of a tree are true, then so must be the
root. So, they express general principles about how certain facts are grounded. I will
sometimes compress such trees by writing:

...
�

Where the vertical dots represent an unwritten set of the below steps. I’ll state the
steps on which an inference depends with a label on the left-hand side of each line.

We can now present the version of Fine’s system which interests us. Again, this
is a system which deals with weak full ground and the truth-functors. We can split
this up into a pure and impure logic. The pure logic abstracts away from the logical
structure of the grounding or grounded sentence. The impure logic takes account of
this structure. The former consists of just the following rules:

THE PURE LOGIC

�1 ≤ A1 �2 ≤ A2 . . . A1, A2 . . . ≤ C
CUT(≤/≤)

�1, �2 . . . ≤ C

Identity
A ≤ A

A A ≤ B
IMP

B

11This clause means I’m formulating ground as a sentential operator. This is common in the literature.
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CUT allows the chaining together of statements of weak ground. Identity ensures
every proposition weakly grounds itself. IMP says that if A weakly grounds B,
then A implies B. Fine omits IMP from his system because his interest is in the
inference relations between ground-theoretic forumulas.12 But it clearly comports
with his notion of ground. I add it because it will be essential in Section 5.

We now turn to the impure logic. The main idea here is that the strict grounds of logi-
cally complex truths conform to the classical truth-conditional semantic clauses (see [12,
105-6]). For instance, the classical truth-conditional semantic clause for A∧B is: A ∧ B
is true iff A is true and B is true. So, the impure logic comprises the following rules:13

THE IMPURE LOGIC

∨-I1
A ≤ A ∨ B

∨-I2
B ≤ A ∨ B

∧-I
A, B ≤ A ∧ B

¬∧-I1 ¬A ≤ ¬(A ∧ B)
¬∧-I2 ¬B ≤ ¬(A ∧ B)

¬∨-I ¬A,¬B ≤ ¬(A ∨ B)

¬¬-I
A ≤ ¬¬A

With these rules we can introduce logical complexity on the right-hand side of the
grounding operator. So they capture an attractive theory of the grounds of logically
complex propositions. We also add the classical rules for truth-functors. I trust these
are familiar. So I won’t outline them.

This completes our review of the relevant version of Fine’s system. Note that
amalgamation and transitivity are valid in this system:

�1 ≤ C �2 ≤ C . . .
Amalg

�1, �2 . . . ≤ C

A ≤ B B ≤ C
Trans

A ≤ C

These will be useful in some of the succeeding proofs. Apart from this note that
Fine’s system never allows us to introduce logical complexity on the left-hand side
of the grounding operator (except for a single ¬). So, although his system tells us
rather a lot about what grounds logically complex propositions, it tells us little about
what logical complex propositions ground.14 It does not, for instance, tell us whether
A∨B weakly grounds B ∨A. I think this creates quite general pressure to strengthen
the logic. That is because it seems to me that a logic of ground should give us some
general guidance about what logically complex propositions ground. In particular,
certain relevant principles seem to me valid. I will explore this in the next section.

12He confirmed this to me in conversation.
13In [13], Fine derives these from rules for strict ground. I don’t want to deal with strict ground yet. So, I
take them to be underived in this fragment.
14Fine briefly suggests some relevant principles in [13, 67]. But he does not go into detail.
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4 What do logically complex propositions ground?

4.1 Conjunction

In this section, I’ll explore some general pressure to strengthen this version of Fine’s
logic. We’ll begin by focusing on conjunction. Fine’s system contains no left-hand-
side introduction rules for weak ground. I think this renders it overly weak and
intuitively incomplete. It renders the system overly weak in the sense that it means
the system provides no general account of what conjunctions ground. It renders it
intuitively incomplete in that it means the system doesn’t generate intuitively valid
principles. This is where the pressure to strengthen Fine’s system comes from.

Let’s illustrate these problems by looking at some principles Fine’s system fails to
generate. Consider the following four principles:

Commutativity-∧
A ∧ B ≤ B ∧ A

Associativity-∧
(A ∧ B) ∧ C ≤ A ∧ (B ∧ C)

DeMorgan(1)-∧∨
(¬A ∧ ¬B) ≤ ¬(A ∨ B)

A ≤ B C ≤ D
Supplementation-∧

A ∧ C ≤ B ∧ D

These principles say certain grounding relations always hold. For instance, the commu-
tativity principle says thatA∧B always groundsB∧A. As I’ve said, Fine’s system cannot
generate these principles. That’s because it contains no left-hand side introduction
rules for conjunction. It doesn’t tell us what conjunctions ground. This seems to me a
problem in itself. We should prefer a system which gives us a general characterization
of the grounding relations conjunctions stand in. This connects to the theoretical virtue
of strength. I think we should quite generally prefer theories which tell us more about the
world.15 When it comes to conjunction Fine’s system suffers on this metric.

There is also a second –more serious– problem raised by these principles: they
seem to me pretty clearly valid. Consider first commutativity. Not only should one’s
logic of ground weigh in on when conjunction is commutative over grounding. It
should say conjunction is commutative over grounding. We can argue for this from
our characterizations of weak ground. The first –more important– argument rests on
our characterization of weak ground in terms of strict ground and identification. On
this characterization, A weakly grounds B iff A strictly grounds B or for A to be
the case just is for B to be the case. It seems to me that for A ∧ B to be the case
just is for B ∧ A to be the case. This is an intuition about identifications. From this
it follows that Commutativity-∧ must hold. The second –less important– argument

15Williamson is probably the most influential recent advocate of strength as a virtue of metaphysical
theories. See e.g., [21, 276-77]. He takes it to be one of the ‘normal criteria of scientific theory choice’
(ibid). Of course, some philosophers don’t think strength is a virtue at all. They differ with me (and
Williamson) on methodological grounds. Unfortunately, this sort of dispute is often intractable.
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rests on our characterization of weak ground as explanatory subsumption. It seems
to me that A ∧ B explains everything that B ∧ A explains. This is an intuition about
explanatory subsumption. From this it follows that A∧B weakly grounds B ∧A. So
both characterizations of weak ground support the commutativity principle.16

We can make similar arguments for associativity and DeMorgan. Consider the
former first. It seems to me that ((A ∧ B) ∧ C) just is (A ∧ (B ∧ C)). The differing
location of the brackets creates no real distinction. So it must be that the former
weakly grounds the latter. Now consider the DeMorgan principle. It seems to me that
for ¬A and ¬B to be the case just is for neither A nor B to be the case. If this is true,
then (¬A ∧ ¬B) must weakly ground ¬(A ∨ B). We can also give arguments from
the explanatory subsumption characterization for these rules. But I leave this to the
reader. I think this makes these rules very plausible.

The argument for Supplementation-∧ is not quite so straightforward. But it still
seems to me a very intuitive principle. In arguing for it, I’ll appeal to just our explana-
tory subsumption characterization of weak ground. It seems plausible to me that if
A explains everything B explains, and C explains everything D explains, then A ∧ C

explains everything B ∧ D explains. This is because otherwise there would have to
be something which A, C explained and B ∧D explained, but A∧C did not explain.
I think it is implausible that there is such a thing. So, by the explanatory subsumption
characterization of weak ground, Supplementation-∧ must follow.

So there are arguments from the characterization of weak ground for all these
principles. If these arguments are sound, then Fine’s system leaves something out.
Fortunately, there is a simple addition to Fine’s system which generates all these
principles. This addition allows us to introduce a conjunction on the left-hand side of
the grounding operator. In other words, it is a rule which tells us what conjunctions
ground. The rule is the following:

A, B, � ≤ C∧-Agglomeration
A ∧ B, � ≤ C

This says that everything (weakly) grounded by A, B, � is (weakly) grounded
by A ∧ B, �. This addition generates the above four rules (proofs below). So it
deals with the incompleteness from which Fine’s system suffers. And it enables a
simple, elegant answer to the general question about what conjunctions ground:A∧B

grounds C if and only if A, B ground C.17 So it also deals with the lack of strength
we saw in Fine’s system. I think this creates a strong abductive case for strengthening
this system by adding ∧-Agglomeration.

The proofs that ∧-Agglomeration generates the above rules are below. Note that
when I label a step ‘permutation’ I’m taking advantage of the permutation invariance of
lists (so A, B . . . is treated as the same list as B, A . . .) to reiterate the same premise.

