
Automating Reasoning with Standpoint Logic via Nested Sequents

Tim S. Lyon , Lucı́a Gómez Álvarez
Computational Logic Group, Faculty of Computer Science, TU Dresden

{timothy stephen.lyon, lucia.gomez alvarez}@tu-dresden.de

Abstract

Standpoint logic is a recently proposed formalism in the
context of knowledge integration, which advocates a multi-
perspective approach permitting reasoning with a selection
of diverse and possibly conflicting standpoints rather than
forcing their unification. In this paper, we introduce nested
sequent calculi for propositional standpoint logics—proof
systems that manipulate trees whose nodes are multisets of
formulae—and show how to automate standpoint reasoning
by means of non-deterministic proof-search algorithms. To
obtain worst-case complexity-optimal proof-search, we intro-
duce a novel technique in the context of nested sequents, re-
ferred to as coloring, which consists of taking a formula as
input, guessing a certain coloring of its subformulae, and then
running proof-search in a nested sequent calculus on the col-
ored input. Our technique lets us decide the validity of stand-
point formulae in CoNP since proof-search only produces a
partial proof relative to each permitted coloring of the input.
We show how all partial proofs can be fused together to con-
struct a complete proof when the input is valid, and how cer-
tain partial proofs can be transformed into a counter-model
when the input is invalid. These “certificates” (i.e. proofs and
counter-models) serve as explanations of the (in)validity of
the input.

1 Introduction
Standpoint Logic. The fact that knowledge bases (KBs)
encode the standpoints of their creators (e.g. in the form of
viewpoints, contextual factors or semantic commitments) is
the source of well-known challenges in the area of knowl-
edge integration. Since semantic heterogeneity between the
sources is to be expected, inconsistencies may arise if we at-
tempt to combine them into a single conflict-free conceptual
model. To illustrate this, consider three KBs: C, a ‘common-
sense’ representation of colours; H, a KB by a house paint-
ing business that reuses and extends C; and R, a KB that
formalizes the RYB color model, from the fine arts tradition.

Example 1. According to C, basic colours such as Blue and
Green are disjoint. H complies with C and further specifies
that Teal is Green. In contrast, according to R it is un-
equivocal that Teal is both Green and Blue. Generally, it
is conceivable that Blue holds.

These sources cannot be merged without the undesired
effect of inconsistency, and circumventing it requires either

Blue Green
⊥

C

Blue Green

Teal

⊥

H

�

Teal

Green Blue

R

Figure 1: Diagrams of C, H and R. � indicates that H extends C.

knowledge weakening or duplication (Pesquita et al. 2013).
Instead, one may wish to jointly reason with the KBs, treat-
ing them as alternative standpoints on a domain.

Standpoint logic (Gómez Álvarez and Rudolph 2021) is
a simple multi-modal logic intended for the representation
of knowledge relative to different, possibly conflicting, per-
spectives. The framework introduces the labeled modalities
�s and ♦s for each standpoint s, where �s ϕ is read as “ac-
cording to s, it is unequivocal that ϕ” and ♦s ϕ as “accord-
ing to s, it is conceivable that ϕ”. In addition, s � s′ in-
dicates that the standpoint s is sharper than s′, that is, s
complies with s′ and further specifies it.

(F1) �C ¬(Blue∧Green) ∧ �R(Teal→(Blue∧Green))

(F2) (H�C) (F3) �H(Teal→Green) (F4) ♦∗(Blue)

The formulae (F1)-(F4) formalize Example 1, (illustrated
in Figure 1) in propositional standpoint logic. (F1) encodes
that Blue and Green are unequivocally disjoint according to
standpoint C, while according to standpoint R it is unequiv-
ocal that Teal implies both Blue and Green. (F2) encodes
that H includes the knowledge of C, and (F3) that Teal is
Green according to H. Last, (F4) encodes that Blue holds
under some interpretations by using the universal standpoint
∗, which sits atop any hierarchy of standpoints and is used to
reference knowledge that is unequivocally true or conceiv-
able among all perspectives.

In addition to representing unequivocal and conceivable
facts (e.g. (F3) and (F4)), which may be relative to stand-
points (e.g. (F1)), hold universally (e.g. (F4)), or estab-
lish a hierarchy of standpoints (e.g. (F2)), one may also
express (in)determinate knowledge by means of the (defin-
able) dual operators Is and Ds. The indeterminacy operator

Isϕ := ♦s ϕ ∧ ♦s ¬ϕ makes explicit that both ϕ and ¬ϕ
are conceivable in the context of s, thus making ϕ inherently
indeterminate. Finally, the framework can be used to es-
tablish correspondences or bridges between the standpoints
themselves. For instance, (F5) encodes that if something is
Teal according to R, then it is Green for C and R.

(F5) �R(Teal)→ (�C Green ∧ �R Green)

Natural reasoning tasks over multi-standpoint specifica-
tions include gathering unequivocal or undisputed knowl-
edge, determining knowledge that is relative to a standpoint
or a set of them, and contrasting the knowledge that can be
inferred from different standpoints. To illustrate, let us as-
sume �∗ Teal and examine some inferences that we can
draw from this in the setting of Example 1. On the one hand,
from (F5), (F3), and �∗ Teal we obtain that green is un-
equivocal for the three standpoints: �C Green, �H Green
and �R Green. On the other hand, we can infer the global
indeterminacy of blue I∗Blue, because (i) Teal holds uni-
versally, (ii) it is unequivocal for R that Teal implies Blue
(F1), hence ♦∗ Blue, and (iii) we know �C Green, which
together with (F1) implies �C ¬Blue and thus ♦∗ ¬Blue.

Conveniently, the satisfiability problem in proposi-
tional standpoint logic is known to be NP-complete
(Gómez Álvarez and Rudolph 2021), in pleasant contrast
to the PSPACE-completeness normally exhibited by multi-
modal epistemic logics, such as the closely related KD45n.1
This result, obtained via a translation to one-variable first-
order logic, makes the framework attractive in applied sce-
narios, and prompts our work to provide a suitable proof-
theory for standpoint logic. Not only can our proof systems
be leveraged to provide a proof-search procedure deciding
the validity of standpoint formulae, but our proof-theoretic
approach yields witnesses, that is, proofs of valid formulae
and counter-models of invalid formulae. Such “certificates”
(i.e. proofs and counter-models) possess explanatory value,
and may be used, for instance, to trace the standpoints in-
volved in a certain inference; e.g. when a global indetermi-
nacy such as I∗Blue is inferred from a large collection of
standpoints, we may want to gather the standpoints that hold
contrasting views (in this case R and {H,C}, which can be
easily extracted from a proof). Thus, our reliance on proof
theory provides essential information that may be used to an-
swer “why” a certain piece of information holds while still
allowing “low” complexity reasoning.

Nested Sequents and Proof Theory. Since their incep-
tion, sequent systems—which consist of inference rules that
syntactically manipulate pairs of multisets of formulae—
have proven themselves fruitful in writing decision algo-
rithms for logics (Dyckhoff 1992; Gentzen 1935a; Gentzen
1935b; Slaney 1997). A crucial feature of such systems,
and their use in decidability, is the so-called subformula
property, which a sequent system has iff the premise(s) of
each inference rule only contain subformulae of the conclu-
sion of the rule. (NB. Systems with the subformula prop-
erty are also referred to as analytic.) With the goal of

1Standpoint logic introduces sharpenings and stronger interac-
tion axioms than KD45n, as discussed in (Gómez Álvarez 2020).

securing this property for proof systems for theories be-
yond classical propositional logic (e.g. the modal logics
Kt and S5), more sophisticated sequent systems extend-
ing Gentzen’s original formalism were eventually proposed;
e.g., see (Belnap 1982; Simpson 1994; Wansing 2002). In
this paper, we employ one such extended formalism, viz.
the nested sequent formalism (Brünnler 2009; Bull 1992;
Kashima 1994; Poggiolesi 2009), which utilizes trees of
multisets of formulae in deriving theorems. Such sys-
tems have proven well-suited for automated reasoning with
modal and related logics, being used (for instance) in the
writing of decision/proof-search algorithms (Brünnler 2009;
Tiu, Ianovski, and Goré 2012) and the extraction of inter-
polants (Fitting and Kuznets 2015; Lyon et al. 2020).

