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Abstract: When we compare the influences of two causes on an outcome, if the conclusion from every
group is against that from the conflation, we think there is Simpson’s Paradox. The Existing Causal
Inference Theory (ECIT) can make the overall conclusion consistent with the grouping conclusion by
removing the confounder’s influence to eliminate the paradox. The ECIT uses relative risk difference
Pd = max(0, (R − 1)/R) (R denotes the risk ratio) as the probability of causation. In contrast, Philoso-
pher Fitelson uses confirmation measure D (posterior probability minus prior probability) to measure
the strength of causation. Fitelson concludes that from the perspective of Bayesian confirmation, we
should directly accept the overall conclusion without considering the paradox. The author proposed
a Bayesian confirmation measure b* similar to Pd before. To overcome the contradiction between
the ECIT and Bayesian confirmation, the author uses the semantic information method with the
minimum cross-entropy criterion to deduce causal confirmation measure Cc = (R − 1)/max(R, 1). Cc
is like Pd but has normalizing property (between −1 and 1) and cause symmetry. It especially fits
cases where a cause restrains an outcome, such as the COVID-19 vaccine controlling the infection.
Some examples (about kidney stone treatments and COVID-19) reveal that Pd and Cc are more
reasonable than D; Cc is more useful than Pd.

Keywords: causal confirmation; Bayesian confirmation; causal inference; semantic information
measure; cross-entropy; Simpson’s Paradox; COVID-19; risk measures

1. Introduction

Causal confirmation is the expansion of Bayesian confirmation. It is also a task
of causal inference. The Existing Causal Inference Theory (ECIT), including Rubin’s (or
Neyman-Rubin) potential outcomes model [1,2] and Pearl’s causal graph [3,4], has achieved
great success. However, causal confirmation is rarely mentioned.

Bayesian confirmation theories are also called confirmation theories, which can be
divided into incremental and inductive schools. The incremental school affirms that the
confirmation measures the supporting strength of evidence e to hypothesis h, as explained
by Fitelson [5]. Following Carnap [6], the incremental school’s researchers often use the
increment of a hypothesis’ probability or logical probability, P(h|e)− P(h), as a confirmation
measure. Fitelson [5] discussed causal confirmation with this measure and obtained some
conclusions incompatible with the ECIT. On the other hand, the inductive school [7,8]
considers confirmation as induction’s modern form, whose task is to measure a major
premise’s creditability supported by a sample or sampling distribution.

We use e→h to denote a major premise. Variable e takes one of two possible values
e1 and its negation e0. Variable h takes one of two possible values h1 and its negation
h0. Then a sample includes four examples (e1, h1), (e1, h0), (e0, h1), and (e0, h0) with
different proportions. The inductive school’s researchers often use positive examples and
counterexamples’ proportions (P(e1|h1) and P(e1|h0)) or likelihood ratio (P(e1|h1)/P(e1|h0))
to express confirmation measures.
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A confirmation measure is often denoted by C(e, h) or C(h, e). The author (of this paper)
agrees with the inductive school and suggests using C(e→h) to express a confirmation
measure so that the task is evident [8]. In this paper, we use “x=>y” to denote “Cause x
leads to outcome y”.

Although the two schools understand confirmation differently, both use sampling
distribution P(e, h) to construct confirmation measures. There have been many confirmation
measures [8,9]. Most researchers agree that an ideal confirmation measure should have the
following two desired properties:

• normalizing property [9,10], which means C(e, h) should change between −1 and 1 so
that the difference between a rule e→h and the best or the worst rule is clear;

• hypothesis symmetry [11] or consequent symmetry [8], which means C(e1→h1) =
−C(e1→h0). For example, C(raven→black) = −C(raven→non-black).

The author in [8] distinguished channels’ confirmation and predictions’ confirma-
tion and provided channels’ confirmation measure b*(e→h) and predictions’ confirmation
measure c*(e→h). Both have the above two desired properties and can be used for the
probability predictions of h according to e.

Bayesian confirmation confirms associated relationships, which are different from
causal relationships. Association includes causality, but many associated relationships are
not causal relationships. One reason is that the existence of association is symmetrical
(if P(h|e) 6= 0, then P(e|h) 6= 0), whereas the existence of causality is asymmetrical. For
example, in medical tests, P(positive|infected) reflects both association and causality.
However, inversely, P(infected|positive) only indicates association. Another reason is that
two associated events, A and B, such as electric fans’ easy selling and air conditioners’ easy
selling, are the outcomes caused by the third event (hot weather). Neither P(A|B) nor
P(B|A) indicates causality.

Causal inference only deals with uncertain causal relationships in nature and human
society without considering those in mathematics, such as (x + 1)(x − 1) < x2 because
(x + 1)(x − 1) = x2 − 1. We know that Kant distinguishes analytic judgments and synthetic
judgments. Although causal inference is a mathematical method, it is used for synthetic
judgments to obtain uncertain rules in biology, psychology, economics, etc. In addition,
causal confirmation only deals with binary causality.

Although causal confirmation was rarely mentioned in the ECIT, the researchers of
causal inference and epidemiology have provided many measures (without using the term
“confirmation measure”) to indicate the strength of causation. These measures include risk
difference [12]:

RD = P(y1|x1)− P(y1|x0), (1)

relative risk difference or the risk ratio (like the likelihood ratio for medical tests):

RR = P(y1|x1)/P(y1|x0), (2)

and the probability of causation Pd (used by Rubin and Greenland [13]) or the probability
of necessity PN (used by Pearl [3]). There is:

Pd = PN = max(0,
P(y1|x1)− P(y1|x0)

P(y1|x1)
). (3)

Pd is also called Relative Risk Reduction (RRR) [12]. In the above formula, max(0, ·) means
its minimum is 0. This function is to make Pd more like a probability. Measure b* proposed
by the author in [8] is like Pd, but b* changes between −1 and 1. The above risk measures
can measure not only risk or relative risk but also success or relative success raised by
the cause.

The risk measures in Equations (1)–(3) are significant; however, they do not possess
the two desired properties and hence are improper as causal confirmation measures.
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We will encounter Simpson’s Paradox if we only use sampling distributions for the
above measures. Simpson’s Paradox has been accompanying the study of causal inference,
as the Raven Paradox has been going with the study of Bayesian confirmation. Simpson
proposed the paradox [14] using the following example.

Example 1 [15]. The admission data of the graduate school of the University of California, Berkeley
(UCB), for the fall of 1973 showed that 44% of male applicants were accepted, whereas only 35%
of female applicants were accepted. There was probably gender bias present. However, in most
departments, female applicants’ acceptance rates were higher than male applicants.

Was there a gender bias? Should we accept the overall conclusion or the grouping
conclusion (i.e., that from every department)? If we take the overall conclusion, we can
think that the admission had a bias against the female. On the other hand, if we accept
the grouping conclusion, we can say that the female applicants were priorly accepted.
Therefore, we say there exists a paradox.

Example 1 is a little complicated and easy to raise arguments against. To simplify the
problem, we use Example 2, which the researchers of causal inference often mentioned, to
explain Simpson’s Paradox quantitatively.

We use x1 to denote a new cause (or treatment) and x0 to denote a default cause or no
cause. If we need to compare two causes, we may use x1 and x2, or xi and xj, to represent
them. In these cases, we may assume that one is default like x0.

Example 2 [16,17]. Suppose there are two treatments, x1 and x2, for patients with kidney stones.
Patients are divided into two groups according to their size of stones. Group g1 includes patients
with small stones, and group g2 has large ones. Outcome y1 represents the treatment’s success.
Success rates shown in Figure 1 are possible. In each group, the success rate of x2 is higher than that
of x1; however, the overall conclusion is the opposite.
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Figure 1. Illustrating Simpson’s Paradox. In each group, the success rate of x2, P(y1|x2, g), is higher
than that of x1, P(y1|x1, g); however, using the method of finding the center of gravity, we can see
that the overall success rate of x2, P(y1|x2) = 0.65, is lower than that of x1, P(y1|x1) = 0.7.

