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1. Introduction

Computer simulation is now firmly entrenched in the method-
ology of science, so much so that simulations are widely designated
as a third pillar of investigation along with experimentation and
theorizing (see Reed et al., 2005, pp. 12-15). The increasing use of
computer simulation to complement, and sometimes replace, in-
stances of the other two pillars has recently led philosophers to
focus on simulation’s relationship with experimentation and the-
ory (Beisbart & Norton, 2012; Guala, 2002; Humphreys, 2004;
Morgan, 2003; Morrison, 2009; Parker, 2009; Winsberg, 2009,
2010). This literature analyzes theory’s role in simulation design,
the numerical techniques for executing the simulation, and the
process of validating results, in order to stress the knowledge-
making role that computer simulations have come to play in
science.

By contrast, little emphasis has been placed on computer sim-
ulation’s data-making capability. Simulations quite obviously pro-
duce large amounts of “data”, but how this data should be
characterized and treated is less than clear. Should computer
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simulation data be treated as novel and empirical, and allowed to
play a role in the evaluation of theory? Or should it be treated as
data of a lesser or different sort? And what grounds do we have for
demarcating between novel empirical data, and data of other sorts?
The answers to these questions bear on how and what scientists
learn from computer simulation results: if simulations can produce
novel empirical data, then they can be used to argue for the exis-
tence of phenomena and to provide support for other hypotheses
about phenomena; if not, simulation results, without additional
support, have little-to-no bearing on the likelihood of scientific
claims.

It is often supposed that computer simulations could never
produce novel empirical data for one of two reasons: they do not
interact with the systems they are taken to produce data about
and they cannot go beyond their programming to produce new
knowledge of the systems they represent. I argue against this
position. I claim that, insofar as certain common forms of mea-
surement interact with their target and return new knowledge of
their target system, simulations, under certain conditions, can as
well. By analyzing common forms of measurement, I demon-
strate how the features of empiricality and novelty are bestowed
upon data. I then argue that if such features are bestowed upon
data in these forms of measurement, then simulations, under
certain conditions, can produce data that displays these features
as well. My analysis reveals that we cannot deny the empiricality
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or novelty of simulation data for the above two reasons without
simultaneously denying the empiricality or novelty of many
measurement results.

I have purposely formulated the argument to come in terms
of features of the data rather than features of the investigations
that produce such data (though, the latter will be relevant to the
former) to emphasize that it is the epistemic character of the
results that we are investigating. Examining the character of the
data also distinguishes my argument from other positions within
debates regarding computer simulation, and avoids some of
their problems. A significant portion of the existing literature
has focused on whether computer simulations constitute a form
of experiment or measurement. For example, both Marcel
Boumans (2005) and Margaret Morrison (2009) have argued
that models are (in some situations) measurement instruments,
even if they never make contact with their targets. This position
can be used to demonstrate that measurements and simulations
are epistemically on par: if we understand simulations as a form
of model, and models are measurement devices, then simula-
tions are measurements. However, this position does not suc-
ceed in showing that models are measurement instruments as
traditionally understood: traditional measurement typically re-
quires causal interaction with the system being measured. In
contrast, Giere (2009) and Beisbart and Norton (2012) all claim
that since computer simulations never make contact with their
target, they should not be considered measurement instruments.
But this view will not do either: no one would deny that a
computer could be programmed to simulate the workings of a
stopwatch, and then used to measure the duration of an event.
Whatever the kind of interaction a stopwatch has with an event,
the simulation of the stopwatch run on the computer has the
same interaction, and its results should be considered
measurements.

The above debate focuses on the possibility of drawing a con-
ceptual distinction between simulation and measurement (or
experiment), and assumes that the epistemic character of the re-
sults will align with those conceptual distinctions. But drawing a
conceptual distinction between two practices does not establish
that their results could never share the same important epistemic
features. I avoid this entrenched dialectic by focusing on the
epistemic properties of the data itself. An examination of the pro-
duction and handling of data illuminates how data gains and
maintains its important epistemic character, and allows compari-
sons between the results of activities on this basis. Hence, in what
follows, I do not argue for a conceptual distinction that allows
simulations to serve as measurement devices; rather, [ argue that in
certain situations, simulations produce data with the same
important epistemic characteristics as measurement. The argu-
mentative strategy I employ is to show how measurement data
comes to have two epistemically important features, and then to
show that computer simulation data can obtain them in the same
way. The significance of this argument is that it represents the first
step in demonstrating that the features of data that make mea-
surement epistemically significant can be extended to some
simulation results as well.

