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4. Interpreting Planck scale gravitational orbitals via atomic orbital transitions
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An orbital simulation program is described that uses a geometrical approach to emulate gravitational and
atomic orbits at the Planck scale. The gravitational orbital approach divides orbiting objects into multiples of
Planck mass points to form an n-body complex of discrete point-to-point orbital pairs between the objects.
Each orbital pair rotates 1 Planck length per unit of Planck time in a continuous loop such that when mapped
over time gravitational orbits emerge. However 1 point may contain 1020 or more individual particles, and
so to analyze individual particle-particle orbital pairing we can use atomic orbital transitions. For this, the
gravitation simulation program is modified to map the orbital of an electron-proton pair (H-atom) by the
addition of an alpha (fine structure constant) term. For transitions, the incoming photon is absorbed by (or
ejected from) the orbital radius in discrete alpha steps (the orbital radius is assigned photon-like properties),
the electron itself has a passive role in the transition process. An orbital radius variable δ; orbital radius =
(2α + δ)*λ(electron+proton), was selected to correlate with the Lyman series transition frequencies. A linear
relationship was observed between δ and these frequencies with notably at δ ∼ 0 (the classical Bohr model),
the principal quantum number n = sqrt(2) and the transition energy = half ionization energy.

Table 1 radius δ fsimulation (kHz) fexperimental (kHz)
H(1s) 0.001633397738 0

H(1s-
√

2 s) -0.000044356388 1644035417885.869
H(1s-2s) -0.000954660863 2466061413187.031 2466061413187.035
H(1s-3s) -0.001483071027 2922743278665.790 2922743278665.79
H(1s-4s) -0.001672037031 3082581563822.636 3082581563822.6

H(1s-224s) -0.001918147567
H(1s-∞) 3288087922407.2

1 Introduction

A Planck scale gravitational orbital model [1] has been pro-
posed that divides objects into points where each point rep-
resents a discrete unit of Planck mass mP, which can then be
assigned co-ordinates for mapping, for example a 1kg satel-
lite, would sub-divide into 1kg/mP = 45940509 points.

Each point then forms an orbital pair with all other points
resulting in a universe-wide n-body network of rotating (1
Planck length lp per unit of Planck time tp) orbital pairs. After
each unit of Planck time, the results are averaged and the new
co-ordinates for each point calculated. This process occurs in
a continuous loop.

The model treats particles as continuous waves that os-
cillate between an electric wave-state (duration particle fre-
quency in Planck time units) to a Planck mass point-state (du-
ration 1tp). An electron has a frequency = 1023tp and so if an
object has 1023 electrons for example, then on average 1 elec-
tron will be in the mass-state at any given unit of Planck time
(1mP per tp), average mass then = Planck mass and so gravity
(orbital pair rotation) can occur at each unit of Planck time.

Although the gravity model operates at unit Planck time,
each point is the sum of about 1020 particles and these are
predominately in the wave-state (gravity interactions can be
ignored), and so to study these underlying events, the simu-
lation is modified by the addition of an alpha (fine structure

constant) term. This permits to analyze individual particle-
particle orbital pairing via the orbit of an electron-proton pair.

Fig. 1: δ (x-axis) vs n2 (y-axis), Lyman series
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Features;
1. The electron and proton wavelengths are combined λH =

λe + λp and then divided into alpha units to form the orbital
(Bohr) radius.
2. Orbital rotations occur in λH steps. After each step the
electron has point (point-state) co-ordinates and so can be
mapped.
3. During transition, the orbital radius absorbs (or ejects) the
photon in alpha unit steps, the velocity component can then
be calculated for each step giving a precise average velocity.
The orbital radius is treated as physically analogous to the
photon albeit of inverse or reverse phase, the electron itself
has a passive role in transition.
4. An orbital radius variable δ is used to correlate radius with
observed transition frequencies.

orbital radius = (2α + δ) λH

In fig.1 δ is mapped against the principal quantum number n,
in fig.2 δ is mapped against transition energy in eV. Crossover
(δ = 0) occurs at n =

√
2 at half ionization energy = 6.7992eV.

Fig. 2: δ (x-axis) vs eV (y-axis), Lyman series

2 Simulation

The orbital radius is divided into sub-segments (alpha units)
joined together in series. The wavelength of the orbital radius
is the sum of these segments. To reduce computation, the λH

component is added later.