According to Rubin’s potential outcomes model [1], we should accept the grouping
conclusion: x2 is better than x1. The reason is that the stones’ size is a confounder, and
the overall conclusion is affected by the confounder. We should eliminate this influence.
The method is to imagine the patients’ numbers in each group are unchanged whether
we use x1 or x2. Then we replace weighting coefficients P(gi|x1) and P(gi|x2) with P(gi)
(i = 1, 2) to obtain two new overall success rates. Rubin [1] expresses them as P(y1

x1) and
P(y1

x2); whereas Pearl [3] expresses them as P(y1|do(x1)) and P(y1|do(x2)). Then, the
overall conclusion is consistent with the grouping conclusion.
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Should we always accept the grouping conclusion when the two conclusions are
inconsistent? It is not sure! Example 3 is a counterexample.

Example 3 (from [18]). Treatment x1 denotes taking a kind of antihypertensive drug, and treatment
x0 means taking nothing. Outcome y1 denotes recovering health, and y0 means not. Patients are
divided into group g1 (with high blood pressure) and group g0 (with low blood pressure). It is very
possible that in each group g, P(y1|g, x1) < P(y1|g, x0) (which means x0 is better than x1); whereas
overall result is P(y1|x1) > P(y1|x0) (which means x1 is better than x0).

The ECIT tells us that we should accept the overall conclusion that x1 is better than x0
because blood pressure is a mediator, which is also affected by x1. We expect that x1 can
move a patient from g1 to g0; hence we need not change the weighting coefficients from
P(g|x) to P(g). The grouping conclusion, P(y1|g, x1) < P(y1|g, x0), exists because the drug
has a side effect.

There are also some examples where the grouping conclusion is acceptable from one
perspective, and the overall conclusion is acceptable from another.

Example 4 [19]. The United States statistical data about COVID-19 in June 2020 show that
COVID-19 led to a higher Case Fatality Rate (CFR) of non-Hispanic whites than others (overall
conclusion). We can find that only 35.3% of the infected people were non-Hispanic whites, whereas
49.5% of the infected people who died from COVID-19 were non-Hispanic whites. It seems that
COVID-19 is more dangerous to non-Hispanic whites. However, Dana Mackenzie pointed out [19]
that we will obtain the opposite conclusion from every age group because the CFR of non-Hispanic
whites is lower than that of other people in every age group. So, there exists Simpson’s Paradox.
The reason is that non-Hispanic whites have longer lifespans and a relatively large proportion of the
elderly, while COVID-19 is more dangerous to the elderly.

Kügelgen et al. [20] also pointed out the existence of Simpson’s Paradox after they
compared the CFRs of COVID-19 (reported in 2020) in China and Italy. Although the
overall conclusion was that the CFR in Italy was higher than in China, the CFR of every
age group in China was higher than in Italy. The reason is that the proportion of the elderly
in Italy is larger than in China.

According to Rubin’s potential outcomes model or Pearl’s causal graph, if we think
that the reason for non-Hispanic whites’ longevity is good medical conditions or other
elements instead of their race, then the lifespan is a confounder. Therefore, we should
accept the grouping conclusion. On the other hand, if we believe that non-Hispanic whites
are longevous because they are whites, then the lifespan is a mediator, so we should accept
the overall conclusion.

Example 1 is similar to Example 4, but the former is not easy to understand. The data
show that the female applicants tended to choose majors with low admission rates (perhaps
because lower thresholds resulted in more intense competition). This tendency is like the
lifespan of the white. If we regard lifespan as a confounder, Berkeley University had no
gender bias against the female. On the other hand, if we believe the female is the cause of
this tendency, the overall conclusion is acceptable, and gender bias should have existed.
Deciding which of the two judgments is right depends on one’s perspective.

Pearl’s causal graph [3] makes it clear that for the same data, if supposed causal
relationships are different, conclusions are also different. So, it is not enough to have data
only. We also need the structural causal model.

However, the incremental school’s philosopher Fitelson argues that from the perspec-
tive of Bayesian confirmation, we should accept the overall conclusion according to the
data without considering causation; Simpson’s Paradox does not exist according to his
rational explanation. His reason is that we can use the measure [5]:

measure i = P(y1|x1) − P(y1) (4)
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to measure causality. Fitelson proves (see Fact 3 of Appendix in [5]) that if there is:

P(y1|x1, gi) > P(y1|x2, gi), i=1, 2, (5)

then there must be P(y1|x1) > P(y1). The result is the same when “>“ is replaced with “<“.
Therefore, Fitelson affirms that, unlike RD and Pd, measure i does not result in the paradox.

However, Equation (5) expresses a rigorous condition, which excludes all examples
with joint distributions P(y, x, g) that cause the paradox, including Fitelson’s simplified
example about the admissions of the UCB.

One cannot help asking:

• For Example 2 about kidney stones, is it reasonable to accept the overall conclusion
without considering the difficulties of treatments?

• Is it necessary to extend or apply a Bayesian confirmation measure incompatible with
the ECIT and medical practices to causal confirmation?

• Except for the incompatible confirmation measures, are there no compatible confirma-
tion measures?

In addition to the incremental school’s confirmation measures, there are also the
inductive school’s confirmation measures, such as F proposed by Kemeny and Oppenheim
in 1952 and b* provided by the author in 2020.

This paper mainly aims at:

• combining the ECIT to deduce causal confirmation measure Cc(x1 => y1) (“C” stands
for confirmation and “c” for the cause), which is similar to Pd but can measure negative
causal relationships, such as “vaccine => infection”;

• explaining that measures Cc and Pd are more suitable for causal confirmation than
measure i by using some examples with Simpson’s Paradox;

• supporting the inductive school of Bayesian confirmation in turn.

When the author proposed measure b*, he also provided measure c* for eliminating
the Raven Paradox [8]. For extending c* to causal confirmation, this paper presents measure
Ce(x1 => y1), which indicates the outcome’s inevitability or the cause’s sufficiency.

2. Background
2.1. Bayesian Confirmation: Incremental School and Inductive School

A universal judgment is equivalent to a hypothetical judgment or a rule, such as “All
ravens are black” is equivalent to “For every x, if x is a raven, then x is black”. Both can
be used as a major premise for a syllogism. Due to the criticism of Hume and Popper,
most philosophers no longer expect to obtain absolutely correct universal judgments or
major premises by induction but hope to obtain their degrees of belief. A degree of belief
supported by a sample or sampling distribution is the degree of confirmation.

It is worth noting that a proposition does not need confirmation. Its truth value comes
from its usage or definition [8]. For example, “People over 18 are adults” does not need
confirmation; whether it is correct depends on the government’s definition. Only major
premises (such as “All ravens are black” and “If a person’s Nucleic Acid Test is positive, he
is likely to be infected with COVID-19”) need confirmation.

A natural idea is to use conditional probability P(h|e) to confirm a major premise or
rule denoted with e→h. This measure is also recommended by Fitelson [5], and called
confirm f. There is [5,6]:

confirm f = f (e,h) = P(h|e). (Carnap, 1962, Fitelson, 2017)

However, P(h|e) depends very much on the prior probability P(h) of h. For example,
where COVID-19 is prevalent, P(h) is large, and P(h|e) is also large. Therefore, P(h|e)
cannot reflect the necessity of e. An extreme example is that h and e are independent of
each other, but if P(h) is large, P(h|e) = P(h, e)/P(e) = P(h) is also large. At this time, P(h|e)
does not reflect the creditability of the causal relationship. For example, h = “There will be
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no earthquake tomorrow”, P(h) = 0.999, and e = “Grapes are ripe”. Although e and h are
irrelative, P(h|e) = P(h) = 0.999 is very large. However, we cannot say that the ripe grape
supports no earthquake happening.

