Programming Planck units from a virtual electron; a Simulation Hypothesis

Malcolm J. Macleod
maclem@platoscode.com

Abstract

The simulation hypothesis proposes that all of reality is an artificial simulation. In this article I describe a method for programming the Planck units as dimensionless geometrical forms from a virtual electron f_{e} ($f_{e}=4 \pi^{2} r^{3} ; r=2^{6} 3 \pi^{2} \alpha \Omega^{5}$, units $=1$), itself a function of 2 dimensionless mathematical constants; the fine structure constant α and $\Omega=2.0071349496 \ldots$... The Planck units are embedded in f_{e} according to these dimensionless (units $=1$) ratios; $M^{9} T^{11} / L^{15},(A L)^{3} / T \ldots$ thus giving mass $\mathrm{M}=1$, time $\mathrm{T}=2 \pi$, velocity $\mathrm{V}=$ $2 \pi \Omega^{2}$, length $\mathrm{L}=2 \pi^{2} \Omega^{2} \ldots$ We can thus for example create as much mass M as we wish but with the proviso that we create an equivalent space L and time T in accordance with these ratio. The 5 SI units $k g, m, s, A, k$ are replaced by a single unit u that defines the relationships between the SI units; $\mathrm{kg}=u^{15}, \mathrm{~m}=u^{-13}, \mathrm{~s}=u^{-30}, \mathrm{~A}$ $=u^{3} \ldots$. To convert from base geometries to their respective SI numerical values requires 2 scalars with which we can then solve the physical constants G, h, e, c, m_{e}, k_{B}. Results are consistent with CODATA 2014 (see table, scalars from m_{P} and c). It is the (α, Ω) dimensionless geometries of the Planck units which confers the functionality of the unit, the unit u appears to define a rule set rather than representing a physical entity. This resolves the principal difficulty of the mathematical universe as being how to relate mathematical forms to their corresponding physical units. It is these relationships between the units and not any inherent 'physical-ness' that gives the perception of a physical reality. The rationale for the electron was derived via the sqrt of Planck momentum and a black-hole electron model as a function of magnetic-monopoles AL and time T. In summary we can construct both the physical constants G, h, e, c, m_{e}, k_{B} (with the required precision) and the SI units $k g, m, s, A, k$ from f_{e}, a virtual (mathematical) electron.

Table 1	Calculated $^{*}(\alpha, \Omega, k, v)$	
Speed of light	$\mathrm{V}=299792458 u^{17}$	$c=299792458$
Permeability	$\mu_{0}{ }^{*}=4 \pi / 10^{7} u^{56}$	$\mu_{0}=4 \pi / 10^{7}$
Rydberg constant	$R_{\infty}{ }^{*}=10973731.568508 u^{13}$	$R_{\infty}=10973731.568508(65)[15]$
Planck constant	$h^{*}=6.626069134 \mathrm{e}-34 u^{19}$	$h=6.626070040(81) \mathrm{e}-34[16]$
Elementary charge	$e^{*}=1.60217651130 \mathrm{e}-19 u^{-27}$	$e=1.6021766208(98) \mathrm{e}-19[19]$
Electron mass	$m_{e}^{*}=9.10938231256 \mathrm{e}-31 u^{15}$	$m_{e}=9.10938356(11) \mathrm{e}-31[17]$
Boltzmann's constant	$k_{B}^{*}=1.37951014752 \mathrm{e}-23 u^{29}$	$k_{B}=1.38064852(79) \mathrm{e}-23[22]$
Gravitation constant	$G^{*}=6.67249719229 \mathrm{e}-11 u^{6}$	$G=6.67408(31) \mathrm{e}-11[21]$

keywords: computer universe, virtual universe, mathematical universe, simulated universe, sqrt Planck momentum, Planck unit, magnetic-monopole, fine structure constant alpha, Omega, black-hole electron;

1 Background

The general universe simulation hypothesis proposes that all of reality, including the earth and the universe, is in fact an artificial simulation, analogous to a computer simulation, and as such our reality is an illusion [2].

Mathematical platonism is a metaphysical view that there are abstract mathematical objects whose existence is independent of us [1]. Mathematical realism holds that mathematical entities exist independently of the human mind. Thus humans do not invent mathematics, but rather discover it. Triangles, for example, are real entities, not the creations of the human mind [3].

Max Tegmark's Mathematical Universe Hypothesis: Our external physical reality is a mathematical structure. That is, the physical universe is mathematics in a well-defined sense, and "in those [worlds] complex enough to contain self-aware substructures [they] will subjectively perceive themselves as
existing in a physically 'real' world" [10].
Planck units (defined here Planck mass m_{P}, Planck time t_{p}, Planck length l_{p}, Planck charge A_{Q}, Planck temperature T_{P}) are a set of units of measurement also known as natural units because the origin of their definition comes only from properties of nature and not from any human construct.

2 The virtual universe

Mathematical universe hypotheses presume that our physical universe has an underlying mathematical origin. The principal difficulty of such hypotheses lies in the problem of constructing physical units such as mass, space and time from their respective mathematical forms.

This article describes a mathematical universe model that is based on a virtual electron ($f_{e}=4 \pi^{2} r^{3} ; r=2^{6} 3 \pi^{2} \alpha \Omega^{5}$) from which the Planck units can be derived as geometrical forms. The fine structure constant α, π and a recurring constant Ω are dimensionless mathematical constants, thus the
electron formula f_{e} is also a mathematical constant, and as such has a numerical solution that is independent of the system of units used $\left(f_{e}=0.2389545 \times 10^{23}\right)$.

From this electron formula we can derive the Planck units as geometrical forms; mass $\mathrm{M}=1$, time $\mathrm{T}=2 \pi$, velocity $\mathrm{V}=$ $2 \pi \Omega^{2}$, length $\mathrm{L}=2 \pi^{2} \Omega^{2} \ldots$ (4.1).

