r whom this book is written. I have in-
Hegel’s thought would be somewhat
my judgment, is a better scholar of
ork on Kierkegaard is not as strong as
on-partisan view of Kierkegaard, and
Hegel, will find this work to be of con-
be congratulated for the context he
lent. Like many good books, its errors
\[\text{reflection. In other words, if one can see}\]
up in bold relief not only the ‘labour of
icates the proper road-signs for that

W.A. SHEARSON
Bishop’s University

Dictionary of Marxism, Socialism,

All as the comprehensive and essentially
produce correspondingly great especia-
ially inclined reader at least is apt to be
uch information here — about political
isms’ and a host of ‘schisms’, about the
in key historical events — there is little
leaders who consult the entries under
ntity’ or ‘negation’ or ‘sociology of
arian and all-too-brief accounts which
ably already knew in order to know to
ther, one’s impression is apt to get
mes clear that Wilczynski and his fellow
i to be essentially identical (despite the
volume’s title). Thus while there are entries for Bukharin, Plekhanov, and
Zhdanov (though oddly not Deborin), one looks in vain for Adorno, Bloch,
Benjamin, Brecht, Gramsci, Habermas, Horkheimer, Kosik, Pollock, or Szabó.
When we do find brief mention of Korsch, Labriola, Lukács, Marcuse, and
Sartre, we can only wonder what they are doing in such antagonistic com-
pany. That the author claims he has tried ‘to be as objective as is humanly
possible’ (though ‘he does not hesitate, still in the informative vein, to
highlight the strengths and failings of Marxism, especially in comparison with
capitalism’) may even leave us mildly depressed, or at least in doubt about the
value of ‘encyclopedic dictionaries.’ Not only does one fail to perceive a
totality here. One may well feel robbed even of the satisfaction of bourgeois
but nicely-textured abstract particulars.

WALTER L. ADAMSON
Emory University

RAYMOND L. WILDER, Mathematics as a Cultural System. New York:

Studies of complex cultures as a rule benefit from a concentration on de-
tails and come to grief when the temptation to generalize is given free rein.
When cultures are reduced to a few allegedly salient features, what makes
them worth studying is invariably lost. It is a platitude to say that cultures
reflect social reality when how they reflect it is left unspecified, and it is
unhelpful to be told that cultures evolve as a result of internal stresses and ex-
ternal pressures of one sort or another. Perhaps the problem is that we have
not yet uncovered an appropriate general scheme for analyzing culture, but it
could well be that there is no such scheme to be found.

Raymond Wilder, who has had a long and successful career in
mathematics, is certainly in an excellent position to cast light on the folkways
of the mathematical community. Personal experience may not be the best
evidence, but it could prove especially useful in an area as little explored as
‘mathematical culture.’ What Wilder attempts in this book, however, is a
general account of mathematics as a cultural system, and the result is as
unrewarding as usual. Worse still, Wilder has chosen to ignore the more prosaic aspects of the mathematician’s work and to concentrate instead on mathematical ideas. It is as though an anthropologist interested in the culture of the Trobriand Islanders were to focus on the Islanders’ cultural artifacts to the exclusion of their practices, customs and attitudes.

Wilder’s main contribution to the discussion of cultural systems is the idea that their various components can be represented as ‘vectors’ corresponding to interests. We may, he tells us, think of North American culture as a vectorial system, the vectors of which represent religious interests, agricultural interests, oil interests, etc. (15). In the case of mathematics, we have a system of vectors representing subjects such as algebra and topology ‘in which each vector is striving for further growth and in which the different vectors impinge on one another, offering assistance by diffusion of ideas to other vectors, sometimes resulting in new consolidations which will become vectors in their own right’ (16). This makes vectors — which were first said to represent interests, then fields of research — sound as though they have lives of their own. Even if diverting, the idea of vectors striving, impinging and offering assistance is not one that helps us to explain very much.

This complaint also applies to Wilder’s treatment of what he calls the ‘before his time’ phenomenon. As he sees the matter, cases such as Desargues’ development of projective geometry in the 1630s, two centuries before its time, occur as ‘a result of stresses being imposed by a cultural vector V at a time when successful breakthrough of V is smothered by other, stronger vectors; later, at a more opportune and usually more appropriate time, V achieves recognition and consequent development of its proper niche in the evolution of the related science’ (25). In other words, developments occur when the time is ripe, an observation which hardly demonstrates that the conception of a vectorial system is ‘very useful as an explanatory device’ (ibid.).