Drawing on ideas from the structural refinement method-
ology, detailed in (Lyon 2021a) and used to provide nested
sequent systems for diverse classes of modal and construc-
tive logics (see (Lyon and van Berkel 2019; Lyon 2020;
Lyon 2021b)), our first contribution in this paper is the in-
troduction of analytic nested sequent systems (each dubbed
NS(V) with V a certain parameter) for propositional stand-
point logics (Gómez Álvarez and Rudolph 2021). For our
second contribution, we exploit our nested systems to write
concrete, worst-case complexity-optimal proof-search algo-
rithms (deciding the validity of propositional standpoint for-
mulae in CoNP), which apply inference rules from NS(V)
in reverse on an input formula with the goal of building a
proof thereof. Whereas typical proof-search algorithms op-
erate deterministically and attempt to build a complete proof
of the input, we introduce a novel technique (our third con-
tribution) referred to as coloring, which performs proof-
search non-deterministically and which only constructs a
partial proof of the input relative to each non-deterministic
choice. The technique of coloring involves first guessing a
particular labeling of the subformulae of an input formula
with active ◦ and inactive • labels, with the proof-search al-
gorithm subsequently only processing data deemed active.
An interesting consequence of this technique is the attain-
ment of a CoNP proof-search algorithm as the partial proofs
constructed during proof-search are at most polynomially
larger than the input and only require polynomial time to
compute. Moreover, in the instance where the input formula
is invalid, we show how to construct a counter-model from
failed proof-search, and in the instance where our input for-
mula is valid, we provide a procedure that generates a com-
plete proof witnessing the validity of the input formula by
patching together all partial proofs (our fourth contribution).

Organization of Paper. Our paper is organized as fol-
lows: Sect. 2 presents the syntax and semantics of propo-
sitional standpoint logic. In Sect. 3, we introduce our nested
sequent systems for propositional standpoint logics, proving
such systems sound and concluding their completeness. In
the penultimate section (Sect. 4), we introduce the method
of coloring and show how to automate reasoning with stand-
point logics, that is, we provide a (worst-case complexity-
optimal) proof-search algorithm deciding the validity of
propositional standpoint formulae in CoNP. The final sec-
tion (Sect. 5) concludes the paper and discusses future work.

2 Standpoint Logic
Let us now specify the syntax of propositional standpoint
logic (SL), denoted by S.
Definition 1 (Syntax of Standpoint Logic). Let V = 〈P,S〉
be a vocabulary where P is a non-empty set of propositional
variables and S is a set of standpoint symbols containing
the distinguished symbol ∗, i.e. the universal standpoint. We
define the language L� := {s � s′ | s, s′ ∈ S}, and refer
to formulae in L� as sharpening statements. The language
LV is defined via the following grammar in BNF:

ϕ ::= p | ¬p | (ϕ ∨ ϕ) | (ϕ ∧ ϕ) | �s ϕ | ♦s ϕ
where p ∈ P and s ∈ S. We also use> and⊥ as shorthands
with the usual definitions.

Last, for Γ ⊆ L� and ϕ ∈ LV , we define a standpoint
implication to be a formula of the form

∧
Γ → ϕ, where∧

Γ is a conjunction of all elements of Γ, which equals >
when Γ is empty.

We make use of formulae in negation normal form as
this will simplify the structures present in our nested sys-
tems and enhance the readability of our proof theory. To
further simplify, we also assume w.l.o.g. that sets of sharp-
ening statements are (1) free of cycles s1 � s2, . . . , sn � s1

and (2) omit occurrences of ∗. Assumption (1) is permit-
ted since any standpoint implication containing a cycle s1 �
s2, . . . , sn � s1 of standpoints is equivalent to one where
the cycle is deleted and all occurrences of s1, . . . , sn−1 are
replaced by sn in the formula. Regarding assumption (2),
any sharpening statement with ∗ is either of the form s � ∗,
and is thus trivial (see Def. 4 below), or is of the form ∗ � s,
in which case s can be systematically replaced by ∗ in a
standpoint implication to obtain an equivalent one.
Definition 2 (Subformula and Size). We define the set of
subformulae of ϕ, denoted sufo(ϕ), recursively as follows:
• sufo(p) := {p} and sufo(¬p) := {¬p};
• sufo(♥ψ) := {♥ψ} ∪ sufo(ψ);
• sufo(ψ ⊗ χ) := {ψ ⊗ χ} ∪ sufo(ψ) ∪ sufo(χ).
with ♥ ∈ {♦s,�s | s ∈ S} and ⊗ ∈ {∨,∧}. We say that
ψ is a subformula of ϕ iff ψ ∈ sufo(ϕ), and define the size
of a formula ϕ in LV , denoted |ϕ|, to be equal to |sufo(ϕ)|,
i.e. to the number of its subformulae.

In what follows, we introduce the semantics of SL, de-
fined over a structure of precisifications, which is akin to
the usual structure of possible worlds. A precisification is
a complete and consistent way in which the state of affairs
can be described with a given vocabulary, and standpoints
are modeled as sets of precisifications considered admissi-
ble. This strategy of modelling the variability of natural lan-
guage as hyper-ambiguity is based on the theory supervalu-
ationism (Fine 1975; Keefe and Smith 1997), which stand-
point logic draws from (Gómez Álvarez and Bennett 2018;
Gómez Álvarez, Bennett, and Richard-Bollans 2017).
Definition 3 (Standpoint Model). Given a vocabulary V , a
model M (over V) is a triple 〈Π, σ, δ〉, where Π is a non-
empty set of precisifications, σ : S → 2Π, and δ : P → 2Π

with σ(s) 6= ∅ for all s ∈ S and σ(∗) = Π. The set of all
such models is denoted by MS.

Definition 4 (Semantic Clauses). Let Γ ⊆ L� and ϕ,ψ ∈
LV . Moreover, let M = 〈Π, σ, δ〉 be a standpoint model
with π ∈ Π. We recursively define the satisfaction of a for-
mula onM at π accordingly:

• M, π |= p iff π ∈ δ(p);
• M, π |= ¬p iff π 6∈ δ(p);
• M, π |= ϕ ∧ ψ iffM, π |= ϕ andM, π |= ψ;
• M, π |= ϕ ∨ ψ iffM, π |= ϕ orM, π |= ψ;
• M, π |= ♦s ϕ iff for some π′ ∈ σ(s),M, π′ |= ϕ;
• M, π |= �s ϕ iff for all π′ ∈ σ(s),M, π′ |= ϕ;
• M, π |= s � s′ iff σ(s) ⊆ σ(s′);
• M, π |=

∧
Γ iffM, π |= s � s′ for all s � s′ ∈ Γ;

• M, π |=
∧

Γ→ ϕ iffM, π |=
∧

Γ impliesM, π |= ϕ;
• M |=

∧
Γ→ ϕ iffM, π |=

∧
Γ→ ϕ for all π ∈ Π.

A standpoint implication
∧

Γ → ϕ is defined to be valid
(relative to a vocabulary V) iff it is true on each modelM∈
MS; it is defined to be invalid (relative to V) otherwise.

For a vocabulary V , the standpoint logic S(V) is the set
of all valid standpoint implications

∧
Γ→ ϕ over MS.

It is worth remarking that the specification of sharpen-
ing statements in a separate language (viz. L�) and the
above definition of satisfiability and validity contrast with
the original presentation in (Gómez Álvarez and Rudolph
2021). However, this specification simplifies our treatment
of sharpening statements, which previously served as atomic
propositions in the language LV . In fact, these statements
are obsolete in extensions of the language allowing set the-
oretical combinations of standpoints in modalities (which is
the object of current research). Moreover, in these exten-
sions, the natural requirement of inner consistency (i.e. the
non-emptiness of σ(s), for each s ∈ S) of standpoints is
relaxed, which can be easily reflected in our nested sequent
systems by dropping the (ns) rule (see Fig. 2 in Section 3).