The 5 SI units $k g, m, s, A, k$ are replaced by a single unit u (4.1) which defines the relationships between the SI units, it is thus a rule-base and not a descriptive of an actual physical unit. The functionality of each unit is instead embedded into its π, α, Ω geometry.

To solve the physical constants in SI terms also requires 2 scalars to convert from these base geometries to their respective SI values (4.2), i.e.: using the following values for α, Ω, k, v gives the results in the table (p 1) for G, h, c, e, m_{e}, k_{B};
$k=m_{P}=.2176728175 \ldots x 10^{-7} u^{15}(\mathrm{~kg})$
$v=\left(2 \pi \Omega^{2}\right) / c=11843707.9 \ldots u^{17}(\mathrm{~m} / \mathrm{s})$
$\alpha=137.035999139$ CODATA mean (4.4)
$\Omega=2.0071349496 \ldots$; (4.5)
Thus we may derive and solve the physical constants using 2 fixed constants, 2 scalars and a rule-set that replaces the SI units.

3 Sqrt of Planck momentum

In this section I introduce the sqrt of momentum as a distinct Planck unit and use this to link the mass and the charge constants. From the formulas for the charge constants I derive a formula for a magnetic monopole (ampere-meter AL) and from this a formula for an electron f_{e}. I then argue that f_{e} is dimensionless as the monopole and time units are not independent but rather overlap, collapsing within the electron according to this ratio; $f_{e}=(A L)^{3} / T$, units $=1$. Being dimensionless and so independent of any system of units, this electron formula is a mathematical constant.

Note: for convenience I use the commonly recognized value for alpha as $\alpha \sim 137.036$

Defining Q as the sqrt of Planck momentum where Planck momentum $=m_{P} c=2 \pi Q^{2}=6.52485 \ldots \mathrm{~kg} . \mathrm{m} / \mathrm{s}$, and a unit q whereby $q^{2}=k g . m / s$ giving;

$$
\begin{equation*}
Q=1.019113411 \ldots, \text { unit }=q \tag{1}
\end{equation*}
$$

Planck momentum; $2 \pi Q^{2}$, units $=q^{2}$,
Planck length; l_{p}, units $=m=q^{2} s / k g$,
c, units $=m / s=q^{2} / \mathrm{kg}$;
3.1. In Planck terms the mass constants are typically defined in terms of Planck mass, here I use Planck momentum;

$$
\begin{gather*}
m_{P}=\frac{2 \pi Q^{2}}{c}, \text { unit }=k g \tag{2}\\
E_{p}=m_{P} c^{2}=2 \pi Q^{2} c, \text { units }=\frac{\mathrm{kg} \cdot \mathrm{~m}^{2}}{\mathrm{~s}^{2}}=\frac{q^{4}}{\mathrm{~kg}} \tag{3}
\end{gather*}
$$

$$
\begin{gather*}
t_{p}=\frac{2 l_{p}}{c}, \text { unit }=s \tag{4}\\
F_{p}=\frac{2 \pi Q^{2}}{t_{p}}, \text { units }=\frac{q^{2}}{s} \tag{5}
\end{gather*}
$$

3.2. The charge constants in terms of Q^{3}, c, α, l_{p};

$$
\begin{gather*}
A_{Q}=\frac{8 c^{3}}{\alpha Q^{3}}, \text { unit } A=\frac{m^{3}}{q^{3} s^{3}}=\frac{q^{3}}{k g^{3}} \tag{6}\\
e=A_{Q} t_{p}=\frac{8 c^{3}}{\alpha Q^{3}} \cdot \frac{2 l_{p}}{c}=\frac{16 l_{p} c^{2}}{\alpha Q^{3}}, \text { units }=\text { A.s }=\frac{q^{3} s}{k g^{3}} \tag{7}\\
T_{p}=\frac{A_{Q} c}{\pi}=\frac{8 c^{3}}{\alpha Q^{3}} \cdot \frac{c}{\pi}=\frac{8 c^{4}}{\pi \alpha Q^{3}}, \text { units }=\frac{q^{5}}{k g^{4}} \tag{8}\\
k_{B}=\frac{E_{p}}{T_{p}}=\frac{\pi^{2} \alpha Q^{5}}{4 c^{3}}, \text { units }=\frac{k g^{3}}{q} \tag{9}
\end{gather*}
$$

3.3. As with c, the permeability of vacuum μ_{0} has been assigned an exact numerical value so it is our next target. The ampere is that constant current which, if maintained in two straight parallel conductors of infinite length, of negligible circular cross section, and placed 1 meter apart in vacuum, would produce between these conductors a force equal to exactly 2.10^{-7} newton per meter of length.

$$
\begin{gather*}
\frac{F_{\text {electric }}}{A_{Q}^{2}}=\frac{F_{p}}{\alpha} \cdot \frac{1}{A_{Q}^{2}}=\frac{2 \pi Q^{2}}{\alpha t_{p}} \cdot\left(\frac{\alpha Q^{3}}{8 c^{3}}\right)^{2}=\frac{\pi \alpha Q^{8}}{64 l_{p} c^{5}}=\frac{2}{10^{7}} \tag{10}\\
\mu_{0}=\frac{\pi^{2} \alpha Q^{8}}{32 l_{p} c^{5}}=\frac{4 \pi}{10^{7}}, \text { units }=\frac{\mathrm{kg} \cdot \mathrm{~m}}{\mathrm{~s}^{2} A^{2}}=\frac{\mathrm{kg}}{\mathrm{q}^{4} \mathrm{~s}} \tag{11}
\end{gather*}
$$

3.4. Rewritting Planck length l_{p} in terms of Q, c, α, μ_{0};

$$
\begin{equation*}
l_{p}=\frac{\pi^{2} \alpha Q^{8}}{32 \mu_{0} c^{5}}, u n i t=\frac{q^{2} s}{k g}=m \tag{12}
\end{equation*}
$$