16Why is the first argument more important? Because the intuition in the second seems to rely, at least to
some extent, on the intuition in the first.
17∧-I and transitivity entail that, if A ∧ B grounds C, then A,B ground C.
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Proof of Commutativity-∧
∧-I

B, A ≤ B ∧ A
Permutation

A, B ≤ B ∧ A∧-A
A ∧ B ≤ B ∧ A

Proof of Associativity-∧
Identity

A ≤ A
∧-I

B, C ≤ B ∧ C
∧-I

A, B ∧ C ≤ A ∧ (B ∧ C)
CUT

A, B, C ≤ A ∧ (B ∧ C)∧-A
A ∧ B, C ≤ A ∧ (B ∧ C)∧-A

(A ∧ B) ∧ C ≤ A ∧ (B ∧ C)
Proof of Supplementation-∧

A ≤ B C ≤ D
∧-I

B, D ≤ B ∧ D
CUT

A, C ≤ B ∧ D∧-A
A ∧ C ≤ B ∧ D

Proof of DeMorgan(1)-∧∨
¬∨-I ¬A,¬B ≤ ¬(A ∨ B)∧-A ¬A ∧ ¬B ≤ ¬(A ∨ B)

As I’ve said, this generates an abductive case for ∧-Agglomeration. The agglom-
eration rule settles questions Fine’s system leaves open. And it settles these questions
in the intuitively correct way. But once we’ve made this addition, it becomes very
tempting to make further additions to Fine’s system. In the next section we will see
how this plays out with disjunction.

4.2 Disjunction

In this section we’ll look at the pressure to supplement Fine’s system with a left-
hand side introduction rule for disjunction. As before the pressure has two sources.
We want a general account of what disjunctions ground and we want to validate
several specific principles. The specific principles are counterparts to the principles
we discussed in the previous section:

Commutativity-∨
A ∨ B ≤ B ∨ A

Associativity-∨
(A ∨ B) ∨ C ≤ A ∨ (B ∨ C)

DeMorgan(1)-∨∧
(¬A ∨ ¬B) ≤ ¬(A ∧ B)

A ≤ B C ≤ D
Supplementation-∨

A ∨ C ≤ B ∨ D

Fine’s system fails to generate these principles. This is because it tells us so little
about what logically complex propositions ground. But it seems to me that, like their
counterparts for conjunction, these principles are intuitively plausible. Again, this is
supported by our characterizations of weak ground. It seems to me that for A ∨ B to
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be the case just is for B ∨ A to be the case. So, by the identification characterization
of weak ground, the former must weakly ground the latter. And it seems to me that
A ∨ B explains everything B ∨ A explains. So, by the explanatory subsumption
characterization of weak ground, the former must weakly ground the latter. If so,
Fine’s system is incomplete. Similar arguments can be made for the other principles.

The case for these principles seems even stronger in the presence of ∧-Agglomeration.
The issue is one of (dis)unity. If one doesn’t accept these rules, then one treats disjunction
and conjunction quite differently. This makes the resultant system disunified. This is a
theoretical vice, at least in the sense that it incurs an obligation to explain why disjunction
and conjunction behave so differently. It’s not clear tome how such an explanation might
go. So, this creates more pressure to treat disjunction and conjunction symmetrically.

We can generate these principles by strengthening Fine’s system. Here we face
a choice: there are two different ways we might strengthen Fine’s system. The first
way is by adding the following rule:

A, � ≤ C B, � ≤ C∨-Agglomeration
A ∨ B, �, � ≤ C

Informally, this tells us that, given A and B are each individually part of some
ground for C, then A ∨ B is always part of a ground of C. This give us a general
account of what disjunctions ground: a disjunction grounds C if and only if both
of its disjuncts ground C. And it generates the principles with which we began the
section. This, it seems to me, makes up a good abductive case for supplementing
Fine’s system with this rule.

But I said we have a choice. We could instead add the following, slightly weaker, rule:

A, � ≤ C B, � ≤ C
Weak ∨-Agglomeration

A ∨ B, � ≤ C

The difference between this and ∨-Agglomeration is that, when applying this rule,
the things which help A and B ground C must be the same. This gives us the same
general account of when a disjunction grounds something. It also generates the prin-
ciples with which we began the section. So the abductive case for each rule initially
seems much the same. We should adopt at least one of these rules.

Which of these rules should we adopt? This hinges on how conjunction and
disjunction interact. Consider the following distributivity rules:

∧∨ D1
A ∧ (B ∨ C) ≤ (A ∧ B) ∨ (A ∧ C)

∧∨ D2
(A ∧ B) ∨ (A ∧ C) ≤ A ∧ (B ∨ C)

∨∧ D1
A ∨ (B ∧ C) ≤ (A ∨ B) ∧ (A ∨ C)

∨∧ D2
(A ∨ B) ∧ (A ∨ C) ≤ A ∨ (B ∧ C)

Both our disjunction agglomeration rules generate the first three of these rules.
But they differ on ∨∧D2. Only ∨-Agglomeration generates this rule. So if ∨∧D2
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is invalid we should prefer Weak ∨-Agglomeration. More than that, with this fourth
rule we can derive ∨-Agglomeration from Weak ∨-Agglomeration. So if ∨∧D2 is
valid we should prefer ∨-Agglomeration. I prove this in the Appendix A.1. So which
agglomeration rule to adopt hinges on the validity of ∨∧D2.

Is ∨∧D2 valid? Here are two points in its favour. First, it seems plausible that
for A ∨ (B ∧ C) to be the case just is for (A ∨ B) ∧ (A ∨ C) to be the case.18

Hence, by our characterization of weak full ground, ∨∧D2 must be valid. Second, it
seems inelegant for three of these distributivity rules to be valid but one to be invalid.
There is some unity in having all four distributivity rules. So, insofar as aesthetic
considerations move us, we should endorse ∨∧D2.

But we can also raise a point against it. ∨∧D2 implies the following rule:19

A, B ≤ (A ∨ (B ∧ C))

This causes problems for factive ground. We said A, B factively ground C iff A, B

non-factively ground C and A, B are both true. So, if A and B are true, it follows that
A, B factively grounds (A ∨ (B ∧ C)). Yet, as Krämer and Roski point out in [17],
there are at least apparent counterexamples to this result. For example, suppose C is
¬B. They suggest it is implausible that A, B factively ground (A∨(B∧¬B)). This is
because this implies that B helps factively ground (A ∨ (B ∧ ¬B)). But it seems like
A is the only factive ground for (A∨ (B ∧¬B)). So perhaps we should reject ∨∧D2.

I am not certain whether ∨∧D2 valid. But I find the points in its favour more
convincing. This is because if one endorses ∨∧D2 one can give a good explanation
of why B helps grounds (A ∨ (B ∧ ¬B)). One can say it is because (A ∨ (B ∧ ¬B))

just is (A ∨ B) ∧ (A ∨ ¬B)) and B clearly helps ground this latter proposition. This
seems to reduce the force of Krämer and Roski’s apparent counter-example.20 So I
think the argument for ∨∧D2 wins out. It seems we should adopt ∨-Agglomeration.
But that isn’t completely decisive: we’ll return to this at the end of Section 5. In the
next section we turn to agglomeration rules for negated conjunction and disjunction.

4.3 Negated disjunction and conjunction

Agglomeration rules for disjunction and conjunction are silent on what negations
ground. In this section, I deal with what negated conjunctions and disjunctions

18Correia [4, 111-12] rejects this, because the semantics he discusses for a logic of identification inval-
idates it. But I see this as a prima facie problem for his semantics rather than a problem for this claim.
Generally, I think semantics should be fashioned to fit our judgements about intuitive validities. Our
judgements about intuitive validities should not be refashioned so as to fit with a semantics.
19The derivation goes via ∧-I, ∨-I1, ∨-I2 and CUT.
20An alternative approach is to modify the connection between factive and non-factive ground. I see no
problem with B helping to non-factively ground (A ∨ (B ∧ ¬B)). The problem arises only if B helps to
factively ground (A∨(B∧¬B)). But exploring how to modify this connection would take us too far afield.
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ground. Again, Fine’s system does not provide any general account of this. To remedy
that I endorse the following rules:21

¬A,¬B, � ≤ C¬∨-Agglomeration ¬(A ∨ B), � ≤ C

¬A, � ≤ C ¬B, � ≤ C¬∧-Agglomeration ¬(A ∧ B), �, � ≤ C

My reasons for endorsing these rules parallel my reasons for endorsing the other
agglomeration rules: they make the system stronger and generate a host of intuitive
principles. These principles are as follows:

Commutativity-¬∨ ¬(A ∨ B) ≤ ¬(B ∨ A)

Associativity-¬∨ ¬((A ∨ B) ∨ C) ≤ ¬(A ∨ (B ∨ C))

DeMorgan(2)-∨∧ ¬(A ∨ B) ≤ ¬A ∧ ¬B

¬A ≤ ¬B ¬C ≤ ¬D
Supplementation-¬∨ ¬(A ∨ C) ≤ ¬(B ∨ D)

Commutativity-¬∧ ¬(A ∧ B) ≤ ¬(B ∧ A)

Associativity-¬∧ ¬((A ∧ B) ∧ C) ≤ ¬(A ∧ (B ∧ C))

DeMorgan(2)-∧∨ ¬(A ∧ B) ≤ ¬A ∨ ¬B

¬A ≤ ¬B ¬C ≤ ¬D
Supplementation-¬∧ ¬(A ∧ C) ≤ ¬(B ∧ D)

Again we can buttress the case for these principles by arguing from our charac-
terization(s) of weak ground. I think this makes up a strong case for the negated
disjunction and conjunction agglomeration principles. More generally, I think the
rules we have discussed so far form a nice unified package. It would seem to me odd
to have any of these rules and lack the others. This means that insofar as one accepts
any of these agglomeration rules, there is some pressure to accept them all. In the
next section we turn to a somewhat more peripheral area: double negations.

