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Reaction-diffusion systems which have reaction term satisfyingf( -_I) = -f(q) tend strongly to forin striped patterns. Haken’s 
slaving principle is used to derive differential equations for unstable mode amplitudes close to the Turing instability. This con- 
nects a dynamical symmetry to pattern selection, with possible relevance to biological and chemical pattern-forming phenomena. 

1. Introduction 

Biological pattern is commonly formed in two-di- 
mensional domains: single layers of cells, surfaces of 
large single cells, single layers of nuclei in a multi- 
nucleate cell. In some instances, such as mammalian 
coat markings [ 11, what is presumably a single 
mechanism produces both striped and spotted pat- 
terns on various parts of the skin. One must then seek 
a mechanism which can be controlled by such influ- 
ences as the shape of the region to behave in either 
of these ways. 

By contrast, when a pattern forms very early in de- 
velopment and hierarchically governs the essential 
body plan of the organism, one needs a mechanism 
with extreme reliability both as to the geometry of 
the pattern units (stripes or spots) and their precise 
total number. We discuss here models which are ca- 
pable of producing striped patterns in a very robust 
fashion, independent of the particular boundary 
conditions or size of the system. Two biological ex- 
amples of stripe formation where such robustness is 
needed are discussed in section 5. 
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Reaction-diffusion theory, first proposed by 
Turing [ 21, remains one of the most promising kinds 
of mechanism for biological pattern formation [ 3- 
5]. Linear Turing theory is exactly soluble, but non- 
linear theory is still largely unexplored by analysis. 
The particular combination of linear modes which 
superpose to form a pattern is a function of the non- 
linearities a given model includes. The usual method 
for studying the non-linear behaviour of a model has 
been numerical experimentation. In this Letter we 
report a study, both by computation and by analysis, 
of a class of non-linear reaction-diffusion models 
which have earlier been shown (by the former 
method) to have a strong tendency to form striped 
patterns [ 61. 

2. A class of reaction-diffusion models which 
selects stripes 

We consider two-component reaction-diffusion 
systems. The state of the system q( x, y, t ) for (x, y) 
in a two-dimensional domain has time evolution 
given by 
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ir,=f,(r)+&A&, @=I, 2, (1) 

where q=O is the spatially homogeneous steady state. 
Efforts to model the self-organization of Drosophila 
pair-rule gene expression products into striped pat- 
terns have led to the investigation of models anti- 
symmetric about q=O 

J-4)=-/(4) * (2) 

We are aware of three such reaction-diffusion models 
[ 7-91. These three models have been found to have 
a strong tendency to produce stripes regardless of the 
boundary conditions [ 6-8 ] empirically by compu- 
tation. Fig. 1 shows stages in the time evolution of 

one of these models, the hyperchirality model [ 91, 
to its final state. 

The ability of a local property of the reaction ki- 
netics (2) to influence the pattern globally is at first 
sight surprising. Fig. 2, which compares the behav- 
iour of two systems which have the same lineariza- 
tion, illustrates that this is a non-linear phenome- 
non. By analysis of ( 1) in the weakly non-linear 
regime close to the Turing instability, it will be shown 
in sections 3 and 4 that the only stable solutions of 
systems (2) are stripes. 

Fig. 1. Time evolution of I, of eq. ( 1) from a random initial state to a stable set of stripes (black denotes concentration minima and 
white the concentration maxima). Computation with hyperchirality model 191 using a finite difference method on a 60x60 grid of 
squares with periodic boundary conditions. All calculations were performed on an IBM 3090 with vector processing capabilities. (a) 0, 
(b) 10000, (e) 40000, (d) lOOCOO iterations. Parameters were chosen so that many modes are linearly unstable. These images are part 
of an animated sequence available, as a VHS video xcording, upon request to the authors. 
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Fig. 2. Time evolution of q, for (a)-(d) brusselator [lo] and (e)-(f) hyperchirality model [9] to stable Turing structures. Parameters 
were chosen so that the two systems have the same linearization T and differ only in the non-hnearities N. Computations performed on 
a 57 x 33 grid with periodic boundaries as in fig. 1. With these parameters, conditions (9) are satisfied. Ratio of sides set to be approxi- 
mately J so that the arrangement of wavevectors depicted in fig. 3a satisfy the boundary conditions. 

3. Non-linear interactions between modes in 
reaction-diffusion 

In linear Turing theory (f(q) linear in q) the so- 
lution q(t) is a superposition of non-interacting 
modes whose amplitudes have exponential time de- 
pendence. The mode with the largest positive growth 
rate dominates the pattern after a short time. With 
non-linear f(q) the linear modes interact, and the 
pattern selection properties of a model are a function 
of these interactions. In this section Haken’s slaving 
principle [ 11,121 is used to derive a set of equations 
describing the time evolution of the amplitudes of 
the unstable modes when non-linearities are present. 