3.5. A magnetic monopole in terms of Q, c, α, l_{p};

The ampere-meter is the SI unit for pole strength (the product of charge and velocity) in a magnet ($\mathrm{Am}=e c$). A magnetic monopole σ_{e} is a hypothetical particle that is a magnet with only 1 pole [12]. I propose a magnetic monopole σ_{e} from $\alpha, e, c\left(\sigma_{e}=0.13708563 \times 10^{-6}\right)$;

$$
\begin{equation*}
\sigma_{e}=\frac{3 \alpha^{2} e c}{2 \pi^{2}}, \text { units }=\frac{q^{5} s}{k g^{4}} \tag{13}
\end{equation*}
$$

I then use this monopole to construct an electron frequency function $f_{e}\left(f_{e}=0.2389545 \times 10^{23}\right)$;

$$
\begin{equation*}
f_{e}=\frac{\sigma_{e}^{3}}{t_{p}}=\frac{2^{8} 3^{3} \alpha^{3} l_{p}^{2} c^{10}}{\pi^{6} Q^{9}}=\frac{3^{3} \alpha^{5} Q^{7}}{4 \pi^{2} \mu_{0}^{2}}, \text { units }=\frac{q^{15} s^{2}}{k g^{12}} \tag{14}
\end{equation*}
$$

3.6. The most precisely measured of the natural constants is the Rydberg constant R_{∞} (see table) and so it is important to this model. The unit for R_{∞} is $1 / m$. For m_{e} see eq(22);

$$
\begin{equation*}
R_{\infty}=\frac{m_{e} e^{4} \mu_{0}^{2} c^{3}}{8 h^{3}}=\frac{2^{5} c^{5} \mu_{0}^{3}}{3^{3} \pi \alpha^{8} Q^{15}}, \text { units }=\frac{1}{m}=\frac{k g^{13}}{q^{17} s^{3}} \tag{15}
\end{equation*}
$$

This however now gives us 2 solutions for length m, see eq(1) and eq(15), if they are both valid then there must be a ratio whereby the units $q, s, k g$ overlap and cancel;

$$
\begin{equation*}
m=\frac{q^{2} s}{k g} \cdot \frac{q^{15} s^{2}}{k g^{12}}=\frac{q^{17} s^{3}}{k g^{13}} ; \text { thus } \frac{q^{15} s^{2}}{k g^{12}}=1 \tag{16}
\end{equation*}
$$

and so we can further reduce the number of units required, for example we can define s in terms of $k g, q$;

$$
\begin{gather*}
s=\frac{k g^{6}}{q^{15 / 2}} \tag{17}\\
\mu_{0}=\frac{k g^{6}}{q^{4} s}=q^{7 / 2} \tag{18}
\end{gather*}
$$

3.7. We find that this ratio is embedded in that electron function f_{e} (eq 14), and so f_{e} is a dimensionless mathematical constant whose function appears to be dictating the frequency of the Planck units;

$$
\begin{equation*}
f_{e}=\frac{\sigma_{e}^{3}}{t_{p}} ; \text { units }=\frac{q^{15} s^{2}}{k g^{12}}=1 \tag{19}
\end{equation*}
$$

Replacing q with the more familiar m gives this ratio;

$$
\begin{gather*}
q^{2}=\frac{\mathrm{kg} \cdot \mathrm{~m}}{\mathrm{~s}} ; q^{30}=\left(\frac{\mathrm{kg} \cdot \mathrm{~m}}{\mathrm{~s}}\right)^{15}=\frac{\mathrm{kg}{ }^{24}}{\mathrm{~s}^{4}} \tag{20}\\
\text { units }=\frac{\mathrm{kg} \mathrm{~g}^{9} \mathrm{~s}^{11}}{\mathrm{~m}^{15}}=1 \tag{21}
\end{gather*}
$$

Electron mass as frequency of Planck mass:

$$
\begin{equation*}
m_{e}=\frac{m_{P}}{f_{e}}, \text { unit }=k g \tag{22}
\end{equation*}
$$

Electron wavelength via Planck length:

$$
\begin{equation*}
\lambda_{e}=2 \pi l_{p} f_{e}, \text { units }=m=\frac{q^{2} s}{k g} \tag{23}
\end{equation*}
$$

Gravitation coupling constant:

$$
\begin{equation*}
\alpha_{G}=\left(\frac{m_{e}}{m_{P}}\right)^{2}=\frac{1}{f_{e}^{2}}, \text { units }=1 \tag{24}
\end{equation*}
$$

3.8. The Rydberg constant $R_{\infty}=10973731.568508(65)$ [15] has been measured to a 12 digit precision. The known precision of Planck momentum and so Q is low, however with the solution for the Rydberg eq(15) we may re-write Q as Q^{15} in terms of; c, μ_{0}, R and α;

$$
\begin{equation*}
Q^{15}=\frac{2^{5} c^{5} \mu_{0}^{3}}{3^{3} \pi \alpha^{8} R}, \text { units }=\frac{k g^{12}}{s^{2}}=q^{15} \tag{25}
\end{equation*}
$$

Using the formulas for $Q^{15} \mathrm{eq}(25)$ and $l_{p} \mathrm{eq}(12)$ we can rewrite the least accurate dimensioned constants in terms of the
most accurate constants; R, c, μ_{0}, α. I first convert the constants until they include a Q^{15} term which can then be replaced by eq(25). Setting unit x as;

$$
\begin{equation*}
\text { unit } x=\frac{k g^{12}}{q^{15} s^{2}}=1 \tag{26}
\end{equation*}
$$