For this reason, the incremental school’s researchers use posterior (or conditional) prob-
ability minus prior probability to express the degree of confirmation. These confirmation
measures include [6,10,21,22]:

D(e1, h1) = P(h1|e1) − P(h1) (Carnap, 1962),

M(e1, h1) = P(e1|h1) − P(e1) (Mortimer, 1988),

R(e1, h1) = log[P(h1|e1)/P(h1)] (Horwich, 1982),

C(e1, h1) = P(h1, e1) − P(e1) P(h1) (Carnap, 1962),

Z(h1, e1) =

{
[P(h1|e1)− P(h1)]/P(h0, as P(h1|e1) ≥ P(h1),
[P(h1|e1)− P(h1)]/P(h1), otherwise,

(Crupi et al., 2007).

In the above measures, D(e1, h1) is measure i recommended by Fitelson in [5]. R(e1, h1) is
an information measure. It can be written as logP(h1|e1) − logP(h1). Since logP(h1|e1)
− logP(h1) = logP(e1|h1) − logP(e1) = logP(h1,e1) − log[P(h1)P(e1)], D, M, and C increase
with R and hence can be replaced with each other. Z is the normalization of D for having
the two desired properties [10]. Therefore, we can also call the incremental school the
information school.

On the other hand, the inductive school’s researchers use the difference (or likelihood
ratio) between two conditional probabilities representing the proportions of positive and
negative examples to express confirmation measures. These measures include [7,8,23–25]:

S(e1, h1) = P(h1|e1) − P(h1|e0) (Christensen, 1999),

N(e1, h1) = P(e1|h1) − P(e1|h0) (Nozick, 1981),

L(e1, h1) = log[ P(e1|h1)/P(e1|h0)] (Good, 1984),

F(e1, h1) = [P(e1|h1) − P(e1|h0)]/[ P(e1|h1)+ P(e1|h0)] (Kemeny and Oppenheim, 1952),

b*(e1, h1) = [P(e1|h1) − P(e1|h0)]/max(P(e1|h1), P(e1|h0)) (Lu, 2020).

They are all positively related to the Likelihood Ratio (LR+ = P(e1|h1)/P(e1|h0)). For
example, L = log LR+ and F = (LR+ − 1)/(LR+ + 1) [7]. Therefore, these measures are
compatible with risk (or reliability) measures, such as Pd, used in medical tests and disease
control. Although the author has studied semantic information theory for a long time [26–28]
and believe both schools have made important contributions to Bayesian confirmation, he
is on the side of the inductive school. The reason is that information evaluation occurs
before classification, whereas confirmation is needed after classification [8].

Although the researchers understand confirmation differently, they all agree to use a
sample including four types of examples (e1, h1), (e0, h1), (e1, h0), and (e0, h0) with different
proportions as the evidence to construct confirmation measures [8,10]. The main problem
with the incremental school is that they do not distinguish the evidence of a major premise
and that of the consequent of the major premise well. When they use the four examples’
proportions to construct confirmation measures, e is regarded as the major premise’s
antecedent, whose negation e0 is meaningful. However, when they say “to evaluate the
supporting strength of e to h”, e is understood as a sample, whose negation e0 is meaningless.
It is more meaningless to put a sample e or e0 in an example (e1, h1) or (e0, h1).

We compare D (i.e., measure i) and S to show the main difference between the two
schools’ measures. Since:

D(e1, h1) = P(h1|e1) − P(h1) = P(h1|e1) − [P(e1)P(h1|e1) + P(e0)P(h1|e0)]
= [1 − P(e1)]P(h1|e1) − P(e0)P(h1|e0) = P(e0)S(e1,h1),

(6)
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we can find that D changes with P(e0) or P(e1), but S does not. P(e) means the source and
P(h|e) means the channel. D is related to the source and the channel, but S is only related
to the channel. Measures F and b* are also only related to channel P(e|h). Therefore, the
author calls b* the channels’ confirmation measure.

2.2. The P-T Probability Framework and the Methods of Semantic Information and Cross-Entropy
for Channels’ Confirmation Measure b*(e→h)

In the P-T probability framework [28] proposed by the author, there are both statistical
probability P and logical probability (or truth value) T; the truth function of a predicate is
also a membership function of a fuzzy set [29]. Therefore, the truth function also changes
between 0 and 1. The purpose of proposing this probability framework is to set up the
bridge between statistics and fuzzy logic.

Let X be a random variable representing an instance, taking a value x∈A = {x0,x1, . . . },
and Y be a random variable representing a label or hypothesis, taking a value y∈B = { y0,y1,
. . . }. The Shannon channel is a conditional probability matrix P(yj|xi) (i = 1,2,...; j = 1,2, . . . ) or
a set of transition probability functions P(yj|x) (j = 1,2, . . . ). The semantic channel is a truth
value matrix T(yj|xi) (i = 1,2, . . . ; j = 1,2, . . . ) or a set of truth functions T(yj|x) (j = 0,1, . . . ).
Let the elements in A that make yj true form a fuzzy subset θj. The membership function
T(θj|x) of θj is also the truth function T(yj|x) of yj, i.e., T(θj|x) = T(yj|x).

The logical probability of yj is:

T(yj) = T(θj) = ∑
i

P(xi)T(θj
∣∣xi). (7)

Zadeh calls it the fuzzy event’s probability [30]. When yj is true, the conditional probability
of x is:

P(x
∣∣θj) = P(x)T(θj

∣∣x)/T(θj). (8)

Fuzzy set θj can also be understood as a model parameter; hence P(x|θj) is a likeli-
hood function.

The differences between logical probability and statistical probability are:

• The statistical probability is normalized (the sum is 1), whereas the logical probability
is not. Generally, we have T(θ0) + T(θ1) + . . . > 1.

• The maximum value of T(θj|x) is 1 for different x, whereas P(y0|x) + P(y1|x) + . . . = 1
for a given x.

We can use the sample distribution to optimize the model parameters. For example,
we use x to represent the age, use a logistic function as the truth function of the elderly:
T(“elderly”|x) = 1/[1 + exp (− bx + a)], and use a sampling distribution to optimize a and b.

The (amount of) semantic information about xi conveyed by yj is:

I(xi; θj) = log
P(xi

∣∣θj)

P(xi)
= log

T(θj
∣∣xi)

T(θj)
. (9)

For different x, the average semantic information conveyed by yj is:

I(X; θj) = ∑
i

P(xi
∣∣yj) log

T(θj|xi)

T(θj)
= ∑

i
P(xi

∣∣yj) log
P(xi|θj)

P(xi)

= −∑
i

P(xi
∣∣yj) log P(xi)− H(X|θj).

(10)

In the above formula, H(X|θj) is a cross-entropy:

H(X|θj) = −∑
i

P(xi|yj) log P(xi|θj). (11)

The cross-entropy has an important property: when we change P(x|θj) so that P(x|θj)
= P(x|yj), H(X|θj) reaches its minimum. It is easy to find from Equation (10) that I(X;
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θj) reaches its maximum as H(X|θj) reaches its minimum. The author has proved that if
P(x|θj) = P(x|yj), then T(θj|x)∝P(yj|x) [27]. If for all j, T(θj|x)∝P(yj|x), we say that the
semantic channel matches the Shannon channel.

We use the medical test as an example to deduce the channels’ conformation measure
b*. We define h∈{h0, h1} = {infected, uninfected} and e∈{e0, e1} = {positive, negative}. The
Shannon channel is P(e|h), and the semantic channel is T(e|h). The major premise to be
confirmed is e1→h1, which means “If one’s test is positive, then he is infected”.