( 1) may be written as a sum of linear and non-lin- 
ear parts 

&==T,BqB+&((1) 3 (3) 

where the Turing operator Tap= kas- D,&,A is lin- 
ear, kn,= (@&39&e, and das is the Kronecker 
delta. 

(4) 

contains the non-linearities. The models discussed in 
this Letter (hyperchirality model, brusselator) ter- 
minate at third order. However, the analysis extends 
to systems which contain additional terms. 

160 



Volume 183, number 1,2 CHEMICAL PHYSICS LETTERS 23 August 199 I 

The solution q( t) is expanded in terms of the right 
eigenvectors of T 

q(t)= C&d(k) exp(ik*r), 
j-k 

(5) 

TuJ(k) exp(ik+r)=uj(k)uJ(k) exp(ik*r) , (6) 

and j= + / - distinguishes between the two eigen- 
values cr of T fqr a given k. We have replaced k with 
k= Ikl when a quantity does not depend on the di- 
rection of the wavevector. We treat plane waves, but 
otherwise leave the boundary conditions unspecified. 

Eq. (1) can then be transformed into an infinite 
set of ordinary differential equations for the (com- 
plex) mode amplitudes &. For details of the pro- 
cedure we refer the reader to’ Haken’s work [ 11,121 
and simply quote the result 

(7) 

where 

(8) 

The u appearing in these equations are the left ei- 
genvectors of T. 

The analysis so far is exact. To apply the slaving 
principle, the terms & are neglected for the stable 
modes. The validity of this approximation depends 
on the conditions 

u+(k)>0 for;kl=k,, 

d(k) c 0 otherwise, 

Id(k) I a la+(k) I > (9) 

which hold near the onset of the Turing instability. 
Then the fast relaxing modes may be eliminated from 
(7). The calculation is considerably simplified for 
the systems we are immediately interested in (2) as 
g( ’ ) = 0. The stable mode amplitudes are then third 
order in the unstable modes, and do not contribute 
to the & until the fifth-order term, which we do not 
need here. Eq. (7) becomes 

4 

Presence of the Kronecker delta implies a geomet- 
rical relationship (depicted in fig. 3b ) between modes 
contributing to the sum. With 

kY 

(4 

h 

(4 

Fig. 3. Arrangement in k-space of wavevectors for modes having 
I&I =k, and satisfying (a) &c+r.=t in the quadratic term of 
(7), and (b) SW+k-+k-= I in the cubic term. For the form of 
(7) to remain unchanged under symmetry operations of spatial 
translation and rotation the wavevectors must sum to zero. 
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a=o+(k,), Q=(g (11) 

and 

bLf&YJ =b<O (12) 

for global stability, where $J is the angle kC makes with 
a fixed direction (see fig. 3), and noting that 

r-,=r; (13) 

must hold for q(t) to be real, we find 

Q=&+3&&%+6b; C&C+, 

O<$,V<x, $‘#Q. (14) 

4. Solntlons to the mode amplitude equations 

Our approach in analyzing the behaviour of ( 14) 
is to first find the fixed points &=O and then ex- 
amine the stability of each solution. An alternate ag 
preach [ 111 employs the generalized Landau-Ginz- 
burg free energy associated with ( 14). The absence 
of quadratic terms in ( 14) and the lack of any angle 
dependence in the cubic term simplify the problem 
greatly, and it is possible to write down all of the 
steady states of ( 14)) and describe completely their 
linear stability. The number of unstable modes avail- 
able to the system, and their wavevector directions 
depend on the exact boundary conditions of the sys- 
tem. However, the procedure is the same in all cases, 
as shown in (b). 

(a) Simple example - four modes unstable. For 
concreteness we start with the simple example of the 
unit square with periodic boundary conditions. Sup- 
pose that there are only four unstable modes corre- 
sponding to striped patterns in mutually perpendic- 
ular directions. The unstable modes have @=O, x/2, 
A, 3~12 and k=2xl,, l,sZ+. This constrains 1,’ to in- 
tegers which cannot be written as the sum of two 
squares. Then eqs. ( 14) are 

(15) 

162 

(1) Gto= -d3b, Lj2=0, or 

C:,2t;n,2=--~/3b, rO=O, 

(II) CX, =C$& = -ol9b. 

The linear stability matrix A,= a&/a& is 

(16) 

(17) 

A 

= o+6b(&,+&&,2) 
( 

6&C:,, 
6&& a+W&Xi+C/2&,2) > 

(18) 

evaluated at the fixed points. For solution (II), A 
has a negative and a positive eigenvalue indicating 
a saddle point. With solution (I) we find two neg- 
ative eigenvalues, so the only stable pattern is a set 
of stripes, in either the x or the y direction. 

