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1 Introduction

This paper gives a concise introduction to display logic as originally developed
by Belnap [1].1 Display logic concerns more than a speci�c formalization of
a particular logic. It stands as a formal framework wherein many logics are
representable. The reader might wonder why such a project is fruitful when
there are well-known Hilbert-style calculi that do exactly this. The problem
is that these Hilbert-style calculi represent logics in a destructive way. Let us
explain what we mean by this through the introduction of Gentzen-style calculi.
After that, the alleged destructivity of Hilbert-style calculi is addressed.

∗This research is supported by the Alexander von Humboldt Foundation.
1Though, the actual presentation of several aspects of the presented display calculi (most

notably the display equivalences and the presentation of modalities) follow more closely [11].
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Gentzen [5] is arguably the founder of two, rather powerful, formal frameworks:
(1) natural deduction2 and (2) sequent calculi. Since natural deduction formal-
izations of logic are not the main concern of this paper we focus strictly on
sequent calculi. Let us suppose some usual propositional language in the follow-
ing. In addition to formulas, Gentzen introduced sequents, which are syntactic
objects of the following form:

Γ =⇒ ∆

Γ and ∆ are considered to be lists of formulas, so that Γ =⇒ ∆ is shorthand
for:

A1, A2, . . . , Am =⇒ B1, B2, . . . , Bn

where A1, A2, . . . , Am and B1, B2, . . . , Bn are formulas from our background
propositional language. The arrow =⇒ occurring in the sequent is often re-
ferred to as the sequent-arrow. A natural interpretation of the sequent-arrow
is that from the truth of A1, A2, ..., Am the cases B1, B2, ..., Bn follow. An in-
terpretation more on the semantic side is that the conjunction of A1, A2, ..., Am

materially implies the disjunction of B1, B2, ..., Bn. Both motivations indicate
that a sequent can be interpreted propositionally as:

A1 ∧A2 ∧ ... ∧Am → B1 ∨B2 ∨ · · · ∨Bn

or equivalently as: ∧
Γ→

∨
∆

Γ is commonly coined the antecedent of a sequent and ∆ the consequent or
succedent of a sequent. From a classical point of view the order of the formu-
las occurring in both Γ and ∆, or A1, A2, ..., Am and B1, B2, ..., Bn, does not
matter. For example, if it is possible to prove the sequent A17, A19 =⇒ B5,
then it should also be possible to prove the sequent A19, A17 =⇒ B5. Simi-
larly, if it is possible to prove A7 =⇒ B8, B205, then it should also be possible
to prove A7 =⇒ B205, B8. This follows from our interpretation of sequents as
expressing a relation of provability between antecedent formulas and succedent
formulas. If B5 follows from the derivability of A17 and A19, then B5 follows
from the derivability of A19 and A17. Similarly, if B8 and B205 follow from the
derivatibility of A7, then B205 and B8 follow from the derivability of A7. Order
does not matter. This example shows that we should be able to syntactically
manipulate the order of the formulas in both the antecedent and succedent of
a sequent3. Formally, this is expressed by a pair of structural rules, called left
and right permutation. The intuitive understanding of a structural rule is that
it allows for syntactical manipulation of Γ and ∆, where no logical operator is
concerned.

Another syntactic transformation rule is contraction. To see the intuition behind
this rule, let us give an example. If the sequent A17, A17 =⇒ B5 is provable,

2Note that Jaskowski (1934) developed natural deduction as well, but independently of
Gentzen.

3In classical logic such rules of syntactic manipulation are allowed, however, there are
non-classical calculi which restrict these intuitive rules.
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then it should also be possible to prove A17 =⇒ B5, and if a the sequent A7 =⇒
B8, B8 is provable, then it should also be possible to prove A7 =⇒ B8. In other
words, if B5 follows from the derivability of A7 and A7, then it follows strictly
from A7 itself since the additional copy is nothing but extraneous information�
similarly for the second example. Informally speaking, the contraction rules
allow us to delete additional copies of a formula from either the antecedent
or succedent. From a classical perspective contraction is an acceptable rule of
inference.

The last pair of structural rules are called the weakening rules. The idea is
that if a certain sequent Γ =⇒ ∆ is provable, then so are both A,Γ =⇒ ∆ and
Γ =⇒ ∆, A for any arbitrary formula A. Let us put this rule together with the
former structural rules in a compact manner:4

Permutation (left and right):

Φ, A,B,Γ =⇒ ∆

Φ, B,A,Γ =⇒ ∆
(Pl)

Γ =⇒ ∆, A,B,Φ

Γ =⇒ ∆, B,A,Φ
(Pr)

Contraction (left and right):

A,A,Γ =⇒ ∆

A,Γ =⇒ ∆
(Cl)

Γ =⇒ ∆, A,A

Γ =⇒ ∆, A
(Cr)

Weakening (left and right):

Γ =⇒ ∆
A,Γ =⇒ ∆

(Wl) Γ =⇒ ∆
Γ =⇒ ∆, A

(Wr)

The validity of the structural rules follows easily from both the propositional
interpretation of a sequent Γ =⇒ ∆ as

∧
Γ →

∨
∆ as well as from the truth

table method. Under the propositional interpretation of a sequent, the left and
right weakening rules are:∧

Γ→
∨

∆

A ∧
∧

Γ→
∨

∆
(Wl′)

∧
Γ→

∨
∆∧

Γ→
∨

∆ ∨A (Wr′)

Thus far we have only addressed the structural aspects of sequents, i.e. we
have only considered rules that manipulate the structure of the antecdent and
consequent of a sequent. However, proof-theoretic calculi also consist of axioms
and logical rules, which endow the calculus with the ability to prove logical
truths. In the calculus considered here, there is exactly one axiom schema,
which is the following:

A =⇒ A

4The rule of cut, which is a structural rule as well, will be discussed below.
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where A is restricted to atomic formulas. For example, an instance of the
axiom schema would be p =⇒ p. Although the axiom on its own is not very
informative, the logical power of the calculus is increased with the introduction
of logical rules of inference. This contrasts with Hilbert-style calculi where the
logical power follows from the axioms. When we emphasize the logical rules as
opposed to the logical axioms an interesting symmetry arises. This symmetry
originates from the fact that each logical connective comes (typically) in a pair
consisting5 of a left and right introduction rule. For example, the logical rules
for conjunction are:

A,Γ =⇒ ∆

A ∧B,Γ =⇒ ∆
(∧1l)

Γ =⇒ ∆, A Γ =⇒ ∆, B

Γ =⇒ ∆, A ∧B (∧r)

B,Γ =⇒ ∆
(∧2l)

A ∧B,Γ =⇒ ∆

If we represent these rules via our propositional interpretation, then they can
be viewed as:

A ∧
∧

Γ→
∨

∆

A ∧B ∧
∧

Γ→
∨

∆
(∧′1l)

∧
Γ =⇒

∨
∆ ∨A

∧
Γ =⇒

∨
∆ ∨B∧

Γ→
∨

∆ ∨A ∧B
(∧′r)

B ∧
∧

Γ→
∨

∆
(∧′2l)A ∧B ∧

∧
Γ→

∨
∆

By use of truth tables the validity of these logical rules is readily veri�able. This
understanding extends to the logical rules for the remaining operators as well:

Γ =⇒ ∆, A

¬A,Γ =⇒ ∆
(¬l)

A,Γ =⇒ ∆

Γ =⇒ ∆,¬A (¬r)

A,Γ =⇒ ∆ B,Γ =⇒ ∆

A ∨B,Γ =⇒ ∆
(∨l)

Γ =⇒ ∆, A

Γ =⇒ ∆, A ∨B (∨1r)

Γ =⇒ ∆, B
(∨2l)

Γ =⇒ ∆, A ∨B

Γ =⇒ ∆, A B,Φ =⇒ Ψ

A→ B,Γ,Φ =⇒ ∆,Ψ
(→ l)

A,Γ =⇒ ∆, B

Γ =⇒ ∆, A→ B
(→ r)

Given axiom instances, we can continually apply the structural rules and log-
ical rules to deduce logical truths. The mathematical structure which results
from such a process is called a derivation. To demonstrate how derivations are
constructed, we have included a derivation of =⇒ p ∨ ¬p below:

5Obviously, some logical connectives have three introduction rules, eg. ∧, and ∨. This,
however, depends heavily on the formulation of the sequent calculus.
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p =⇒ p
(¬r)=⇒ p,¬p
(∨2r)=⇒ p, p ∨ ¬p
(Pr)

=⇒ p ∨ ¬p, p
(∨1l)=⇒ p ∨ ¬p, p ∨ ¬p
(Cr)

=⇒ p ∨ ¬p

With the exception of right contraction (Cr) and right permutation (Pr) the
derivation consists of logical rule applications which start from the axiom in-
stance p =⇒ p.

At this point we have introduced enough machinery to explain the destruc-
tive character of Hilbert-style calculi. Formulations of propositional logic in a
Hilbert-style calculus often rely on exactly one rule of inference, namely, modus
ponens: From A and A→ B infer B. Such a rule allows us to conclude a sim-
pler formula, namely B, from the more complex formula A→ B (in conjunction
with A). If one observes the logical rules presented thus far, it is easily seen that
all of them build more complex formulas from simpler formulas, and that the
process is never reversed. Our calculus presented thus far is purely constructive,
which contrasts with Hilbert-style calculi that allow for complex formulas to be
deduced from simple formulas, and vice-versa.

So far our calculus adds more and more logical complexity with each additional
inference, except for in cases of contraction. In our presentation of the current
proof-theoretic calculus, called LK, one crucial component is missing�a general
version of modus ponens. The speci�c rule of modus ponens in a sequent calculus
formulation is as follows:6

(Γ) =⇒ A (∆) =⇒ A→ B

(Γ,∆) =⇒ B

while the general version in LK is the cut rule:

Γ =⇒ ∆, A A,Φ =⇒ Ψ

Γ,Φ =⇒ ∆,Ψ
(Cut)

It was Gentzen's ingenious insight that for every derivation of some sequent
containing at least one application of cut, there is a derivation of this sequent
without the use of cut. This result is Gentzen's celebrated Hauptsatz�also known
as the cut elimination theorem. As stated earlier, our calculus without the cut
rule is purely constructive. Although the cut rule reverses the constructive
process much like modus ponens does in a Hilbert-style calculus, Gentzen's
theorem shows that the rule is extraneous, i.e. its addition or removal from our
calculus has no e�ect on what is deducible.