We regard a fuzzy predicate e1(h) as the linear combination of a clear predicate (whose
truth value is 0 or 1) and a tautology (whose truth value is always 1). Let the tautology’s
proportion be b1

′ and the clear predicate’s proportion be 1 − b1
′. Then we have:

T(e1|h0) = b1
′; T(e1|h1) = b1

′+ b1 = b1
′+(1 − b1

′) = 1. (12)

The b1
′ is also called the degree of disbelief of rule e1→h1. The degree of disbelief

optimized by a sample, denoted by b1
′*, is the degree of disconfirmation. Let b1* denote

the degree of confirmation; we have b1
′* = 1 − |b1*|. By maximizing average semantic

information I(H; θ1) or minimizing cross-entropy H(H|θj), we can deduce (see Section 3.2
in [8]):

b1
∗ = b∗(e1 → h1) =

P(e1|h1)− P(e1|h0)

max(P(e1|h1), P(e1|h0))
=

LR+ − 1
max(LR+, 1)

. (13)

Suppose that likelihood function P(h|e1) is decomposed into an equiprobable part and
a part with 0 and 1. Then, we can deduce the predictions’ confirmation measure c*:

c1
∗ = c∗(e1 → h1) =

P(h1|e1)− P(h0|e1)

max(P(h1|e1), P(h0|e1))
=

2P(h1|e1)− 1
max(P(h1|e1), 1− P(h1|e1))

. (14)

Measure b* is compatible with the likelihood ratio and suitable for evaluating medical
tests. In contrast, measure c* is appropriate to assess the consequent inevitability of a
rule and can be used to clarify the Raven Paradox [8]. Moreover, both measures have the
normalizing property and symmetry mentioned above.

2.3. Causal Inference: Talking from Simpson’s Paradox

According to the ECIT, the grouping conclusion is acceptable for Example 2 (about
kidney stones), whereas the overall conclusion is acceptable for Example 3 (about blood
pressure). The reason is that P(y1|x1) and P(y1|x0) may not reflect causality well; in
addition to the observed data or joint probability distribution P(y, x, g), we also need to
suppose the causal structure behind the data [3].

Suppose there is the third variable, u. Figure 2 shows the causal relationships in
Examples 2, 3, and 4. Figure 2a shows the causal structure of Example 2, where u (kidney
stones’ size) is a confounder that affects both x and y. Figure 2b describes the causal
structure of Example 3, where u (blood pressure) is a mediator that affects y but is affected
by x. In Figure 2c, u can be interpreted as either a confounder or a mediator. The causality
will differ from different perspectives, and P(y1|do(x)) will also differ. In all cases, we
should replace P(y|x) with P(y|do(x)) (if they are different) to get RD, RR, and Pd.
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We should accept the overall conclusion for the example where u is a mediator. How-
ever, for the example where u is a confounder, how do we obtain a suitable P(y|do(x))?
According to Rubin’s potential outcomes model, we use Figure 3 to explain the difference
between P(y|do(x)) and P(y|x).
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coefficients. After replacing P(gk|xi) with P(gk) (k = 1,2; i = 1,2), the overall conclusion is consistent
with the grouping conclusion; the average success rate of x2, P(y1|do(x2)) = 0.7, is higher than that of
x1, P(y1|do(x1)) = 0.65.

To find the difference in the outcomes caused by x1 and x2, we should compare the
two outcomes in the same background. However, there is often no situation where other
conditions remain unchanged except for the cause. For this reason, we need to replace x1
with x2 in our imagination and see the shift in y1 or its probability. If u is a confounder
and not affected by x, the number of members in g1 and g2 should be unchanged with
x, as shown in Figure 3. The solution is to use P(g) instead of P(g|x) for the weighting
operation so that the overall conclusion is consistent with the grouping conclusion. Hence,
the paradox no longer exists.

Although P(x0) + P(x1) = 1 is tenable, P(do (x1)) + P(do (x0)) = 1 is meaningless. That is
why Rubin emphasizes that P(yx), i.e., P(y|do(x)), is still a marginal probability instead of a
conditional probability, in essence.

Rubin’s reason [2] for replacing P(g|x) with P(g) is that for each group, such as g1,
the two subgroups’ members (patients) treated by x1 and x2 are interchangeable (i.e.,
Pearl’s causal independence assumption mentioned in [5]). If a member is divided into the
subgroup with x1, its success rate should be P(y1|g, x1); if it is divided into the subgroup
with x2, the success rate should be P(y1|g, x2). P(g|x1) and P(g|x2) are different only
because half of the data are missing. However, we can fill in the missing data using
our imagination.

If u is a mediator, as shown in Figure 2b, a member in g1 may enter g2 because of x,
and vice versa. P(g|x0) and P(g|x1) are hence different without needing to be replaced
with P(g). We can let P(y1|do (x)) = P(y1|x) directly and accept the overall conclusion.

2.4. Probability Measures for Causation

In Rubin and Greenland’s article [13]:

P(t) = [R(t) − 1]/R(t) (15)

is explained as the probability of causation, where t is one’s age of exposure to some
harmful environment. R(t) is the age-specific infection rate (infected population divided by
uninfected population). Let y1 stand for the infection, x1 for the exposure, and x0 for no
exposure. Then there is R(t) = P(y1|do(x1), t)/P(y1|do(x0), t). Its lower limit is 0 because
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the probability cannot be negative. When the change of t is neglected, considering the
lower limit, we can write the probability of causation as:

Pd = max(0,
R− 1

R
) = max(0,

P(y1|do(x1))− P(y1|do(x0))

P(y1|do(x1))
). (16)

Pearl uses PN to represent Pd and explains PN as the probability of necessity [3]. Pd is very
similar to confirmation measure b* [8]. The main difference is that b* changes between −1
and 1.

Robert van Rooij and Katrin Schulz [31] argue that conditionals of the form “If x, then
y” are assertable only if:

∆∗Py
x =

P(y1|x1)− P(y1|x0)

1− P(y1|x0)
(17)

is high. This measure is similar to confirmation measure Z. The difference between Pd
and ∆*Px

y is that Pd, like b*, is sensitive to counterexamples’ proportion P(y1|x0), whereas
∆*Px

y is not. Table 1 shows their differences.

Table 1. Comparing Pd and ∆*Px
y.

P(y1|x1) P(y1|x0) Pd ∆*Px
y Comparison

No big difference 0.9 0.8 0.11 0.5 Pd << ∆*Px
y

No counterexample 0.2 0 1 0.2 Pd >> ∆*Px
y

David E. Over et al. [32] support the Ramsey test hypothesis, implying that the
subjective probability of a natural language conditional, P(if p then q), is the conditional
subjective probability, P(q|p). This measure is confirm f in [5].

The author [8] suggests that we should distinguish two types of confirmation measures
for x=>y or e→h. One is to stand for the necessity of x compared with x0; the other is for
the inevitability of y. P(y|x) may be good for the latter but not for the former. The former
should be independent of P(x) and P(y). Pd is such a one.

However, there is a problem with Pd. If Pd is 0 when y is uncorrelated to x, then Pd
should be negative instead of 0 when x inversely affects y (e.g., vaccine affects infection).
Therefore, we need a confirmation measure between −1 and 1 instead of a probability
measure between 0 and 1.

3. Methods
3.1. Defining Causal Posterior Probability

To avoid treating association as causality, we first explain what kind of posterior
probabilities indicate causality. Posterior probability and conditional probability are often
regarded as the same. However, Rubin emphasizes that probability P(yx) is not conditional;
it is still marginal. To distinguish P(yx) and marginal probability P(y), we call P(yx), i.e.,
P(y|do(x)), the Causal Posterior Probability (CPP). What posterior probability is the CPP?
We use the following example to explain.