In his discussion of the development of mathematical ideas, the other main theme of his book, Wilder quite rightly notes that innovations are often made more or less simultaneously by different scientists, that discoveries occasionally occur prematurely, that mathematics on the whole is becoming progressively more abstract, and that the development of specific fields of research often gives rise to new problems (see chapter II); and he is right to insist that there has been a diffusion of mathematical ideas from certain social groups to others, that practical exigencies occasionally prompt mathematical developments, and that theories have been combined or ‘consolidated’ to yield more general and more powerful theories (see chapters III, IV and V). However, none of this is particularly surprising or significant when presented as abstractly as Wilder presents it. De Solla Price’s argument (mentioned on p. 59) that the beginnings of science resulted from the consolidation of Babylonian numerical astronomy and Greek geometric astronomy is an important historical conjecture, but the claim that consolidations occur is too trivial to warrant extended discussion.

The same problem attends Wilder’s governing the evolution of mathematical ideas and qualify those in Wilder’s concepts (1968), are presumably meant to be unlike interesting generalizations. Twenty-three laws are only distinguished. Consider, for instance, law 10, which states that fields frequently will result in the eventual growth, always assuming the requirement (135), or law 13, which says that the current structure of mathematics will result (141). Would it not be better to devise a scheme for diverse fields when they know about the vectorial system mathematicians become aware of one of them?

The final chapter on ‘Mathematics and the Future,’ despite its title, is as tame as Wilder’s advice to aspiring mathematicians. Not to obtain a result, do not fear that the result will not come out,’ etc. (164-6) — is unlikely to be found it discouraging to be told that what is presented (in this book) is not assumed and I would have preferred not to have read it. It is important to be said about mathematics, which is not apparent in this disappointing book.

‘Throughout this century,’ Nicholas Wolterstorff says, ‘aesthetics has been a somewhat turn?
eder has chosen to ignore the more pro-
work and to concentrate instead on
thropologist interest in the culture of
ns and attitudes.

Discussion of cultural systems is the idea
represented as 'vectors' corresponding
of North American culture as a vec-
resent religious interests, agricultural
case of mathematics, we have a system
as algebra and topology 'in which each
and in which the different vectors imp-
by diffusion of ideas to other vectors,
ations which will become vectors in
rs — which were first said to represent
und as though they have lives of their
ectors striving, impinging and offering
explain very much.

Wilder’s treatment of what he calls the
see the matter, cases such as Desargues’
in the 1630s, two centuries before its
niing imposed by a cultural vector V at a
V is smothered by other, stronger vec-
nd usually more appropriate time, V
development of its proper niche in the
r. In other words, developments occur
which hardly demonstrates that the
very useful as an explanatory device’
ment of mathematical ideas, the other
ightly notes that innovations are often
different scientists, that discoveries oc-
ematics on the whole is becoming
the development of specific fields of
(see chapter II); and he is right to in-
mathematical ideas from certain social
eties occasionally prompt mathematical
been combined or 'consolidated' to
al theories (see chapters III, IV and V).
prising or significant when presented
Solla Price’s argument (mentioned on p.
ulted from the consolidation of Babyl-
gonic astronomy is an important
at consolidations occur is too trivial to

The same problem attends Wilder’s attempt to provide general laws
governing the evolution of mathematical culture. These laws, which supple-
ment and qualify those in Wilder’s earlier Evolution of Mathematical Con-
cepts (1968), are presumably meant to be empirical generalizations. But,
unlike interesting generalizations such as Kepler’s three laws, Wilder’s
twenty-three laws are only distinguished by their often obscure formulation.
Consider, for instance, law 10, which says that 'diffusion between cultures or
fields frequently will result in the emergence of new concepts and accelerated
growth, always assuming the requisite conceptual level of the receiving enti-
y’ (135), or law 13, which says that 'discovery of inadequacy in the concep-
tual structure of mathematics will result in the creation of remedial concepts’
(141). Would it not be better to say that mathematicians use ideas from
diverse fields when they know about them and need them, and that when
mathematicians become aware of contradictions they usually try to eliminate
them?

The final chapter on ‘Mathematics in the 20th Century; its Role and
Future,’ despite its title, is as tame and as torpid as the previous ones. And
Wilder’s advice to aspiring mathematicians — do not worry about being first
to obtain a result, do not fear that one’s filed of interest is becoming ‘played
out,’ etc. (164-6) — is unlikely to inspire very many. For my own part, I
found it discouraging to be told that ‘the way of looking at mathematics
presented (in this book) is not asserted to be the ’true’ state of affairs’ (vii),
and I would have preferred not to have had to negotiate words like ‘religion-
wise,’ ‘culturological’ and ‘premat.’ There may be something general and im-
portant to be said about mathematics as a cultural system, but it is not ap-
parent in this disappointing book.

ANDREW LUGG
University of Ottawa

NICHOLAS WOLTERSTORFF, Works and Worlds of Art. Don Mills, Ont. and

‘Throughout this century,’ Nicholas Wolterstorff notes in his Preface,
aesthetics has been a somewhat turgid backwater alongside the main currents