Although the removal of the rule has not e�ect on what can be deduced, it
does have a practical e�ect on how something might be deduced. The length
of derivations without cut are often much longer. Boolos describes the negative
impact of removing the rule in his 1984 paper �Don't eliminate Cut� [2]. On the

6We include the parentheses around Γ and ∆ since one may formulate the rule with con-
texts, or without contexts (so that modus ponens can only be used with theorems).
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positive side, there are many insightful results connected with the cut elimina-
tion theorem. For example, it can be shown that the �rst-order version of the
calculus presented here with Peano Arithmetic is consistent. Though a proof
of this does require more advanced techniques which are omitted in the present
treatment.

Take note that this paper is not written with an �expert reader� of proof theory
in mind. The intended audience are those with a solid understanding of �rst-
order logic with some interest in alternative proof calculi. This is why Gentzen's
sequent calculus has been gently introduced. However, the remaining part on
display logic, which is self-contained, is technically more challenging. The plan
of this paper is to give an introduction to display logic in proof theory. We
cover the most basic results, such as soundness, completeness, cut-elimination,
and the sub-formula property, for a propositional, �rst-order, and modal display
calculus. The calculi and theorems to follow should provide the interested reader
with an introductory understanding of display logic as well as the properties of
proof-theoretic calculi.

2 Propositional Display Logic

This section contains a description of the propositional display calculus D.Cp.
We prove various results concerning the calculus such as completeness, sound-
ness, the subformula property, etc. More importantly however, we give a general
cut elimination procedure, and demonstrate its application to our speci�c dis-
play calculus. The calculus D.Cp follows from [1] and is reduced to the bare
minimum, which has the bene�t of least distraction.

2.1 The Calculus D.Cp

Before we de�ne the propositional display calculus D.Cp, we need to introduce
the structural connectives. The connective I is the empty structure, which is
understood as > in the antecedent and as ⊥ in succedent, though structurally
the connective is meant to represent empty data. For example, when I occurs in
either antecedent or succedent it represents an empty antecedent or succedent,
respectively (observe the connection to a Gentzen-style calculus where an empty
antecedent is interpreted as >, and an empty succedent as ⊥). The unary con-
nective ∗ is interpreted as negation regardless of if it occurs in the antecedent or
succedent. Lastly, the binary connective ◦ is thought of as structural addition
and is interpreted as conjunction in the antecedent and disjunction in the succe-
dent. Using these connectives we go beyond the usual formula-based calculus,
and construct a calculus that includes structures as well:

De�nition 1 (Formulas of D.Cp). A := p | > | ⊥ | ¬A | A→ B | A∨B | A∧B

De�nition 2 (Structures of D.Cp). X := I | A | ∗X | X ◦ Y

A structure is built from formulas using the structural connectives or I. Note also
that a substructure is de�ned to be a structure occurring in another structure,
and that every structure is a substructure of itself.
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Example 1. The sequent p ◦ ∗q =⇒ p ◦ r contains p ◦ ∗q, p, ∗q, q, p ◦ r, r as
substructures.

Axiom p =⇒ p with p atomic.

Structural Rules7

X =⇒ Y (I+)
I ◦X =⇒ Y

I ◦X =⇒ Y (I�)
X =⇒ Y

I =⇒ Y (Il)
X =⇒ Y

X =⇒ I (Ir)
X =⇒ Y

X ◦ Y =⇒ Z (Pl)
Y ◦X =⇒ Z

X ◦X =⇒ Y (Cl)
X =⇒ Y

X ◦ (Y ◦ Z) =⇒ U
(Al)

(X ◦ Y ) ◦ Z =⇒ U

X =⇒ A A =⇒ Y (Cut)
X =⇒ Y

Logical Rules

∗A =⇒ X (¬l)¬A =⇒ X
X =⇒ ∗A (¬r)
X =⇒ ¬A

A ◦B =⇒ X (∧l)
A ∧B =⇒ X

X =⇒ A Y =⇒ B (∧r)
X ◦ Y =⇒ A ∧B

A =⇒ X B =⇒ Y (∨l)
A ∨B =⇒ X ◦ Y

X =⇒ A ◦B (∨r)
X =⇒ A ∨B

X =⇒ A B =⇒ Y (→l)
A→ B =⇒ ∗X ◦ Y

X ◦A =⇒ B (→r)
X =⇒ A→ B

Display Equivalence Rules (DE)

X ◦ Z =⇒ Y

X =⇒ Y ◦ ∗Z
Z =⇒ ∗X ◦ Y

X =⇒ Y

∗Y =⇒ ∗X
X =⇒ ∗ ∗ Y

X =⇒ Y ◦ Z
X ◦ ∗Z =⇒ Y

∗Y ◦X =⇒ Z

The display equivalence rules, which all fall under the label (DE), are vital for the
theorems given in display calculi. Examples of their use show up in almost every
proof of this paper. It should be noted that the double line occurring between
each sequent is meant to represent that the sequents are de�ned (via the display
equivalence rule) to be mutually derivable from one another. For example, in
the rules given directly above we may infer X =⇒ Y ◦∗Z from X ◦Z =⇒ Y , and
vice-versa. These rules in conjunction with the other structural rules provide
us with fruitful consequences that, in e�ect, act as additional structural rules:

Fact 1. The rules

7Note that we diverge from the pattern of presentation given in Belnap [1] since we place
(Cut) among the structural rules. Moreover, our presentation is Non-Belnapian in the sense
that we prove completeness prior to cut-elimination in each section and our structural rules
are due to Wansing (See [11]). Nevertheless, we have chosen to organize the paper in this way
since we believe it to ease the presentation of the content.
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Z =⇒ X ◦ Y (Pr)
Z =⇒ Y ◦X

Y =⇒ X ◦X (Cr)
Y =⇒ X

X =⇒ Z (Wl)
X ◦ Y =⇒ Z

U =⇒ X ◦ (Y ◦ Z)
(Ar)

U =⇒ (X ◦ Y ) ◦ Z
X =⇒ Z (Wr)

X =⇒ Z ◦ Y

are derivable.

To give the reader a feel for display logic proofs, we provide a couple examples
below. First, we deduce the rule (Pr) by making use of (Pl) and the third display
equivalence rule of the three given above. For our second example, we deduce
axiom two of Hilbert's propositional calculus Cp. For the de�nition of Cp, see
section 2.3 below.

Example 2. We can derive the rule (Pr) as follows:

Z =⇒ X ◦ Y (DE)
Z ◦ ∗Y =⇒ X (Pl)∗Y ◦ Z =⇒ X (DE)
Z =⇒ Y ◦X

Example 3. We now derive (¬A→ ¬B)→ (B → A) in D.Cp:

A =⇒ A
(DE)

∗A =⇒ ∗A
(¬r)

∗A =⇒ ¬A

B =⇒ B
(DE)

∗B =⇒ ∗B
(¬l)

¬B =⇒ ∗B
(→l)

¬A→ ¬B =⇒ ∗ ∗A ◦ ∗B
(DE)

(¬A→ ¬B) ◦B =⇒ ∗ ∗A
(DE)

(¬A→ ¬B) ◦B =⇒ A
(→r)

¬A→ ¬B =⇒ B → A
(I+)

I ◦ (¬A→ ¬B) =⇒ B → A
(→r)

I =⇒ (¬A→ ¬B)→ (B → A)

Let us now emphasize a useful property characteristic of display logics: the
display property. The intuition of the display property is that we may focus our
attention on a speci�c structure within a display sequent and use the display
equivalence rules to make the structure the entire antecedent or succedent of
the sequent. This will be useful for the general cut elimination theorem given
later on in this section. Before we can dig into the mechanisms of this property,
there are two notions necessary to understand it, which are de�ned as follows:

De�nition 3 (Positive and Negative Occurrence). An occurrence of a substruc-
ture in a given structure is called positive if it is in the scope of an even number
of ∗ (otherwise its coined negative).

De�nition 4 (Antecedent and Succedent Parts). In a sequent Y =⇒ Z an
occurrence of X is an antecedent part if it occurs positively in the antecedent
or negatively in the succedent. An occurrence that is not an antecedent part is
a succedent part.
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Working with proofs in display logic one may notice an interesting phenomenon.
If we focus on any substructure occurring as an antecedent part or succedent
part, then we may always display that substructure. For example, suppose we
want to display the positive occurrence of the substructure X in the sequent
∗(∗X ◦ Y ) ◦ A =⇒ Z, or the negative occurrence of the substructure X in
∗X ◦B =⇒ Z ◦ ∗Y . We could use our display equivalence rules as follows:

∗(∗X ◦ Y ) ◦A =⇒ Z

A ◦ ∗Z =⇒ ∗X ◦ Y
X =⇒ Y ◦ ∗(A ◦ ∗Z)

∗X ◦B =⇒ Z ◦ ∗Y
B ◦ ∗(Z ◦ ∗Y ) =⇒ X

Notice that X occurs as an antecedent part in the �rst proof and as a succedent
part in the second. Using our rules we were able to display X as the entire
antecedent in the �rst case and the entire succedent in the second case. This
suggests that antecedent parts and succedent parts should always be displayable
in this way, and if they can be, then this means the calculus possesses the display
property:

De�nition 5 (Display Property). A display calculus possesses the display prop-
erty if and only if any antecedent (succedent) part X of a sequent S can be
displayed as the entire antecedent (succedent) of a sequent S′ which is display
equivalent to S.

Our previous examples suggest that our calculus D.Cp has the display property.
The following theorem con�rms our insight:

Theorem 1 (Display Theorem). Each antecedent part X of a sequent S can
be displayed as the whole antecedent of a display-equivalent sequent X =⇒ Y in
D.Cp. Likewise, each consequent part of a sequent can be displayed as the whole
succedent of a display-equivalent sequent in D.Cp.

Proof. Suppose that X is an arbitrary antecedent part of a sequent S. Note
that X may occur as a substructure in either the antecedent, succedent, or both.
We only consider the cases where X occurs as a substructure in the antecedent
since all other cases are similar. Recall that we are trying to show that every
antecdent part can be displayed as the entire antecedent and every succedent
part can be displayed as the entire succedent.