About the population age distribution, let z be age and the population age distribution
be p(z). We may define that a person with z ≥ 60 is called an elderly; that is, P(y1|z) = 1 for
z ≥ z0. The label of an elderly is y1, and the label of a non-elderly is y0. The probability of
the elderly is:

P(y1) = ∑
all z

p(z)P(y1|z) = ∑
z≥60

p(z) (18)

Let x1 denote the improved medical condition. After a period, p(z) becomes p(zx1) =
p(z|do(x1)) and P(y1) becomes:

P(y1
x1) = P(y1|do(x1)) = ∑

z≥60
p(z|do(x1)), (19)
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Let x0 be the medical condition existing already. We have:

P(y1|do(x0)) = ∑
z≥60

p(z|do(x0)). (20)

There are similar examples:

• About whether a drug (x1) can lower blood pressure, blood sugar, blood lipid, or uric
acid (z) or not, if z drops to a certain level z0, we say that the drug is effective (y1).

• About whether a fertilizer (x1) can increase grain yield (z), if z increases to a certain
extent z0, the grain yield is regarded as a bumper harvest (y1).

• Can a process x1 reduce the deviation z of a product’s size? If the deviation is smaller
than the tolerance (z0), we consider the product qualified (y1).

From the above examples, we can find that the action x can be the cause of a causal
relationship because it can cause the change of probability distribution p(z) of objective
result z, rather than the change of probability distribution P(y|·) of outcome y. The reason
is that P(y|·) also changes with the dividing boundary z0. For example, if the dividing
boundary of the elderly changes from z0 = 60 to z0

′ = 65, the posterior probability P(y1|z0
′)

of y1 will become smaller. This change seemingly also reflects causality. However, the
author thinks this change is due to a mathematical cause, which does not reflect the causal
relationship we want to study. Therefore, we need to define the CPP more specifically.

Definition 1. Random variable Z takes a value z∈ {z1, z2, . . . } and p(z) is the probability
distribution of the objective result. Random variable Y takes a value y∈{y0, y1} and represents
the outcome, i.e., the classification label of z. The cause or treatment is x ∈ {x0, x1} or {x1, x2}. If
replacing x0 with x1 (or x1 with x2) can cause the change of probability distribution p(z), we call x
the cause, p(z|x) or p(zx) the CPP distribution, and P(yx) = P(y|do(x)) the CPP.

According to the above definition, given y1, the conditional probability distribution
p(z|y1) is not the CPP distribution because the probability distribution of z does not change
with y.

Suppose that x1 is the vaccine for COVID-19, y1 is the infection, and e1 is the test-positive.
Then P(y1|x1) or P(y1|do(x1)) is the CPP, whereas P(y1|e1) is not. We may regard y1 as
the conclusion obtained by the best test, e1 is from a common test, and P(y1|e1) is the
probability prediction of y1. P(y1|e1) is not a CPP because e1 does not change p(z) and the
conclusion from the best test.

3.2. Using x2/x1 => y1 to Compare the Influences of Two Causes on an Outcome

In associated relationships, x0 is the negation of x1; they are complementary. However,
in causal relationships, x1 is the substitute for x0. For example, consider taking medicines to
cure the disease. Let x0 denote taking nothing, and x1 and x2 represent taking two different
medicines. Each of x1 and x2 is a possible alternative to x0 instead of the negation of x0.
Furthermore, in some cases, x1 may include x0 (see Section 4.3).

When we compare the effects of x2 and x1, it is unclear to use “x2 => y1” to indicate
the causal relationship. Therefore, the author suggests that we had better replace “x2 => y1”
with “x2/x1 => y1”, which means “replacing x1 with x2 will arise or increase y1”.

There are two reasons for using “x2/x1”:

• One is to express symmetry (Cc(x2/x1 => y1) = − Cc(x1/x2 => y1)) conveniently.
• Another is to emphasize that x1 and x2 are not complementary but alternatives for

eliminating Simpson’s Paradox easily.

To compare x1 with x0, we may selectively use “x1/x0 => y1” or “x1 => y1”.
For Example 2 with a confounder, if we consider the treatment as replacing x2 with x1

in our imagination, we can easily understand why the number of patients in each group
should be unchanged, that is, P(g|x1) = P(g|x2) = P(g). The reason is that the replacement
will not change everyone’s kidney stone size.
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In Example 3, u is a mediator, and the number of people in each group (with high or
low blood pressure) is also affected by taking an antihypertensive drug x1. When we replace
x0 with x1, P(g|x1) 6= P(g|x0) 6= P(g) is reasonable, and hence the weighting coefficients
need not be adjusted. In this case, we can directly let P(y1|do(x)) = P(y1|x).

3.3. Deducing Causal Confirmation Measure Cc by the Methods of Semantic Information and
Cross-Entropy

We use x1 => y1 as an example to deduce the causal confirmation measure Cc. If we
need to compare any two causes, xi and xk, we may assume that one is default as x0.

Let s1 = “x1 => y1” and s0 = “x0 => y0”. We suppose that s1 includes a believable part with
proportion b1 and a disbelievable part with proportion b1

′. Their relation is b1
′ + |b1| = 1. First,

we assume b1 > 0; hence b1 = 1 − b1
′. The two truth values of s1 are T(s1|x1) and T(s1|x0),

as shown in the last row of Table 2.

Table 2. The truth values of s0 = “x0 => y0” and s1 = “x1 => y1”.

T(s|x0) T(s|x1)

s0 = “x0 => y0” 1 b0
′

s1 = “x1 => y1” b1
′ 1

Figure 4 shows how truth function T(s1|x) is related to b1 and b1
′ for b1 > 0. T(s1|x1) = 1

means that example (x1, y1) makes s1 fully true; T(s1|x0) = b1
′ is the truth value and the

degree of disbelief of s1 for given counterexample (x0, y1).
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The degree of belief optimized by a sampling distribution with the maximum semantic
information or minimum cross-entropy criterion is the degree of causal confirmation,
denoted by Cc1 = Cc(x1/x0 = >y1) = b1*.

The logical probability of s1 is (see Equation (7)):

T(s1) = P(x1) + P(x0) b1
′, (21)

The predicted probability of x1 by y1 and s1 is:

P(x1|θ1) =
T(s1|x1)P(x1)

T(s1)
=

P(x1)

P(x1) + P(x0)b1
′ , (22)

where θj can be regarded as the parameter of truth function T(sj|x).
The average semantic information conveyed by y1 and s1 about x is:

I(X; θ1) = ∑
i

P(xi|y1) log
P(xi|θ1)

P(xi)
= −∑

i
P(xi|y1) log P(xi)− H(X|θ1), (23)
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where H(X|θ1) is a cross-entropy. We suppose that sampling distribution P(x, y) has be
modified so that P(y|x) = P(y|do(x)). According to the property of cross-entropy, H(X|θ1)
reaches its minimum so that I(X; θj) reaches its maximum as P(x|θ1) = P(x|y1), i.e.,

P(x0|θ1) =
P(x0)b1

′

P(x1)+P(x0)b1
′ = P(x0|y1),

P(x1|θ1) =
P(x1)

P(x1)+P(x0)b1
′ = P(x1|y1).