2. The first feature: empiricality

To articulate what it means for data to be empirical and novel, it
is useful to first specify what we mean by data. Intuitively, it may be
popular to think of data as “elements of information that are taken
for granted” in an investigation (Barberousse & Vorms, 2013, p. 31).
However, this understanding of the term will not do. As,
Humphreys (2013) notes, data’s role in science is often to serve as
evidence for some claim, but sometimes at least part of this

evidence is not taken for granted, and instead is ignored or
excluded from the investigation. Following Humphreys (2013, p.
13), I propose thinking of data as values of variables. This definition
restricts the notion of data to quantitative values, but is advanta-
geous because it recognizes statistical outliers or excluded infor-
mation as data. A pitfall of this definition is that some scientific
objects—for example cloud chamber photographs or the flushed
face of a sick patient—do not count as data. This should not trouble
us much here, because as we will see, the problem cases we are
looking at are quantitative in nature. Furthermore, it is interesting
to focus on quantitative data, because it is often this kind of data
that undergoes character-changing transformations within a sci-
entific activity.

The feature of empiricality grounds our belief that data conveys
information about the investigative system that gave rise to it. It is
often supposed that in order for an investigation to produce
empirical data, the data must somehow be produced via an inter-
action with the system that the data is taken to represent. I will call
this interaction a causal connection. There are at least two ways in
which this causal connection can be established. One way is by
physically interacting with the system, and another is through
coextension with the system.? An example of the former is a pH
meter that involves a physical interaction between the meter’s
probe and the substance whose pH is being tested. We interpret the
results of the test to be about the substance because of the exis-
tence of this physical interaction between the substance and the
data-producing device. Coextension can also establish a causal
connection; for example, a scientist starts a timer when a phe-
nomenon is observed and stops it when the phenomenon ceases.
The data that results contains information about the duration of the
phenomenon because the existence of the phenomenon and the
operation of the timer coincided. A causal connection with the
investigative system is necessary for producing data that has the
feature of empiricality.

However, a causal connection with the investigative system is
not sufficient for bestowing empiricality upon the data. There are,
after all, many instances where causal connection does not pro-
duce data, and instances where the data produced using a causal
connection might not be considered empirical. The former point is
made simply by considering coextension: any two objects existing
in time are coextensive, but such objects are not typically pro-
ducing data about one another. To see the latter point, imagine
setting up an apparatus that generated random numbers when-
ever it came into contact with water. Such a device could be
placed in a lake, or put outside during a thunderstorm, but the
numeric values that resulted would not display empiricality: there
would be no reason to think that the data provided information
about the lake’s depth or the amount of rainfall. In what follows, I
will use “causal connection” to indicate physical interaction, un-
less otherwise noted. Physical interaction is not only the more
interesting case, but it is the kind of interaction relevant to our
question; as mentioned earlier, no one would doubt that we could
simulate a stopwatch and measure time.

Needing clarification are the conditions under which causal
connections result in data that displays the feature of empiricality.
To accomplish this, I turn to an exemplar of empirical data pro-
duction: measurement. No one doubts that measurement data is
empirical. Hence, data produced under the same conditions as
measurement data should display the same feature of
empiricality.

2 1t may be the case that these two forms of causal connection are subspecies of
some more fundamental form. This possibility does not affect the argument to
come.
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2.1. Measurement data and empiricality

What conditions are sufficient to bestow the feature of empir-
icality upon data? Here I will explore three different types of
measurement: fundamental, associative, and derived.> Important
for our investigation is how each type of measurement is differ-
entiated from the next by the inferential apparatus required to
produce the resulting data. Investigating each of these kinds of
measurement demonstrates how data comes to have empiricality,
and how it can be maintained throughout an investigation.

Fundamental measurement is any particular form of measure-
ment that does not depend upon prior measurements (Ellis, 1968,
56). This form of measurement estimates one quantity by
comparing it with only other instances of that quantity. Put
somewhat more formally, fundamental measurement enables the
ordering of objects by quantity p without the need to appeal to
quantities other than p. To see how this is accomplished, consider a
fundamental measuring procedure. Typically a fundamental mea-
surement procedure will consist of some measuring device, a set of
operations for using that device, and assumptions about how that
device works within the operation. Length is the most commonly
cited instance of fundamental measurement. A ruler, for example,
serves as a measurement device, and let us assume that it also
serves as a measurement standard where one ruler equals one unit.
To measure the length of an object, the ruler is placed flush with the
object to be measured, initiating a causal connection.” If the object
is longer than one unit, the ruler is moved to a new position,
aligned with where it previously ended. The operation is repeated
until the end of the object, and the number of times the ruler
needed to be positioned is the result of the operation in ruler units.
In this way, the ruler is used to map the length of the object into a
quantification of ruler-units. However, in order for this quantifica-
tion to be adequate, a number of assumptions need to hold.” For
example, that the ruler remains rigid under transport (and does not
change lengths) and that ruler units are strictly additive (i.e., there
are no gaps when placed end-to-end, the ruler was not placed at an
angle). Under such assumptions, the operation will provide a
means for discerning when an object is longer, shorter, or the same
length as another object. It will also allow the comparison of
measurement outcomes between different objects whenever those
assumptions hold and the procedure can be carried out. A method
for evaluating whether these assumptions hold will be explored
later on. What should be emphasized here is that fundamental
measurement does not require prior measurements, it only re-
quires some instrument to causally connect with the investigative
object, that an operation to be performed, and that the operation
accords with a set of assumptions.