Let S be the sequent φ(X) =⇒ Z with φ(X) a structure containing X as a
substructure. We prove our theorem by induction on the structural-complexity
of φ(X). For the base case, suppose that φ(X) is either the empty structure I
or a formula A. Then our sequent is of the form I =⇒ Z or A =⇒ Z, and so
the result follows trivially. Suppose now that φ(X) is of the form ∗ψ(X), where
ψ(X) is a structure containing an antecedent part X as a substructure. It is
easy to see that the result follows from our rules and the inductive hypothesis
(IH):

∗ψ(X) =⇒ Z
(DE)

∗Z =⇒ ψ(X)
(IH)

...

X =⇒ Y

9



Once we have reached line three in the proof, the inductive hypothesis (IH)
guarantees that X can be displayed as an antecedent because ψ(X) is of less
complexity. Furthermore, we are justi�ed in our use of double lines to signify
mutual derivability, since we make use of only the (DE) rules (the inductive
hypothesis assumes this). Let us now suppose that φ(X) is of the form W ◦ V .
We can assume without loss of generality that X occurs as a substructure of
W , so we denote W as ψ(X) for emphasis, i.e. φ(X) = ψ(X) ◦ V . Again, we
can easily display X by making use of our display equivalence rules and the
inductive hypothesis (IH):

ψ(X) ◦ V =⇒ Z
(DE)

ψ(X) =⇒ Z ◦ ∗V
(IH)

...

X =⇒ Y

Similar to the previous case, once we reach line three of the proof, ψ(X) is of less
complexity and the inductive hypothesis (IH) does the rest; moreover, we are
justi�ed by our use of double lines for the same reasons given previously. The
remaining cases, which include the display of succedent parts, are all proved by
similar argumentation.

The display property is used in the proof of general cut elimination given later
in this section. One should note that the display property is an attribute of
every display calculus given in this paper. Therefore, we will only mention the
display theorem here, but the reader should keep in mind that each calculus to
be presented possesses this property.

2.2 Completeness and Soundness

We now prove that the propositional display calculus D.Cp is complete and
sound. In attempt to keep our paper along proof-theoretic lines, we introduce
the complete and sound Hilbert calculus Cp de�ned below. Our completeness
and soundness theorems are proven relative to the calculus Cp�allowing us to
circumvent the introduction of a semantic system, while retaining the desired
results.

De�nition 6 (Provable in D.Cp). We say that a propositional formula A is
provable in D.Cp if and only if there is a derivation in D.Cp with the conclusion
I =⇒ A.

De�nition 7 (Hilbert calculus Cp). Cp is the deductive calculus consisting of
the inference rule:

A A→ B (MP)
B

and the axioms (Cp1)�(Cp3):

10



(Cp1) A→ (B → A)

(Cp2) (¬A→ ¬B)→ (B → A)

(Cp3) (A→ (B → C))→ ((A→ B)→ (A→ C))

We assume the usual de�nitions the other Boolean connectives. To establish
completeness, we show that if a formula is derivable in the Hilbert calculus Cp,
then it is also derivable in D.Cp. Since Cp is complete, we know that if a formula
is true, then it it is provable in Cp. By showing that anything provable in Cp is
provable in D.Cp, it follows that every true formula is provable in D.Cp. Part
of our completeness proof consists of showing that (MP) is an admissible rule of
inference in D.Cp, i.e. the calculus proves the exact same formulas regardless of if
the rule (MP) is added or omitted from the calculus. The notion of admissibility
plays a large role in the theorems to come, so we provide a general de�nition of
it here:

De�nition 8 (Admissible Rule of Inference). An inference rule (Inf) is admis-
sible in a calculus S if and only if the set of formulas provable in S is equal to
the set of formulas provable in S + (Inf).

The intuition behind admissibility is that the admissible rule fails to bring new
deductive power to the calculus. Thus, we can always acquire a proof of a
provable formula without the admissible rule. Let us now make use of this tool,
and the following fact, to prove completeness:

Fact 2. For all formulas A, the sequent X ◦A◦X ′ =⇒ Y ◦A◦Y ′ is derivable in
D.Cp, where X, X ′, Y , and Y ′ are arbitrary structures. Notice that the sequent
A =⇒ A follows from this when the surrounding context of A is empty.

This fact is useful in the completeness theorem since we use A =⇒ A (for
arbitrary A) as a starting point to show that all instances of the Hilbert axioms
are provable in the calculus D.Cp.

Theorem 2 (Completeness of D.Cp). If a formula A is provable in Cp, then A
is provable in D.Cp.

Proof. We show that if A is derivable in Cp, then I =⇒ A is derivable in
D.Cp. To demonstrate this, it su�ces to show that the axioms (Cp1)�(Cp3) are
derivable in D.Cp and that (MP) is an admissible rule of inference in D.Cp:

(Cp1) I =⇒ A→ (B → A)

A =⇒ A
(I+)

I ◦A =⇒ A
(DE)

I =⇒ A ◦ ∗A
(Il)

B =⇒ A ◦ ∗A
(DE)

B ◦A =⇒ A
(P)

A ◦B =⇒ A
(→r)

A =⇒ B → A
(I+)

I ◦A =⇒ B → A
(→r)

I =⇒ A→ (B → A)

11



(Cp2) I =⇒ (¬A→ ¬B)→ (B → A)

See Example 3.

(Cp3) I =⇒ (A→ (B → C))→ ((A→ B)→ (A→ C))

A =⇒ A

A =⇒ A

B =⇒ B C =⇒ C
(→l)

B → C =⇒ ∗B ◦ C
(DE) · 2

B =⇒ C ◦ ∗(B → C)
(→l)

A→ B =⇒ ∗A ◦ (C ◦ ∗(B → C))
(DE)

A ◦ (A→ B) =⇒ C ◦ ∗(B → C)
(P)

(A→ B) ◦A =⇒ C ◦ ∗(B → C)
(DE)

((A→ B) ◦A) ◦ (B → C) =⇒ C
(A)

(A→ B) ◦ (A ◦ (B → C)) =⇒ C
(DE) · 2

(B → C) =⇒ ∗A ◦ (∗(A→ B) ◦ C)
(→l)

A→ (B → C) =⇒ ∗A ◦ (∗A ◦ (∗(A→ B) ◦ C))
(DE) · 2

A ◦ (A ◦ (A→ (B → C))) =⇒ ∗(A→ B) ◦ C
(A)

(A ◦A) ◦ (A→ (B → C)) =⇒ ∗(A→ B) ◦ C
(DE)

A ◦A =⇒ (∗(A→ B) ◦ C) ◦ ∗(A→ (B → C))
(C)

A =⇒ (∗(A→ B) ◦ C) ◦ ∗(A→ (B → C))
(DE) · 2

(A→ B) ◦ (A ◦ (A→ (B → C))) =⇒ C
(P)

(A ◦ (A→ (B → C))) ◦ (A→ B) =⇒ C
(A)

A ◦ ((A→ (B → C)) ◦ (A→ B)) =⇒ C
(P)

((A→ (B → C)) ◦ (A→ B)) ◦A =⇒ C
(→r) ·2

A→ (B → C) =⇒ (A→ B)→ (A→ C)
(I+)

I ◦ (A→ (B → C)) =⇒ (A→ B)→ (A→ C)
(→r)

I =⇒ (A→ (B → C))→ ((A→ B)→ (A→ C))

(MP) The rule

I =⇒ A I =⇒ A→ B (MP)
I =⇒ B

is admissible in D.Cp:

I =⇒ A→ B

I =⇒ A B =⇒ B
(→l)

A→ B =⇒ ∗I ◦B
(DE)

I ◦ (A→ B) =⇒ B
(I-)

A→ B =⇒ B
(Cut)

I =⇒ B

Observe that this is in accordance with our de�nition of admissibility; the com-
bination of inference rules in the proof, along with the axiom B =⇒ B, produce
the same conclusion as (MP) from the same premises I =⇒ A and I =⇒ A→ B.
Note that we also made use of the cut rule here. In the next section we show
that (Cut) is another rule admissible in D.Cp. This concludes the completeness
theorem.
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We now move on to the soundness theorem, which is also proven relative to Cp.
In order to complete the proof we construct a translation function I that maps
sequents of D.Cp to formulas of Cp. We then show that the axiom and rules of
D.Cp can be mirrored in Cp with I, and thus, any formula provable in D.Cp is
also provable in Cp. Furthermore, since every formula provable in Cp is true, it
follows that any formula provable in D.Cp is true�establishing soundness. We
�rst de�ne I and then provide a couple examples regarding translation. The
soundness theorem has consistency as a corollary.

The key idea underlying our translation function is that it treats antecedent
parts di�erently from consequent parts. Following the de�nition in [1], our
function I is de�ned with respect to distinct, yet interrelated, functions I1
and I2, where I translates the entire sequent as a conditional formula with I1
acting initially on the antecedent and I2 acting initially on the consequent. The
de�nitions of both are as follows:

De�nition 9 (Translation function I). We de�ne I(X =⇒ Y ) to be equal to
I1(X)→ I2(Y ). Moreover, let I1 and I2 map from the set of structures to the
set of propositional formulas such that:

I1(X) =


A if X = A,
> if X = I,
¬I2(Y ) if X = ∗Y,
I1(Y ) ∧ I1(Z) if X = (Y ◦ Z)

I2(X) =


A if X = A,
⊥ if X = I,
¬I1(Y ) if X = ∗Y,
I2(Y ) ∨ I2(Z) if X = (Y ◦ Z)

Fact 3. The above de�nition implies that ¬I1(X) = I2(∗X) and I1(∗X) =
¬I2(X). This fact will be useful below in our proof of soundness.