(24)

From the above two equations, we obtain:

P(x0)

P(x1)
b1
′ =

P(x0|y1)

P(x1|y1)
. (25)

Order:

m(xi, yj) =
P(yj|xi)

P(yj)
=

P(xi, yj)

P(xi)P(yj)
, i = 0, 1; j = 0, 1, (26)

which represents the degree of correlation between xi and yj and may be independent of
P(x) and P(y), unlike P(xi, yj). From Equations (25) and (26), we obtain the optimized degree
of disbelief, i.e., the degree of disconfirmation:

b1
′* = m(x0,y1)/m(x1,y1). (27)

Then we have the degree of confirmation of s1:

b1
∗ = 1− b1

′∗ = 1− m(x0, y1)

m(x1, y1)
=

m(x1, y1)−m(x0, y1)

m(x1, y1)
. (28)

In the above formulas, we assume b1*> 0 and hence m(x1, y1) ≥ m(x0,y1). If m(x1, y1) < m(x0,
y1), b1* should be negative, and b1

′* should be m(x1, y1) / m(x0, y0). Then we have:

b1
∗ = −(1− b1

′∗) = −(1− m(x1, y1)

m(x0, y1)
) =

m(x1, y1)−m(x0, y1)

m(x0, y1)
. (29)

Combining the above two equations, we derive the confirmation measure:

Cc(x1 => y1) = b1
∗ =

m(x1, y1)−m(x0, y1)

max(m(x1, y1), m(x0, y1))
. (30)

Since P(yj
∣∣xi) = m(xi, yj)P(yj), we also have:

b1
′* = P(x0|y1)/P(x1|y1), (31)

Cc(x1 => y1) = b1
∗ =

P(y1|x1)− P(y1|x0)

max(P(y1|x1), P(y1|x0))
=

R− 1
max(R, 1)

, (32)

where R = P(y1|x1) / P(y1|x0) is the relative risk or the likelihood ratio used for Pd.
Measure Cc has the normalizing property since its maximum is 1 as m(x0, y1) = 0 and

the minimum is −1 as m(x1, y1) = 0. It has cause symmetry since:

Cc(x0/x1 => y1) = m(x0,y1)−m(x1,y1)
max(m(x0,y1),m(x1,y1))

= − m(x1,y1)−m(x0,y1)
max(m(x1,y1),m(x0,|y1))

= −Cc(x1/x0 => y1).
(33)

Similarly, letting probability distribution P(y|x1) be the linear combination of a uni-
form probability distribution and a 0–1 distribution, we can obtain another causal confir-
mation measure:

Ce(x1 => y1) =
P(y1|x1)− P(y0|x1)

max(P(y1|x1), P(y0|x1))
=

2P(y1|x1)− 1
max(P(y1|x1), 1− P(y1|x1))

. (34)
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This measure can be regarded as the direct extension of Bayesian confirmation measure
c*(e1→h1) [8]. It increases monotonically with the Bayesian confirmation measure f (h1, e1) =
P(h1|e1), which is used by Fitelson et al. [5,32]. However, Ce has the normalizing property
and the outcome symmetry:

Ce(x1 => y1) = − Ce(x1 => y0). (35)

3.4. Causal Confirmation Measures Cc and Ce for Probability Predictions

From y1, b1*, and P(x), we can make the probability prediction about x:

P(x1|θ1) =
P(xi)

P(x1) + b1
′∗P(x0)

, P(x0|θ1) =
P(x0)b1

′∗

P(x1) + b1
′∗P(x0)

, (36)

where b1* > 0, θ1 represents y1 with b1
′*, and θ0 means y0 with b0

′*. If b1*< 0, we let T(s1|x1)
= b1

′ and T(s1|x0) = 1, and then use the above formula.
Following the probability prediction with Bayesian confirmation measure c* [8], we

can also make probability prediction for given x1 and Ce1. For example, when Ce1 is greater
than 0, there is:

P(y1|θx1) = 1/(2− Ce1), (37)

where θx1 denotes x1 and Ce1.
Given the semantic channel ascertained by b1 > 0 and b0 > 0, as shown in Table 2, we

can obtain the corresponding Shannon channel P(y|x). According to Equation (32), we
can deduce:

P(y1|x1) =
1−b0

′

1−b1
′b0
′ , P(y0|x0) =

1−b1
′

1−b1
′b0
′ ,

P(y0|x1) = 1− P(y1|x1), P(y1|x0) = 1− P(y0|x0).
(38)

4. Results
4.1. A Real Example of Kidney Stone Treatments

Table 3 shows Example 2 with detailed data about kidney stone treatments [15]. The
data were initially provided in [16]. In Table 3, *% means a success rate, and the number
behind it is the number of patients. The stone size is a confounder. The conclusion from
every group (with small or large stones) is that treatment x2 (i.e., treatment A in [15])
is better than treatment x1 (i.e., treatment B in [15]); whereas the conclusion according
to average success rates, P(y1|x2) = 0.78 and P(y1|x1) = 0.83, treatment x1 is better than
treatment x2. There seems to be a paradox.

Table 3. Comparing two treatments’ success rates (y1 means the success).

Treat. x1 Treat. x2 Number P(g) or Cc

Small stones (g1) 87%/270 93%/87 * 357 0.51

Large stones (g2) 69%/80 73%/263 343 0.49

Overall 83%/350 78%/350 700

P(y1|x) 0.83 0.78 [(P(y1|x2) − P(y1|x1)]/P(y1|x2) = −0.064

P(y1|do(x)) 0.78 0.83 Cc1 = Cc(x2/x1 => y1) = 0.06

P(y0|do(x)) 0.22 0.17 Cc0 = Cc(x1/x2 => y0) = 0.23

* “87%/270” means that the success rate is 87%, and the number in this subgroup is 270.

We used P(g) instead of P(g|x1) or P(g|x2) as the weighting coefficient for P(y1|do(x1))
and P(y1|do(x2)). After replacing P(y1|x1) with P(y1|do(x1)) and P(y1|x2) with P(y1|do(x2)),
we derived Cc1 = Cc(x2/x1 => y1) = 0.06 (see Table 3), which means that the overall conclu-
sion is that treatment x2 is better than treatment x1.

For Cc1 in Table 3, we used treatment x1 as the default; the degree of causal confirmation
Cc1 = Cc(x2/x1 => y1) is 0.06. If we used x2 as the default, Cc1 = Cc(x1/x2 => y1) = −0.06.
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Using measure Cc, we need not worry about which of P(y1|do(x1)) and P(y1|do(x2)) is
larger, whereas, using Pd, we have to consider that before calculating Pd.

We used the incremental school’s confirmation measure D(x1, y1) to compare x1 and
x2. We obtained:

• P(y1) = P(x1)P(y1|x1) + P(x2)P(y1|x2) = 0.805,
• P(y1|x2, g1) − P(y1) = 0.93 − 0.805 > 0,
• P(y1|x2, g2) − P(y1) = 0.73 − 0.805 < 0, and
• D(x1, y1) = P(y1|x1) − P(y1) = 0.83 − 0.805 > 0
• D(x2, y2) = P(y1|x2) − P(y1) = 0.78 − 0.805 < 0.

The results mean that x1 is better than x2. There seems to be no paradox only because
the paradox is avoided rather than eliminated when we use D(x1, y1).

We tested Equation (38) by the aforementioned example. The Shannon channel P(y|x)
derived from the two degrees of disconfirmation b1

′* and b0
′* is the same as P(y|do(x))

shown in the last two rows of Table 3.

4.2. An Example of Eliminating Simpson’s Paradox with COVID-19

Table 4 shows Example 2 with detailed data about the CFRs of COVID-19. The original
data were obtained from the website of the Centers for Disease Control and Prevention
(CDC) in the United States up until 2 July 2022 [33]. The data only include reported cases;
otherwise, the CFRs should be lower. The x1 represents the non-Hispanic white and x2
means the other races. P(y1|x1, g) and P(y1|x2, g) are the CFRs of x1 and x2 in an age group
g. See Appendix A for the original data and median results.

Table 4. The CFRs of COVID-19 of non-Hispanic white (x1) and other people (x2) from different
age groups.