3 Nested Sequent Systems
We define a nested sequent (which we will also refer to as a
sequent) to be a formula of the form Γ ` ∆ with Γ and ∆
defined via the following grammars in BNF:

Γ ::= s � s′ | ∅ | Γ,Γ ∆ ::= Σ |∆, (s)[Σ]π

Σ ::= ϕ | ∅ | Σ,Σ
where s, s′ ∈ S \ {∗}, ϕ ∈ LV , and π is among a count-
ably infinite set of labels {πi | i ∈ N \ {0}}. We use Φ
and Ψ (occasionally annotated) to denote nested sequents
and note that we employ the use of labels as this proves use-
ful in extracting a counter-model from failed proof-search
(see Thm. 3). Moreover, each nested sequent Γ ` ∆ with
∆ = Σ0, (s1)[Σ1]π1

, . . . , (sn)[Σn]πn
possesses a special

structure; namely, the antecedent Γ is a set of sharpening
statements of the form s � s′, and the consequent ∆ is a
multiset encoding a tree of depth 1 whose nodes are mul-
tisets of formulae from LV . The consequent ∆ can be ex-
pressed graphically as follows:

Σ0

s1

xx

s2

��
sn−1

��
sn

((
Σ1 Σ2 . . . Σn−1 Σn

We refer to a multiset Σi occurring in the consequent of a
nested sequent as a component, and note that components
(along with the antecedent and consequent) are permitted to
be empty ∅. Intuitively, components correspond to precisifi-
cations in a standpoint model. It is also worthwhile to define
the relation �∗Γ on standpoints as this will be used as a side
condition dictating applications of certain inference rules:

Definition 5. For a nested sequent Γ ` ∆, let �∗Γ ⊆S × S
be the minimal reflexive and transitive relation such that

• s �∗Γ s′ for every s � s′ ∈ Γ, and
• s �∗Γ ∗ for every s ∈ S.

A nice feature of nested sequents is that such objects
typically permit a formula translation, e.g. (Brünnler 2009;
Bull 1992; Kashima 1994; Poggiolesi 2009), meaning that
our logical semantics can be lifted to the language of our
proof systems without introducing an extended semantics
for nested sequents.

Definition 6 (Formula Interpretation). We define the for-
mula interpretation of a nested sequent Γ ` ∆ with ∆ =
Σ0, (s1)[Σ1]π1 , . . . , (sn)[Σn]πn as follows:

ι(Γ ` ∆) :=
∧

Γ→
∨

Σ0 ∨
∨

1≤i≤n
�si(

∨
Σi)

We define Γ ` ∆ to be valid iff ι(Γ ` ∆) is valid. Also, we
note that

∧
∅ = > and

∨
∅ = ⊥, as usual.

A uniform presentation of our nested calculi is given in
Fig. 2. We let NS(V) denote the corresponding nested se-
quent calculus over a vocabulary V . Our inference rules
make use of the brackets ‘{’ and ‘}’ in the consequent
of a nested sequent to indicate that the displayed for-
mula(e) occur in some component. In particular, given
a nested sequent Γ ` ∆, where ∆ is of the form
Σ0, (s1)[Σ1]π1

, . . . , (si)[Σi]πi
, . . . , (sn)[Σn]πn

, the nota-
tion Γ ` ∆{ϕ}πi

indicates that ϕ occurs in Σi; additionally,
we use Γ ` ∆{ϕ}π0

to indicate that ϕ occurs in Σ0, i.e. the
label π0 is used to reference the multiset Σ0 serving as the
root of the tree encoded by the consequent.

To make the functionality of each rule in NS(V) precise,
we explicitly state the operation performed by each rule.
With the exception of the premise-free (id) rule, we ex-
plain for each rule how the premise(s) (the nested sequent(s)
occurring above the horizontal inference line) are obtained
from the conclusion (the nested sequent occurring below the
horizontal inference line). This explanation is consistent
with how the rules are applied (bottom-up) during proof-
search as described in the following section. Also, in ac-
cordance with standard proof-theoretic terminology (Buss
1998; Takeuti 2013), we refer to the formula that is explic-
itly displayed in the conclusion of a rule as principal, and in-
dicate the principal formulae in our explanation of the rules
below to make this precise for the reader.

(id) A nested sequent is initial, and may be used to begin
a derivation, so long as some component contains both p
and ¬p (the principal formulae);

(∨) If a component Σi of the conclusion contains ϕ∨ψ (the
principal formula), then adding ϕ and ψ to Σi yields the
premise;

(∧) If a component Σi of the conclusion contains ϕ ∧ ψ
(the principal formula), then adding ϕ to Σi yields the left
premise and adding ψ to Σi yields the right premise;

(�s) For any s ∈ S, if a component Σi of the conclusion
contains �s ϕ (the principal formula), then appending the
consequent ∆ with (s)[ϕ]π′ , where π′ is fresh (i.e. it does
not occur in the conclusion), yields the premise;

(ns) For any s ∈ S, we may append the consequent of the
conclusion with (s)[∅]π′ to obtain the premise so long as
π′ is fresh;

(♦1
s) For any s ∈ S , if a component Σi of the conclu-
sion contains ♦s ϕ (the principal formula), the consequent
contains a nesting (s′)[Σ]π′ , and s′ �∗Γ s, then adding ϕ
to the nesting (s′)[Σ]π′ yields the premise;

(♦2
s) For any s ∈ S, if the consequent contains a nesting of
the form (s′)[♦s ϕ,Σ]π′ with ♦s ϕ the principal formula,
and s′ �∗Γ s, then adding ϕ to the nesting (s′)[♦s ϕ,Σ]π′
yields the premise;

(♦∗) If a component Σi of the conclusion contains ♦∗ ϕ
(the principal formula), then prepending the consequent
∆ with ϕ (i.e. adding ϕ to Σ0) yields the premise.

Example 2. Below, we provide an example of a nested se-
quent derivation. To minimize the width of the proof, we let
ϕ denote ♦s ♦∗ ¬p ∨�s′ p.

(id)
s′ � s ` ϕ,♦s ♦∗ ¬p,�s′ p, (s′)[♦∗ ¬p,¬p, p]

(♦2
∗)s′ � s ` ϕ,♦s ♦∗ ¬p,�s′ p, (s′)[♦∗ ¬p, p]

(♦1
s)s′ � s ` ϕ,♦s ♦∗ ¬p,�s′ p, (s′)[p]

(�s′)
s′ � s ` ϕ,♦s ♦∗ ¬p,�s′ p (∨)

s′ � s ` ϕ
Observe that (♦1

s) is applicable as s′ �∗Γ s holds due to
the antecedent, and (♦2

∗) is applicable as s′ �∗Γ ∗ holds by
definition (see Def. 5).

We now prove that our calculi are sound (Thm. 1, building
on Lem. 1), that is, that every nested sequent derivable in
NS(V) is valid. We then state our completeness theorem,
which is a consequence of the work in Sect. 4.
Lemma 1. Let Γ ` ∆ be a sequent, M = 〈Π, σ, δ〉 be a
model with π ∈ Π, and s, s′ ∈ S. If M, π |=

∧
Γ and

s′ �∗Γ s, thenM, π |= s′ � s.

Proof. Assume that M, π |=
∧

Γ and s′ �∗Γ s for some
s′, s ∈ S. There are four cases to consider:

(1) s = ∗. The result is immediate as σ(∗) = Π, and there-
fore,M, π |= s′ � ∗ for every s′ ∈ S by Def. 4.

(2) s′ � s ∈ Γ. From the assumption thatM, π |=
∧

Γ it
follows thatM, π |= s′ � s.