Example 4. Let us consider translating the sequent ∗∗(¬A◦B) =⇒ ∗(∗I ◦∗C):

I(∗ ∗ (¬A ◦B) =⇒ ∗(∗I ◦ ∗C))
I1(∗ ∗ (¬A ◦B))→ I2(∗(∗I ◦ ∗C))
¬I2(∗(¬A ◦B))→ ¬I1(∗I ◦ ∗C)

¬¬I1(¬A ◦B)→ ¬(I1(∗I) ∧ I1(∗C))
¬¬(I1(¬A) ∧ I1(B))→ ¬(¬I2(I) ∧ ¬I2(C))

¬¬(¬A ∧B)→ ¬(¬⊥ ∧ ¬C)

Example 5. Let us consider translating the sequent I ◦∗(A∧B ◦X) =⇒ Z ◦B:

I(I ◦ ∗(A ∧B ◦X) =⇒ Z ◦B)
I1(I ◦ ∗(A ∧B ◦X))→ I2(Z ◦B)

I1(I) ∧ I1(∗(A ∧B ◦X))→ I2(Z) ∨ I2(B)
> ∧ ¬I2(A ∧B ◦X)→ I2(Z) ∨B

> ∧ ¬(I2(A ∧B) ∨ I2(X))→ I2(Z) ∨B
> ∧ ¬((A ∧B) ∨ I2(X))→ I2(Z) ∨B

Theorem 3 (Soundness Theorem for D.Cp). If a formula A is provable in D.Cp,
then A is provable in Cp.

Proof. We show that for any sequent S derivable in D.Cp, I(S) is provable in
Cp. In our proof we only consider a few cases since the others are carried out
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similarly. It is easy to see that the translation of the D.Cp axiom is provable in
Cp. If we suppose that A is an atomic formula, then I(A =⇒ A) = I1(A) →
I2(A) = A→ A, which is provable in Cp. To give an idea of how the remaining
translated rules are proved, we provide a few examples:

(I−)
I(I ◦X =⇒ Y )
I1(I ◦X)→ I2(Y )
I1(I) ∧ I1(X)→ I2(Y )
> ∧ I1(X)→ I2(Y )
¬> ∨ ¬I1(X) ∨ I2(Y )
¬I1(X) ∨ I2(Y )
I1(X)→ I2(Y )
I(X =⇒ Y )

(Cut)
I(X =⇒ A)
I(A =⇒ Y )
I1(X)→ I2(A)
I1(A)→ I2(Y )
I1(X)→ A
A→ I2(Y )
I1(X)→ I2(Y )
I(X =⇒ Y )

(DE)
I(X =⇒ Y )
I1(X)→ I2(Y )
¬I2(Y )→ ¬I1(X)
I1(∗Y )→ I2(∗X)
I(∗Y =⇒ ∗X)
I1(∗Y )→ I2(∗X)
¬I2(Y )→ ¬I1(X)
I1(X)→ I2(Y )
I1(X)→ ¬¬I2(Y )
I1(X)→ ¬I1(∗Y )
I1(X)→ I2(∗ ∗ Y )
I(X =⇒ ∗ ∗ Y )

(→l)
I(X =⇒ A)
I(B =⇒ Y )
I1(X)→ I2(A)
I1(B)→ I2(Y )
I1(X)→ A
B → I2(Y )
¬A→ ¬I1(X)
¬A ∨B → ¬I1(X) ∨ I2(Y )
(A→ B)→ I2(∗X) ∨ I2(Y )
I1(A→ B)→ I2(∗X ◦ Y )
I(A→ B =⇒ ∗X ◦ Y )

Continuing in this fashion is is easy to show that for every sequent S derivable
in D.Cp, its interpretation I(S) is provable in Cp. Therefore, for all sequents
I =⇒ A derivable in D.Cp, I(I =⇒ A) = > → A is provable in Cp, so A is
provable in Cp.

It is true in general that consistency follows from soundness, but we will still
give a demonstration of the corollary here with respect to our calculus D.Cp:

Corollary 1 (Consistency of D.Cp). There does not exist a formula A such that
both A and ¬A are provable in D.Cp.

Proof. We prove the consistency of D.Cp by contradiction. Suppose that D.Cp
is inconsistent. Then, I =⇒ A and I =⇒ ¬A are derivable in D.Cp, for some
formula A. By the soundness theorem, it follows that I(I =⇒ A) = > → A and
I(I =⇒ ¬A) = > → ¬A are provable in Cp. However, this contradicts the fact
that Cp is consistent, so it must be the case that D.Cp is also consistent.

2.3 Cut Elimination

A useful feature of our calculus D.Cp is that the rule
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X =⇒ A A =⇒ Y (Cut)
X =⇒ Y

is admissible. We have already seen that (MP) is admissible since the inference
rule can be simulated with other rules of D.Cp. It was a simple procedure to
show that a combination of other rules have the same e�ect as (MP). However,
our proof for the admissibility of (Cut) requires more resources, and so, it is not
as straightforward.

A signi�cant result in [1] is that there are general conditions implying the ad-
missibility of cut, i.e. if a display calculus satis�es all criteria given there, then
(Cut) is an admissible rule of inference in the calculus. Any calculus which
satis�es all of Belnap's desiderata will necessarily exhibit the cut elimination
property. Our aim in the current section is to prove that these conditions do
in fact imply the cut elimination property for display calculi in general. After
securing a proof of this fact, we prove that our calculus D.Cp satis�es all con-
ditions, from which we conclude that (Cut) is an admissible rule of inference in
D.Cp.

De�nition 10. (Relevant Terminology for Display Calculi) To provide the
reader with some intuition, we include an example with each term de�ned below:

(1) An instantiation of an inference rule, where each metavariable is uniformly
replaced by a concrete structure, is called an inference.

Example 6. Consider the inference rule

X ◦A =⇒ B (→r)
X =⇒ A→ B

X is a structural metavariable, whereas A and B are formulaic metavari-
ables. If we instantiate each metavariable with a concrete structure or for-
mula, then we obtain an inference:

∗(p ∨ q) ◦ ¬r =⇒ s
(→r)

∗(p ∨ q) =⇒ ¬r → s

(2) Every structure and substructure occurring in an inference is called a con-
stituent of the inference.

Example 7. If we observe the inference above, then we can see that it
contains the following constituents: the premise contains ∗(p∨q)◦¬r, ∗(p∨
q), (p ∨ q), p, q, ¬r, r, and s, whereas the conclusion contains ∗(p ∨ q),
(p ∨ q), p, q, ¬r → s, ¬r, r, and s as constituents.

(3) A constituent is is called a parameter, or is said to be parametric, in an
inference if and only if it is a substructure of a structure that was assigned
to a (structural) metavariable. Intuitively, parameters are all structures, or
substructures, in an inference rule, that remain unchanged when going from
the premises to the conclusion.
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Example 8. If we observe the inference in example 6, we see that ∗(p∨ q),
(p ∨ q), ¬r, s, ∗(p ∨ q), and (p ∨ q) are parametric constituents since each
is a substructure of a structure assigned to a metavariable in the inference
rule. From an intuitive standpoint, both ∗(p∨ q) ◦¬r and ¬r → s fail to be
parametric because they are not preserved from premise to conclusion.

(4) A constituent is principal in an inference if and only if it is part of the
conclusion and not parametric. Intuitively, a principal constituent is one
that is introduced by the inference rule.

Example 9. Continuing with the example, we see that ¬r → s is the
only principal constituent. Due to the fact that our inference introduced
the formula in the conclusion, it is obvious that it cannot be parametric.
This is typical of parametric constituents�notice that all of the logical rules
introduce principal constituents since the rules generate higher complexity
formulas.

(5) Two parameters are congruent if and only if they are both occurrences of the
same structure and one of the following is true: (i) they were instantiated
for the same structural metavariable, or (ii) they are the same substructure
with the same shape and position in the structure that was instantiated for
a metavariable.

Example 10. In the inference above, the occurrences of ∗(p∨q) and (p∨q)
are the only pairs of congruent parameters. We observe that ∗(p ∨ q) was
instantiated for the same structural metavariable X, and that (p ∨ q) is a
substructure of the structure ∗(p ∨ q) instantiated for X.

Note that the de�nitions of constituent, parameter, principality, and congruence
may vary with di�erent display calculi as long as they comply with the conditions
given in de�nition 11 below:

De�nition 11. (Conditions (C2)�(C8)). The following general conditions guar-
antee cut elimination:

(C1) Preservation of formulas: With the exception of (Cut), each formula oc-
curring in a premise of an inference is a subformula of some formula in the
conclusion.

(C2) Shape-alikeness of parameters: Congruent parameters are occurrences of
the same structure.

(C3) Non-proliferation of parameters: Each parameter is congruent to at most
one constituent in the conclusion; that is, no two constituents in the con-
clusion are congruent to each other.

(C4) Position-alikeness of parameters: Congruent parameters are either all an-
tecedent or all consequent parts in their respective sequence.

(C5) Display of principal constituents: If a formula is principal constituent in
the conclusion of an inference, then it is either the entire antecedent or
the entire consequent of the conclusion.
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(C6) Closure under substitution of consequent parts: Each inference rule is
closed under simultaneous substitution of arbitrary structures in conse-
quent parts for congruent parameters.

(C7) Closure under substitution of antecedent parts: Each inference rule is
closed under simultaneous substitution of arbitrary structures in antecedent
parts for congruent parameters.

(C8) Cut of matching principal constituents: Suppose there are inferences (Inf1)
and (Inf2) with respective conclusions X =⇒M and M =⇒ Y , where M
principal in both inferences. Then, one of two things must follow: (1)
X =⇒ Y is identical to X =⇒M or M =⇒ Y , or (2) there is a derivation
of X =⇒ Y from the premises of (Inf1) and (Inf2), where (Cut) is only
used on proper subformulas of M .

It should be noted that condition (C1) does not play a role in proving the
admissibility of (Cut), i.e. conditions (C2) through (C8) are su�cient to prove
the general cut elimination theorem. However, if all eight conditions do hold for
a calculus, then it follows that the calculus possesses the subformula property �
meaning that each provable sequent has a proof where every formula occurring
in any step of the derivation is a subformula of a formula in the conclusion.

To observe examples of the subformula property take a look at the logical rules,
(Il), and (Ir) for the calculus D.Cp given above. Notice that for every inference
rule, any formula occurring in the premise is a subformula of some formula in
the conclusion. Furthermore, if you look underneath the logical rules and at
the list of display equivalence rules, you will notice that our calculus does not
have a substructure property. For example, in the second (DE) rule ∗Y =⇒ ∗X
is deducible from X =⇒ ∗ ∗ Y , and ∗ ∗ Y is not a substructure of ∗Y . We
can see that structural connectives introduced in some line of a derivation may
disappear later on, and so, they need not necessarily be present in the last line
of the derivation.