The second type of measurement considered here is associative
measurement, which uses one or more previously measured
quantities to infer the value of a quantity of interest. Scientists’
knowledge about the relationship between the two quantities is

3 The typology presented here borrows heavily from Ellis (1968, chaps. 5—7) and
is not meant to be exhaustive. Ellis focuses primarily on the nature of the mea-
surement scale created by measurement operations, whereas | emphasize the as-
sumptions and inferences in each form of measurement. I have chosen to employ
this typology because it was an existing classification that nicely illuminates the
role of assumptions and inferences in particular kinds of measurement. Such a
classification could also be built from the more modern model-based account (Tal,
2011, 2012, 2013).

4 The causal connection in this instance can be established either through
physical interaction or through coextension. A physical interaction can be used to
line align the ruler with the end of the object to be measured, or the ruler can be
held away from the object and aligned visually.

5 Chang (2004) calls these “ontological assumptions.” The necessity of these
assumptions is also discussed in Tal (2012) and Batitsky (1998).

what permits the inference from the first quantity to the second.
This knowledge often takes the form of a function that uses the first
quantity as input and performs a transformation to produce values
relating to the quantity of interest. Put more precisely, associative
measurement involves there being some quantity p associated with
the quantity q to be measured, such that when things are arranged
in the order of p, under certain conditions, they are also arranged in
the order of q (Ellis, 1968, p. 90). The prior quantity p can be
measured fundamentally, or by another associative measurement.
An example of associative measurement is counting the rings
visible in the trunk of a tree to determine the tree’s age. An oper-
ation for counting the tree rings is defined, and the function, often a
simple one-to-one correspondence, is used to infer the growing
years from the rings counted. Other associative measurements are
less easy to spot. For example, to successfully measure temperature
with a mercury thermometer, one must have a function that relates
the height of the mercury column (quantity p) to the temperature
of the object measured (quantity q). Measuring in this way is not
always recognized as associative: users do not typically need to
measure the height of the mercury column fundamentally and then
compute the related temperature using the function; this work is
done by instrument manufacturers during the design process, and
the information is embedded in the scale printed on the glass tube
of the thermometer. Nevertheless, the two steps can be epistemi-
cally distinguished.

It can be quite difficult to determine the function to be used in
associative measurement. The simplest (and least accurate) way of
determining what function to employ is to treat the measurement
device as a black-box that simply maps inputs to outputs. One then
uses the device to measure a series of objects whose quantity
values are already known. This procedure maps the known-
quantity values onto the indications of the device. This mapping
can be used to define a function that is then inverted. The function
that results from this inversion would take the indications of the
device as input and yield quantity values as output. This method of
computing the function used in associative measurement assumes
that external influences on the measurement device are constant or
negligible, and thus, the black-box strategy is best employed when
the device and environment are well understood, and high accu-
racy is not required.

The more comprehensive approach to determining the function
is to treat the measurement procedure as a “white-box.” Essentially,
the idea of white boxing is to break the measurement process up
into its components and track how each component influences the
result. Treating the measurement procedure in this way entails
modeling the components of the measurement process as indi-
vidual modules. These modules may represent each component of
the measuring device, the sample to be measured, background ef-
fects, and the human operators (Tal, 2012, 152). Each module
individually employs parameters, laws of temporal evolution, and
characterizations of inter-module interactions representing each of
the above factors (Tal, 2012, 151). These modules, taken together,
constitute a model of the measurement process. This model is then
used to articulate a series of equations that represent how the
measurement outcome depends on the various components. If an
analytic solution exists, these equations are solved to arrive at a
specification of how the output of the device is deponent upon the
input. The point to recognize is that associative measurement
employs prior data, and performs a transformation on that data to
obtain an estimate of the quantity of interest. The form of that
transformation is determined by modeling the measurement pro-
cess and its environment.

The last form of measurement is derived measurement, which,
like associative measurement, is a form of measurement that relies
on a previously measured quantity. What differentiates derived



148 G. Lusk / Studies in History and Philosophy of Science 56 (2016) 145—152

measurement from associative measurement is the form the
inference involved takes. In associative measurement, the inference
is specifically tailored to the measurement context insofar as the
measurement device, environment, etc., are all modeled explicitly
and used to compute an inference from one quantity to another for
that particular situation. In derived measurement, the inference
from one quantity to another takes the form of a law of nature
applicable to the measurement context. Such laws typically specify
how several quantities relate to each other, and may involve a
constant. Using the law of nature, one may compute the quantity of
interest provided that all the other relevant quantities are known or
have been measured. Like the previous form of measurement,
derived measurement takes as input the values of quantities from
prior measurement and performs a transformation to infer the
quantity of interest. Given their similarity, we can refer to asso-
ciative and derived measurement collectively as non-fundamental
measurement.