(id)
Γ ` ∆{p,¬p}π

Γ ` ∆{ϕ,ψ}π
(∨)

Γ ` ∆{ϕ ∨ ψ}π
Γ ` ∆{ϕ}π Γ ` ∆{ψ}π

(∧)
Γ ` ∆{ϕ ∧ ψ}π

Γ ` ∆{�s ϕ}π, (s)[ϕ]π′
(�s)†1

Γ ` ∆{�s ϕ}π
Γ ` ∆, (s)[∅]π′

(ns)
†1

Γ ` ∆

Γ ` ∆{♦s ϕ}π, (s′)[Σ, ϕ]π′
(♦1
s)
†2

Γ ` ∆{♦s ϕ}π, (s′)[Σ]π′

Γ ` ∆, (s′)[♦s ϕ,ϕ,Σ]π
(♦2
s)
†2

Γ ` ∆, (s′)[♦s ϕ,Σ]π

Γ ` ϕ,∆{♦∗ ϕ}π
(♦∗)

Γ ` ∆{♦∗ ϕ}π

Figure 2: The nested calculus NS(V) with V = 〈P,S〉 a vocabulary. We note that π is permitted to be any label from {πi | i ∈ N \ {0}} and
that NS(V) contains a copy of (�s), (ns), (♦1

s), and (♦2
s) for each s ∈ S. The side condition †1 stipulates that the rule is applicable only if

the label π′ is fresh and †2 stipulates that the rule is applicable only if s′ �∗Γ s.

(3) s = s′. Then, it is trivially implied thatM, π |= s′ � s
since σ(s′) = σ(s) ⊆ σ(s) by Def. 4.

(4) There are some s1, . . . , sn ∈ S such that s′ � s1,∈ Γ,
si � si+1 ∈ Γ for every 1 ≤ i ≤ n − 1, and sn � s ∈ Γ,
that is, s′ �∗Γ s is obtained by transitivity on a path in S.
From this, together with the assumption thatM, π |=

∧
Γ,

it directly follows thatM, π |= s′ � s by Def. 4.

Theorem 1 (Soundness). If Γ ` ∆ is derivable in NS(V),
then Γ ` ∆ is valid.

Proof. We prove the result by induction on the number of
inferences in a given derivation, and assume that ∆ is of the
form Σ0, (s1)[Σ1], . . . , (sn)[Σn].

Base case. In the base case, our derivation consists of a
single application of the (id) rule. Hence,

ι(Γ ` ∆{p,¬p}πi
) :=

∧
Γ→

∨
Σ0 ∨

∨
1≤i≤n

�si(
∨

Σi)

where p,¬p ∈ Σi, for some 0 ≤ i ≤ n. Regardless, the
consequent of the implication above will be satisfied in any
modelM, implying that the above implication is valid.

Inductive step. We make a case distinction based on the
last rule applied, and show that if the conclusion of the rule
is invalid, then at least one of the premises of the rule is
invalid, that is to say, we show by contraposition that if the
premise(s) is (are) valid, then the conclusion is valid. We
only show the (�s) and (♦1

s) cases as the remaining cases
are simple or argued in a similar manner.

(�s). We assume that Σ1 is of the form �s ϕ,Σ′1 with
�s ϕ principal; all remaining cases are similar. Furthermore,
let us suppose that ι(Γ ` ∆{�s ϕ}π1

) :=∧
Γ→

∨
Σ0 ∨�s1(�s ϕ ∨

∨
Σ′1) ∨

∨
2≤i≤n

�si(
∨

Σi)

is invalid. Then, M, π 6|= �s1(�s ϕ ∨
∨

Σ′1) for some
standpoint model M := 〈Π, σ, δ〉 with a precisification π.
Hence, there exists a precisification π′ ∈ σ(s1) such that
M, π′ 6|= �s ϕ, implying that there exists a precisification
π′′ ∈ σ(s) such that M, π′′ 6|= ϕ. It thus follows that
M, π 6|= �s ϕ, showing that the premise of (�s) is invalid.

(♦1
s). Suppose that Σ1 is of the form ♦s ϕ,Σ

′
1 with ♦s ϕ

principal; all remaining cases are argued in a similar fashion.

Assume that s′ �∗Γ s holds and that the following is invalid:

ι(Γ ` ∆{♦s ϕ}π, (s′)[Σ]π′) :=
∧

Γ→
∨

Σ0∨

�s1(♦s ϕ ∨
∨

Σ′1) ∨
(∨

2≤i≤n
�si

(∨
Σi
))
∨�s′

(∨
Σ
)

Therefore, there is a standpoint model M := 〈Π, σ, δ〉
with π ∈ Π such that M, π 6|= �s′(

∨
Σ) and M, π 6|=

�s1(♦s ϕ ∨
∨

Σ′1), and such that σ(s′) ⊆ σ(s), by s′ �∗Γ s
and Lem. 1. This entails that there exists a precisification
π′ ∈ σ(s′) such thatM, π′ 6|=

∨
Σ, and that there exists a

precisification π1 ∈ σ(s1) such that M, π1 6|= ♦s ϕ. The
latter further implies that for every precisification in σ(s),
and thus for π′ (since π′ ∈ σ(s′) ⊆ σ(s)), thatM, π′ 6|= ϕ.
Thus, the premise has been shown invalid.

Theorem 2 (Completeness). If Γ ` ∆ is valid, then Γ ` ∆
is provable in NS(V).

Proof. The theorem follows from the correct (Thm. 3) and
terminating (Thm. 4) proof-search procedure given in the
subsequent section (Sect. 4).

4 Automating Standpoint Logic via
Proof-Search

We now employ our nested calculi in an algorithm that de-
cides the validity of formulae for propositional standpoint
logics. In particular, we design a proof-search algorithm
(see Alg. 1 below) which takes a vocabulary V as a pa-
rameter and bottom-up applies rules from NS(V) in attempt
to construct a proof of a given input sequent Γ ` ϕ. We
may make the simplifying assumption that our proof-search
algorithm only receives inputs of the form Γ ` ϕ as any
nested sequent Γ ` ∆ with ∆ = Σ0, (s1)[Σ1], ... , (sn)[Σn]
is valid iff ι(Γ ` ∆) is valid iff Γ ` ϕ is valid, where
ϕ =

∨
Σ0 ∨�s1(

∨
Σ1) ∨ · · · ∨�sn(

∨
Σn).

To decrease the complexity of proof-search and obtain
(worst-case) complexity-optimality, we introduce a new
technique in the context of nested sequents which we refer to
as coloring. In essence, given the input Γ ` ϕ, the first step
of proof-search guesses a proper coloring of the formula ϕ,
that is, it labels the formula’s subformulae with either an
active label ◦ or an inactive label • in a particular manner.
Recall that, due to the (∧) rule, a proof in NS(V) has the
structure of a binary tree, thus giving rise to the possibility

Algorithm 1: ProveV
Input: A Nested Sequent: Γ ` ϕ
Output: A Boolean: True, False

1 Choose a proper coloring ϕ̃ of ϕ;
2 return ProofSearchV(Γ ` ϕ̃);

that proof-search is exponential; therefore, our proof-search
algorithm uses the aforementioned labels to only generate
a single path in this binary tree relative to each coloring,
which yields a worst-case complexity-optimal proof-search
procedure in CoNP (for the validity problem of S(V)).
Definition 7 (Coloring). We define a colored formula to be
a formula generated via the following grammar in BNF:

ϕ̃ ::= p∗ | ¬p∗ | (ϕ̃ ∨ ϕ̃)∗ | (ϕ̃ ∧ ϕ̃)∗ | (♦s ϕ̃)∗ | (�s ϕ̃)∗

with ∗ ∈ {◦, •}. For any colored formula ϕ̃, we let ϕ be the
formula in LV obtained by removing all labels ◦ and • from
ϕ̃. A formula ϕ̃ is properly colored iff ϕ̃ = f◦(ϕ), where the
non-deterministic coloring function f◦ and f• are defined
accordingly with ∗ ∈ {◦, •}:
• f∗(p) = p∗

• f∗(¬p) = ¬p∗
• f∗(ϕ ∨ ψ) = (f∗(ϕ) ∨ f∗(ψ))∗

• f◦(ϕ ∧ ψ) ∈ {(f◦(ϕ) ∧ f•(ψ))◦, (f•(ϕ) ∧ f◦(ψ))◦}
• f•(ϕ ∧ ψ) = (f•(ϕ) ∧ f•(ψ))•

• f∗(♦s ϕ) = (♦s f∗(ϕ))∗

• f∗(�s ϕ) = (�s f∗(ϕ))∗

We define pcs(ϕ) to be the set of all proper colorings of ϕ,
and define a colored nested sequent to be a nested sequent
that uses colored formulae as opposed to formulae from LV .