Age Group (g) P(x1|g) P(g) P(y1|x1, g) P(g|x1) P(y1|x2, g) P(g|x2)

0–4 Years 44.200 0.041 0.0002 0.0349 0.0002 0.0480

5–11 Years 44.200 0.078 0.0001 0.0659 0.0001 0.0907

12–15 Years 46.300 0.052 0.0001 0.0458 0.0001 0.0578

16–17 Years 48.700 0.029 0.0001 0.0268 0.0002 0.0307

18–29 Years 48.700 0.223 0.0004 0.2081 0.0006 0.2388

30–39 Years 49.300 0.178 0.0011 0.1681 0.0019 0.1883

40–49 Years 51.000 0.146 0.0030 0.1427 0.0048 0.1493

50–64 Years 59.100 0.163 0.0102 0.1843 0.0144 0.1389

65–74 Years 67.300 0.055 0.0333 0.0704 0.0457 0.0373

75–84 Years 72.900 0.025 0.0762 0.0356 0.0938 0.0144

85+ Years 76.300 0.012 0.1606 0.0173 0.1751 0.0059

sum 1 1 1

Table 5 shows that the overall (average) CFRs vary before and after we change the
weighting coefficient from P(g|x) to P(g).

Table 5. Comparing the CFRs of non-Hispanic whites and the other people.

The CFR of
Non-Hispanic Whites (x1)

The CFR of
of Other People (x2) Risk Measure *

P(y1|x) 1.04 0.73 Pd = (R − 1)/R = 0.30

P(y1|do(x)) 0.80 1.05 Pd = 0; Cc(x1/x2=>y1) = −0.28

* R = P(y1|x1)/P(y1|x2).
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From Table 4, we can find that for different age groups, the CFR of the non-Hispanic
whites is lower than or close to that of the other races. However, for all age groups (see
Table 5), the overall (average) CFR (1.04) of the non-Hispanic whites is higher than the
CFR (0.73) of the other races. After replacing P(g|x) with P(g), the overall CFR (0.80) of the
non-Hispanic whites is also lower than that (1.05) of the other races.

We followed Fitelson to use D(x1, y1) to assess the risk. The average CFR is 0.97 (found
on the same website [33]). We obtained:

D(non-Hispanic whites, death) = P(y1|x1) − P(y1) = 1.04 − 0.97 = 0.07,

D(other people, death) = P(y1|x2) − P(y1) = 0.73 − 0.97 = −0.14,

which means that non-Hispanic whites are at higher risk.

4.3. COVID-19: Vaccine’s Negative Influences on the CFR and Mortality

Using causal probability measure Pd is not convenient to measure the “probability”
of “vaccine => infection” or “vaccine => death”, since Pd is regarded as the probability,
whose minimum value is 0, while the vaccine’s influence is negative. However, there is no
problem using Cc because Cc can be negative.

Table 6 shows data obtained from the website of the US CDC [34] and the two degrees
of causal confirmation. The numbers of cases and deaths are among 100,000 people (ages
over 5) in a week (from June 20 to 26, 2022).

Table 6. The negative degrees of causal confirmation for accessing that the vaccine affects infections
and deaths.

Unvaccinated (x0) Vaccinated (x1) Cc

Cases 512.6 189.5 Cc(x1/x0 => y1) = −0.63

Deaths 1.89 0.34 Cc(x1/x0) => y1) = −0.79

Mortality rate 0.001 0.00018

The negative degree of causal confirmation −0.63 means that the vaccine reduced the
infection rate by 63%. The −0.79 means that the vaccine reduced the CFR by 79%.

To know the impact of COVID-19 on population mortality, we need to compare the
regular mortality rate due to common reasons (x0) with the new mortality rate due to
common reasons plus COVID-19 (x1) during the same period (such as one year). Since the
average lifespan of people in the United States is 79 years old, the annual mortality rate is
about 1/79 = 0.013. From Table 6, we can derive that the yearly mortality rate caused by
COVID-19 is 0.001 (for unvaccinated people) or 0.00018 (for vaccinated people).

People who died due to COVID-19 may also die in the same year for common reasons.
Therefore, the new mortality rate should be less than the sum of the two mortality rates.
Assume that x0 and x1 are independent of each other. Then new mortality rate P(y1|x1)
should be 0.013 + 0.001− 0.013× 0.001≈ 0.014 (for unvaccinated people) or 0.013 + 0.00018
− 0.013 × 0.00018 ≈ 0.01318 (for vaccinated people). Table 7 shows the degree of causal
confirmation of COVID-19 leading to mortality, for which we assume P(y1|x) = P(y1|do(x)).

Table 7. Using Cc to measure the impact of COVID-19 on the mortality rates.

Mortality Rate P(y1|x) Unvaccinated Vaccinated

x0: common reasons P(y1|x0) 0.013 0.013

x1: x0 plus COVID-19 P(y1|x1) 0.014 0.01318

Cc1 = Cc(x1/x0 => y1) 0.07 0.014
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In the last line, Cc1 = 0.07 means that among unvaccinated people who die, 7% are due
to COVID-19. Moreover, Cc = 0.014 means that among the vaccinated people who die, 1.4%
are due to COVID-19.

If we used x1 = COVID-19 instead of x1 = x0 + COVID-19, we would get a strange
conclusion that COVID-19 could reduce deaths.

We obtained the above results without considering the vaccine’s side effects, possibly
resulting in chronic deaths.

5. Discussion
5.1. Why Can Pd and Cc Better Indicate the Strength of Causation Than D in Theory?

We call m(xi, yj) (i = 0,1; j = 0,1) the probability correlation matrix, which is not
symmetrical. Although there exists P(x, y) first and then m(x, y) from the perspective of
calculation, there exists m(x, y) first and then P(x, y) from the perspective of existence. That
is, given P(x), m(x, y) only allows specific P(y) to happen.

We can also make probability predictions with m(x, y) (like using Bayes’ formula):

P(y|x1) = P(y)m(x1, y)/m(x1), m(x1) = ∑
y

P(y)m(x1, y),

P(x|y1) = P(x)m(x, y1)/m(y1), m(y1) = ∑
x

P(x)m(x, y1).
(39)

From Equations (27)–(30), we can find that Pd and Cc only depend on m(x, y) and are
independent of P(x) and P(y). The two degrees of disconfirmation, b1

′* and b0
′*, ascertain a

semantic channel and a Shannon channel. Therefore, the two degrees of causal confirmation,
Cc1 = b1* and Cc0 = b0*, indicate the strength of the constraint relationship (causality) from
x to y. Like Cc, measure Pd is also only related to m(x, y). D and ∆*Px

y are different; they
are related to P(x), so they do not indicate the strength of causation well.

For example, considering the vaccine’s effect on the CFR of COVID-19 (see Table 7),
Pd or Cc are irrelated to vaccination coverage rate P(x1), whereas measure ∆*Px

y is related
to P(x1). Measure D is associated with P(y) and is also related to P(x1). Pd and Cc1 obtained
from one region also fits other areas for the same variant of COVID-19. In contrast, ∆*Px

y

and D are not universal because the vaccination coverage rate P(x1) differs in different areas.
According to the incremental school’s view of Bayesian confirmation, P(y1) is a prior

probability, and P(y1|x) − P(y1) is its increment. However, when measure D is used for
causal confirmation, P(y1) is obtained from P(x) and P(y1|x) after the treatment, so P(y) is
no longer a priori probability, which is also a fatal problem with the incremental school.

In addition, as the result of induction, Cc and Pd can indicate the degree of belief
of a fuzzy major premise and can be used for probability predictions, whereas D and
∆*Px

y cannot.

5.2. Why Are Pd and Cc Better than D in Practice?

Two calculation examples in Sections 4.1 and 4.2 support the conclusion that measures
Pd and Cc are better than D in practice. The reasons are as follows.