Interestingly, while data produced by all of the above mea-
surement types are the result of causal connections between a
measurement device and the target system, they are not all the
direct products of such interactions. The non-fundamental forms of
measurement need not employ causal interactions directly; they
can produce data that displays empiricality simply by performing
transformations on existing data via inference. For example,
fundamental measurement data may be gathered, and in an asso-
ciative or derived measurement procedure, an inference is per-
formed that results in different data that represents a different
quantity. Both the data produced by the fundamental measurement
and the subsequent non-fundamental measurements display
empiricality, but only the former measurement needs to include a
causal interaction within the measurement activity. The trans-
formation that occurs in non-fundamental measurement maintains
empiricality.® The question is, under what conditions, do inferences
or transformations maintain empiricality.

While the three kinds of measurement described above differ in
regards to the kind of assumptions and inferences they employ,
they are similar in that each one requires that those assumptions
and inferences accurately represent the measurement context. It is
this correspondence between the measuring context and the as-
sumptions or inferences that bestows upon the data empiricality.
But how do scientists justify their assumptions or inferences? Sci-
entists are aware that they can never know the true value of a
quantity exactly, and that any assumptions or inferences are in
some sense idealized. Hence, measurement outcomes do not
denote individual values, but instead take the form of an estimated
range of values that the measured quantity could take.” This esti-
mated range is captured by “uncertainty”, and in metrology, the
term specifically refers to the likely dispersion of the values
attributed to the quantity measured if the measurement was per-
formed correctly (International Vocabulary of Metrology, 2012,
2.26). This range is determined when scientists test their mea-
surement procedures against measurement standards whose ac-
curacy is well established (Tal, 2011).

Demonstrating the reliability of a measurement procedure and
the accuracy of the assumptions and inferences it contains in-
volves performing an accuracy assessment to analyze that the
investigation proceeded as expected, and then to analyze possible
sources of error to determine a range of uncertainty to be

6 The idea that successful inferences or transformations result in empirical data is
not new. For example, Kosso (1988, 1989) and Chang (2004) argue that successful
inference is involved in scientific observations.

7 van Fraassen (2008, pp. 164) makes this point when he says that measurement
locates objects in regions of logical space.

associated with the outcome. The accuracy assessment occurs
through “calibration”, which typically proceeds by demonstrating
the results of the measurement are consistent with the quantity
values of well-known objects.® For most fundamental measure-
ments and associative measurements that employ black boxing,
an accuracy assessment involves measuring objects with known
quantity values to see if the outcome of the measurement matches
what would have been predicted under the assumptions or in-
ferences employed. The variations are then modeled statistically
(Tal, 2012, 150). The information about statistical variation is used
to construct a range of uncertainty to be associated with the
measurement outcomes. Uncertainty classified in this way is
labeled type-a (sometimes said to arise from “uncontrolled” or
“random” error), and uncertainties of this type are assessed the
same way when a white box strategy is employed. Type-b un-
certainties arise from error in the estimation of the parameters or
other quantities employed in a white box strategy.” One way of
estimating the uncertainty associated with these errors is to
assess each quantity individually, and then use the model of the
procedure to propagate the effect of the errors through to the
measurement outcome. If the errors are independent of each
other, they can be tallied up in an uncertainty budget (see Tal,
2011). If they are dependent on each other, a simulation may be
employed to estimate the uncertainty. The point is: in order for
measurement to produce data with the feature of empiricality, the
assumptions or inferences employed should be accurate, and the
justification that they are accurate rests on an accuracy assess-
ment and uncertainty analysis.

We now are in a position to articulate the conditions—beyond
the mere presence of a causal connection—under which mea-
surement produces empirical data. Measurement requires a
causal connection to the system being measured. In fundamental
measurement, that interaction occurs under a set of assumptions,
and it is the correspondence between those assumptions and the
measurement procedure that bestows empiricality upon the data.
In associative or derived measurement, the causal connection
need not be direct; it can be established by employing data from a
previous procedure in the associative or derived measurement. An
associative or derived measurement performs transformations on
the previously measured data. The data that is subsequently
produced has empiricality because these transformations accu-
rately represent the measurement context. What matters for
empiricality is the presence of a causal connection within the
chain of data production, and that the accuracy of any assump-
tions and inferences employed in that chain regarding the mea-
surement context can be justified. This justification involves an
accuracy assessment and the determination of a range of uncer-
tainty to be associated with the data produced. It is under these
conditions that measurement produces empirical data. We will
now turn to computer simulation to see if the same conditions
that produce empirical data in measurement can be found there as
well.