(b) General case - N unstable modes. Suppose now 
there is an arbitrary number, N, of directions # for 
which plane waves with wavevector 1 R, I= k, satisfy 
the boundary conditions. Then there are N coupled 
ordinary differential equations to be solved. The 
mode amplitudes at a fixed point are labelled so that 

&zO* i= l...M, 

ro.=O, i=M+l...N. (19) 

Then ( 14) yields Mcoupled linear equations for the 
M unknowns <$,&, 

a+3b<;r,+6b C &hj=O, (20) 
j= I...M 

i+i 

which has the unique solution 

e&i = 3b(2y_l), i=l...M. (21) 

Linear stability analysis may be employed to show 
that the only stable fixed points have M= 1, corre- 
sponding to a striped pattern. The instability of the 
solutions consisting of a superposition of modes fol- 
lows from [ 13 ] 

AtjA,j>O, i#j, (22) 

where 

A,<O. (23) 

We see that striped patterns are selected as there is 
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a mutual inhibition of amplitude for each pair of 
modes, so that the modes “compete”. 

5. Relevance to biological and chemical pattern 
formation 

In this section we list three cases of striped pattern 
formation where there is an anti-symmetric depar- 
ture from the unpatterned state, and for contrast a 
fourth example in which a spotted array of concen- 
tration maxima is found. 

(a) Ocular dominance stripes. The ocular domi- 
nance stripes found in some mammalian brains is a 
biological example of a striped pattern where sym- 
metry (2) is likely to hold for the developmental 
mechanism. In layer IVc of the primary visual cortex 
information from the two eyes is found to be re- 
ceived in a set of alternating parallel “ocular dom- 
inance stripes”  [ 141. Bands of cells are connected to 
either the right or left eye, but are otherwise equiv- 
alent. This arrangement arises from an initially un- 
patterned state in the first few weeks following birth, 
and is thought to involve competitive interactions 
between left and right eye synapses. It is significant 
that asymmetrizing the virtual input during devel- 
opment (for example, by covering one eye with a 
patch) appears to disrupt stripe formation. Two ex: 
isting models [ 15,161 of ocular dominance stripe 
formation possess the symmetry (2). 

(b) Segmentation in Drosophila [ 171. Despite a 
vast and rapidly increasing body of experimental data 
on developmental genetics, it remains unsettled 
whether the earliest segmentation events in Droso- 
phila are controlled by reaction-diffusion or quite 
differently. The pattern is of 14 parallel stripes of 
equal width and alternating in character. Certain 
genes are activated only in odd-numbered stripes, 
others only in the even-numbered ones. This pattern 
inspired our interest in models with form (2). But 
of the three examples listed here, it is the one in which 
it is least clear that (2) is anywhere present in the 
chemistry. 

(c) Microtubulin dissipative structures. Microtu- 
bules are polymers of a protein, tubulin, which are 
active in developmental processes in living cells. 
Tabony and Job [ 181 polymerized tubulin in thin 
layers of solution with other chemicals present to 

provide a thermodynamic driving force for poly- 
merization. Using optical techniques, and small-an- 

(d) Spotted patterns in Caste& gel-strip reactor. 

gle neutron scattering, they showed that arrays of mi- 
crotubules were formed as stripes of oriented nematic 

The presence of quadratic terms in the net produc- 

liquid crystals in which alternate stripes have or- 
thogonal orientations of microtubules (45” to the 

tion functions f(q) (i.e. g(l) #O) introduces a sec- 

stripe direction in one, 135” in the next). 

ond-order contribution to the mode amplitude equa- 
tions having the form 

tit+*,&,,, . (24) 

With c> 0 three plane waves (with k at the vertices 
of an equilateral triangle) may cooperate to form a 
stable steady state which is a hexagonal array of spots. 
The calculation in this case is more complex, as some 
of the stable modes are second order in the unstable 
mode amplitudes, and may contribute to the cubic 
term. Figs. 2a-2d show the steady state pattern of a 
computation with the brusselator [lo] in which the 
steady state pattern is a hexagonal array of spots. 
Under identical conditions, we have found that the 
hyperchirabty model invariably produces stripes. 

Recently the existence of steady state chemical 
patterns (Turing structures) has been confirmed ex- 
perimentally by Castets et al, [ 191 in a chlorite-io- 
dide-malonate reaction in a gel-strip reactor. The 
(three-dimensional) pattern observed appears to be 
a superposition of plane waves analogous to the ar- 
rangement shown in fig. 3a. This allows us to predict 
the existence of quadratic terms in the reaction ki- 
netics of their system. 
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