4.4 Double negation

What do double negations ground? Here I’m less confident. But I think the best
answer to this question is: double negations ground everything which the proposition
they double negate grounds. This means I endorse the following:

¬¬-Idempotence ¬¬A ≤ A

21Although here we might again endorse a slightly weaker ¬∧-Agglomeration rule.
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This is also a left-hand side introduction rule, in that it allows us to introduce double nega-
tions on the left of the grounding operator. There are three reasons to endorse this rule.
First, it increases the strength of the system. Second, if we accept the agglomeration rules,
accepting ¬¬-Idempotence creates unity. This is because the agglomeration rules imply
that conjunction, disjunction and their negated counterparts are idempotent. In otherwords:

∨-Idempotence
A ∨ A ≤ A

∧-Idempotence
A ∧ A ≤ A

¬∨-Idempotence ¬(A ∨ A) ≤ ¬A
¬∧-Idempotence ¬(A ∧ A) ≤ ¬A

If these truth-functors are idempotent, it seems nicely unified if double nega-
tion is idempotent. Another way of putting this is: if neither self-conjunction,
self-negated-conjunction, self-disjunction nor self-negated-disjunction generate a
ground-theoretic difference, why should double negation do so? The point is not
that it couldn’t possibly do so. But if it does that requires some explanation. No
explanation is obvious.

A third reason to endorse ¬¬-Idempotence is that it generates some plausible
principles. I think the most important such principles are those it generates in con-
cert with our agglomeration rules. We rely on ¬¬-Idempotence (together with the
agglomeration rules) to generate the bottom two of the following principles:22

∧∨ EQUIVALENCIES

A ∨ B ≤ ¬(¬A ∧ ¬B)

¬(¬A ∧ ¬B) ≤ A ∨ B

A ∧ B ≤ ¬(¬A ∨ ¬B)

¬(¬A ∨ ¬B) ≤ A ∧ B

These principles are plausible because ∨ and ∧ are usually thought to be inter-
definable in a way they clearly parallel. It’s often though that for (A ∨ B) to be the
case just is for ¬(¬A ∧ ¬B) to be the case and for (A ∧ B) to be the case just is for
¬(¬A ∨ ¬A) to be the case. By our characterization of weak ground, such claims
entail the above equivalencies. Hence, that ¬¬-Idempotence allows us to generate
them seems to me a major benefit.

This completes the case for ¬¬-Idempotence. The case for ¬¬-Idempotence
seems to me less strong than that for the agglomeration rules. And its addition fol-
lows less directly from our addition of the agglomeration rules. But it seems to me
strong enough to warrant endorsing this rule. In the next section we’ll explore another
more peripheral rule. This will allow us to generate a version of Leibniz’s law for
ground-theoretic equivalence.

22We generate the top two with the agglomeration rules.
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5 Ground-theoretic equivalence

The final rule(s) I will consider involves ground-theoretic equivalence. Ground-
theoretic equivalence is just mutual weak grounding. A and B are ground-
theoretically equivalent when A weakly grounds B and B weakly grounds A. We
could express this by introducing ‘≈’ (ground-theoretic equivalence) as a meta-
linguistic abbreviation for A ≤ B ∧ B ≤ A. But I prefer to treat ‘≈’ as a term in the
object language.23 To do this, we add the following clause to the definition of a wff:

– If a is a basic formula and b is a basic formula, then a ≈ b is a wff

We then introduce the following definition:

Def(≈)
A ≈ B ↔ A ≤ B ∧ B ≤ A

This captures the idea that ground-theoretic equivalence just is mutual weak ground.
What rules should ground-theoretic equivalence obey? Ground-theoretic equiva-

lence is clearly reflexive, transitive and symmetric. It also seems plausible that it
obeys a version of Leibniz’s law. This version of Leibniz’s law says that if A and B
are ground-theoretically equivalent, then replacing some As for B in any formula of
the defined language does not change whether that formula is true. In other words,
we want the following rule to be valid:

C A ≈ B
LL D

Where D is the result of substituting some As for Bs in C

I’ll now discuss what we need to add to the system to generate LL. In fact, we
need to add very little to establish LL. IMP straightforwardly establishes that, if C is
a truth-functional formula, the relevant instances of LL hold. So we just need to see
whether it also holds when C is a ground-theoretic formula. The other rules establish
this for almost all ground-theoretic formula. They just miss out those whose only logical
operators are a single negation. To get this final case, we need the following addition:

A ≈ B¬-Introduction ¬A ≈ ¬B

This says that if two sentences are ground-theoretically equivalent, then so are
their negations. I think this is intuitively plausible.24 In the Appendix A.2 I show how
to prove LL from this and the other rules. This strengthens the abductive case for
the rules we’ve discussed so far. Together, they generate a plausible rule governing
ground-theoretic equivalence.

In the rest of the section we’ll explore ground-theoretic equivalence a bit more.
First, let’s look at the connection between weak full ground and ground-theoretic

23This is only because it makes it slightly easier to establish the definitional equivalence between this
system and the version of Angell’s system discussed in Section 7.
24It’s worth noting that ¬-Introduction is already an admissible rule: if A and B are theorems, then the
relevant instance of it holds. The proof in [14, 202-5] essentially establishes this.
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equivalence. The connection is tight: we can actually just think of weak full ground as
a type of ground-theoretic equivalence. To show this, let �̂ be the result of conjoining
all the members of �, starting from the left. Then we can prove the following is a
theorem of LWG:

Reduction Theorem (≤/≈)
� ≤ B ↔ B ≈ B ∨ �̂

Here is the proof for when � has two members, A1 and A2:

Proof of Left-Right.

B ≤ B

[A1, A2 ≤ B]∧-A
A1 ∧ A2 ≤ B∨-A

B ∨ (A1 ∧ A2) ≤ B
∨-I1

B ≤ B ∨ (A1 ∧ A2)Def(≈)
...

B ≈ B ∨ (A1 ∧ A2)→-Intro
A1, A2 ≤ B → (B ≈ B ∨ (A1 ∧ A2))

Proof of Right-Left.

∨-I2
(A1 ∧ A2) ≤ B ∨ (A1 ∧ A2)

[B ≈ B ∨ (A1 ∧ A2)]Def(≈)
...

B ∨ (A1 ∧ A2) ≤ B
Trans, ∧-I

...
A1, A2 ≤ B→-Intro

(B ≈ B ∨ (A1 ∧ A2)) → A1, A2 ≤ B

We can then combine these to deduce A1, A2 ≤ B ↔ B ≈ B ∨ (A1 ∧ A2). When
� contains n members, the proof just contains n applications of ∧-agglomeration in
the first tree.25 This theorem makes it plausible that for A to weakly ground B just is
for A to be ground-theoretically equivalent to B ∨ A. It means we can think of weak
full ground as a type of ground-theoretic equivalence.

Now let’s look at the connection between ground-theoretic equivalence and iden-
tifications. As discussed in Section 2, identifications are identity-like connections
between two sentences. Consider the claims ‘for there to be bachelors just is for there
to be unmarried men’ and ‘for Cicero to be a good speaker just is for Tully to be
a good speaker.’ These are identifications. Identification has a few general features.
It too is transitive, reflexive and symmetric. And it too obeys a version of Leibniz’s
Law. In other words, if A just is B, one can substitute As for Bs in any formula (at
least of our defined language) without disturbing the truth of that formula.