So, although D.Cp possesses the subformula property, it therefore does not
posses the substructure property which is an often given criticism of display
calculi. If the calculus were to also possess the substructure property, then we
could apply the inference rules in reverse to a given sequent, for example, and
uncover a proof of the given sequent. The violation of the substructure prop-
erty makes such a proof search procedure di�cult, if not impractical, and is an
example of one serious limitation of the display formalism.

Let us now move on to the general cut elimination theorem. We �rst prove
that the condition (C8) implies the admissibility of principal cuts, and then
demonstrate the general result for all cut formulas:

Lemma 1 (Admissibility of Principal Cuts). The condition (C8) implies that
the rule (Cut) is admissible in a proof where the cut formula is principal in
the premises of the �nal inference. In other words, if condition (C8) holds and
the sequents X =⇒ M† and M† =⇒ Y are cut-free derivable, then the sequent
X =⇒ Y is cut-free derivable, where † indicates that M is principal in the last
inference of the derivation.
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Proof. Our proof is by induction on the complexity of the cut formula M . We
leave it to the reader to prove the base case where M is atomic. Suppose that
M is a complex formula and that X and Y are arbitrary structures. For the
inductive step, we want to show that if X =⇒ M† and M† =⇒ Y are cut-free
derivable, then X =⇒ Y is cut-free derivable. By the inductive hypothesis (IH)
we know that for all proper subformulas M ′ of M and for arbitrary structures
X and Y that if X =⇒M ′† and M ′† =⇒ Y are cut-free derivable, then X =⇒
Y is cut-free derivable. Observe that the inductive step follows directly from
condition (C8) and (IH). By (C8) we have that, givenX =⇒M† andM† =⇒ Y ,
X =⇒ Y can be derived with the help of the cut rule restricted to proper
subformulas ofM . By the inductive hypothesis (IH), cuts on proper subformulas
of M are admissible.

Theorem 4 (General Cut Elimination). If a display calculus satis�es (C2)�
(C8), then the cut rule is admissible.

Proof. Assume that conditions (C2) through (C8) hold. By lemma 1, we have
that cuts on principal formulas are admissible. We now make use of lemma 1 to
show that cut is admissible in general. First, we relax the requirement on the
left premise and prove the following:

(1) If the sequents X =⇒ M and M† =⇒ Y are cut-free derivable, then the
sequent X =⇒ Y is cut-free derivable.

Second, we show that the right principality-condition † can be relaxed as well:

(2) If the sequents X =⇒ M and M =⇒ Y are cut-free derivable, then the
sequent X =⇒ Y is cut-free derivable.

Notice that (2) is the result we are aiming to show. It says that if the premises
of the cut rule are cut-free derivable, then so is the conclusion. Thus, anything
provable with (Cut), can also be proven directly without the rule. It remains to
show (1) and (2):

(1) Suppose X =⇒ M and M† =⇒ Y are cut-free derivable. Let D be a
derivation of X =⇒ M . We transform D into a derivation of X =⇒ Y . It
is necessary to di�erentiate between di�erent occurrences of the same formula
within D. To do so, we use the following de�nition:

De�nition 12 (Congruent Parametric Ancestors). For an occurrence t of a
formula A in a derivation D, de�ne the set of congruent parametric ancestors
Anc(t) as follows: (i) t is in Anc(t) and (ii) for all inferences in D, each formula
that is congruent to a member of Anc(t) is also in Anc(t).

By (C2), all members of Anc(t) are occurrences of the same formula A. To give
the reader some intuition regarding this de�nition, we provide an example:

Example 11. For the occurrence t of ¬E, the members of Anc(t) are indicated
in bold in the derivation below.
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...
E =⇒ A

(DE)
∗A =⇒ ∗E

(¬r)
∗A =⇒ ¬E

(DE)
∗¬E =⇒ A

...
B =⇒ C

(∧r)
∗¬E ◦B =⇒ A ∧ C

(→r)
*¬E =⇒ B → (A ∧ C)

(DE)
∗(B → A ∧ C) =⇒ ¬E︸︷︷︸

t

The topmost member of Anc(t), which occurs in the sequence ∗A =⇒ ¬E, is
principal in the inference (¬r) leading to it. All other members of Anc(t) are
merely parametric in their rules of inference. This shows that Anc(t) can be
split in principal occurrences and parametric occurrences.

The derivation D can be transformed into a derivation of X =⇒ Y in the
following way: Let t be the occurrence of M in the conclusion X =⇒ M of D
and Anc(t) its set of congruent parametric ancestors as de�ned above. Let D′

be the result of replacing all parametric members of Anc(t) in D with Y .

In a second step, we deal with the principal occurrences in Anc(t): For each
principal member u of Anc(t), take the sequent S in D in which it occurs. By the
shape-alikeness of parameters condition (C2), u is an instance of the formulaM .
Moreover, since u is principal and the display of principal constituents condition
(C5) as well as the position-alikeness of parameters conditions (C6) and (C7)
hold, we know that S is of the form Z =⇒ M† with Z a structure and M
displayed on the right and principal.

By assumption we have that from M† =⇒ Y together with S and lemma 1, it
follows that Z =⇒ Y is cut-free derivable. Let D′′ result from D′ by replacing
the part of the derivation leading to Z =⇒ M† with a derivation of Z =⇒ Y .
Now D′′ is again a valid derivation, with the conclusion X =⇒ Y .

(2) By assumption, we have that X =⇒M andM =⇒ Y are cut-free derivable.
Let D be a proof of M =⇒ Y . The derivation D can be transformed into a
derivation of X =⇒ Y , in the same way as above by invoking (1) instead of
lemma 1.

Theorem 5 (Cut Elimination for D.Cp). The cut rule is admissible for the
display calculus D.Cp.

Proof. This is an application of theorem 4. We only need to check that condition
(C8) is satis�ed, since the conditions (C2)�(C7) can be veri�ed by eye. To
con�rm (C8), we have to check that cuts on matching principal formulas can
be replaced with a derivation that contains only cuts on subformulas of the
original cut formula. This is con�rmed by case distinction on the shape of the
cut formula M :

(1) If M is of the form ¬A, then a derivation where M is princial in both
premises must look as follows:
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...
X =⇒ ∗A

(¬r)
X =⇒ ¬A

...
∗A =⇒ Y

(¬l)
¬A =⇒ Y

(Cut)
X =⇒ Y

It is easy to show that (Cut) can be moved up to a subformula:

...
∗A =⇒ Y

(DE) · 2
∗Y =⇒ A

...
X =⇒ ∗A

(DE) · 2
A =⇒ ∗X

(Cut)
∗Y =⇒ ∗X

(DE)
X =⇒ Y

The remaining cases are shown in a similar fashion. We �rst write what the
proof must look like if M is principal in the premises, and then show how to
move the cut upwards in the proof:

(2) Suppose that M = A→ B:

...
X ◦A =⇒ B

(→r)
X =⇒ A→ B

...
Y =⇒ A

...
B =⇒ Z

(→l)
A→ B =⇒ ∗Y ◦ Z

(Cut)
X =⇒ ∗Y ◦ Z

...
Y =⇒ A

...
X ◦A =⇒ B

...
B =⇒ Z

(Cut)
X ◦A =⇒ Z

(P), (DE) · 4
A =⇒ ∗(X ◦ ∗Z)

(Cut)
Y =⇒ ∗(X ◦ ∗Z)

(DE) · 3
X =⇒ ∗Y ◦ Z

(3) Suppose that M = A ∨B:

...
X =⇒ A ◦B

(∨r)
X =⇒ A ∨B

...
A =⇒ Y

...
B =⇒ Z

(∨l)
A ∨B =⇒ Y ◦ Z

(Cut)
X =⇒ Y ◦ Z

...
X =⇒ A ◦B

(DE)
X ◦ ∗B =⇒ A

...
A =⇒ Y

(Cut)
X ◦ ∗B =⇒ Y

(DE) · 2
∗Y ◦X =⇒ B

...
B =⇒ Z

(Cut)
∗Y ◦X =⇒ Z

(DE)
X =⇒ Y ◦ Z

(4) Suppose that M = A ∧B:

20



...
X =⇒ A

...
Y =⇒ B

(∧r)
X ◦ Y =⇒ A ∧B

...
A ◦B =⇒ Z

(∧l)
A ∧B =⇒ Z

(Cut)
X ◦ Y =⇒ Z

...
Y =⇒ B

...
X =⇒ A

...
A ◦B =⇒ Z

(DE)
A =⇒ Z ◦ ∗B

(Cut)
X =⇒ Z ◦ ∗B

(DE) · 2
B =⇒ ∗X ◦ Z

(Cut)
Y =⇒ ∗X ◦ Z

(DE)
X ◦ Y =⇒ Z

Corollary 2 (Subformula Property of D.Cp). The display calculus D.Cp without
(Cut) has the subformula property.

Proof. This is straightforward to verify by checking each inference rule. If for-
mulas do not get lost when going from premise to conclusion for any rule, then
they do not get lost in whole derivations as well. This is the case for our calculus,
and hence, D.Cp possesses the subformula property.

3 First-Order Display Logic

In this section we extend our display calculi to included �rst-order formulas with
quanti�cation. After de�ning our �rst-order display calculus, we prove that our
extension of D.Cp is sound, complete, and possesses the cut elimination property.
The following subsection on the calculus D.QE extends the �rst-order calculus
to one which includes equality. The properties possessed by D.QE easily follow
from D.Q with the exception of the subformula property.

3.1 The Calculus D.Q

The calculus D.Q is de�ned as an augmentation of the calculus D.Cp. We achieve
D.Q from D.Cp by allowing the instantiation of �rst-order formulas in the axiom
A =⇒ A and by adding two rules of universal quanti�cation, and two rules of
existential quanti�cation.

Each rule uses notation that we ought to clarify for the reader: the formula
A(x) in each rule is assumed to have at least one free occurrence of the variable
x. The formulas A(t/x) and A(y/x) represent A(x), but with t and y replacing
x, respectively. Making use of this notation, the quanti�er rules are as follows:

De�nition 13 (Quanti�er Rules).
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A(t/x) =⇒ Y
(∀l)

∀xA(x) =⇒ Y

X =⇒ A(y/x)
(∀r)

X =⇒ ∀xA(x)

X =⇒ A(t/x)
(∃r)

X =⇒ ∃xA(x)

A(y/x) =⇒ Y
(∃l)

∃xA(x) =⇒ Y

where y does not occur free in X or Y for the (∃l) rule and (∀r) rule. We refer
to y as an eigenvariable.