Elementary charge $e=1.60217651130 \mathrm{e}-19$ (table p1)

$$
\begin{gather*}
e=\frac{16 l_{p} c^{2}}{\alpha Q^{3}}=\frac{\pi^{2} Q^{5}}{2 \mu_{0} c^{3}}, \text { units }=\frac{q^{3} s}{k g^{3}} \tag{27}\\
e^{3}=\frac{\pi^{6} Q^{15}}{8 \mu_{0}^{3} c^{9}}=\frac{4 \pi^{5}}{3^{3} c^{4} \alpha^{8} R}, \text { units }=\frac{k g^{3} s}{q^{6}}=\left(\frac{q^{3} s}{k g^{3}}\right)^{3} \cdot x \tag{28}
\end{gather*}
$$

Planck constant $h=6.626069134 \mathrm{e}-34$

$$
\begin{gather*}
h=2 \pi Q^{2} 2 \pi l_{p}=\frac{4 \pi^{4} \alpha Q^{10}}{8 \mu_{0} c^{5}}, \text { units }=\frac{q^{4} s}{k g} \tag{29}\\
h^{3}=\left(\frac{4 \pi^{4} \alpha Q^{10}}{8 \mu_{0} c^{5}}\right)^{3}=\frac{2 \pi^{10} \mu_{0}^{3}}{3^{6} c^{5} \alpha^{13} R^{2}}, \text { units }=\frac{k g^{21}}{q^{18} s}=\left(\frac{q^{4} s}{k g}\right)^{3} \cdot x^{2}
\end{gather*}
$$

Boltzmann constant $k_{B}=1.37951014752 \mathrm{e}-23$

$$
\begin{gather*}
k_{B}=\frac{\pi^{2} \alpha Q^{5}}{4 c^{3}}, \text { units }=\frac{k g^{3}}{q} \tag{31}\\
k_{B}^{3}=\frac{\pi^{5} \mu_{0}^{3}}{3^{3} 2 c^{4} \alpha^{5} R}, \text { units }=\frac{k g^{21}}{q^{18} s^{2}}=\left(\frac{k g^{3}}{q}\right)^{3} \cdot x \tag{32}
\end{gather*}
$$

Gravitation constant $G=6.67249719229$ e-11

$$
\begin{gather*}
G=\frac{c^{2} l_{p}}{m_{P}}=\frac{\pi \alpha Q^{6}}{64 \mu_{0} c^{2}}, \text { units }=\frac{q^{6} s}{k g^{4}} \tag{33}\\
G^{5}=\frac{\pi^{3} \mu_{0}}{2^{20} 3^{6} \alpha^{11} R^{2}}, \text { units }=k g^{4} s=\left(\frac{q^{6} s}{k g^{4}}\right)^{5} \cdot x^{2} \tag{34}
\end{gather*}
$$

Planck length

$$
\begin{equation*}
l_{p}^{15}=\frac{\pi^{22} \mu_{0}^{9}}{2^{35} 3^{24} c^{35} \alpha^{49} R^{8}}, \text { units }=\frac{k g^{81}}{q^{90} s}=\left(\frac{q^{2} s}{k g}\right)^{15} \cdot x^{8} \tag{35}
\end{equation*}
$$

Planck mass

$$
\begin{equation*}
m_{P}^{15}=\frac{2^{25} \pi^{13} \mu_{0}^{6}}{3^{6} c^{5} \alpha^{16} R^{2}}, \text { units }=k g^{15}=\frac{k g^{39}}{q^{30} s^{4}} \cdot \frac{1}{x^{2}} \tag{36}
\end{equation*}
$$

Electron mass $m_{e}=9.10938231256$ e-31

$$
\begin{equation*}
m_{e}^{3}=\frac{16 \pi^{10} R \mu_{0}^{3}}{3^{6} c^{8} \alpha^{7}}, \text { units }=k g^{3}=\frac{k g^{27}}{q^{30} s^{4}} \cdot \frac{1}{x^{2}} \tag{37}
\end{equation*}
$$

Ampere

$$
\begin{equation*}
A_{Q}^{5}=\frac{2^{10} \pi 3^{3} c^{10} \alpha^{3} R}{\mu_{0}^{3}}, \text { units }=\frac{q^{30} s^{2}}{k g^{27}}=\left(\frac{q^{3}}{k g^{3}}\right)^{5} \cdot \frac{1}{x} \tag{38}
\end{equation*}
$$

3.9. $(r=\sqrt{q})$

There is a solution for an $r^{2}=q$, it is the radiation density constant from the Stefan Boltzmann constant σ;

$$
\begin{gather*}
\sigma=\frac{2 \pi^{5} k_{B}^{4}}{15 h^{3} c^{2}}, r_{d}=\frac{4 \sigma}{c}, \text { units }=r \tag{39}\\
r_{d}^{3}=\frac{3^{3} 4 \pi^{5} \mu_{0}^{3} \alpha^{19} R^{2}}{5^{3} c^{10}}, \text { units }=\frac{k g^{30}}{q^{36} s^{5}} \cdot \frac{1}{x^{2}}=\frac{k g^{6}}{q^{6} s}=r^{3} \tag{40}
\end{gather*}
$$

4 Geometrical units

4.1. The formula for the electron f_{e} incorporates dimensionful quantities but itself is dimensionless. This means that its numerical value is a mathematical constant, independent of which set of units we may use; $f_{e}=.23895453 \ldots . . x 10^{23}$ units $=1$. For example we can write the formula for f_{e} in terms of $\mathrm{T}=t_{p}, \mathrm{~A}=e T, \mathrm{~V}=2 l_{p} / T ;$

$$
\begin{equation*}
f_{e}=\left(\frac{3 \alpha^{2} A T V}{2 \pi^{2}}\right)^{3} \frac{1}{T}=0.239 \times 10^{23}, \text { unit }=1 \tag{41}
\end{equation*}
$$