2.2. Computer simulation data and empiricality

Computer simulation involves running a suitably programmed
computer to produce results that are intended to represent a
physical target system. This activity typically starts with a contin-
uous mathematical model that is discretized to create a simulation

8 See Tal (2013) for an overview of the philosophical literature on calibration.

9 This classification is found in the Guide to Uncertainty in Measurement (2008).
Philosophical treatments of the difference between, and the significance of esti-
mating, these uncertainties can be found in Boumans (2013) and Tal (2011).
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model. An algorithm instructs a computer to solve the discretized
model. Iterative solutions to the model for successive time steps
represent the time evolution of the states of the target system being
simulated. The solutions provide values for variables that appear in
the simulation model, which often represent physical quantities in
the target system. These values constitute the data produced by
simulation. While the program that instructs the computer to
execute the algorithm is an abstract object that can be multiply
realized, the computer simulation itself is a concrete process
constituted by the operation of the digital computer.

Arguments that computer simulations are inherently different
from measurements often focus on the (non-)empiricality of
simulation, claiming that computer simulations do not interact
with the target of the investigation. A causal connection is neces-
sary for empirical data, the results of simulation could never be
considered empirical. This position can be captured with a simple
argument, which [ will dub the “causal separation argument”:

(P1) Empiricality requires that data be the result of a causal
connection with the target of interest.

(P2) Computer simulations are concrete processes that are
physically and causally separated from their target systems; the
data they produce is not the result of a causal connection with
the target.

(C) Computer simulation data cannot possess the feature of
empiricality, and such data is therefore not empirical.

One response to the above argument is to simply deny that
causal connections are necessary to produce data that displays
empiricality. As some have argued, models are measuring in-
struments (Boumans, 2005), and it is typically the model that is
responsible for the accuracy and precision of experiments and
measurements (Morrison, 2009). If models measure independently
of instruments that physically interact with the target, then simu-
lations, as iterative numerical approximations of mathematical
models, constitute measurements. However, this position is
frequently dismissed. As Giere (2009) notes, though models play a
significant role in experiments and measurements, there is no
reason to extend the notion of measurement instrument to objects
that do not interact with their target. In a similar vein, Beisbart and
Norton (2012, p. 408) argue that although inferences are employed
in empirical investigations, they are not essential: empirical in-
vestigations are powered by a causal connection to the target. I
believe there is a different response to the causal separation
argument, one that demonstrates that computer simulation data
can have the feature of empiricality in the same way that mea-
surement data does, without claiming that simulations are mea-
surement instruments.

According to our analysis in the last section, measurement
produces data with the feature of empiricality by either causally
connecting to the target directly, or employing a prior measure-
ment that does and then gauging the accuracy of any assumptions
or inferences through an uncertainty analysis. The first step to
demonstrating that computer simulation data has the feature of
empiricality is to show that it relies on a causal connection with the
investigative target. Accomplishing this step entails demonstrating
that computer simulation data is produced in a way analogous to
one of the kinds of measurement articulated above. If this can be
shown, then there is no way to use the casual separation argument
to claim that computer simulation data fails to rely on a causal
connection, while simultaneously claiming that measurement
outcomes do. In fact, the first step towards empiricality can be
established by showing that some simulations utilize inferences
and the products of causal connection in the same way as many

measurements. As we will see, proponents of the causal separation
argument face a dilemma: they either need to accept that computer
simulation data is produced through a causal connection to its
target, or deny that many measurement results are the products of
causal connection. This dilemma is forced upon them because some
simulations can be said to employ causal connections in the same
way that some measurements do. The rest of this section will show
how empiricality can be bestowed on simulation results in spite of
the causal separation argument.

How could computer simulation data be said to result from a
causal connection even when it is admitted that the digital com-
puter never makes physical contact with the target system? Sim-
ulations employ several elements that are products of causal
connections to their targets. By performing inferences on those
products, simulations, to the same extent as many measurements, are
generating data through the employment of causal interactions,
and thus produce empirical data in the same way. The most obvious
way that computer simulations could rely on the products of causal
connections is by employing initial conditions that are empirically
determined. Initial conditions are values of the quantities of in-
terest from which the simulation will begin (i.e., the values of
dependent variables at time t = 0). One way of establishing initial
conditions is to use observed values obtained through measure-
ment. Therefore, measurements might serve as the starting values
for a computer simulation, and a simulation might perform a
number of transformations of those values in order to produce its
results. Extending an example from Giere (2009) that will be
examined again later, a simulation might use observations of
planetary locations and the exceedingly well-known regularities
that govern planetary orbits to produce data regarding the posi-
tions of those planets prior to the observation. Such uses of simu-
lation do not establish new causal connections, but they operate on
existing causal connections in order to produce data. Hence, a
consequence of this view is that standalone computer simu-
lations—those that do not employ prior measurements—do not
produce data that displays empiricality because no causal
connection is involved in the investigation. On this view, computer
simulations are analogous to the inference steps carried out in
measurement: they are the transformations that occur between
prior measurement and data.