We now stipulate our saturation conditions. When such
conditions are unsatisfied during proof-search it signals that
certain inference rules still need to be applied bottom-up.
Alternatively, once all such conditions are satisfied this sig-
nals that proof-search ought to terminate.
Definition 8 (Saturation Conditions). A colored nested se-
quent Γ ` Σ0, (s1)[Σ1]π1

, ... , (sn)[Σ1]πn
is saturated iff for

every i ∈ {0, ... , n} it satisfies the following conditions:

id If p◦ ∈ Σi, then ¬p◦ 6∈ Σi;
∨ if (ϕ̃ ∨ ψ̃)◦ ∈ Σi, then ϕ̃◦, ψ̃◦ ∈ Σi;

∧ if (ϕ̃ ∧ ψ̃)◦ ∈ Σi, then either ϕ̃◦ ∈ Σi or ψ̃◦ ∈ Σi;
♦s if (♦s ϕ̃)◦ ∈ Σi and s′ �∗Γ s, then for each j ∈
{1, ... , n} such that sj = s′, ϕ̃◦ ∈ Σj;

♦∗ if (♦∗ ϕ̃)◦ ∈ Σi, then ϕ̃◦ ∈ Σ0;
�s if (�s ϕ̃)◦ ∈ Σi, then for some j ∈ {1, ... , n}, sj = s,

and ϕ̃◦ ∈ Σj;
ns for each s ∈ S, there exists a j ∈ {1, ... , n}

such that sj = s.

Let us comment on the functionality of our (non-
deterministic) proof-search algorithm ProveV (Alg. 1),
which takes ProofSearchV (Alg. 2) as a subroutine. (NB.
Alg. 2 is split between this page and the next due to its

Algorithm 2: ProofSearchV (Part I)
Input: A Colored Nested Sequent:

Φ := Γ ` Σ0, (s1)[Σ1]π1
, ... , (sn)[Σn]πn

Output: A Boolean: True, False
1 if for some 0 ≤ i ≤ n, p◦,¬p◦ ∈ Σi then
2 return True;
3 end
4 if Σ is saturated then
5 return False;
6 end
7 if for some 0 ≤ i ≤ n, (ϕ̃ ∨ ψ̃)◦ ∈ Σi, but ϕ̃, ψ̃ 6∈ Σi

then
8 Let Σ′i := Σi, ϕ̃, ψ̃;
9 Let Φ′ := Γ`Σ0, ... , (si)[Σ

′
i]πi , ... , (sn)[Σn]πn ;

// Replace Σi by Σ′i to obtain Φ′.
10 return ProveV(Φ′);
11 end
12 if for some 0 ≤ i ≤ n, (ϕ̃◦ ∧ ψ̃•)◦ ∈ Σi, but ϕ̃◦ 6∈ Σi

then
13 Let Σ′i := Σi, ϕ̃

◦;
14 Let Φ′ := Γ`Σ0, ... , (si)[Σ

′
i]πi , ... , (sn)[Σn]πn ;

// Replace Σi by Σ′i to obtain Φ′.
15 return ProveV(Φ′)
16 end
17 if for some 0 ≤ i ≤ n, (ϕ̃• ∧ ψ̃◦)◦ ∈ Σi, but ψ̃◦ 6∈ Σi

then
18 Let Σ′i := Σi, ψ̃

◦;
19 Let Φ′ := Γ`Σ0, ... , (si)[Σ

′
i]πi , ... , (sn)[Σn]πn ;

// Replace Σi by Σ′i to obtain Φ′.
20 return ProveV(Φ′)
21 end

length.) As mentioned above, given an input Γ ` ϕ, the al-
gorithm ProveV guesses a proper coloring ϕ̃ of ϕ, and then
returns the value of ProofSearchV(Γ ` ϕ̃). We note that
ProofSearchV applies the rules from NS(V) in a bottom-
up manner (each corresponding to a recursive call of the al-
gorithm with the exception of (id)). The application of each
rule is as follows: (id) corresponds to lines 1–3, (∨) to lines
7–11, (∧) to lines 12–16 and 17–21, that respectively yields
the left and right premises of (∧), (♦1

s) and (♦2
s) to lines

22–25, (♦∗) to lines 26–29, (�s) to lines 30–33, and (ns)
to lines 34–37.

Moreover, ProofSearchV contrasts with typical proof-
search algorithms in that it utilizes the active and inactive
labels ◦ and • in ϕ̃ to guide its computation and only con-
structs a single thread of the proof.2 In other words, if a
nested sequent Γ ` ϕ is derivable in NS(V), then the se-
quent has a proof in NS(V) such that ProofSearchV gener-
ates each thread of the proof relative to each proper coloring
of ϕ; as argued in the lemma below, all such threads may
be ‘zipped’ together to reconstruct a full proof of Γ ` ϕ in

2A thread in a proof is defined in the usual fashion as a path
of sequents from the conclusion of the proof to an initial sequent
(cf. (Takeuti 2013, p. 14)).

NS(V). In this way, our proof-search algorithm may be used
to construct certificates witnessing the validity (by means
of a proof in NS(V)) or invalidity (by means of a counter-
model) of any input Γ ` ϕ (see Thm. 3 below for details).
Lemma 2. Let Γ ` ϕ be a sequent and pcs(ϕ) the (finite) set
of proper colorings of ϕ. If ProofSearchV(Γ ` ϕ̃) = True
for all ϕ̃ ∈ pcs(ϕ), then there is a proof of Γ ` ϕ in NS(V).

Proof. Assume that ProofSearchV(Γ ` ϕ̃) = True for ev-
ery ϕ̃ ∈ pcs(ϕ), and the following thread of colored nested
sequents is generated during its execution:

T (ϕ̃) := Γ ` ∆0, ... ,Γ ` ∆h

such that ∆0 = ϕ̃ and Γ ` ∆h is an instance of (id) (by
lines 1–3). Let T be the set of all such threads.

For a thread Γ ` ∆0, ... ,Γ ` ∆h ∈ T and 0 ≤ k ≤ h,
the colored nested sequent Γ ` ∆k is:
• left conjunctive iff Γ ` ∆k+1 is obtained from Γ ` ∆k by

applying (∧) yielding the left premise (lines 12–16), and
• right conjunctive iff Γ `∆k+1 is obtained from Γ ` ∆k

by applying (∧) yielding the right premise (lines 17–21).
A colored nested sequent is conjunctive iff it is left or right
conjunctive. We now explain how our threads may be trans-
formed into a proof of Γ ` ϕ in NS(V).

We assume w.l.o.g. that the initial segments of all threads
up to and including the first conjunctive sequent Γ ` ∆k are
identical (i.e. we assume that the subroutine ProofSearchV
executes in a deterministic fashion). Hence, we may form
the ‘pseudo-derivation’ shown below left, by making use
of the first k sequents of any given thread, where the rules
(r1), ... , (rk−1) are determined on the basis of which lines
of ProofSearchV were executed.

Γ ` ∆k (rk−1)
... (r1)

Γ ` ϕ

Γ ` ∆l
k+1 Γ ` ∆r

k+1
(∧)

Γ ` ∆k (rk−1)
... (r1)

Γ ` ϕ

Let us define T k(ϕ̃) := Γ ` ∆k+1, ... ,Γ ` ∆h to be
the tail of a thread T (ϕ̃) starting from k + 1. Since the kth
colored nested sequent of every thread is conjunctive, we
may generate two sets of threads TL and TR from T :

TL := {T k(ϕ̃) | Γ ` ∆k ∈ T (ϕ̃) is left conjunctive}
TR := {T k(ϕ̃) | Γ ` ∆k ∈ T (ϕ̃) is right conjunctive}
We now extend the ‘pseudo-derivation’ shown above left,

with a bottom-up application of (∧) to obtain the ‘pseudo-
derivation’ shown above right, where Γ ` ∆l

k+1 and Γ `
∆r
k+1 are the initial elements of each thread TL and TR, re-

spectively. By successively repeating the above described
process over TL and TR, a proof in NS(V) will eventually
be built above Γ ` ∆l

k+1 and Γ ` ∆r
k+1, giving a proof of

Γ ` ϕ in NS(V).