5.2.1. Pd and Cc Have Precise Meanings in Comparison with D

Cc1 = Cc (x1/x0 => y1) indicates what percentage of the result y is due to x1 instead of
x0. For example, Table 6 shows that according to the virulence of the virus, COVID-19 will
increase the mortality rate of vaccinated people from 1.3% to 1.318%. Therefore, the degree
of causal confirmation is Cc1 = Pd = 0.014, which means that 1.4% of the deaths will be due
to COVID-19. However, the meanings of D and ∆*Px

y are not precise.
Different from measure RD (see Equation (1)), Pd and Cc indicate relative risk or the

relative change of the outcome. Many people think COVID-19 is very dangerous because
it can kill millions in a country. However, the mortality rate it brings is much lower than
that caused by common reasons. Pd and Cc can reveal the relative change in the mortality
rate (see Table 7). Although it is essential to reduce or delay deaths, it is also vital to
decrease the economic loss due to the fierce fight against the pandemic. Therefore, Pd and
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Cc can help decision-makers balance between reducing or delaying deaths and reducing
financial losses.

5.2.2. The Confounder’s Effect Is Removed from Pd and Cc

When there is a confounder, as shown in Section 4.1, using Pd or Cc, we can eliminate
Simpson’s Paradox and make the overall conclusion consistent with the grouping conclu-
sion: treatment x2 is better than treatment x1. For example, if we use D to compare the
success rates of two treatments, although we can avoid Simpson’s Paradox, the conclusion
is unreasonable. The reason is that we neglect the difficulties of treatments for different
sizes of kidney stones. If a hospital only accepts patients who are easy to treat, its overall
success rate must be high; however, such a hospital may not be a good one.

5.2.3. Pd and Cc Allow Us to View the Third Factor, u, from Different Perspectives

For the example in Section 4.2, if we think that one’s longevity is related to one’s
race, we can take the lifespan as a mediator and then directly accept the overall conclusion
(non-Hispanic whites have a higher CFR than other people). On the other hand, if we
believe that one’s longevity is not due to one’s race, then the lifespan is a confounder.
Therefore, we can make the overall conclusion consistent with the grouping conclusion,
and then use Pd and Cc.

It is worth noting that it is concluded that the CFR of non-Hispanic whites is lower
than that of other people, probably because medical conditions affect the CFRs. However,
existing data do not contain information about the medical conditions of different races.
Otherwise, the CFRs of different races might be similar if we use the medical condition as a
confounder. This issue is worth researching further.

5.3. Why Is It Better to Replace Pd with Cc?

Section 4.3 provides the calculation of the two negative degrees of causal confirmation
that reflect the impacts of the vaccine on infection and mortality. The negative degrees
of confirmation mean that the vaccine can reduce illnesses and deaths. However, if we
use Pd as the probability of causation, Pd can only take its lower limit 0. Although we
can replace Pd(vaccinated => death) with Pd(unvaccinated => death) to ensure Pd > 0, it
does not conform to our thinking habits to take being vaccinated as the default cause. In
addition, Cc has cause symmetry, whereas Pd does not.

When we used Pd to compare two causes x1 and x2, such as two treatments for kidney
stones (see Section 4.1), we had to consider which of P(y1|x2) and P(y1|x1) was larger.
However, using Cc, we needed to not consider that because it is unnecessary to worry
about if (R − 1)/R < 0.

The correlation coefficient in mathematics is between 1 and −1. Cc can be understood
as the probability correlation coefficient. The difference is that the former has only one
coefficient between x and y, whereas the latter has two coefficients: Cc1 = Cc(x1 => y1) and
Cc0 = Cc(x0 => y0).

5.4. Necessity and Sufficiency in Causality

Measures Pd and Cc only indicate the necessity of cause x to outcome y; they do not
reflect the sufficiency of x or the inevitability of y. On the other hand, measure f = P(y|x)
and Ce can indicate the outcome’s inevitability.

The medical industry uses the odds ratio to indicate both the necessity and sufficiency
of the cause to the outcome. The odds rate [2] is:

OR =
P(y1|x1)

P(y1|x0)
× P(y0|x0)

P(y0|x1)
. (40)
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It is the product of two likelihood ratios. We can use:

ORN =
OR− 1

max(OR, 1)
(41)

as the confirmation measure of both x0 => y0 and x1 => y1 for the same purpose. However,
ORN has the normalizing property and symmetry.

5.5. The Relationship between Bayesian Confirmation Measures b* and c*, and Causal
Confirmation Measures Cc and Ce

Suppose that P(y1|x) has been modified for P(y1|x) = P(y1|do(x)). Causal confirmation
measure Cc is equal to channels’ confirmation measure b* [8] in value, i.e.,

Cc(x1 => y1) = [P(y1|x1) − P(y1|x0)]/max(P(y1|x1), P(y1|x0)) = b*(y1→x1). (42)

However, their antecedents and consequents are inverted, which means that if x1 is the
cause of y1, then y1 is the evidence of x1. For example, if COVID-19 infection is the cause of
the test-positive, then the test-positive is the evidence of the infection.

Causal confirmation measure Ce indicating the inevitability of the outcome is equal to
prediction confirmation measure c*(x1→y1) in value, i.e.,

Ce(x1 => y1) = [P(y1|x1) − P(y0|x1)]/max(P(y1|x1), P(y0|x1)) = c*(x1→y1). (43)

Their antecedents and consequents are the same.
However, from the right sides’ values of the above two equations, we may not be able to

obtain the left sides’ values because an associated relationship may not be a causal relationship.

6. Conclusions

Fitelson, a representative of the incremental school of Bayesian confirmation, used
D(x1, y1) = P(y1|x1) − P(y1) to denote the supporting strength of the evidence to the
consequence and extended this measure for causal confirmation without considering the
confounder. This paper has shown that measure D is incompatible with the ECIT and
popular risk measures, such as Pd = max(0, (R − 1)/R). Using D, one can only avoid
Simpson’s Paradox but he cannot eliminate it or provide a reasonable explanation as the
ECIT does.

On the other hand, Rubin et al. used Pd as the probability of causation. Pd is better than
D, but it is improper to call Pd a probability measure and use the probability measure to
measure causation. If we use Pd as a causal confirmation measure, it lacks the normalizing
property and symmetry that an ideal confirmation measure should have.

This paper has deduced causal confirmation measure Cc(x1 => y1) = (R – 1) / max(R, 1)
by the semantic information method with the minimum cross-entropy criterion. Cc is
similar to the inductive school’s confirmation measure b* proposed by the author earlier.
However, the positive examples’ proportion P(y1|x1) and the counterexamples’ proportion
P(y1|x0) are replaced with P(y1|do(x1)) and P(y1|do(x0)) so that Cc is an improved Pd.
Compared with Pd, Cc has the normalizing property (it changes between –1 and 1) and
the cause symmetry (Cc(x0/x1 => y1) = −Cc (x1/x0 => y1)). Since Cc may be negative, it is
also suitable for evaluating the inhibition relationship between cause and outcome, such as
between vaccine and infection.

This paper has provided some examples with Simpson’s Paradox for calculating the de-
grees of causal confirmation. The calculation results show that Pd and Cc are more reasonable
and meaningful than D, and Cc is better than Pd mainly because Cc may be less than zero.
In addition, this paper has also provided a causal confirmation measure Ce(x1 => y1) that
indicates the inevitability of the outcome y1.

Since measure Cc and the ECIT support each other, the inductive school of Bayesian
confirmation are also supported by the ECIT and the epidemical risk theory.
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However, like all Bayesian confirmation measures, causal confirmation measure Cc and
Ce also use size-limited samples, hence, the degrees of causal confirmation are not strictly
reliable. Therefore, replacing a degree of causal confirmation with a degree interval is
necessary to retain the inevitable uncertainty. This work needs further studies by combining
existing theories.
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Appendix A. Data and Calculations for Comparing the CFRs of Non-Hispanic Whites
and Other People in the USA

The original data were obtained from the USA CDC (Centers for Disease Control and
Prevention) website [33]. The Excel file with the original data and computing results can be
downloaded from http://survivor99.com/lcg/cm/CFR.zip (accessed on 8 December 2022).
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