What is the connection between ground-theoretic equivalence and identification?
I think A is ground-theoretically equivalent to B if and only if A just is B. Ground-
theoretic equivalence holds just in case identification holds. I think this because it

25It is thus important that lists are finite. We stipulated this in Section 3.
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provably follows from some plausible principles. Let ‘<’ stand for strict full ground
and ‘≡’ stand for identification. The principles are:

(i) A ≈ B ↔ ((A ≤ B) ∧ (B ≤ A)) Definition of (≈)
(ii) A ≤ B ↔ ((A ≡ B) ∨ (A < B)) Characterization of (≤)
(iii) ((A < B) ∧ (B ≤ C)) → A < C Trans (</≤)
(iv) ¬(A < A) Irreflexivity of (<)
(v) A ≤ A Identity
(vi) A ≡ B → (C → C[A/B]) Leibniz’s Law (≡)

Here C[A/B] is the result of substituting any A in C for B. Here’s the proof:

Left-to-right. Suppose A ≈ B. Then by (i) it follows that A ≤ B. So by (ii) it
follows that (A ≡ B) ∨ (A < B). So suppose that A < B. Since by assumption
A ≈ B, by (i) it follows that B ≤ A. So, by (iii), it follows that A < A. But
by (iv) ¬(A < A). So, by reductio, ¬(A < B). So, by disjunctive syllogism,
A ≡ B.

Right-to-left. Suppose A ≡ B. By (v), A ≤ A. So by (vi), we infer A ≤ B and
by another application of (vi) we infer B ≤ A. So by (i), A ≈ B.

The proof is obviously valid. And the principles on which it relies are compelling.
(i) is just a version of our definition of ground-theoretic equivalence. (ii) is our initial
characterization of weak full ground. This isn’t indisputable, but it seems hard to do
without it. (iii) is a type of transitivity principle. This is valid in both the logic of
strict ground I’ll present in Section 8 and in the logic Fine presents in [13]. (iv) says
strict full ground is irreflexive. (v) is core to both Fine’s and my logic of weak full
ground. And (vi) is a version of Leibniz’s Law that identification obeys. So it seems
that A is ground-theoretically equivalent to B if and only if A just is B.

This result makes it tempting to think that ground-theoretic equivalence just is
identification. And the combination of these two points sheds light on the nature of
weak full ground. For suppose that weak full ground really just is a type of ground-
theoretic equivalence. And suppose that ground-theoretic equivalence really just is iden-
tification. Then weak full ground just is a type of identification: for A to weakly fully
grounds B just is for B to be the same asB∨A.26 That our logic generates this smooth
connection between these notions is another point in its favour. Indeed, this seems to
me the most interesting consequence of adopting this logic. We’ll later see how this
illuminates both the logic of identification and the logic of ground (Section 7).

Before doing this, let’s extract one final pay-off from our discussion of ground-
theoretic equivalence. At the end of Section 4.2 I left it somewhat open whether
∨∧D2 was valid. So I left it open whether we should prefer the stronger or the
weaker disjunction agglomeration rule. But since then we’ve added some more rules.
With these extra rules, Weak ∨-Agglomeration entails ∨∧D2. The proof is in the
Appendix A.1. This proof relies on the DeMorgan rules, Leibniz’s Law and ¬¬-
Idempotence. This puts the defender of just the weaker agglomeration rule in a sticky
situation. They must deny some of these rules. But the case for all these rules seems

26Correia and Skiles [7, 18-21] defend a similar view.
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strong. This seems to me to clinch the case for the stronger disjunction agglomeration
rule.27

6 The system LWG

Let’s summarize the logic for weak ground I’ve proposed. We’ll call this the system
LWG. This logic takes its grammar from Sections 3 and 5. Its basic rules are all the
rules from Section 3 as well as:

A, B, � ≤ C∧-Agglomeration
A ∧ B, � ≤ C

A, � ≤ C B, � ≤ C∨-Agglomeration
A ∨ B, �, � ≤ C

¬A,¬B, � ≤ C¬∨-Agglomeration ¬(A ∨ B), � ≤ C

¬A, � ≤ C ¬B, � ≤ C¬∧-Agglomeration ¬(A ∧ B), �, � ≤ C

¬¬-Idempotence ¬¬A ≤ A
A ≈ B¬-Introduction ¬A ≈ ¬B

Def(≈)
A ≈ B ↔ A ≤ B ∧ B ≤ A

As I’ve said, the agglomeration rules form a nice unified package. Once one has
adopted these, there is also a strong abductive case for the idempotence rule. There is
also such a case for ¬-introduction, since this allows us to generate Leibniz’s Law. And
Def(≈) is just our definition of ground-theoretic equivalence. In the next section we’ll
see how this system connects to Angell’s system of analytic containment. This
shedsmore light on the connection between identification and weak full ground. It will
also allow us to compare our system to the system Correia considers in [2] (Section 10).

7 Angell’s system

In a series of publications dating from 1977, Angell developed various systems
of analytic containment.28 These systems model analytic equivalence. This is an
identity-like notion. The logic of weak ground I have developed (LWG) is definition-
ally equivalent to a slightly extended version of Angell’s system. This means it is
equivalent to a version of Angell’s system to which we add some definitions of new
operators. A definition of an operator, O, is a rule of the form � ↔ � where �

27Correia [4] essentially rejects Leibniz’s law since he rejects ¬-Intro. This seems to me the most
defensible set of LL instances to reject.
28See [1] for the most developed version.



A. Lovett

contains one occurrence of O and � contains no occurrences of O. In this section I’ll
outline the relevant version of Angell’s system. And I’ll explain why this matters.

The extended version of Angell’s system is the system AC∗. Fine presents this in
[14, 224]. In my presentation I just relabel some rules. The grammar and method of
proof of this system are the same as that of LWG. AC∗ then corresponds to E1-E17
below, together with the rules of classical logic:29

THE SYSTEM AC∗

A ≈ B
E1

B ≈ A

E4
A ≈ ¬¬A

A ≈ B B ≈ C
E2

A ≈ C

E5
A ≈ A ∧ A

A ≈ B
E3 ¬A ≈ ¬B

E6
A ≈ A ∨ A

E7
A ∧ B ≈ B ∧ A

A ≈ B
E9

(A ∧ C) ≈ (B ∧ C)

E11 ¬(A ∧ B) ≈ (¬A ∨ ¬B)

E13
(A ∧ B) ∧ C ≈ A ∧ (B ∧ C)

E15
A ∧ (B ∨ C) ≈ (A ∧ B) ∨ (A ∧ C)

E8
A ∨ B ≈ B ∨ A

A ≈ B
E10

A ∨ C ≈ B ∨ C

E12 ¬(A ∨ B) ≈ (¬A ∧ ¬B)

E14
(A ∨ B) ∨ C ≈ A ∨ (B ∨ C)

E16
A ∨ (B ∧ C) ≈ (A ∨ B) ∧ (A ∨ C)

A ≈ B
E17

A ↔ B

To get AC∗∗, we just add the following definition of weak full ground:

E18
� ≤ C ↔ C ≈ C ∨ �̂

Here we allow � to be a list with any number of conjunctions in �̂ replaced with
commas. I show in the Appendix A.3 that AC∗∗ is equivalent to LWG. So AC∗ is
definitionally equivalent to LWG.

This equivalence matters for a few reasons. Primarily, it matters because it means
E1–E17 is the complete truth-functional logic for identifications. At least, it does if
LWG is the complete logic of weak full ground and ground-theoretic equivalence just
is identification. This is a big deal: it matters what the correct logic of identification
is. Secondarily, it allows the logic of weak full ground and that of identification to
illuminate each other. We can see that the validity of the rules of LWG in some sense
explain the validity of those of AC∗∗, and vice versa. For instance, identification
is associative with respect to disjunction in part because weak full ground obeys
disjunction agglomeration. And weak full ground obeys disjunction agglomeration
in part because of the associativity of identification.30

Tertiarily, this result illuminates the semantics of weak full ground. This is because
Fine has presented a truthmaker semantics for AC∗. Roughly, he takes A ≈ B to be

29Angell’s system AC differs from this in that it lacks E17 and the rules for classical logic.
30Obviously, the relevant sense of explanation violates non-circularity. But there seems to me senses of
explanation which violate non-circularity. If one denies this, one should think that either the validity of
the rules for weak full ground explain those of identification, or vice versa (but not both). In this case, I
prefer the latter view.
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true iff every state which verifies A is a part of a state which verifies B, and vice
versa.31 He proves a version of this semantics is sound and complete for a subsystem
of AC∗. The subsystem is E1-E15 without classical logic. His semantics is also sound
for AC∗ although Fine has no completeness proof. This means such a semantics will
be sound and complete for the corresponding subsystem of LWG. This subsystem is
LWG without IMP and classical logic. It will also be at least sound for the system
LWG. This is some evidence that a truthmaker semantics will prove adequate for LWG.