Example 3. To illustrate the procedure in Lem. 2 above,
we provide an example of the proof construction process of
∅ ` ϕ with ϕ := �s(p ∨ (¬p ∧ ¬p)) ∧ ♦s(q ∨ ¬q). First,
observe that ϕ has three proper colorings, given below:

Algorithm 2: ProofSearchV (Part II)
22 if for some 0 ≤ i ≤ n, (♦s ϕ̃)◦ ∈ Σi and s′ �∗Γ s,

and for some 1 ≤ j ≤ n, sj = s′, but ϕ̃ 6∈ Σj then
23 Let Φ′ := Γ`

Σ0, ... , (sj)[Σj , ϕ̃]πj
, ... , (sn)[Σn]πn

;
// Add ϕ̃ to the jth nesting to

obtain Φ′.
24 return ProveV(Φ′);
25 end
26 if for some 0 ≤ i ≤ n, (♦∗ ϕ̃)◦ ∈ Σi, but ϕ̃ 6∈ Σ0

then
27 Let

Φ′ := Γ ` ϕ̃,Σ0, (s1)[Σ1]π1
, ... , (sn)[Σn]πn

;
// Add ϕ̃ to the 0th component to

obtain Φ′.
28 return ProveV(Φ′);
29 end
30 if for some 0 ≤ i ≤ n, (�s ϕ̃)◦ ∈ Σi, but for each

1 ≤ j ≤ n such that sj = s, ϕ̃ 6∈ Σj then
31 Let Σ′ := Γ ` Σ0, ... , (sn)[Σn]πn , (s)[ϕ̃]πn+1 ;

// Append (s)[ϕ̃]πn+1
to obtain Φ′

with πn+1 fresh.
32 return ProveV(Φ′);
33 end
34 if for some s ∈ S there does not exist a 1 ≤ j ≤ n

such that sj = s then
35 Let Φ′ := Γ ` Σ0, ... , (sn)[Σn]πn

, (s)[∅]πn+1
;

// Append (s)[∅]πn+1 to obtain Φ′

with πn+1 fresh.
36 return ProveV(Φ′);
37 end

ϕ̃1 := ((�s(p◦ ∨ (¬p◦ ∧ ¬p•)◦)◦)◦ ∧ (♦s(q
• ∨ ¬q•)•)•)◦

ϕ̃2 := ((�s(p◦ ∨ (¬p• ∧ ¬p◦)◦)◦)◦ ∧ (♦s(q
• ∨ ¬q•)•)•)◦

ϕ̃3 := ((�s(p• ∨ (¬p• ∧ ¬p•)•)•)• ∧ (♦s(q
◦ ∨ ¬q◦)◦)◦)◦

Each proper coloring ϕ̃i with i ∈ {1, 2, 3} gives rise to a
corresponding thread T (i) (shown at the top of Fig. 3) when
ProofSearchV(∅ ` ϕ̃i) is run. Note that in the figure we
have omitted the active and inactive labels, as well as labels
of the form πi, from each thread T (i) to improve readabil-
ity, and each application of (∧) is emphasized with a dashed
inference line. By making use of the proof construction pro-
cess described in Lem. 2, the three threads T (1), T (2), and
T (3) can be fused together to generate a proof of ∅ ` ϕ
shown at the bottom of Fig. 3.

Theorem 3 (Correctness). Let Γ ` ϕ be a sequent.
1. If ProofSearchV(Γ ` ϕ̃) = True for all proper col-

orings of ϕ, then a proof in NS(V) may be constructed
witnessing that Γ ` ϕ is valid.

2. If ProofSearchV(Γ ` ϕ̃) = False for some proper col-
oring of ϕ, then a counter-model may be constructed wit-
nessing that Γ ` ϕ is invalid.

Proof. The first claim follows by Lem. 2 and the soundness
of each nested calculus (see Thm. 1); therefore, we focus on

T (1) := T (2) := T (3) :=

(id)
∅ ` ϕ,ψ0, (s)[ψ1, p,¬p, ψ2]

(∧)
∅ ` ϕ,ψ0, (s)[ψ1, p,¬p ∧ ¬p]

(∨)
∅ ` ϕ,ψ0, (s)[p ∨ (¬p ∧ ¬p)]

(�s)∅ ` ϕ,�s(p ∨ (¬p ∧ ¬p))
(∧)

∅ ` ϕ

(id)
∅ ` ϕ,ψ0, (s)[ψ1, p,¬p, ψ2]

(∧)
∅ ` ϕ,ψ0, (s)[ψ1, p,¬p ∧ ¬p]

(∨)
∅ ` ϕ,ψ0, (s)[p ∨ (¬p ∧ ¬p)]

(�s)∅ ` ϕ,�s(p ∨ (¬p ∧ ¬p))
(∧)

∅ ` ϕ

(id)
∅ ` ϕ,♦s(q ∨ ¬q), (s)[ψ3, q,¬q]

(∨)
∅ ` ϕ,♦s(q ∨ ¬q), (s)[q ∨ ¬q]

(♦s)∅ ` ϕ,♦s(q ∨ ¬q), (s)[∅]
(ns)∅ ` ϕ,♦s(q ∨ ¬q)

(∧)
∅ ` ϕ

(id)
∅ ` ϕ,ψ0, (s)[ψ1, p,¬p, ψ2]

(id)
∅ ` ϕ,ψ0, (s)[ψ1, p,¬p, ψ2]

(∧)
∅ ` ϕ,ψ0, (s)[ψ1, p,¬p ∧ ¬p]

(∨)
∅ ` ϕ,ψ0, (s)[p ∨ (¬p ∧ ¬p)]

(�s)∅ ` ϕ,�s(p ∨ (¬p ∧ ¬p))

(id)
∅ ` ϕ,♦s(q ∨ ¬q), (s)[ψ3, q,¬q]

(∨)
∅ ` ϕ,♦s(q ∨ ¬q), (s)[q ∨ ¬q]

(♦s)∅ ` ϕ,♦s(q ∨ ¬q), (s)[∅]
(ns)∅ ` ϕ,♦s(q ∨ ¬q)

(∧)
∅ ` ϕ

Figure 3: An example of how the threads T (1), T (2), and T (3) may be ‘zipped’ together to construct the derivation shown above bottom.
Note that ϕ := �s(p ∨ (¬p ∧ ¬p)) ∧ ♦s(q ∨ ¬q), ψ0 := �s(p ∨ (¬p ∧ ¬p)), ψ1 := p ∨ (¬p ∧ ¬p), ψ2 := ¬p ∧ ¬p, and ψ3 := q ∨ ¬q.

the second claim. Suppose that ProofSearchV(Γ ` ϕ̃) =
False for some chosen proper coloring of ϕ. Then,
ProofSearchV generates a saturated nested sequent Γ ` ∆
with ∆ of the form Σ0, (s1)[Σ1]π1

, ... , (sn)[Σn]πn
. We will

use Γ ` ∆ to construct a counter-model for Γ ` ϕ, thus
proving the second claim. Let us defineM := 〈Π, σ, δ〉 as:

• Π := {π0, π1, ... , πn};
• σ(∗) := Π and for each s ∈ S \ {∗}, we define σ(s):

(i) πi ∈ σ(s) for each i ∈ {1, ... , n} such that si = s, and
(ii) πj ∈ σ(s) for each πj ∈ σ(s′) such that s′ �∗Γ s;
• δ(p) := {πi | p◦ 6∈ Σi}.

We know that the recursive definition of σ will eventually
terminate since S is finite.