It is important to point out the eigenvariable restriction imposed on the (∃l)
rule and (∀r) rule. By �y does not occur free in X or Y � we mean that the
variable y does not occur as a free variable in any of the formulas of X or Y .
This condition is necessary to ensure soundness. For example, without this
restriction our calculus derives invalidities:

Example 12. In the absence of the eigenvariable restrictions, the formula
∃xA(x)→ ∀xA(x) is deducible:

A(y/x) =⇒ A(y/x)
(∀r)

A(y/x) =⇒ ∀xA(x)
(∃l)

∃xA(x) =⇒ ∀xA(x)
(I+)

I ◦ ∃xA(x) =⇒ ∀xA(x)
(→r)

I =⇒ ∃xA(x)→ ∀xA(x)

We now prove the completeness and soundness of D.Q. Our proof demonstrates
an equivalence of provability between our calculus and the sound and complete
calculus Q. This strategy is also followed in the next section, and thus, we also
de�ne the calculus QE.

De�nition 14 (The calculus Q and QE). The calculus Q consists of the three
axioms of Cp in conjunction with the following two axioms, and two inference
rules:

(Q1) ∀xA(x)→ A(t/x) (Q2) A(t/x)→ ∃xA(x)

A→ B(y/x)
(∀QR)

A→ ∀xB(x)

A(y/x)→ B
(∃QL)

∃xA(x)→ B

where y does not occur as a free variable of A in the (∀QR) rule, and does not
occur as a free variable of B in the (∃QL) rule.

The calculus QE is de�ned on the basis of Q by adding the following equality
axioms:

(QE1) ∀x(x = x) (QE2) s = t→ (P (s)→ P (t))

Theorem 6 (Completeness of D.Q). If a formula A is provable in Q, then A
is provable in D.Q.
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Proof. In the completeness proof of D.Cp we have shown that the �rst three
axioms of Q are provable in D.Cp. Since D.Q is an extension of D.Cp, these
axioms are also provable in D.Q. We now show that the remaining two axioms
and two inference rules of Q are provable in D.Q:

A(t/x) =⇒ A(t/x)
(∀l)

∀xA(x) =⇒ A(t/x)
(I+)

I ◦ ∀xA(x) =⇒ A(t/x)
(→r)

I =⇒ ∀xA(x)→ A(t/x)

A(t/x) =⇒ A(t/x)
(∃r)

A(t/x) =⇒ ∃xA(x)
(I+)

I ◦A(t/x) =⇒ ∃xA(x)
(→r)

I =⇒ A(t/x)→ ∃xA(x)

I =⇒ A→ B(y/x)

A =⇒ A B(y/x) =⇒ B(y/x)
(→ l)

A→ B(y/x) =⇒ ∗A ◦B(y/x)
(Cut)

I =⇒ ∗A ◦B(y/x)
(DE)

I ◦A =⇒ B(y/x)
(∀ r)

I ◦A =⇒ ∀xB(x)
(→r)

I =⇒ A→ ∀xB(x)

I =⇒ A(y/x)→ B

A(y/x) =⇒ A(y/x) B =⇒ B
(→ l)

A(y/x)→ B =⇒ ∗A(y/x) ◦B
(Cut)

I =⇒ ∗A(y/x) ◦B
(DE)

I ◦A(y/x) =⇒ B
(I−)

A(y/x) =⇒ B
(∃ l)

∃xA(x) =⇒ B
(I+)

I ◦ ∃xA(x) =⇒ B
(→r)

I =⇒ ∃xA(x)→ B

Note that in the derivation of the (∀QR) rule, we assume that A does not contain
a free occurrence of y, and in the derivation of the (∃QL) rule, we assume that
B does not contain a free occurrence of y. This completes the theorem.

Theorem 7 (Soundness of D.Q). If a formula A is provable in D.Q, then A is
provable in Q.

Proof. To demonstrate this theorem we need only consider the additions we
made to D.Cp. Thus, we prove that our generalized axiom can be proven in Q
and that our quanti�er rules can be mirrored in Q. It is easy to show that the
translation of the axiom is provable. If A is an atomic �rst-order formula, then
I(A =⇒ A) = I1(A)→ I2(A) = A→ A, which is provable in Q.
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(∀l) I(A(t/x) =⇒ Y )
I1(A(t/x))→ I2(Y )
A(t/x)→ I2(Y )
∀xA(x)→ A(t/x)

∀xA(x)→ I2(Y )
I1(∀xA(x))→ I2(Y )
I(∀xA(x) =⇒ Y )

(∃r) I(X =⇒ A(t/x))
I1(X)→ I2(A(t/x))
I1(X)→ A(t/x)
A(t/x)→ ∃xA(x)

I1(X)→ ∃xA(x)
I1(X)→ I2(∃xA(x))
I(X =⇒ ∃xA(x))

(∀r) I(X =⇒ A(y/x))
I1(X)→ I2(A(y/x))
I1(X)→ A(y/x)
I1(X)→ ∀xA(x)

I1(X)→ I2(∀xA(x))
I(X =⇒ ∀xA(x))

(∃l) I(A(y/x) =⇒ Y )
I1(A(y/x))→ I2(Y )
A(y/x)→ I2(Y )
∃xA(x)→ I2(Y )

I1(∃xA(x))→ I2(Y )
I(∃xA(x) =⇒ Y )

The underlined steps in each proof correspond to the quanti�er axioms and rules
of Q. We assume that in the (∀r) case, the structure X is does not contain a
free occurrence of the variable y, and in the (∃l) case, the structure Y does not
contain a free occurrence of the variable y.

There is a small issue regarding the cut elimination theorem for D.Q which must
be addressed prior to the proof of the theorem. Strictly speaking, the conditions
(C6) and (C7) are not satis�ed:

Example 13. Suppose we take the quanti�er rules:

X =⇒ A(y/x)
(∀r)

X =⇒ ∀xA(x)

A(y/x) =⇒ Y
(∃l)

∃xA(x) =⇒ Y

and replace the structures X and Y by the formula B(y), which contains a free
occurrence of the variable y:

B(y) =⇒ A(y/x)
(∀r)

B(y) =⇒ ∀xA(x)

A(y/x) =⇒ B(y)
(∃l)

∃xA(x) =⇒ B(y)

Recall that condition (C6) is satis�ed when each inference rule is closed un-
der simultaneous substitution of arbitrary structures in consequent parts for
congruent parameters. Similarly, the condition (C7) is satis�ed when each in-
ference rule is closed under simultaneous substitution of arbitrary structures in
antecedent parts for congruent parameters.

In the (∃l) rule we have substituted the structure/formula B(y) in the conse-
quent for congruent parameters, and in the (∀r) rule we have substituted the
structure/formula B(y) in the antecedent for congruent parameters. However,
the result of this substitution does not produce an instance of either rule, due
to the violation of the eigenvariable condition. Nevertheless, the problem can
be �xed by noting the arbitrariness of the eigenvariable y. It is always possible
to pick a variable z not occurring in the structure substituted for X or Y to
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achieve an instance of the rule. This follows from the fact that X and Y are
�nite entities, and thus, can only contain a �nite number of variables.

Let z be a variable not occurring in the formula B(y). Then, the following are
valid instances of the (∀r) and (∃l) rules:

B(y) =⇒ A(z/x)
(∀r)

B(y) =⇒ ∀xA(x)

A(z/x) =⇒ B(y)
(∃l)

∃xA(x) =⇒ B(y)

So long as we assume that the necessary variable substitution take place when
replacing congruent parameters with structures, conditions (C6) and (C7) will
hold. Due to the fact that such a substitution is always permissible in D.Q, no
problems arise from the addition of this subtle assumption.

Before proving cut elimination, it is useful to prove the substitution lemma for
D.Q. The substitution lemma allows us to replace free variables occurring in
a derivation with arbitrary terms. We use the notation X(t/x) to denote the
structure resulting from the replacement of all occurrences of x in X with the
arbitrary term t, and use the notation X[x] to represent that x may occur in
the structure X. Note that if x does not occur in a structure X, then both
X(t/x) and X[x] are identical to X. Also, before we proceed with the proof
of the lemma, we need to de�ne the derivation height since the argument will
proceed by induction on the height of the given derivation:

De�nition 15 (Derivation Height). A thread in a derivation to be a path from
the end sequent to one of the initial sequents, and the length of the thread is
the number of sequents in the thread including the initial and end sequent. We
de�ne the derivation height to be the length of the maximum, or longest, thread
in the derivation.

Lemma 2 (Substitution Lemma). For any sequent X[x] =⇒ Y [x] derivable in
D.Q with x free, the sequent X(t/x) =⇒ Y (t/x) is derivable with a derivation
of the same height.

Proof. Suppose that the sequent X[x] =⇒ Y [x] is derivable. We show by in-
duction on the height of the derivation of X[x] =⇒ Y [x] that the sequent
X(t/x) =⇒ Y (t/x) is height-preserving derivable as well. For the base case,
assume that the height of the derivation is one. Then, X[x] =⇒ Y [x] is an
axiom instance of the form A[x] =⇒ A[x]. Observe that A(t/x) =⇒ A(t/x) is
an axiom as well. This proves the base case.

For the inductive step, we assume the result holds for all derivations of height
n; we show that the result holds for all derivations of height n+ 1. Assume that
the derivation of X[x] =⇒ Y [x] is of length n+ 1. We now prove the result by
considering each rule that could have been used last to derive the end sequent
X[x] =⇒ Y [x].

Suppose that the last rule used is either a structural rule or display equivalence
rule:
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...
X ′[x] =⇒ Y ′[x]

X[x] =⇒ Y [x]

By the inductive hypothesis, we know that X ′(t/x) =⇒ Y ′(t/x) is derivable
with height n, which gives us X(t/x) =⇒ Y (t/x) with height n+ 1 if we apply
the same structural rule or display equivalence rule.