Because the numerical value is fixed and units $=1$, we can look for other, non SI sets of ATV (AL) units which can also be used to solve f_{e}. In this section I describe the base units MLTA in terms of a geometrical component constructed from 2 fixed dimensionless mathematical constants; the fine structure constant alpha and a proposed Omega (4.5), from 2 variable unit-dependent scalars (from the list ktlvpa), and a relational unit u that replaces the SI units ($k g, m, s, A, k$).

$$
\begin{gather*}
M=(1) k, \text { unit }=u^{15}(\text { mass }) \tag{42}\\
\left.T=(2 \pi) t, \text { unit }=u^{-30} \text { (time }\right) \tag{43}\\
P=(\Omega) p, \text { unit }=u^{16}(\text { sqrt of momentum }) \tag{44}\\
V=\left(2 \pi \Omega^{2}\right) v, \text { unit }=u^{17}(\text { velocity }) \tag{45}\\
L=\left(2 \pi^{2} \Omega^{2}\right) l, \text { unit }=u^{-13}(\text { length }) \tag{46}\\
A=\left(\frac{2^{6} \pi^{3} \Omega^{3}}{\alpha}\right) a, \text { unit }=u^{3}(\text { ampere }) \tag{47}
\end{gather*}
$$

4.2 In the previous section I used 2 base units to define the others. In this example I use $P, V\left(p\right.$ units $=u^{16}, v$ units $\left.=u^{17}\right)$ to derive MLTA and then the physical constants. Scaling p, v to their SI values gives $\mathrm{M}=m_{P}, \mathrm{~L}=l_{p}, \mathrm{~T}=t_{p}, \mathrm{~V}=c, \mathrm{P}=Q$

$$
\begin{gather*}
P=(\Omega) p, \text { unit }=u^{16} \tag{48}\\
V=\left(2 \pi \Omega^{2}\right) v, \text { unit }=u^{17} \tag{49}\\
M=\frac{2 \pi P^{2}}{V}=(1) \frac{p^{2}}{v}, \text { unit }=u^{16 * 2-17=15} \tag{50}\\
T^{2}=(2 \pi \Omega)^{15} \frac{P^{9}}{2 \pi V^{12}} \tag{51}\\
T=(2 \pi) \frac{p^{9 / 2}}{v^{6}}, \text { unit }=u^{16 * 9 / 2-17 * 6=-30} \tag{52}
\end{gather*}
$$

$$
\begin{gather*}
L=\frac{T V}{2}=\left(2 \pi^{2} \Omega^{2}\right) \frac{p^{9 / 2}}{v^{5}}, \text { unit }=u^{16 * 9 / 2-17 * 5=-13} \tag{53}\\
A=\frac{8 V^{3}}{\alpha P^{3}}=\left(\frac{2^{6} \pi^{3} \Omega^{3}}{\alpha}\right) \frac{v^{3}}{p^{3}}, \text { unit }=u^{17 * 3-16 * 3=3} \tag{54}
\end{gather*}
$$

For convenience here I assign $r=\sqrt{p}$, unit $u^{16 / 2=8}$

$$
\begin{gather*}
G^{*}=\frac{V^{2} L}{M}=2^{3} \pi^{4} \Omega^{6} \frac{r^{5}}{v^{2}}, u^{34-13-15=8 * 5-17 * 2=6} \tag{55}\\
h^{*}=2 \pi M V L=2^{3} \pi^{4} \Omega^{4} \frac{r^{13}}{v^{5}}, u^{15+17-13=8 * 13-17 * 5=19} \tag{56}\\
T_{P}^{*}=\frac{A V}{\pi}=\frac{2^{7} \pi^{3} \Omega^{5}}{\alpha} \frac{v^{4}}{r^{6}}, u^{3+17=17 * 4-6 * 8=20} \tag{57}\\
e^{*}=A T=\frac{2^{7} \pi^{4} \Omega^{3}}{\alpha} \frac{r^{3}}{v^{3}}, u^{3-30=3 * 8-17 * 3=-27} \tag{58}\\
k_{B}^{*}=\frac{\pi V M}{A}=\frac{\alpha}{2^{5} \pi \Omega} \frac{r^{10}}{v^{3}}, u^{17+15-3=10 * 8-17 * 3=29} \tag{59}\\
\mu_{0}^{*}=\frac{\pi V^{2} M}{\alpha L A^{2}}=\frac{\alpha}{2^{11} \pi^{5} \Omega^{4}} r^{7}, u^{17 * 2+15+13-6=7 * 8=56} \tag{60}\\
\epsilon_{0}^{*-1}=\frac{\alpha}{2^{9} \pi^{3}} v^{2} r^{7}, u^{34+56=90} \tag{61}\\
r_{\sigma}^{*}=\left(\frac{8 \pi^{5} k_{B}^{4}}{15 h^{3} c^{3}}\right)=\frac{\alpha}{2^{29} 15 \pi^{14} \Omega^{22}} r, u^{29 * 4-19 * 3-17 * 3=8} \tag{62}\\
R^{*}=\left(\frac{m_{e}}{4 \pi l_{p} \alpha^{2} m_{P}}\right)=\frac{1}{2^{23} 3^{3} \pi^{11} \alpha^{5} \Omega^{17}} \frac{v^{5}}{r^{9}}, u^{13} \tag{63}
\end{gather*}
$$

Scalars r, v were chosen as they can be determined directly from c, μ_{0} (eq 49, 60), see table p1;

$$
\begin{align*}
v & =\frac{c}{2 \pi \Omega^{2}} \tag{64}\\
r^{7} & =\frac{2^{6} \pi^{6} \Omega^{4}}{5^{7} \alpha} \tag{65}
\end{align*}
$$