Let us now prove that M is indeed a standpoint model;
afterward, we will show that M, π0 6|= ι(Γ ` ∆). First,
observe that the inclusion of π0 in Π ensures that the domain
of precisifications is non-empty. Furthermore, δ is a function
from P to 2Π, for each s ∈ S, we have that σ(s) 6= ∅ by the
ns saturation condition, and σ(∗) = Π by definition. We
now show that (a) for each s′ � s ∈ Γ and i ∈ {0, ... , n},
M, πi |= s′ � s, and (b) for each i ∈ {0, ... , n} and ψ̃ ∈
Σi,M, πi 6|= ψ, from whichM, π0 6|= ι(Γ ` ϕ) follows as
ϕ̃ ∈ Σ0.

(a) Let s′ � s ∈ Γ and assume that π ∈ σ(s′). Then,
by the second clause in the definition of σ(s) it follows that
π ∈ σ(s), thus showing thatM, π |= s � s′ for all π ∈ Π.

(b) By induction on the complexity of ψ.
Base case. First, let us suppose that ψ is a propositional

atom p where p◦ ∈ Σi. Then, by the definition of δ, we
have that πi 6∈ δ(p), i.e. M, πi 6|= p. Similarly, if ψ is a
negated atom ¬p where ¬p◦ ∈ Σi, then by the id saturation
condition, we know that p◦ 6∈ Σi, implying that πi ∈ δ(p)
by the definition of δ, thus showing thatM, πi 6|= ¬p.

Inductive step. We suppose that ψ̃◦ ∈ Σi and we show
thatM, πi 6|= ψ making a case distinction based on the main
connective of ψ.

ψ = χ ∨ ξ: By the ∨ saturation condition, χ̃◦, ξ̃◦ ∈ Σi. By
IH,M, πi 6|= χ andM, πi 6|= ξ, showingM, πi 6|= ψ.

ψ = χ ∧ ξ: By the ∧ saturation condition, χ̃◦ ∈ Σi or ξ̃◦ ∈
Σi. By IH,M, πi 6|= χ orM, πi 6|= ξ, soM, πi 6|= ψ.

ψ = ♦s χ with s ∈ S \ {∗}: Assume that πj ∈ σ(s). By
the definition of σ(s), πj was added via the first (i) or sec-
ond (ii) condition. If (i), then there is a nesting (s){Σj}πj

in ∆, and by the ♦s saturation condition, χ̃◦ ∈ Σj . By
IH then,M, πj 6|= χ. If (ii), then there is a chain of state-
ments s0 � s1, ... , sn � s ∈ Γ such that a nesting of
the form (s0){Σj}πj exists in ∆. Again, by the ♦s satu-
ration condition, it follows that χ̃◦ ∈ Σj , which implies
thatM, πj 6|= χ by IH. Hence,M, πi 6|= ♦s χ.

ψ = ♦∗ χ: Since ∗ is maximal relative to the �∗Γ relation,
i.e. s �∗Γ ∗ for all s ∈ S, we have χ̃◦ ∈ Σj for each
j ∈ {0, ... , n} by the ♦∗ and ♦s saturation conditions,
hence for all πj ∈ Π,M, πj 6|= χ, i.e.M, πi 6|= ♦∗ χ.

ψ = �s χ: By the �s saturation condition, we know that
there exists a j ∈ {1, ... , n} such that sj = s and χ̃◦ ∈
Σj . By IH,M, πj 6|= χ, thus proving the case.

Example 4. Let us provide an example of the counter-model
construction procedure given in Thm. 3. We assume that the
(invalid) sequent s � s′ ` ϕ with ϕ := �s′ p ∨ ♦s ¬p is
input into ProveV . Since ϕ has one proper coloring (with
all subformulae active), only the following single thread is
generated, yielding the saturated sequent shown at the top
of the proof below. We omit the active labels for readability.

s � s′ ` ϕ,�s′ p,♦s ¬p, (s′)[p]π1
, (s)[¬p]π2

, (∗)[∅]π3 (n∗)
s � s′ ` ϕ,�s′ p,♦s ¬p, (s′)[p]π1

, (s)[¬p]π2
(♦1
s)s � s′ ` ϕ,�s′ p,♦s ¬p, (s′)[p]π1

, (s)[∅]π2 (ns)
s � s′ ` ϕ,�s′ p,♦s ¬p, (s′)[p]π1 (�s′)

s � s′ ` ϕ,�s′ p,♦s ¬p (∨)
s � s′ ` ϕ

Then, we may extract the following (counter-)modelM =
〈Π, σ, δ〉 from the top, saturated sequent in the proof above.

• Π := {π0, π1, π2, π3};
• σ(∗) := Π, σ(s) := {π2}, and σ(s′) := {π1};
• δ(p) := {π0, π2, π3}.
It is readily verifiable thatM, π0 6|= �s′ p ∨ ♦s ¬p.

We now show that ProofSearchV (and hence ProveV)
terminates after at most polynomially many rule applications
in the size of the input sequent. For an input Φ := Γ ` ϕ, its
size is defined to be |Φ| := |S| + |ϕ|. That is, the size of Φ
is the sum of the cardinality of the set S of standpoints and
the size of ϕ. The size of a sequent incorporates a measure
on the set S from the associated vocabulary V as opposed
to a measure on the set Γ of sharpening statements because
Γ only plays a role in bottom-up applications of (♦1

s) and
(♦2
s), which are bounded in part by the cardinality of S and

in part by the number of �s modalities occurring in ϕ, as
explained in the proof of Thm. 4 below.

Theorem 4 (Termination). Let Φ := Γ ` ϕ be a sequent.
Then, the number of recursive calls in ProofSearchV(Γ `
ϕ̃), and thus ProveV(Γ ` ϕ), is bounded by a polynomial

p(|Φ|) = O(|Φ|2).

Proof. Let Φ := Γ ` ϕ be a nested sequent, and N⊕ be the
number of occurrences of the connectives {∨,∧}∪{♦s | s ∈
S} in ϕ. By the saturation conditions (Def. 8), we know that
for each s ∈ S , the (�s) rule will be applied bottom-up at
most one time for each occurrence of �s in ϕ, which are
bounded by |ϕ|. Also, (ns) will be applied at most once for
each s ∈ S. Since only (�s) and (ns) introduce nestings,
the number of components (i.e. the nestings plus the root)
throughout the course of proof-search is bounded by:

K := 1 + |S|+ |ϕ|
For each occurrence of ∨, ∧, and ♦s in ϕ (with s ∈ S), we

know by the saturation conditions that (∨), (∧), (♦1
s), (♦2

s),
and (♦∗) can be applied a maximum number ofK times dur-
ing proof search. Then, sinceN∨+N∧+

∑
s∈S N♦s

≤ |ϕ|,
the number of recursive calls (i.e. bottom-up applications
of rules) during proof-search is bounded by N := |ϕ| · K.
Finally, |S|, |ϕ| ≤ |Φ| holds trivially, implying:

N ≤ |Φ| · (1 + |Φ|+ |Φ|)
Therefore, it follows that a polynomial p(|Φ|) = O(|Φ|2)

bounds the number of recursive calls of ProveV(Φ).

Corollary 1. Let V be a vocabulary. Then,

1. S(V) is decidable;
2. S(V) has the finite model property;
3. ProveV is worst-case complexity-optimal, deciding the

validity problem for S(V) in CoNP;
4. The validity problem for S(V) is CoNP-complete.

Proof. Statements 1 and 2 follow from the fact that ProveV
is a correct (Thm. 3) and terminating (Thm. 4) decision pro-
cedure for S(V) that, in particular, returns a finite counter-
model when the input is invalid.

To show statement 3, observe that ProveV is a non-
deterministic algorithm that takes a sequent Φ := Γ ` ϕ
as input, guesses a proper coloring of ϕ, and constructs a
thread. Each such thread is polynomial in the size of its in-
put, since the number of rule applications (i.e. the length of
the thread) is bounded by a polynomial p(|Φ|) = O(|Φ|2),
by Thm. 4. Moreover, since any sequent generated during
proof-search can have at most K ≤ 1 + |S| + |ϕ| many
components (as stated in the proof of Thm. 4), each of which
can only be inhabited by at most |sufo(ϕ)| = |ϕ| many for-
mulae, it follows that the size of each nested sequent in the
thread is bounded by O(|Φ|2) since |S|, |ϕ| ≤ |Φ|. Tak-
ing the functionality of ProveV into account, one can see
that if ProveV(Φ) = False, then the corresponding thread
is generated in polynomial time and its size is bounded
above by a polynomial q(|Φ|) = O(|Φ|4). Additionally,
note that ProveV is worst-case complexity-optimal as the
validity problem for classical propositional logic is CoNP-
complete, and can be solved by ProveV as (id), (∨), and
(∧) form a sound and complete proof system for proposi-
tional logic (cf. (Lyon 2021a, App. B)). Last, statement 4 is
an immediate consequence of statement 3.