However, proponents of the causal separation argument would
want to deny that performing a transformation on a prior mea-
surement would be sufficient to claim that the resulting data is the
product of a causal connection. This move is not open to them if
they want to maintain that most measurement data is the result of
causal connections and meets the empiricality requirement. Recall
that non-fundamental measurements were multi-step processes
that relied on prior measurements. The important thing to notice
for our purposes is that non-fundamental forms of measurement
involve (at least) a two-step process that includes an inference on
a previously measured quantity. The previously measured quan-
tity is the result of a causal connection with the target and the
second step is a transformation of this initial product. This two-
step process employed in measurement mirrors the setup of a
computer simulation that uses empirically gathered initial con-
ditions: in both cases there is an initial product which is the result
of a causal connection, and then a transformation is performed on
that product to produce the final result. The transformations are
themselves similar in that they both are often formulated from
models of the physical context being investigated. The conclusion
that should be drawn from this is that, since the results of asso-
ciative and derived measurement are commonly understood as
the products of a causal connection, the results of computer sim-
ulations that use empirically gathered initial conditions should be
as well.
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One could challenge this conclusion and claim that P1 is not
appropriately strong. They might reformulate P1 as:

(P1*) Empiricality requires that data be the result of a direct
causal connection with the target of interest.

Proponents of P1* would deny that performing transformations
on extant data is sufficient to produce data that displays empiri-
cality. By appealing to the directness of the causal interaction one
excludes problem cases like simulation and limits the activities that
generate empirical data to only experiment and measurement.
Though, this move is motivated by a desire to carefully restrict what
qualifies as empirical data, it also entails that many measurement
results do not to produce data that displays empiricality. Recall that
fundamental measurements were the only form that did not rely on
prior measurements and inference to produce data. Thus P1* also
entails that the products of non-fundamental measurement do not
display empiricality. This is the problem generated by demanding
direct causal connections: most, if not all, measurements per-
formed in the physical sciences are non-fundamental; if associative
and derived measurement results do not have the feature of
empiricality, and as a consequence are not empirical, then there is
very little empirical data to be had in natural science. Either one
accepts that simulation data is the result of a causal connection to
the investigative target via inference, or one is forced to admit that
most, if not all, of the results produced through the contemporary
practice of measurement in fact fail to display empiricality. This
later option is unappealing, and the former should be preferred.

Simply demonstrating that simulation data is the result of a
causal connection to its investigative target is not sufficient to show
that it displays the feature of empiricality. As we saw when
analyzing different forms of measurement, the assumptions and
inferences employed should be accurate, and a degree of uncer-
tainty should accompany the data. In order for simulation data to
have the feature of empiricality, there must be a way to assess its
accuracy and determine how uncertainty affects the results.

In principle, an accuracy assessment can be performed for
computer simulation in much the same way that as it is performed
for measurement. In fact, as Parker (2008) and Winsberg (2010)
have argued, many of the same strategies that are used to sanc-
tion the reliability of procedures in experiment and measur-
ement—the reproduction of known values, the comparability of
results between devices, and responding as expected to inter-
ventions—can also be employed to sanction computer simulations.
Perhaps a more systematic way, and indeed a way that has a lot in
common with uncertainty assessment in measurement, is the
strategy called verification and validation.

Verification and validation are two conceptually separable
stages of accuracy assessment for computer simulations.'® Verifi-
cation assesses the correctness of the software and the numerical
accuracy of the solution to a mathematical model. To do so, one
checks the code for mistakes, and performs convergence tests to
estimate the uncertainty attributable to the discretization process.
Verification is primarily concerned with the simulation model’s
fidelity to the mathematical model upon which it is based, and not
the accuracy of the simulation’s results to the real world. However,
ensuring the simulation works correctly can be seen as a prereq-
uisite to further assessment.

Validation is explicitly concerned with the accuracy of simula-
tion results in comparison to real world outcomes, and with
determining how uncertainties affect the accuracy of simulation
data. Validation experiments are designed explicitly for this pur-
pose. Such experiments are performed on systems that a

19 The view of verification and validation described here follows Oberkampf and
Roy (2010).

simulation represents. The aim of the experiment is to precisely and
accurately record the states of the physical system under investi-
gation in a situation analogous to the one to be simulated. This
characterization involves careful measurements of the quantities
(and their variation) that will be used in the simulation, including
initial conditions, any boundary conditions, and the simulation’s
output quantities. Scientists then use metrics to quantify the ac-
curacy of the simulation data compared to the data produced by the
validation experiment. Validation experiments also provide crucial
information for uncertainty quantification. For example, they pro-
duce distributions for initial and boundary conditions. These dis-
tributions characterize the wuncertainty arising from such
conditions, and the uncertainty can be propagated through the
model so that its affects on the solution can be determined. A
similar propagation approach can be taken with parameter uncer-
tainty. Complex models can be broken down into subsystem
components and, as in the white box strategy, the effect of each
component and their interactions can be characterized individually.
The intricacies of verification and validation are well rehearsed in
the scientific (Oberkampf & Roy, 2010) and philosophical literature
(Winsberg, 2010, chap. 2 and Morrison, 2014), and expanding more
on the details would lead us astray. The point is: strategies exist for
accuracy assessment and uncertainty quantification for computer
simulations.