8 The logic of strict ground

We have so far focused on the logic of weak full ground. I think LWG is the right
logic for this notion. Let’s now explore how this impacts the logic of strict and partial
ground. I’ll do this by presenting a definitional extension of the system LWG. To
develop this logic, we first need to expand our grammar. To the vocabulary of LWG,
we add three further ground-theoretic connectives: 
 (weak partial ground), ≺ (strict
partial ground) and < (strict full ground). We then replace the second clause of our
definition of a well-formed formula with the following two clauses:

– If a is a basic formula and b is a basic formula, then (a 
 b) and (a ≺ b) are wffs
– If � is a list and b is a basic formula, then (� ≤ b) and (� < b) are wffs

This expands the definition of a wff. It allows wffs which express strict and partial
ground. We now add some definitions of these new connectives. Following Fine, I
suggested that A strictly grounds B iff A weakly grounds B and B does not even help
weakly ground A. Let B � A just abbreviate ¬(B 
 A). Then this is well expressed
by the following definitions:

Def(≺)
A ≺ B ↔ A 
 B ∧ B � A

Def(<) A1, A2 . . .< B ↔ ((A1, A2 . . .≤ B)∧ ((B � A1) ∧ (B � A2))) . . .

The first definition says that A strictly partially grounds B iff A weakly partially
grounds B and B doesn’t weakly partially ground A. The second definition says that
� strictly fully grounds B iff � weakly fully grounds B and B grounds no member
of �. We can proceed similarly with weak partial ground. The definition we end up
with here is:

Def(
)
A 
 B ↔ A, B ≤ B

This says that A weakly partially grounds B iff A, together with B itself, fully
grounds B.

We reason to this definition as follows. We initially said that A partially grounds B
iff A, perhaps together with some other propositions, fully grounded B. This suggests

31See [14, 204-10].
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that, if we had sentential quantifiers in the language, we could define weak partial
ground as follows:

Def(
)*
A 
 B ↔ ∃p(A, p ≤ B)

Def(
) encapsulates this definition without the need to include sentential quanti-
fiers in the language. It does this because ∃p(A, p ≤ B) is equivalent to A, B ≤ B.
The standard rules for sentential quantification straightforwardly guarantee the left-
right of this equivalency. The right-left is a consequence of these rules together with
the following principle:

A, � ≤ C
Exchange

A, C ≤ C

The proof of Exchange is in the Appendix A.4. Call LWG, together with these
three definitions, LWG+. LWG+ is an extension of LWG which can deal with strict
and partial ground. This is the system I endorse for these notions.

It is useful to briefly note the connection between this system and the rules in
Fine’s pure logic of ground.32 First, except for Identity and CUT, all the rules Fine
takes as basic are derivable in LWG+. Most importantly, I show in the Appendix A.4
that the following two rules are derivable in LWG+:

�, A ≤ B
Subsumption(≤/
)

A 
 B

A 
 B B 
 C
Trans (
/
)

A 
 C

I see this as an explanatory virtue of LWG+. The validity of the rules of LWG+
explains the validity of these rules (and Fine’s other rules). In contrast, the rules Fine
takes as basic do not entail, and so couldn’t explain, those in LWG+. Second, LWG+
has only one undefined ground-theoretic primitive: weak full ground. Fine’s logic
has four such primitives. So LWG+ is more ideologically parsimonious than Fine’s
system. It is less profligate when it comes to undefined primitives.

These virtues are connected in two ways to the agglomeration rules from Section 4.
First, to prove the validity of Fine’s rules with the above definitions requires said
agglomeration rules. So the explanatory power of LWG+ rest partly on these rules.
Second, the definition of weak partial ground only flies if we’ve got the agglomera-
tion rules.33 This is because, on the intended notion of partial ground, if A, B, C fully
ground D then A partially grounds D. The agglomeration rules guarantee that in this
case A, B ∧ C grounds D. So the rules of LWG+ guarantee that A partially grounds
D. But Fine’s system (Section 3) provides no such guarantee. So it provides no way
of proving –with the above definitions– that if A, B, C grounds D, then A partially
grounds D. So the agglomeration rules enable the ideological parsimony of LWG+.
This seems to me another reason to endorse the agglomeration rules. In the rest of
the section I will explore further the logic of strict ground LWG+ generates.

32See [11] and [13, 54-57]. He’s got more rules than are in the system presented in Section 3 since he has
rules governing strict ground.
33The definitions of strict partial and strict full ground are tenable, though.
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8.1 Introduction rules for strict ground

In this section I will outline the introduction rules for strict full ground generated by
LWG+. This should give the reader a better feel for the logic this system induces.
The elegant feature of LWG+ here is that these are all derived from the rules we just
introduced. As should be obvious, no non-trivial introduction rule will be derivable
for double negation since A and ¬¬A are ground-theoretically equivalent. But we
can derive rules for all the other operators. Recall that A � B is just an abbreviation
of ¬(A 
 B). Then these derived rules are as follows:

B � A∨-I(<)1
A < A ∨ B

A � B∨-I(<)2
B < A ∨ B

A � B B � A∧-I(<)
A, B < A ∧ B

¬B � ¬A¬∨-I(<)1 ¬A < ¬(A ∧ B)

¬A � ¬B¬∨-I(<)2 ¬B < ¬(A ∨ B)

¬A � ¬B ¬B � ¬A¬∧-I(<) ¬A,¬B < ¬(A ∧ B)

Here is the proof of ∨-I(<)1:

Proof of ∨-I(<)1.

∨-I1
A ≤ A ∨ B

∨-I2
B ≤ A ∨ B [A ∨ B 
 A]

Sub (≤/
), Trans(
/
)
...

B 
 A B � A
Reductio

A ∨ B � A
Def(<)

A < A ∨ B

I leave the rest of the derivations in the Appendix A.4. These make up a general
set of introduction rules for the impure logic of strict ground. One can think of these
rules as restrictions on the introduction rules we have for weak ground. So, suppose
we have some introduction rule for weak ground. Then we have the corresponding
rule for strict ground provided that certain ground-theoretic relationships between the
propositions it concerns don’t obtain.

When can we actually apply these rules?When we know the restriction is satisfied.
That is, we can use these rules when we know some propositions don’t weakly par-
tially ground other propositions. Fortunately, we have plenty such knowledge. I know
that Socrates’ existence doesn’t even weakly partially ground Jupiter’s existence. So
I can apply ∨-I(<)1 to derive that Socrates exists strictly grounds Socrates or Jupiter
exist. So I think we can often use these rules to work out what strictly grounds what.

This completes my discussion of the system LWG+ itself. LWG+ allows us to
elegantly deal with strict, weak, partial and full ground in a single system. I think
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it is the most plausible logic of ground. In the rest of the paper we will see how
this connects to other systems in the literature. I’ll show it’s antipathetic towards
the system Fine develops for strict ground in ‘Guide to Ground.’ But it’s closely
connected to that which Correia develops in ‘Grounding and Truth-functions.’ This
shows what rules can be considered valid if we adopt LWG+.

9 Fine’s strict logic of ground

9.1 Fine’s introduction rules

In this section, I will detail the connections between LWG+ and the logic Fine
presents in [13]. This has been by far the most influential logic of ground. Fine’s
elimination rules allow us to infer statements of weak ground from strict ground. His
introduction rules allow us to infer statements of strict ground from no premises. We
will see that LWG+ is incompatible with almost all these rules.

Let’s start with the introduction rules. The introduction rules Fine lays down are
the following:

∨-I
A < A ∨ B

∨-I
B < A ∨ B

∧-I
A, B < A ∧ B

¬¬-I
A < ¬¬A

¬∨-I ¬A < ¬(A ∧ B)
¬∨-I ¬B < ¬(A ∧ B)

These are like the rules LWG+ generates, just sans restriction. LWG+ cannot con-
sistently be enriched with these rules. That’s because of this lack of restriction. The
simplest proofs of this take advantage of the idempotences. For instance, here’s a
proof that adding Fine’s ∨-I rules generates inconsistency:

∨-Idemp
A ∨ A ≤ A

∨-I
A < A ∨ A

Trans
A < ASubsumption(</≺)
A ≺ ADef(≺)

...
A 
 A ∧ A � A

The other proofs are in theAppendix A.5. So is the proof of the ‘Subsumption(</≺)’
step. So LWG+ is incompatible with all Fine’s introduction rules.