Suppose that the last rule used is a non-quanti�er, logical rule. Then, our
derivation is of one of two forms:

...
X ′[x] =⇒ Y ′[x]

X[x] =⇒ Y [x]

...
X ′[x] =⇒ Y ′[x]

...
X ′′[x] =⇒ Y ′′[x]

X[x] =⇒ Y [x]

By the inductive hypothesis, we know that X ′(t/x) =⇒ Y ′(t/x) is deducible
with height n in the �rst case, and that X ′(t/x) =⇒ Y ′(t/x) and X ′′(t/x) =⇒
Y ′′(t/x) are deducible with heights n and m in the second case. The result im-
mediately follows in either case by applying the logical rule used in the original
derivation.

Suppose that the last rule used is either (∀l) or (∃r):

...
A(y/x) =⇒ Y [x]

∀xA(x) =⇒ Y [x]

...
X[x] =⇒ B(y/x)

X[x] =⇒ ∃xB(x)

...
A[x] =⇒ Y [x]

∀yA[x] =⇒ Y [x]

...
X[x] =⇒ B[x]

X[x] =⇒ ∃yB[x]

Note that in the �rst two instances, the free variable x becomes bounded by
the quanti�er, whereas in the second two instances, another free-variable be-
comes bounded by the quanti�ers. Since both cases can occur in our calculus
D.Q, we include both for the sake of completeness. Observe that by the induc-
tive hypothesis, A(t/x) =⇒ Y (t/x) and X(t/x) =⇒ B(t/x) are derivable with
height n, and hence ∀xA(x) =⇒ Y (t/x) and X(t/x) =⇒ ∃xB(x) are derivable
with height n+ 1 regarding the �rst two derivations. Regarding the second two
instances, ∀yA(t/x) =⇒ Y (t/x) and X(t/x) =⇒ ∃yB(t/x) are derivable with
height n+ 1 as well.

Suppose that the last rule used in our derivation is either (∀r) or (∃l):

...
X[x] =⇒ B[x]

X[x] =⇒ ∀yB[x]

...
A[x] =⇒ Y [x]

∃yA[x] =⇒ Y [x]
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Observe that the quanti�ers do not bound the variable x, but rather, bound
some other variable, which we denote as z, occurring in the sequent. This fol-
lows from the assumption that the variable x occurs free in the end sequent
if it occurs at all. If t is a term not containing z, then we can conclude that
∀yA(t/x) =⇒ Y (t/x) and X(t/x) =⇒ ∃yB(t/x) are derivable with height n+1,
since A(t/x) =⇒ Y (t/x) and X(t/x) =⇒ B(t/x) are derivable with height n
by the inductive hypothesis. Also, the eigenvariable condition is not violated in
either case.

Note that the result still follows in the instance where t contains the eigen-
variable z, however, we must do some additional work. By the inductive hy-
pothesis, we have a derivation of A(t/x) =⇒ Y (t/x) and X(t/x) =⇒ B(t/x)
with height n. Hence, we also have derivations of A(w/z)(t/x) =⇒ Y (t/x) and
X(t/x) =⇒ B(w/z)(t/x) of height n where the variable w is a fresh variable not
occurring in the original sequents A(t/x) =⇒ Y (t/x) and X(t/x) =⇒ B(t/x).
We can now apply the rules (∀r) and (∃l) to their respective sequents, with w
the eigenvariable, and obtain the desired results.

Theorem 8 (Cut Elimination for D.Q). The cut rule is admissible for the
display calculus D.Q.

Proof. Conditions (C2)�(C7) can be veri�ed easily by looking at the rules of
D.Q. The only condition that must be veri�ed then is (C8). This condition holds
for all cases of (Cut) presented in the cut elimination proof of D.Cp; however,
we have two additional cases to consider: when the cut formula is principal and
of the form ∃xA(x), and when it is of the form ∀xA(x). First, suppose we have
a derivation of the following form:

...
X =⇒ A(t/x)

(∃r)
X =⇒ ∃xA(x)

...
A(y/x) =⇒ Y

(∃l)
∃xA(x) =⇒ Y

(Cut)
X =⇒ Y

If we apply the previous lemma to the portion of the derivation down to, and
including, the sequent A(y/x) =⇒ Y , then we can cut on the proper subformula
A(t/x) after making a substitution:

...
X =⇒ A(t/x)

...
Lemma 2

A(t/x) =⇒ Y
(Cut)

X =⇒ Y

For the ∀xA(x) case, suppose we have the following cut in our derivation:

...
X =⇒ A(y/x)

(∀r)
X =⇒ ∀xA(x)

...
A(t/x) =⇒ Y

(∀l)
∀xA(x) =⇒ Y

(Cut)
X =⇒ Y
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Similar to the existential case, we can move the cut upwards after applying the
previous lemma, and cut on the proper subformula after making a substitution:

...
X =⇒ A(t/x)

...
Lemma 2

A(t/x) =⇒ Y
(∀l)

X =⇒ Y

Both cases demonstrate that condition (C8) holds, which completes the theorem.

Theorem 9 (Subformula Property of D.Q). The �rst-order display calculus
D.Q without (Cut) has the subformula property.

Proof. We know that D.Cp has the subformula property and it is easy to check
that the addition of the rules (∀l) and (∀r) preserve this property as well. These
facts, in conjunction with the cut elimination theorem above, imply that D.Q
has the subformula property.

3.2 The Calculus D.QE

We extend the calculus D.Q to the calculus D.QE by adding two equality rules
similar to those in [9], and allow the instantiation of equality formulas of the
form t = s in the axiom. The remainder of this section focuses on the various
properties of D.QE.

De�nition 16 (The rules (E1) and (E2)).

t = t ◦X =⇒ Y
(E1)

I ◦X =⇒ Y
t = s ◦ P (t) ◦ P (s) ◦X =⇒ Y

(E2)
t = s ◦ P (t) ◦ I ◦X =⇒ Y

Theorem 10 (Completeness of D.QE). If a formula A is provable in QE, then
A is provable in D.QE.

Proof. Since D.QE is an extension of D.Q, all of the axioms of Q are provable
in D.QE. To fully demonstrate the completeness theorem then, we further show
that the equality axioms of QE are provable in D.QE.

(QE1) I =⇒ ∀x(x = x)

y = y =⇒ y = y
(E1)

I =⇒ y = y
(∀r)

I =⇒ ∀x(x = x)

(QE2) I =⇒ a = b→ (P (a)→ P (b))
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P (b) =⇒ P (b)
(Wl) · 2

a = b ◦ P (a) ◦ P (b) =⇒ P (b)
(E2)

a = b ◦ P (a) ◦ I =⇒ P (b)
(P) · 2

I ◦ a = b ◦ P (a) =⇒ P (b)
(→r)

I ◦ a = b =⇒ P (a)→ P (b)
(→r)

I =⇒ a = b→ (P (a)→ P (b))

Theorem 11 (Soundness of D.QE). If a formula A is provable in D.QE, then
A is provable in QE.

Proof. Since we already proved the soundness of D.Q we need only show that
the additional two rules of D.QE can be simulated in QE:

(E1) I(t = t ◦X =⇒ Y )
I1(t = t ◦X)→ I2(Y )
t = t ∧ I1(X)→ I2(Y )
I1(X)→ I2(Y )
I(X =⇒ Y )

(E2) I(t = s ◦ P (t) ◦ P (s) ◦X =⇒ Y )
I1(t = s ◦ P (t) ◦ P (s) ◦X)→ I2(Y )
t = s ∧ P (t) ∧ P (s) ∧ I1(X)→ I2(Y )
t = s ∧ P (t) ∧ I1(X)→ I2(Y )
I(t = s ◦ P (t) ◦X =⇒ Y )

Theorem 12 (Cut Elimination for D.QE). The cut rule is admissible for the
display calculus D.QE.

Proof. Since condition (C8) holds for D.Q, and the rules (E1) and (E2) do not in-
troduce principal formulas, it also holds for D.QE. We can also verify conditions
(C2)�(C7) by eye.

Although the calculus D.QE admits cut elimination, it does not posses the sub-
formula property. This is due to the rule (E2) which allows for the deletion of
formulas:

Theorem 13. D.QE does not posses the subformula property8.

Proof. Observe the following derivation of the sequent x = y ◦y = z ◦z = w =⇒
x = w:

x = w =⇒ x = w
(Wl) · 2x = y ◦ x = w ◦ y = w =⇒ x = w
(E2)x = y ◦ y = w =⇒ x = w

(Wl) · 2x = y ◦ y = z ◦ y = w ◦ z = w =⇒ x = w
(E2)x = y ◦ y = z ◦ z = w =⇒ x = w

8Thank you to the anonymous reviewer who pointed this out.
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Notice that in the �rst use of (E2) we deleted x = w and in the second use of
(E2) we deleted y = w. If we let P be the property of being equal to w, then
both uses of the rule are in fact instances of the rule.

What is problematic here is that the subformula property has been violated.
Moreover, every derivation of the sequent x = y ◦ y = z ◦ z = w =⇒ x = w is
similar to the one above in that not every formula occurring in the proof is a
subformula of a formula in the conclusion. Hence, the calculus D.QE does not
possess the subformula property.

This is the �rst example we have seen where our calculus fails to obtain the
subformula property, despite admitting cut elimination. It therefore stands as
an example that cut elimination alone is not su�cient to ensure the subformula
property. One must additionally check the rules of the calculus to see if they
preserve subformulas, and if this be the case, then the desirable trait follows.

4 Modal Display Logic

The general framework of display logic can easily be expanded to non-classical
logics by the addition or removal of inference rules. In this section, we de�ne
the display logic D.K and then prove completeness, soundness, and that cut
is admissible in the calculus. Our approach for de�ning the calculus consists
of adding introduction rules for the necessity operator � along with a new
structural connective. By shifting the structural rules for this connective, we
can represent di�erent modal logics, though we only focus on the modal logic K
here.