I suggested (electron) ratios where units $=1$ (eq21). Inserting SI Planck unit values $\mathrm{M}=m_{P}, \mathrm{~T}=t_{p}, \mathrm{~L}=l_{p}, \mathrm{~A}=A_{Q}$ (4.1);

$$
\begin{equation*}
\frac{L^{15}}{M^{9} T^{11}}=\frac{l_{p}^{15}}{m_{P}^{9} t_{p}^{11}}=\frac{\left(2 \pi^{2} \Omega^{2}\right)^{15}}{(1)^{9}(2 \pi)^{11}} \cdot \frac{l^{15}}{k^{9} t^{11}}=2^{4} \pi^{19} \Omega^{30} \tag{66}
\end{equation*}
$$

$$
\frac{l^{15}}{k^{9} t^{11}}=\frac{\left(.20322087^{-36}\right)^{15}}{\left(.217672818^{-7}\right)^{9}\left(.171585513^{-43}\right)^{11}} \frac{u^{-13 * 15}}{u^{15 * 9} u^{-30 * 11}}=1
$$

$$
\begin{equation*}
\frac{A^{3} L^{3}}{T}=\frac{A_{Q}^{3} l_{p}^{3}}{t_{p}}=\frac{\left(2^{6} \pi^{3} \Omega^{3}\right)^{3}\left(2 \pi^{2} \Omega^{2}\right)^{3}}{(\alpha)^{3}(2 \pi)} \cdot \frac{a^{3} l^{3}}{t}=\frac{2^{20} \pi^{14} \Omega^{15}}{\alpha^{3}} \tag{67}
\end{equation*}
$$

$$
\begin{equation*}
\frac{a^{3} l^{3}}{t}=\frac{\left(.12691859^{23}\right)^{3}\left(.20322087^{-36}\right)^{3}}{\left(.171585513^{-43}\right)} \frac{u^{3 * 3} u^{-13 * 3}}{u^{-30}}=1 \tag{68}
\end{equation*}
$$

If we then define MLTA in terms of PV (4.2) in these ratios, we find that P and V themselves cancel leaving only the dimensionless components. Consequently these ratios are both
unit-less and dimensionless, it is from this Ω^{15} configuration that the Planck units may be constructed (4.2).

$$
\begin{gather*}
\frac{L^{30}}{M^{18} T^{22}}=\frac{2^{180} \pi^{210} \Omega^{225} P^{135}}{V^{150}} / \frac{2^{18} \pi^{18} P^{36}}{V^{18}} \cdot \frac{2^{154} \pi^{154} \Omega^{165} P^{99}}{V^{132}} \\
\frac{L^{30}}{M^{18} T^{22}}=\left(2^{4} \pi^{19} \Omega^{15}\right)^{2} \tag{70}\\
\frac{A^{6} L^{6}}{T^{2}}=\frac{2^{18} V^{18}}{\alpha^{6} P^{18}} \cdot \frac{2^{36} \pi^{42} \Omega^{45} P^{27}}{V^{30}} / \frac{2^{14} \pi^{14} \Omega^{15} P^{9}}{V^{12}} \tag{72}\\
\frac{A^{6} L^{6}}{T^{2}}=\left(\frac{2^{20} \pi^{14} \Omega^{15}}{\alpha^{3}}\right)^{2} \tag{73}
\end{gather*}
$$

4.3. The electron function f_{e} is both unit-less and non scalable $v^{0} r^{0} u^{0}=1$. It is therefore a natural (mathematical) constant.

$$
\begin{gather*}
\sigma_{e}=\frac{3 \alpha^{2} A L}{\pi^{2}}=2^{7} 3 \pi^{3} \alpha \Omega^{5} \frac{r^{3}}{v^{2}}, u^{-10} \tag{74}\\
f_{e}=\frac{\sigma_{e}^{3}}{T}=4 \pi^{2}\left(2^{6} 3 \pi^{2} \alpha \Omega^{5}\right)^{3}, \text { units }=\frac{u^{30}}{\left(u^{10}\right)^{3}}=1 \tag{75}\\
\sigma_{t p}=\frac{3 \alpha^{2} T_{P}}{2 \pi}=2^{6} 3 \pi^{2} \alpha \Omega^{5} \frac{v^{4}}{r^{6}}, \text { units }=u^{20} \tag{76}\\
f_{e}=t_{p}^{2} \sigma_{t p}^{3}=4 \pi^{2}\left(2^{6} 3 \pi^{2} \alpha \Omega^{5}\right)^{3}, \text { units }=\frac{\left(u^{20}\right)^{3}}{\left(u^{30}\right)^{2}}=1 \tag{77}
\end{gather*}
$$

4.4. The Sommerfeld fine structure constant alpha is a dimensionless mathematical constant. The following use a well known formula for alpha;

$$
\begin{gather*}
\alpha=\frac{2 h}{\mu_{0} e^{2} c}=2.2 \pi Q^{2} 2 \pi l_{p} \cdot \frac{32 l_{p} c^{5}}{\pi^{2} \alpha Q^{8}} \cdot \frac{\alpha^{2} Q^{6}}{256 l_{p}^{2} c^{4}} \cdot \frac{1}{c}=\alpha \tag{78}\\
\alpha=2\left(8 \pi^{4} \Omega^{4}\right) /\left(\frac{\alpha}{2^{11} \pi^{5} \Omega^{4}}\right)\left(\frac{128 \pi^{4} \Omega^{3}}{\alpha}\right)^{2}\left(2 \pi \Omega^{2}\right)=\alpha \tag{79}\\
\text { scalars }=\frac{r^{13}}{v^{5}} \cdot \frac{1}{r^{7}} \cdot \frac{v^{6}}{r^{6}} \cdot \frac{1}{v}=1 \tag{80}\\
\text { units }=\frac{u^{19}}{u^{56}\left(u^{-27}\right)^{2} u^{17}}=1 \tag{81}
\end{gather*}
$$