Fine’s introduction rules for strict ground are widely endorsed. So one might won-
der whether this provides good reason to reject LWG+. I think it does not. Instead,
I think that LWG+ generates precisely the intuitively compelling instances of Fine’s
rules. Consider Fine’s rules for conjunction, disjunction and their negated counter-
parts. These rules have many instances in which A and B stand in no ground-theoretic
connection. LWG+ validates all such instances of these rules. It will, for example,
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generate the result that it’s raining strictly grounds it’s either raining or snowing.
These seem to me the intuitively compelling instances of Fine’s rules. In contrast, the
instances of these rules which LWG+ fails to generate are those in which A is a weak
partial ground of B, or vice versa. The most obvious such cases are cases of idem-
potence. LWG+ does not, for example, generate the result that it’s raining strictly
grounds it’s raining or it’s raining. But these are not intuitively compelling instances
of Fine’s rule. The requisite grounding connections do not obviously hold in these
cases. So rejecting them poses no obvious problem for LWG+. My own view is that
in such cases intuition gives out. Abductive considerations should win the day.

The situation is not as cut-and-dried for double negation. LWG+ generates no
instances of the double negation rule. This makes it more plausible to reject the
idempotence rule for double negation. As I’ve previously stressed, this rule is a
bit peripheral to the agglomeration rules. So one could do this without rejecting
these rules. I prefer not to do this, because I think that the abductive case for ¬¬-
Idempotence is strong. And I don’t strongly intuit that Fine’s double negation rule is
valid. So I reject all of Fine’s rules. But a reader with different intuitions might well
endorse a subsystem of LWG+ together with Fine’s double negation rule. They’ll
then endorse a marginally different system to that which I think is best. In the next
section, we will turn to another important part of Fine’s system: his elimination rules.

9.2 Fine’s elimination rules

Fine’s elimination rules allow us to infer statements of weak ground from those of
strict ground. He suggests, for instance, that if � strictly grounds A ∨ B, then either
� weakly grounds A or � weakly grounds B or � is made up of sentences some of
which ground A and some of which ground B. As I show in this section, one cannot
tenably add Fine’s elimination rules to LWG+.

Let’s begin by articulating Fine’s elimination rules precisely. To do this, we extend
the grammar so as to allow full ground to take pluralities on its right-hand side. We
add the following clauses to our definition of a well-formed formula:

– If a is a basic formula and � is a list, then (a ≤ �) is a wff
– If � and � are lists, then (� ≤ �) is a wff

Here (� ≤ �) should be read as: there is some decomposition of � into families
of sentences, �1, �2 . . . and some decomposition of � into A, B . . . such that (�1 ≤
A), (�2 ≤ B) . . .. We also change the proof theory. Before we allowed only single-
premise conclusions. Now we allow derivations which have many conclusions. They
take the form of a tree with multiple roots:

�1; �2; . . .

�1; �2 . . .

Here the semi-colon below the line indicates that the conclusion should be read dis-
junctively: if a tree with �1; �2 . . . as its root is valid, then so is one with �1∨�2 . . .

at its root.



A. Lovett

The elimination rules Fine then proposes are as follows:

� < A ∨ B∨-E
� ≤ A; � ≤ B; � ≤ A, B

� < A ∧ B∧-E
� ≤ A, B

� < ¬¬A¬¬-E
� ≤ A

� < ¬(A ∨ B)¬∨-E
� ≤ ¬A; � ≤ ¬B; � ≤ ¬A, ¬B

� < ¬(A ∧ B)¬ ∧ -E
� ≤ ¬A, ¬B

Essentially, these capture the view that � strictly grounds a logically complex
proposition only if it weakly grounds something which, by the corresponding Finean
introduction rule for ground (and his pure logic), provably grounds that proposition.
This makes it clear that these rules will lead to problems in LWG+. In LWG+ we
have more introduction rules for ground. So we can prove the obtaining of certain
grounding relations without recourse to Fine’s introduction rules.

In fact, only ¬¬-E is tenable in LWG+.34 If we assume some propositions don’t
ground one another, then the rest of these elimination rules must fail. There are many
such assumptions we could make. I’ll just consider how one set of assumptions is, in
LWG+, inconsistent with ∨-E. This make it clear that ∧-E, ¬∨-E and ¬∧-E are also
untenable. As I’ve said, the relevant assumptions involve lack of grounding connections.
Namely, suppose that for any three propositions, A, B, C, the following hold:

C � A ∨ B A � B ∨ C B � A

These obviously hold for some propositions. Let A be apples exist, let B be bal-
loons exist and C be candles exist. The existence of candles doesn’t even partially
ground the existence of apples or balloons. The existence of apples doesn’t ground the
existence of balloons or candles. The existence of balloons doesn’t ground the exis-
tence of apples. With these in hand inconsistency follows from the associativity of
disjunction and Fine’s disjunction elimination rule. Here’s the argument: C � A ∨ B

and associativity entail that (A ∨ B) strictly grounds (A ∨ (B ∨ C)). It then follows
via Fine’s disjunction elimination rule that either A ∨ B weakly grounds A or A ∨ B

weakly grounds B ∨ C. But if A ∨ B weakly grounds A, then B weakly grounds
A. This conflicts with the assumption that B � A. Meanwhile, if A ∨ B weakly
grounds B ∨ C, then A weakly grounds B ∨ C. This conflicts with the assumption
that A � B ∨ C. So we have a contradiction.

The prospects of adding simple elimination rules to LWG+ are dim.35 One might
wonder how much of a cost this is to LWG+. I think it is not much of a cost, for two rea-
sons. First, the problem with the elimination rules arises from far less than the full
strength of LWG+. The contradiction above derives from associativity alone. This seems
to be on much firmer ground than the other rules. Second, I think Fine’s elimination
rules are independently implausible. This is because they rule out live possibilities.

34This is valid. In LWG+, ¬¬A grounds A and so by the transitivity of ground anything which grounds
¬¬A must also ground A.
35Because LWG+ doesn’t have a 1-1 correspondence between introduction rules and the logical form of
grounded propositions.
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Here’s an example of a live possibility these rules rule out: in the modal logic of ground,
we might think that�A strictly grounds A.36 This channels the common idea that the
necessity of a proposition is a satisfactory explanation of that proposition’s truth. So,
for instance, that there must be something (rather than nothing) would explain why
there is something (rather than nothing). But now suppose A is a necessary logically
complex proposition, e.g. P ∨¬P . It seems implausible that�(P ∨¬P) either weakly
grounds P orweakly grounds¬P . It seems especially implausible when P is contingent.
So Fine’s rules exclude this plausible principle in the modal logic of ground.

Another issue of this sort concerns the putative mind-dependence of certain truths.
One way to spell out the claim that the truths of some domain are mind-dependent is
to say they’re strictly grounded in certain mental states. For instance, one might think
all mathematical truths are strictly grounded in knowledge of those truths. On this
view, 2+2=4 is grounded in the fact that it’s known that 2+2=4. But now consider
a logically complex mathematical truth like CH∨¬CH. Plausibly, that CH∨¬CH is
known does not ground either CH or ¬CH. So Fine’s elimination rules would rule
out this thesis in the philosophy of mathematics. Similar examples exist in other
putatively mind-dependent domains, such as ethics and aesthetics. So the omission of
Fine’s elimination rules seems to me a negligible cost to the system.37 This completes
our comparison between LWG+ and Fine’s logic of strict ground. As we’ve seen, the
rules of LWG+ can’t be squared with those of Fine’s logic. If one accepts the rules
of LWG+, one must reject almost all of Fine’s rules.

10 Correia’s worldly logic of ground

I want to do one final thing. I want to show that LWG+ is definitionally equivalent
to the system Correia considers in [2]. Let’s start by outlining Correia’s system. He
calls this systemG. It’s meant to model an identification-like notion and factive strict
full ground. It goes like this. We begin with E1-E17 from Section 7 and the rules of
classical logic.38 In other words, we start with the system AC∗. Then we add strict
full factive ground (<f ) to the vocabulary and the following clause to the definition
of a well-formed formula:

– If � is a list and c is a basic formula, then � <f c is a wff

Finally we add rules governing strict full factive ground. Correia considers a bunch
of rules. But they’re easy to summarize. Let � ff � ∨ (B ∧ �) mean that no item in

36The modal logic of ground is an entirely unexplored area which I suspect will repay further study.
Another promising thought is that possibility is grounded in actuality, so A grounds ♦A. I don’t think that
these are obviously valid, but they are live possibilities.
37My counter-examples here concern disjunction. It’s less obvious whether there are counter-examples
involving conjunctions (apart from those which arise in LWG+). But I suspect there are: I suppose some
conjunctions might, for instance, be grounded in laws of nature even though none of their conjuncts are
grounded in those laws. For instance, it might be that It’s a law that all negatively charged things attract
grounds the conjunction of all instances of the law, without grounding any particular conjunct.
38Correia actually formulates this system slightly differently. It is straightforward to show his formulation
is equivalent to E1-E17.
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�, C, is equivalent to C ∨ (B ∧ C). The rules Correia considers are equivalent to the
following rule:39

Def(<f /≈)
� <f B ↔ �̂ ∧ (B ≈ B ∨ �̂) ∧ (� ff � ∨ (B ∧ �))

This completes Correia’s system G. As I said, Correia considers this system in [2].
But he doesn’t exactly endorse it. He only includes Def(<f /≈) in the system because
it makes giving a semantics easier.40 Yet the connection between this system and my
own is interesting nonetheless. I want to show that G and LWG+ are definitionally
equivalent.