5 Conclusion and Future Work
In this paper, we introduced and employed nested sequent
systems to automate reasoning with propositional standpoint
logics. To obtain worst-case complexity-optimal proof-
search, we presented a novel proof-search technique, re-
ferred to as coloring, whereby the subformulae of an input
formula are non-deterministically colored with (in)active la-
bels, yielding partial proofs (i.e. threads) of the input. By
means of our technique, we designed a non-deterministic
proof-search algorithm deciding the validity of standpoint
implications in CoNP, showing how certain threads could
be transformed into a counter-model for an invalid input, and
how all threads could be transformed into a proof for a valid
input. The attainment of these “certificates” from proof-
search serve as explanations for the (in)validity of standpoint
formulae, thus motivating our proof-theoretic approach.

For future work, we aim to extend our nested systems
and proof-search algorithm to cover (i) first-order standpoint
logics that (ii) incorporate complex standpoints, which have
interesting applications in knowledge integration scenarios.
Regarding point (i), placing standpoint logic on a first-order
base increases the applicability of the framework along with
its expressivity to better match that of contemporary knowl-
edge representation languages. Our focus in this area is
to provide results that can then be extrapolated to widely
used decidable fragments of FOL. Regarding point (ii), we
note that the set-theoretic interpretation of standpoints per-
mits the definition of complex standpoints built atop atomic
ones; e.g. union s1 ∪ s2 (integrating knowledge from multi-
ple perspectives), intersection s1∩s2 (expressing the knowl-
edge jointly shared between multiple perspectives), and dif-
ference s1 \ s2 (yielding the sharpening of s1 by ignoring
all precisfications of s2). Beyond providing nested systems
for more expressive formulations of standpoint logic, we
also aim to write and evaluate theorem provers based on our
nested calculi.

Acknowledgments. Lucı́a Gómez Álvarez was supported
by the Bundesministerium fur Bildung und Forschung
(BMBF, Federal Ministry of Education and Research) in
the Center for Scalable Data Analytics and Artificial In-
telligence (ScaDS.AI). Tim S. Lyon has received funding
from the European Research Council (Grant Agreement no.
771779, DeciGUT).

References
Belnap, N. D. 1982. Display logic. Journal of philosophical
logic 11(4):375–417.
Brünnler, K. 2009. Deep sequent systems for modal logic.
Arch. Math. Log. 48(6):551–577.
Bull, R. A. 1992. Cut elimination for propositional dynamic
logic without *. Z. Math. Logik Grundlag. Math. 38(2):85–
100.
Buss, S. R. 1998. An introduction to proof theory. Hand-
book of proof theory 137:1–78.
Dyckhoff, R. 1992. Contraction-free sequent calculi for in-
tuitionistic logic. The Journal of Symbolic Logic 57(3):795–
807.
Fine, K. 1975. Vagueness, truth and logic. Synthese 30(3-
4):265–300.
Fitting, M., and Kuznets, R. 2015. Modal interpolation
via nested sequents. Annals of pure and applied logic
166(3):274–305.
Gentzen, G. 1935a. Untersuchungen über das logische
Schließen. i. Mathematische Zeitschrift 39(1):176–210.
Gentzen, G. 1935b. Untersuchungen über das logische
Schließen. ii. Mathematische Zeitschrift 39(1):405–431.

Gómez Álvarez, L., and Bennett, B. 2018. Dealing with
conceptual indeterminacy: A framework based on superval-
uation semantics. In Joint Proceedings of MedRACER and
WOMoCoE, volume 2237, 38–50. CEUR.
Gómez Álvarez, L., and Rudolph, S. 2021. Standpoint logic:
Multi-perspective knowledge representation. In Neuhaus,
F., and Brodaric, B., eds., Proceedings of the 12th Interna-
tional Conference on Formal Ontology in Information Sys-
tems, volume 344 of FAIA, 3–17. IOS Press.
Gómez Álvarez, L.; Bennett, B.; and Richard-Bollans, A.
2017. Talking about forests: An example of sharing infor-
mation expressed with vague terms. In Proceedings of the
Joint Ontology Workshops 2017, volume 2050. CEUR.

Gómez Álvarez, L. 2020. Standpoint logic: a logic for
handling semantic variability, with applications to forestry
information. Ph.D. Dissertation, School of Computing, The
University of Leeds.
Kashima, R. 1994. Cut-free sequent calculi for some tense
logics. Studia Logica 53(1):119–135.
Keefe, R., and Smith, P. 1997. Theories of vagueness. The
MIT press.
Lyon, T., and van Berkel, K. 2019. Automating agential
reasoning: Proof-calculi and syntactic decidability for STIT
logics. In Baldoni, M.; Dastani, M.; Liao, B.; Sakurai, Y.;

and Zalila Wenkstern, R., eds., Proceedings of the 22nd In-
ternational Conference on Principles and Practice of Multi-
Agent Systems, volume 11873, 202–218. Springer.
Lyon, T.; Tiu, A.; Goré, R.; and Clouston, R. 2020. Syntac-
tic interpolation for tense logics and bi-intuitionistic logic
via nested sequents. In Fernández, M., and Muscholl, A.,
eds., Proceedings of the 28th Annual Conference on Com-
puter Science Logic, volume 152 of LIPIcs, 28:1–28:16.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik.
Lyon, T. 2020. On the correspondence between nested cal-
culi and semantic systems for intuitionistic logics. Journal
of Logic and Computation 31(1):213–265.
Lyon, T. 2021a. Refining Labelled Systems for Modal and
Constructive Logics with Applications. Ph.D. Dissertation,
Technische Universität Wien.
Lyon, T. S. 2021b. Nested sequents for intuitionistic modal
logics via structural refinement. In Das, A., and Negri, S.,
eds., Automated Reasoning with Analytic Tableaux and Re-
lated Methods, 409–427. Cham: Springer.
Pesquita, C.; Faria, D.; Santos, E.; and Couto, F. M. 2013.
To repair or not to repair: Reconciling correctness and co-
herence in ontology reference alignments. In Proceedings
of the 8th International Conference on Ontology Matching,
volume 1111, 13–24. CEUR.
Poggiolesi, F. 2009. The method of tree-hypersequents for
modal propositional logic. In Makinson, D.; Malinowski, J.;
and Wansing, H., eds., Towards Mathematical Philosophy,
volume 28 of Trends in logic. Springer. 31–51.
Simpson, A. K. 1994. The proof theory and semantics of
intuitionistic modal logic. Ph.D. Dissertation, University of
Edinburgh. College of Science and Engineering. School of
Informatics.
Slaney, J. K. 1997. Minlog: A minimal logic theorem
prover. In McCune, W., ed., Proceedings of the 14th Inter-
national Conference on Automated Deduction, volume 1249
of Lecture Notes in Computer Science, 268–271. Springer.
Takeuti, G. 2013. Proof theory, volume 81. Courier Corpo-
ration.
Tiu, A.; Ianovski, E.; and Goré, R. 2012. Grammar log-
ics in nested sequent calculus: Proof theory and decision
procedures. In Bolander, T.; Braüner, T.; Ghilardi, S.; and
Moss, L. S., eds., Advances in Modal Logic 9, papers from
the ninth conference on Advances in Modal Logic, 516–537.
College Publications.
Wansing, H. 2002. Sequent systems for modal logics. In
Gabbay, D. M., and Guenthner, F., eds., Handbook of Philo-
sophical Logic: Volume 8. Springer. 61–145.

	Introduction
	Standpoint Logic
	Nested Sequent Systems
	Automating Standpoint Logic via Proof-Search
	Conclusion and Future Work