All is now in place to claim that the data produced by some
computer simulations can display empiricality in the same way
that some measurement data does. Computer simulation data can
be the result of a causal connection with the investigative target in
virtue of the computer simulation playing the role that inference
plays in measurement. To do this, the computer simulation must
use prior measurements as inputs and perform transformations on
those inputs. Like in measurement, the accuracy of these trans-
formations must be assessable, and a degree of uncertainty to
accompany the data must be calculated. As I have argued above,
strategies exist for carrying out accuracy assessments and uncer-
tainty analyses for computer simulations. Therefore, when a
computer simulation relies on a prior measurement, has under-
gone an accuracy assessment, and the relevant uncertainties can
be quantified, the data it produces will display the feature of
empiricality.

What should be noted is that the requirements of accuracy
assessment and uncertainty quantification are actually quite high,
but not impossible for a simulation to meet. For example, at least
one opponent of epistemic parity between simulation and mea-
surement acknowledges that some simulation data can meet this
standard. Giere (2009, p. 60) admits that the results of some sim-
ulations—he cites simulations of planetary orbits—can be reliably
substituted for actual measurements and that in certain instances
simulations are more accurate than actual measurements. Though,
Giere would reject that simulation results constitute novel empir-
ical data, his position supports two important points that in turn
support the claim that simulations results display empiricality.
First, there are instances where scientists are confident that their
simulation models capture the actual behavior of the system, and
that they do so is exceedingly well established. Second, in such
cases, the computer simulation data is just as accurate as mea-
surement data and can be used for similar purposes. It can be
inferred that for examples like Giere’s, the uncertainty associated
with the output of such simulations can be estimated, because
otherwise the outputs of the simulation would not be deemed
reliable replacements for measurements which themselves have
estimated degrees of uncertainty. Giere provides an example where
in practice, if the simulation used prior measurements as inputs to
produce data regarding the previous location of the planets, the
resulting data would display the feature of empiricality.
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Though, I have just argued that simulations can produce data
with the feature of empiricality, I do not mean to imply that it is
easy for simulations to do so. In fact, I believe that we frequently
lack the ability to justifiably assess a simulation’s accuracy and the
uncertainty to be associated with the data. Performing a validation
experiment, for example, can only be done when the system under
study is manipulable and assessable, and many systems that we
represent with simulations are not of that sort. For many systems
we simulate, we will not be able to gather the right kind of prior
measurements to use as initial conditions. The sheer complexity of
many simulations will make quantifying uncertainty problematic.
Furthermore, in certain (usually large and complex) simulations,
not every piece of data will be the result of transformations made
on prior measurements. Only the data that is influenced by the
prior measurement will have empiricality. The difficulties of pro-
ducing data that displays empiricality will depend on the nature of
the simulation and the system being simulated. This may suggest
that in many situations, it is our ability to assess the accuracy of
simulation-produced data, not the data’s inability to “go directly to
the world,” that prohibits it from being empirical. Nonetheless,
there are situations in which computer simulation data can display
empiricality.

3. The second feature: novelty

Those that argue that simulations cannot produce novel
empirical data might claim that simulation results that display
empiricality could never also display novelty: given that empiri-
cality is established in computer simulation by using extant pieces
of empirical data as initial conditions, the result can never be
considered novel because the simulation always (and only) ma-
nipulates what is already known. Simulation’s inability to provide
new information would disqualify its results as novel. Thus, at
best, computer simulation data is only derivatively empirical. In
the remainder of this section, I argue that a similar dilemma posed
in regards to empiricality appears again when considering nov-
elty: one must either affirm that certain simulation results can be
novel, or one must deny that the results of many measurements
are novel.

Let us make the notion of novelty evoked above more precise:
novel data is that which enlarges the set of scientific information,
and could not be produced from existing information using a
number of formal or logical steps. As a consequence of this view,
transformations of existing information never produce anything
that could be considered novel. Call this the “non-entailment
view.” Non-entailment is clearly what commenters like Beisbart
and Norton have in mind when they say Monte Carlo simulations
“can only return knowledge of the world external to them in so far
as that knowledge is introduced in the presumptions used to set
up the simulation” (2012, p. 404). The problem for simulation on
this view is that even if it is acknowledged that simulation data
displays empiricality, it does so because the simulation employs
previously measured initial conditions. Since the initial conditions
are already known prior to the running of the simulation, and the
simulation itself is just a set of finite transformations on those
conditions, the simulation data is therefore wholly determined by
the initial conditions and the simulation model; the resulting data
is not novel.