To do this we need to add some definitions to both systems. We’ll then show
that the resulting systems are equivalent. To G we add E18 as a definition of weak
full ground. We also add the definitions of weak partial ground, strict partial ground
and strict full ground from Section 8. Call this system G∗. To LWG+ we just add a
definition of strict full factive ground. We could add Def(<f /≈). But this wouldn’t
be very illuminating. So instead I’ll add:

Def(<f /<)
� <f B ↔ (�̂ ∧ (� < B))

This just says that � is a factive strict full ground for B iff all the members of �

are true and � is a non-factive strict full ground for B. Call this system LWG++.
Let’s use DEFs to stand for the definitions of weak partial, strict partial and strict

full ground. It’s useful to think of the two systems as follows:

G∗ = AC∗∗ + DEFs + Def(<f / ≈ )
LWG++ = LWG + DEFs + Def(<f / <)

In other words, G∗ is AC∗∗ plus some definitions of non-factive notions of
ground and an extra definition of factive ground. LWG++ is LWG plus those same
definitions but a different definition of factive ground.

I want to show that these systems are equivalent. I show that AC∗∗ and LWG
are equivalent in the Appendix A.3. LWG++ and G∗ share the definitions of non-
factive ground. So we just need to show Def(<f /<) is valid in G* and Def(<f /≈)
is valid in LWG++. To show this, it’s enough to show that in both systems: � < B

iff (B ≈ B ∨ �̂) and (� ff � ∨ (B ∧ �)). It’ll then follow that these two rules
are themselves equivalent. How do we show that? Well both systems contain the
definition of strict full ground. So, in both systems, (� < B) iff (� ≤ B) and B

39Correia shows that these rules entail this axiom in [2, 270-71]. That this axiom entails these rules, given
his rules for ≈, is implicit in his completeness proof at [2, 278].
40See [2, 272]. At the time, he actually thought this definition could be counter-exampled. In particular,
he pointed out that it implies that, if the existence of sets are grounded in their members, then the fact that
{Socrates} exists just is the disjunction of the fact that Socrates exists and another fact [2, 272]. He found
this implausible. So he rejected the left-right of his definition. But his views have changed since. In [7, 15-
19], he and Alexander Skiles point out that {Socrates} existence could be the disjunction of itself and
Socrates’ existence. This seems a lot less implausible than the thought that {Socrates} existence was the
disjunction of Socrates’ existence and some third totally novel fact. This treatment of the counter-example
is exactly that generated by the Reduction Theorem (≈/≤) and our definitions. In fact, given the rules of
LWG+ this circumstance is routine: whenever A strictly grounds B, B just is A or B.
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doesn’t weakly partially ground any item in �. So it suffices to show that in both
systems: (a) (� ≤ B) iff (B ≈ B ∨ �̂), and; (b) B doesn’t weakly partially ground
any item in � iff � ff � ∨ (B ∧ �). The Reduction Theorem (≤/≈) is valid in both
systems. This gets us (a). To get (b), we rely on the following principle:

Def(
/≈)
B 
 C ↔ C ≈ C ∨ (B ∧ C)

This is a definition of weak partial ground in terms of identification. It’s also valid
in both systems. From this (b) follows straightforwardly. For � ff � ∨ (B ∧ �) just
says that no item, C, in � is equivalent to C ∨ (B ∧ C). And, by Def(
/≈), this is
true iff B doesn’t weakly partially ground any C in �. So, in both systems, B doesn’t
weakly partially ground any item in � iff no C in � is equivalent to C ∨ (B ∧ C).
So LWG++ and G∗ are equivalent. So LWG+ and G are definitionally equivalent.
That’s what I wanted to show.

Why does this matter? It puts the rules of G on a firmer footing. It is otherwise
not clear why we should accept the rules of G. In particular it’s unclear why we
should accept the definition of factive strict full ground. Why should we think that
� factively grounds B just in case all the members of � are true, B is equivalent
to (B ∨ �̂) and no item, C, in � is equivalent to C ∨ (B ∧ C)? The truth of this
doesn’t exactly leap off the page. The above result means the validity of the rules of
LWG++ can explain why it is true. This definition is correct, roughly, because the
second conjunct picks out weak full ground, the third conjunct picks out weak partial
ground, and the definition of factive ground in LWG++ is right. More generally, I
think this result shows that Correia got it right with his system G. This system is
adequate for modelling identification and strict full factive ground. To model other
notions we can use LWG+.

11 Concluding remarks

This completes my discussion of the logic of ground. I’ve suggested that various
pressures should lead us to strengthen Fine’s logic of weak full ground. Once we do
we should end up with a system closely connected to some others in the literature. I
think this system generates a lot of intuitive validities. But perhaps its most attractive
features are aesthetic. It allows us to smoothly derive the logic of strict and partial
ground from that of weak full ground. It allows us to cleanly pick out the grounding
relations logically complex propositions stand in. So it’s elegant. I think elegance is
a guide to theory-choice. So I myself think this is the best logic of ground.

Acknowledgements Thanks to Cian Dorr, Kit Fine, Marko Malink, Chris Scambler, Alex Skiles, Trevor
Teitel and a referee for this journal for their very helpful input on this paper.

Appendix

In this appendix, I will prove many of the claims I’ve made in the main text. The
proof of some claim in the main text will fall under the section heading in which that
claim was made.
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A.1What do logically complex propositions ground?

A.1.1 Disjunction

I first prove commutativity, associativity, supplementation and DeMorgan(1) hold for
disjunction:

I then prove the distributivity principles follow from ∨-Agglomeration. Note that
when I label a step ‘R’ I indicate I’m taking advantage of the repetition invariance of
lists (so A is the same list as A, A. . .) to re-iterate the same lemma.
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Note howWeak ∨-Agglomeration could be used in all but the last proof. I now use
∨∧D2 to derive ∨-Agglomeration from Weak ∨-Agglomeration. In the below proof
‘Id’ stands for ‘Identity.’

Note that we could replace Weak ∨-Agglomeration with ∨-Idempotence in this
proof. So this also shows that, in the presence of Fine’s rules, ∨-Agglomeration
derives from ∨-Idempotence, ∨∧D2 and ∧-Agglomeration.
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A.1.2 Double negation

Here I just prove the ∧∨ equivalencies. We get two of these equivalencies with the
agglomeration rules (and the ¬-Introduction rules) alone. However, in getting the
other equivalencies ¬¬-Idempotence becomes useful. Here are the proofs:

A.2 Ground-theoretic equivalence

Proof of LL To prove LL we show it holds in two cases: one in which C contains
no ground-theoretic operators, and one in which C contains some ground-theoretic
operators. This exhausts the cases. Let’s begin by considering the first case. In this
case, C is a truth-functional formula. That means it is either atomic, or contains only
truth-functional operators. Observe that IMP establishes that if A ≈ B, then A ↔ B.
It follows that A and B are inter-substitutable in any truth-functional formula salva
veritate, and so the relevant instance of LL must hold. Now let’s consider the second
case, in which C contains some instance of a ground-theoretic connective. To prove
that LL holds in this case, we take advantage of the following lemma:

Substitution : A ≈ B → C ≈ D

Where D is the result of just swapping As for Bs in C. This just says that
when A and B are ground-theoretically equivalent, then any formula, C, is ground-
theoretically equivalent to the result of swapping As for Bs in that formula. One can
prove this by induction on the complexity of formulas. The base case –where C con-
tains no logical operators– is trivial. For the inductive step, in the case of conjunction
we use ∧-agglomeration, for disjunction we use ∨-agglomeration and for negation
we use ¬-Introduction.