4.1 The Calculus D.K

Following the usual pattern, we �rst provide the reader with a deductively equiv-
alent calculus that is known to be sound and complete. Let us make use of the
sound and complete modal calculus K in the present section. It is de�ned as
follows:

De�nition 17 (The Calculus K). The calculus K consists of the three axioms
of Cp in conjunction with the following axiom and rule of inference:

(K) �(A→ B)→ (�A→ �B)
A (Nec)
�A

Similar to how the calculus K is de�ned as an extension of the calculus Cp, our
modal display calculus will be de�ned as an extension of D.Cp. We give the
de�nition of our modal display calculus below:

De�nition 18 (The Calculus D.K). The calculus D.K is an extension of D.Cp
that contains the following four additional rules of inference along with an ad-
ditional structural rule and display equivalence rule:
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A =⇒ Y (�l)
�A =⇒ •Y

X =⇒ •A (�r)
X =⇒ �A

∗ • ∗A =⇒ Y (♦l)
♦A =⇒ Y

X =⇒ A (♦r)∗ • ∗X =⇒ ♦A

I =⇒ Y (I•)•I =⇒ Y
•X =⇒ Y

(•)
X =⇒ •Y

Notice that our logical rules allow for the introduction of the � necessity and
the ♦ possibility operators. Furthermore, the new structural connective • bullet
has been introduced via the latter two rules. The bullet connective is used
in conjunction with the two operators to deduce valid modal formulas. It is
additionally used in varying modal calculi and assists in the deduction of the
many modal truths relevant to those calculi.

The interpretation of the • changes depending on the side of the sequent where it
appears. The • bullet on the right can be thought of as the � necessity operator,
much like how the ∗ corresponds to the ¬ operator. On the left side, however,
the • bullet is interpreted as the � backwards looking diamond. This will be
important in our proof of soundness. For more information on this connective,
see Wansing [11].

Let us now prove one direction of the deductive equivalence between the calculi
K and D.K. It takes additional work to demonstrate the other direction, since
we have to make use of a translation function that will be de�ned later on.
Before we prove the completeness theorem, let us show the admissibility of the
medial rule (given below) that allows us to distribute the • out of structures on
the left side of a sequent.

Lemma 3. The following rule is admissible in D.K:

•X ◦ •Y =⇒ Z (Medial)
•(X ◦ Y ) =⇒ Z

Proof. The strategy behind this proof is to use the display property and weak-
ening to turn •X and •Y on the left side of the sequent into •(X ◦ Y ) and then
use contraction. Since the strategy for the �rst part is identical for X and Y ,
we will show only one part of it in order to shorten the proof.

•X ◦ •Y =⇒ Z (DE)•X =⇒ ∗ • Y ◦ Z (•)
X =⇒ •(∗ • Y ◦ Z)

(Wl)
X ◦ Y =⇒ •(∗ • Y ◦ Z

(•)
•(X ◦ Y ) =⇒ ∗ • Y ◦ Z

(DE)
•(X ◦ Y ) ◦ •Y =⇒ Z

. . .
•(X ◦ Y ) ◦ •(X ◦ Y ) =⇒ Z

(Cl)
•(X ◦ Y ) =⇒ Z

Let us now use this fact to prove the completeness theorem, i.e. let us show
that any formula deducible in K is also deducible in D.K:
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Theorem 14 (Completeness of D.K). If a formula A is provable in K, then A
is provable in D.K.

Proof. To prove this theorem, we will build o� the completeness theorem of
D.Cp, and show that the additional axioms and rules of K are deducible in D.K.
We omit the ♦�rules sine they are proved similarly.

I =⇒ A (I•)•I =⇒ A (�r)
I =⇒ �A

A→ B ◦A =⇒ B (DE)
A→ B =⇒ B ◦ ∗A (�l)

�(A→ B) =⇒ •(B ◦ ∗A)
(•)

•�(A→ B) =⇒ B ◦ ∗A
(DE)

A =⇒ B ◦ ∗ •�(A→ B)
(�l)

�A =⇒ •(B ◦ ∗ •�(A→ B))
(•)

•�A =⇒ B ◦ ∗ •�(A→ B)
(DE)

•�(A→ B) ◦ •�A =⇒ B
(Medial)

•(�(A→ B) ◦�A) =⇒ B
(•)

�(A→ B) ◦�A =⇒ •B
(�r)

�(A→ B) ◦�A =⇒ �B
(→ r)

�(A→ B) =⇒ �A→ �B
(→ r)

I =⇒ �(A→ B)→ (�A→ �B)

Not only do we need the translation function for soundness, but we also need
to incorporate the � operator into our treatment. Intuitively, a formula of the
form �A holds at a world if and only if there a world in the past where A holds.
Since our focus in this paper is proof theory, we will not discuss the semantics
of the backwards looking diamond in great detail. In the current context it may
be thought of as a purely syntactic entity, which is allowed to operate over our
formulas. Nevertheless, the operator does have a signi�cant and useful relation
to the necessity operator:

Fact 4. The formula �A → B ↔ A → �B is deducible in the calculus Kt,
which is the calculus K extended with axioms for the � operator. For more
information on Kt see Wansing [11].

Note that this fact corresponds to the (•) rule and this is the reason why we
interpret • the way that we do. Additionally, note that the calculus Kt is
conservative over K, meaning that it cannot derive pure modal theorems (not
containing �) that K itself cannot deduce. Therefore, if we can show that any
formula deducible in D.K is deducible in Kt, then since every pure modal formula
provable in Kt is provable in K, and D.K only proves pure modal formulas, we
have shown that everything deducible in D.K is deducible in K. This establishes
soundness as well as the deductive equivalence between D.K and K when we
take the completeness theorem into account.

With this fact at our disposal, we are in a position to prove the soundness result.
Let us �rst de�ne the translation function that will translate sequents of D.K
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into formulas of Kt. We then prove the soundness theorem on the basis of this
function:

De�nition 19 (Translation functions I1 and I2). Let I1 and I2 map from the
set of structures to the set of propositional formulas such that:

I1(X) =


A if X = A,
> if X = I,
¬I2(Y ) if X = ∗Y,
I1(Y ) ∧ I1(Z) if X = (Y ◦ Z)
�I1(Y ) if X = •Y

I2(X) =


A if X = A,
⊥ if X = I,
¬I1(Y ) if X = ∗Y,
I2(Y ) ∨ I2(Z) if X = (Y ◦ Z)
�I2(Y ) if X = •Y

Theorem 15 (Soundness of D.K). If a formula A is provable in D.K, then A
is provable in K.

Proof. We prove the soundness theorem by showing that for any sequent S
provable in D.K, I(A) is provable in K. Building o� the soundness theorem for
D.Cp, we only have to show that the additional rules of D.K can be mirrored in
Kt. Again we omit the ♦�rules.

(�l)
I(A =⇒ Y )
A→ I2(Y )
�(A→ I2(Y ))
�(A→ I2(Y ))→ (�A→ �I2(Y ))
�A→ �I2(Y )
I1(�A)→ I2(•Y )
I(�A =⇒ •Y )

(�r)
I(•X =⇒ A)
I1(•X)→ I2(A)
I1(•X)→ A
�I1(X)→ A
I1(X)→ �A
I1(X)→ I2(�A)
I(X =⇒ �A)

Note that the inference from �I1(X) → A to I1(X) → �A in the (�r) proof
follows from fact 5 above.

Let us now apply the general cut elimination result to our speci�c calculus.
Just as with the previous theorems, the general cut elimination result allows for
easy con�rmation that our calculus possesses the cut elimination property. The
proof is as follows:

Theorem 16 (Cut Elimination for D.K). The cut rule is admissible for the
display calculus D.K.

Proof. The conditions (C2)-(C7) can be veri�ed by eye. Thus, the only condition
we need to check in order to apply Theorem 4, and prove cut elimination, is
condition (C8). Since all the other logical connectives remain the same, we need
only consider the case where M = �A:

...
•X =⇒ A (�r)
X =⇒ �A

...
A =⇒ Y (�l)

�A =⇒ •Y (Cut)
X =⇒ •Y
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...
•X =⇒ A

...
A =⇒ Y (Cut)•X =⇒ Y (•)

X =⇒ •Y

Theorem 17 (Subformula Property of Modal Display Calculi). The modal
display calculus D.K without (Cut) has the subformula property.

Proof. We know that the subformula property for the calculus D.Cp holds, so
all that is left is to check the additional rules of the display calculi D.K. It is
easy to see that all rules retain the subformula property.

Note that display logic and the construction of display calculi are not simply
restricted to the basic modal logic K. To apply display logic to stronger modal
logics than K we can add structural rules. As an example, if we add the struc-
tural rules for T, 4, and B, then this would give us the calculus D.S5:

X =⇒ •Y (T)
X =⇒ Y

X =⇒ •Y (4)
X =⇒ • • Y

• ∗X =⇒ Y (B)•X =⇒ Y

Also, it should not come as a surprise that there is a straightforward way to deal
with temporal logics (or other logics making use of backwards looking modali-
ties) as we already have the � backwards looking diamond operator implicitly in
the structural rules of our calculus. So, in order to go from D.K to the temporal
modal logic D.Kt we simply need to add logical rules that make the � operator
and its dual the � operator explicit:

X =⇒ ∗ • ∗A (�r)
X =⇒ �A

A =⇒ Y (�l)
�A =⇒ ∗ • ∗Y

X =⇒ A (�r)•X =⇒ �A
•A =⇒ Y (�l)
�A =⇒ Y

5 Conclusion

The aim of this paper has been to introduce the fundamental notions of proof
theory and display logic. We have provided the reader with various display
calculi and shown how to prove soundness, completeness, cut-elimination, and
the subformula property, among other things. Each of these properties are
desirable for any deductive calculi and the reader is likely to encounter facts
concerning such upon further study of proof theory.

In the last section we introduced the display calculus corresponding to the
modal logic K. Display logic derives its power from the fact that logics alter-
native to ordinary propositional and �rst-order logic can be expressed display-
systematically. For example, intuitionistic logic, relevance logic, the modal logic
T, and the modal calculi S.4 and S.5 can all be written as display calculi.
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As seen in this paper, expressing such logics as display calculi eases the proof of
many systematic properties. General theorems for display calculi, such as the
general cut-elimination theorem, are readily applicable to more speci�c display
calculi. For instance, in order to demonstrate cut elimination, it is su�cient to
con�rm that conditions (C2) through (C8) hold for the calculus under consid-
eration.

There still remain many questions in the realm of display logic. We have
by no means investigated all signi�cant proof-theoretic properties or calculi in
this text. Interpolation, decidability, and questions regarding what logics are
display-systematically formalizable are some further points of investigation for
the interested reader. Detailed studies of these topics can be found within the
list of references. Regardless of these further notions, we hope the reader has
found value in the introductory concepts presented here.
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