The problem for this argument from non-entailment is that
when applied consistently, the data resulting from some mea-
surements do not fare any better than the data resulting from
some computer simulations. Computer simulation data that
displays empiricality is produced through inference and, there-
fore, on the non-entailment view, is not novel. However, non-
fundamental measurement is not methodologically different

when it comes to this point: associative and derived measure-
ment rely on inference to infer the quantity of interest from input
values (that have been previously fundamentally or non-
fundamentally measured). In these forms of measurement, the
input values can be seen as analogous to the initial conditions in
simulations, and the function analogous to the simulation model.
Viewing associative and derived measurement as containing two
elements, one the more direct result of a causal connection and
another an inference on that component, shows that under the
non-entailment view, only the former component is actually
providing novel information, and the rest of the measurement is
merely an inference on that information. Therefore, the results of
associative or derived measurement on this view are also
determined purely by existing information, and cannot be
considered novel.

Since non-fundamental measurement is often seen as an
exemplar of novel data production, is there a way to save this ac-
count of novelty and understand non-fundamental measurement
such that its data displays novelty? One suggestion is to include the
determination of the values that serve as inputs as part of the non-
fundamental measurement activity. Therefore, the inputs
employed would not be considered information that existed prior
to the measurement activity, and thus, the results of the activity
could be considered novel. However, if we extend the bounds of
non-fundamental measurement to include the determination of
input values, we should do the same for simulation. To remain
consistent, we should include measurements that establish initial
conditions as part of a simulation activity.'! Thus, simulation would
be capable of producing novel data as well. What this discussion
reveals is that whether simulation data displays novelty is a func-
tion of how we separate one activity from another, and there are
multiple legitimate ways to do this. However, one would think that
the epistemic character of the data should not change depending
on whether prior measurements are included as part of an activity,
or excluded from an activity but still employed within it. When two
activities are combined, it does not matter where you draw the line
between them; the character of the end product is the same. What
should be stressed is that even on a strict view of novelty like non-
entailment, some simulations and some forms of measurement can
be grouped together in a consistent fashion. This suggests that the
non-entailment notion of novelty does not capture an epistemically
significant difference between measurement and simulation data
in all circumstances.

It should be noted that this result does leave room to deny the
novelty of simulation data by simply biting the bullet and agreeing
that non-fundamental measurement is not a producer of novel
data. It is important to note that this position admits parity be-
tween some measurement data (produced non-fundamentally)
and computer simulation data. However, there are good reasons
to resist this move. Associative and derived measurements are
widely considered to produce novel data, and in fact, non-
fundamental measurement results are often cited by philoso-
phers (Bogen & Woodward, 1988; McAllister, 2011; Woodward,
2011) and scientists (Oberkampf & Roy, 2010) as exemplars of
novel empirical data. Additionally, very few fundamental mea-
surements are possible, and thus, associative and derived mea-
surements make up a vast majority of the measurements
performed. Often they are the only way to estimate many quan-
tities of interest. To deny that scientists ever produce novel

' Views that encourage thinking about simulation as an activity broader than
executing a program on computer already exist in the literature (see Parker, 2009;
Winsberg, 2010). For example, Parker discusses simulation studies that include the
steps necessary for placing the computer in the initial state.
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empirical data regarding these quantities is to assert that we
never gain novel empirical information regarding associative
quantities like temperature or acceleration. While some philo-
sophical positions may find this tenable, it is by no means forced
upon us, and there are good reasons to resist doing so.

4. Conclusion: simulation as a producer of novel empirical
data?

This paper examined whether computer simulation data could
display two epistemically important features: empiricality and
novelty. It had been previously argued that computer simulation
data could never be both novel and empirical, primarily because
computer simulations did not make causal contact with their
investigative targets and could not go beyond existing information
to return new knowledge. What I have shown is that insofar as
certain common forms of measurement interact with their target
and produce new knowledge of their target system, simulations,
under certain conditions, can as well. I have argued for this
conclusion by demonstrating that many common forms of mea-
surement rely on previous measurements combined with accurate
inferences to produce empirical data. I then showed that the non-
entailment view of novelty, which would prevent simulation data
from being empirical and novel, would also prevent most mea-
surement results from being empirical and novel. Simulations, at
least those that use prior measurements as initial conditions and
those for which an uncertainty analysis can be performed, bestow
on their products the same features as these common forms of
measurement.

What is the upshot of this analysis? It shows that the epistemic
differences between some simulation data and some measurement
data are not as clear-cut as was previously supposed. In fact, it gives
us reason to believe that the results of some measurements and
some simulations fare the same. That instances of these two
practices fare the same in the face of these features indicates that,
on the basis of these two features, one cannot automatically dis-
count some simulation data as less than empirical or novel, without
also doing the same for data produced by associative or derived
measurement.
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