We then use Substitution to prove that LL holds in the ground-theoretic case. The
case where C contains only instances of ≈ follows directly from Substitution, so
we’re left with just cases in which C is of the form � ≤ E. There are two kinds of
LL instances in these cases. Firstly, we might form D by replacing As for Bs in E.
Secondly, we might form D by replacing As for Bs in �. Suppose we replace As for
Bs in E. Call the resultant formula E[A/B]. By Substitution, E ≈ E[A/B]. So, by
Def(≈) and transitivity, � ≤ E[A/B]. So this first kind of LL instances hold. Now
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suppose we replace As for Bs in �. To replace As for Bs in �, we need to replaces
As for Bs in some member (or members), F1...Fn, of �. Label the formula(s) we
do this to F[A/B]

1 ...F[A/B]
n and label the list of all the other formulas �. The resultant

list can thus be written: F[A/B]
1 ...F[A/B]

n , �. By Substitution, Fk ≈F[A/B]
k for every

Fk in F1 . . . Fn. Since for every G in �, G ≤ G, we can therefore apply Def(≈)
and CUT to derive F[A/B]

1 ...F[A/B]
n , � ≤ E. So this second kind of LL instance

holds. So LL holds when C is of the form � ≤ E. So LL holds for every ground-
theoretic C. Since LL holds for every non-ground theoretic C, it follows that LL holds
generally.

Proof of ∨∧D2 We prove ∨∧D2 follows from Weak ∨-Agglomeration in the pres-
ence of LL, the DeMorgan(2) rules and ¬¬-Idempotence. A full natural deduction
proof of this is unwieldy. But it suffices to note that the following ground-theoretic
equivalences are provable:

1 (A ∨ B) ∧ (A ∨ C) ≈ ¬¬((A ∨ B) ∧ (A ∨ C))

2 ≈ ¬(¬(A ∨ B) ∨ ¬(A ∨ C))

3 ≈ ¬((¬A ∧ ¬B) ∨ (¬A ∧ ¬C))

4 ≈ ¬(¬A ∧ (¬B ∨ ¬C))

5 ≈ ¬(¬A ∧ ¬(B ∧ C))

6 ≈ ¬¬(A ∨ (B ∧ C)

7 ≈ A ∨ (B ∧ C)

Line 1 and 7 rely on ¬¬-Introduction and ¬¬-I. Line 2, 3, 5 and 6 rely on the
DeMorgan rules together with LL. Line 4 relies on ∧∨D1, ∧∨D2 and LL. As I show
above ∧∨D1 and ∧∨D2 are both consequence of Weak ∨-Agglomeration. So this
shows that ∨∧D2 can be derived fromWeak ∨-Agglomeration in the presence of the
other rules. Given the proof in the Appendix A.1 this shows that ∨-Agglomeration
can, in this context, be derived from Weak ∨-Agglomeration.

A.3 Angell’s system

I here prove AC∗∗ and LWG are equivalent. We first prove that all the basic rules
of AC∗∗ are rules in LWG. E1 is trivial, E2 follows from Trans and E3 is just
¬-Introduction. E4, E5 and E6 follow from idempotence. E7 and E8 follow from
commutativity. E9 and E10 follow from supplementation. E11 and E12 follow from
the DeMorgan laws. E13 and E14 follow from associativity. E15 and E16 follow from
distributivity. E17 follows from IMP and E18 follows from the reduction theorem
(</≈).

We now prove all basic rules in LWG are rules in AC∗∗. When I use the definition
of weak full ground, E18, together with classical logic I will move directly between
formulas of equivalence and those of weak full ground. I will skip indicating the
compression of the steps with vertical dots. Here are the proofs:
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Proof of disjunction and conjunction introduction.

The proof of the other disjunction rule is essentially the same. The proof of ∧-I
relies just on E6 and E18.

Proof of negation rules.

Here are proofs of one of the negated disjunction rules, and the negated conjunc-
tion rule:

The proof of ¬-I and ¬¬-idempotence are as follows:

Meanwhile, ¬-Introduction is just an instance of E3.

Proof of agglomeration rules.

In the interests of readability, I’ll prove slightly simplified versions of the agglom-
eration rules. These are simplified in that they omit the arbitrary lists (�, �) following
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the sentences which we agglomeration into conjunctions or disjunctions. These can
be easily added.

The proofs of the conjunction and disjunction agglomerations rules are as follows:

Note that in the proof of ∧-agglomeration, in the second application of E18 we
take advantage of the fact that removing any number of ∧ operators from (A ∧ B)

can be implemented by removing none at all.
We now prove the agglomeration rules for negated conjunction and disjunction

respectively:

Proof of pure logic rules.

We have left the pure logic to last. Identity is just an instance of E13. IMP follows
from E17, together with classical logic. CUT is somewhat more difficult. To prove
CUT, we first prove ≤ obeys a transitivity principle:
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We now prove that ∧-Supplementation is valid in AC∗∗. A full natural deduction
proof of this is very unwieldy, so I begin by noting that, given A1 ∧ A2 ≈ (A1 ∨
�̂1) ∧ (A2 ∨ �̂2), the following are provable in AC∗∗:

1 A1 ∧ A2 ≈ (A1 ∨ �̂1) ∧ (A2 ∨ �̂2)

2 ≈ ((A1 ∨ �̂1) ∧ A2) ∨ ((A1 ∨ �̂1) ∧ �̂2)

3 ≈ (((A1 ∧ A2) ∨ (�̂1 ∧ A2)) ∨ ((A1 ∧ �̂2) ∨ (�̂1 ∧ �̂2)))

4 ≈ (((A1 ∧ A2) ∨ (�̂1 ∧ A2)) ∨ (A1 ∧ �̂2))) ∨ ((�̂1 ∧ �̂1) ∨ (�̂1 ∧ �̂2))

5 ≈ (((A1 ∧ A2) ∨ (�̂1 ∧ A2)) ∨ ((A1 ∧ �̂2) ∨ (�̂1 ∧ �̂2))) ∨ (�̂1 ∧ �̂2)

6 ≈ (A1 ∧ A2) ∨ (�̂1 ∧ �̂2)

(1)

Line 2 and 3 both apply distributivity (E15 and E16). Line 4 applies Idempotence
(E5). Line 5 applies associativity (E13). Line 6 uses the third line in substitutions like
occur in the above proofs. I’ve labelled this inference (1). Given this, the following
tree is valid:

And so we have proven ∧-Supplementation. Here’s the proof of CUT in the three
premise case:

Finally, let’s consider Def(≈). The left-right of this follows straightforwardly from
E18 and E1. The right-left follows from E18, E1 and E8 and E2. So all the basic rules
of LWG are valid in AC∗∗. So AC∗∗ and LWG are equivalent.
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A.4 The logic of strict ground

Let’s start by proving Exchange. Begin by observing that if we assume B ≈ B∨(A∧
C), then we can infer B ≈ ((B ∧ A) ∨ B). This is because, given B ≈ B ∨ (A ∧ C),
the following are ground-theoretic equivalencies:

1 B ≈ B ∨ (A ∧ C)

2 ≈ (B ∨ A) ∧ (B ∨ C)

3 ≈ ((B ∨ A) ∧ (B ∨ A)) ∧ (B ∨ C)

4 ≈ (B ∨ A) ∧ ((B ∨ A) ∧ (B ∨ C))

5 ≈ (B ∨ A) ∧ B

6 ≈ (B ∨ A) ∧ (B ∨ B)

7 ≈ B ∨ (B ∧ A)

(2)

The natural deduction proof of this is long and hard to read, so I will omit it.
The important line is line five, which we obtain from the previous line via B ≈
((B ∨ A) ∧ (B ∨ C)) and Leibniz’s law. I’ll label the inference associated with these
equivalencies (2).

This allows us to prove Exchange via reasoning by cases. There are two cases.
One where � has no members, and one where it has � has n members. The first case
follows from Amalgamation and identity. The second case is more complex:

So, in both cases Exchange holds and so the principle is proven. Here, as above, I
omit indicating the compression of steps when using (≈/≤) and the classical rules. I
will do the same with the definitions below.

Let’s now prove that Subsumption(≤/
) and Transitivity (
/
) hold in LWG+.
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I will prove one other of Fine’s subsumption rules is valid below, and from all this
it is quite easy to show the rest of Fine’s rules are valid.

A.4.1 Introduction rules for strict ground

Let’s now prove the introduction rules for strict ground. The ¬∧ rules are proved in
the same way as the proof of ∨ rules, but use ¬∧-I1 and ¬∧-I2. Here’s the proof of
the conjunction rule:

The ¬∨ rule is proved in a similar way.

A.5 Fine’s logic of strict ground

A.5.1 Fine’s introduction rules

I prove that Fine’s introduction rules are inconsistent with LWG+. We begin by
proving subsumption:

We can now prove the ¬¬ introduction rule and the ∧ introduction rule cannot be
consistently added to LWG:



The logic of ground

Proofs for the negated conjunction and disjunction rules are the same, except
rely on different idempotence principles. Any remaining proofs are available upon
request.
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