4.5. I have also premised a 2 nd mathematical constant which I have denoted Omega. We can find a numerical solution using the precise $c^{*}, \mu_{0}^{*}, R^{*}$;

$$
\Omega=2.0071349496 \ldots
$$

$$
\begin{gather*}
\frac{\left(c^{*}\right)^{35}}{\left(\mu_{0}^{*}\right)^{9}\left(R^{*}\right)^{7}}, \text { units }=\frac{\left(u^{17}\right)^{35}}{\left(u^{56}\right)^{9}\left(u^{13}\right)^{7}}=1 \tag{82}\\
\frac{\left(c^{*}\right)^{35}}{\left(\mu_{0}^{*}\right)^{9}\left(R^{*}\right)^{7}}=\left(2 \pi \Omega^{2}\right)^{35} /\left(\frac{\alpha}{2^{11} \pi^{5} \Omega^{4}}\right)^{9} \cdot\left(\frac{1}{2^{23} 3^{3} \pi^{11} \alpha^{5} \Omega^{17}}\right)^{7} \tag{83}\\
\Omega^{225}=\frac{\left(c^{*}\right)^{35}}{2^{295} 3^{21} \pi^{157}\left(\mu_{0}^{*}\right)^{9}\left(R^{*}\right)^{7} \alpha^{26}}, \text { units }=1 \tag{84}
\end{gather*}
$$

There is a close sqrt natural number solution for Ω;

$$
\begin{equation*}
\Omega=\sqrt{\left(\frac{\pi^{e}}{e^{(e-1)}}\right)}=2.00713495432 \ldots \tag{85}
\end{equation*}
$$

4.6. We can numerically solve the physical constants by replacing the mathematical $\left(c^{*}, \mu_{0}^{*}, R^{*}\right)$ with the CODATA mean values for $\left(c, \mu_{0}, R\right)$ as in section 3.8. We then find there is a combination of $\left(c^{*}, \mu_{0}^{*}, R^{*}\right)$ which reduces to h^{3} using the formulas in 4.2.

$$
\begin{gather*}
h^{*}=2^{3} \pi^{4} \Omega^{4} \frac{r^{13}}{v^{5}}, u^{19} \tag{86}\\
\left(h^{*}\right)^{3}=\frac{2 \pi^{10}\left(\mu_{0}^{*}\right)^{3}}{3^{6}\left(c^{*}\right)^{5} \alpha^{13}\left(R^{*}\right)^{2}}, \text { unit }=u^{57} \tag{87}
\end{gather*}
$$

Likewise with the other dimensionful constants, we note that these equations are equivalent to section 3.8;

$$
\begin{gather*}
\left(e^{*}\right)^{3}=\frac{4 \pi^{5}}{3^{3}\left(c^{*}\right)^{4} \alpha^{8}\left(R^{*}\right)}, \text { unit }=u^{-81} \tag{88}\\
\left(k_{B}^{*}\right)^{3}=\frac{\pi^{5}\left(\mu_{0}^{*}\right)^{3}}{3^{3} 2\left(c^{*}\right)^{4} \alpha^{5}\left(R^{*}\right)}, \text { unit }=u^{87} \tag{89}\\
\left(G^{*}\right)^{5}=\frac{\pi^{3}\left(\mu_{0}^{*}\right)}{2^{20} 3^{6} \alpha^{11}\left(R^{*}\right)^{2}}, \text { unit }=u^{30} \tag{90}\\
\left(m_{e}^{*}\right)^{3}=\frac{16 \pi^{10}\left(R^{*}\right)\left(\mu_{0}^{*}\right)^{3}}{3^{6}\left(c^{*}\right)^{8} \alpha^{7}}, \text { unit }=u^{45} \tag{91}\\
\left(r_{d}\right)^{3}=\frac{3^{3} 4 \pi^{5}\left(\mu_{0}^{*}\right)^{3} \alpha^{19}\left(R^{*}\right)^{2}}{5^{3}\left(c^{*}\right)^{10}}, \text { unit }=u^{24} \tag{92}
\end{gather*}
$$

5 Virtual universe

The electron formula f_{e} can be constructed from amperemeters AL and time T and yet it is a dimensionless (mathematical) constant;

$$
f_{e}=(A L)^{3} / T=0.239 \times 10^{23}, \text { units }=1
$$

This formula has 3 space dimensions L^{3} and 1 time dimension T. We could then speculate that if the vacuum of our 3-D space is electro-magnetic in nature such that it is also a construct of an ampere-meters $(A L)^{3}$ 'ether' instead of an empty void measured in L^{3} meters, then the sum universe may also be a dimensionless (mathematical) constant (aka a virtual universe);

$$
f_{\text {universe }}=X(A L)^{3} / T, \text { units }=1
$$

6 Notes

In 1963, Dirac noted regarding the fundamental constants; "The physics of the future, of course, cannot have the three quantities \hbar, e, c all as fundamental quantities. Only two of them can be fundamental, and the third must be derived from those two." [25]

In the article "Surprises in numerical expressions of physical constants", Amir et al write ... In science, as in life, 'surprises' can be adequately appreciated only in the presence of a null model, what we expect a priori. In physics, theories sometimes express the values of dimensionless physical constants as combinations of mathematical constants like pi or e. The inverse problem also arises, whereby the measured value of a physical constant admits a 'surprisingly' simple approximation in terms of well-known mathematical constants. Can we estimate the probability for this to be a mere coincidence? [24]
J. Barrow and J. Webb on the fundamental constants; 'Some things never change. Physicists call them the constants of nature. Such quantities as the velocity of light, c, Newton's constant of gravitation, G, and the mass of the electron, m_{e}, are assumed to be the same at all places and times in the universe. They form the scaffolding around which theories of physics are erected, and they define the fabric of our universe. Physics has progressed by making ever more accurate measurements of their values. And yet, remarkably, no one has ever successfully predicted or explained any of the constants. Physicists have no idea why they take the special numerical values that they do. In SI units, c is $299,792,458$; G is $6.673 \mathrm{e}-11$; and m_{e} is $9.10938188 \mathrm{e}-31$-numbers that follow no discernible pattern. The only thread running through the values is that if many of them were even slightly different, complex atomic structures such as living beings would not be possible. The desire to explain the constants has been one of the driving forces behind efforts to develop a complete unified description of nature, or "theory of everything". Physicists have hoped that such a theory would show that each of the constants of nature could have only one logically possible value. It would reveal an underlying order to the seeming arbitrariness of nature.' [6].

At present, there is no candidate theory of everything that is able to calculate the mass of the electron [23].
'"There are two kinds of fundamental constants of Nature: dimensionless (alpha) and dimensionful (c, h, G). To clarify the discussion I suggest to refer to the former as fundamental parameters and the latter as fundamental (or basic) units. It is necessary and sufficient to have three basic units in order to reproduce in an experimentally meaningful way the dimensions of all physical quantities. Theoretical equations describing the physical world deal with dimensionless quantities and their solutions depend on dimensionless fundamental parameters. But experiments, from which these theories are extracted and by which they could be tested, involve measurements, i.e. comparisons with standard dimensionful scales. Without standard dimensionful units and hence without certain conventions physics is unthinkable" -Trialogue [5].
"The fundamental constants divide into two categories, units independent and units dependent, because only the constants in the former category have values that are not determined by the human convention of units and so are true fundamental constants in the sense that they are inherent properties of our universe. In comparison, constants in the latter category are not fundamental constants in the sense that their particular values are determined by the human convention of units" -L. and J. Hsu [4].

A charged rotating black hole is a black hole that possesses angular momentum and charge. In particular, it rotates about one of its axes of symmetry. In physics, there is a speculative notion that if there were a black hole with the same mass and charge as an electron, it would share many of the properties of the electron including the magnetic moment and Compton wavelength. This idea is substantiated within a series of papers published by Albert Einstein between 1927 and 1949. In them, he showed that if elementary particles were treated as singularities in spacetime, it was unnecessary to postulate geodesic motion as part of general relativity [26].

The Dirac Kerr-Newman black-hole electron was introduced by Burinskii using geometrical arguments. The Dirac wave function plays the role of an order parameter that signals a broken symmetry and the electron acquires an extended space-time structure. Although speculative, this idea was corroborated by a detailed analysis and calculation [8].

Max Tegmark's Mathematical Universe Hypothesis: Our external physical reality is a mathematical structure. That is, the physical universe is mathematics in a well-defined sense, and "in those [worlds] complex enough to contain self-aware substructures [they] will subjectively perceive themselves as existing in a physically 'real' world" [10].

Note: This article is an extension of an earlier article [26] which has been incorporated as section 3 .

References

1. Linnebo, Øystein, "Platonism in the Philosophy of Mathematics", The Stanford Encyclopedia of Philosophy (Summer 2017 Edition), Edward N. Zalta (ed.), plato.stanford.edu/archives/sum2017/entries/platonismmathematics
2. Nick Bostrom, Philosophical Quarterly 53 (211):243-255 (2003)
3. https://en.wikipedia.org/wiki/Philosophy-of-mathematics (22, Oct 2017)
4. Leonardo Hsu, Jong-Ping Hsu; The physical basis of natural units; Eur. Phys. J. Plus (2012) 127:11
5. Michael J. Duff et al JHEP03(2002)023 Trialogue on the number of fundamental constants
6. J. Barrow, J. Webb, Inconstant Constants, Scientific American 292, 56-63 (2005)
7. M. Planck, Uber irreversible Strahlungsforgange. Ann. d. Phys. (4), (1900) 1, S. 69-122.
8. A. Burinskii, Gravitation and Cosmology, 2008, Vol. 14, No. 2, pp. 109-122; Pleiades Publishing, 2008.
DOI: 10.1134/S0202289308020011
9. Feynman, Richard P. (1977). The Feynman Lectures on Physics, vol. I. Addison-Wesley. p. 22-10. ISBN 0-201-02010-6.
10. Tegmark, Max (February 2008). "The Mathematical Universe". Foundations of Physics. 38 (2): 101-150.
11. planckmomentum.com/calc/ (online calculator)
12. Magnetic monopole en.wikipedia.org/wiki/Magnetic-monopole (10/2015)
13. Fine structure constant
en.wikipedia.org/wiki/Fine-structure-constant (06/2015)
14. Burinskii, A. (2005). "The Dirac-Kerr electron". arXiv:hep-th/0507109
15. Rydberg constant http://physics.nist.gov/cgi-bin/cuu/Value?ryd
16. Planck constant
http://physics.nist.gov/cgi-bin/cuu/Value?ha
17. Electron mass
http://physics.nist.gov/cgi-bin/cuu/Value?me
18. Fine structure constant
http://physics.nist.gov/cgi-bin/cuu/Value?alphinv
19. Elementary charge
http://physics.nist.gov/cgi-bin/cuu/Value?e
20. Vacuum of permeability
http://physics.nist.gov/cgi-bin/cuu/Value?mu0
21. Gravitation constant
http://physics.nist.gov/cgi-bin/cuu/Value?bg
22. Boltzmann constant
http://physics.nist.gov/cgi-bin/cuu/Value?k
23. https://en.wikipedia.org/wiki/Theory-of-everything (02/2016)
24. Ariel Amir, Mikhail Lemeshko, Tadashi Tokieda; 26/02/2016
Surprises in numerical expressions of physical constants arXiv:1603.00299 [physics.pop-ph]
25. Dirac, Paul, The Evolution of the Physicist's Picture of Nature, June 25, 2010
https://blogs.scientificamerican.com/guest-blog/the-evolution-of-the-physicists-picture-of-nature/
26. Macleod, Malcolm, A virtual black-hole electron and the sqrt of Planck momentum, http://vixra.org/pdf/1102.0032v9.pdf