αunit =
1

2π2α
(1)

The simulation assigns the electron point-state co-ordinates
(blue dot, fig.3). After each wave to point oscillation cycle,
the electron point jumps (the actual motion of the electron
occurs during the electron wave-state) 1 step, plotting over
time an orbit around a center.
The angle of rotation is β (see also gravitational orbitals), the
β of atomic orbitals include an extra

√
2α term). The radius

of a basic (Bohr) orbital radius rorbital = 2αn2 (δ = 0).

Fig. 3: rotating orbital alpha step

On the 2-D plane
rorbital = 2αn2 (2)

vorbital =
1

2αn
(3)

β =
1

rorbital
√

rorbital
√

2α
(4)

And so for the basic orbital, where the orbital number n=1
and δ = 0, to complete 1 rotation of the alpha orbital by the
electron would require a period approximately 471964 steps,
where each step is the duration of 1 wave to point oscillation
(measured in Planck time units). However for the purpose of
the simulation (to reduce computation), only the alpha units
are calculated. The (inverse) alpha = 137.035999177 [7] is
used as this is the more familiar. The Bohr radius then be-
comes a physical construct of these 471964 alpha units added
together in series.

tre f = 2π4α2 ∼ 471964 (5)

3 Transition (theory)

The orbital radius is treated as physically analogous to the
photon albeit of inverse or reverse phase, and as such it is the
orbital radius that absorbs or ejects the photon during tran-
sition, in the process the orbital radius is extended (until the
photon is completely absorbed). Conversely the orbital radius
may eject a photon, the above in reverse. This process occurs
in steps, at each step the orbital radius continues to rotate,
the electron, being pulled along by this rotation according to
angle β, thereby describes a spiral path (fig.4) as the orbital
radius length changes (the electron has a passive role in the
transition phase).

2 2 Simulation
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The photon is divided into units of rincr which are equivalent
to alpha units albeit of reverse or inverse phase such that

rincr =
−1

2π2α
(6)

This repeats for the wavelength of the photon λphoton, until
the photon has been completely absorbed by, or ejected from,
the orbital radius (which in turn has extended or contracted
accordingly).

rorbital = rorbital − rincr (7)

Fig. 4: orbital radius absorbing units from the photon

If the wavelength of λphoton = the wavelength of the orbital
radius λorbital, and as these waves are of inverse phase, the
orbital radius will be deleted. This is defined as ionization.

λorbital + λphoton = zero (8)

However, an incoming photon separates into 2 photons (initial
and final) as per the Rydberg formula.

λphoton = R (
1
n2

i

−
1
n2

f

) =
R
n2

i

−
R
n2

f

(9)

λphoton = (λi) − (λ f )

The (λi) will subtract from the orbital radius as described
above, however the (λ f ), because of the Rydberg minus term
−(λ f ), will have the same phase as the orbital radius and
so conversely will increase the orbital radius (-rincr = αunit).
Therefore, for the duration of the (λi) photon wavelength, the
orbital radius does not change, as the +rincr (+λi) and -rincr

(-λ f ) segments cancel.

rorbital = rorbital + (λi) − (λ f ) = rorbital + rincr − rincr (10)

The (λ f ) has the longer wavelength, and so after (λi) has been
absorbed by the orbital radius, and for the remaining duration
of this photon wavelength, at each transition step the orbital
radius will be extended (fig.4).

At each step, as the orbital radius increases, the orbital ro-
tation angle β will conversely decrease, and as the velocity of

orbital rotation depends on β, the velocity will adjust accord-
ingly (for each step), thus we can also calculate the relativis-
tic velocity using the z-axis per step (see Hypersphere) rather
than estimating an average velocity for the transition.

For an ni=1 (λi = 1tre f ) to n f=2 (λ f = 4tre f ) orbital tran-
sition, the (λi) photon absorption by the ni=1 orbital requires
1tre f steps, the remaining (λ f ) still has 3tre f segments (of rincr)
left, and so transition continues for another 3tre f steps. A ni=2
to n f=3 transition would require t = 4tre f + (9-4)tre f steps.

In (figs. 5, 6), the electron begins in the ni=1 orbital ro-
tating anti-clockwise. A photon λphoton = (λ1s) − (λ2s) strikes
this orbital raising the electron to the n = 2 orbital in discrete
steps. A 2nd photon λphoton = (λ2s) − (λ3s) then strikes this
orbital raising the electron to the n = 3 orbital. The spiral
pattern emerges because the electron is continuously pulled
in an anti-clockwise direction by the rotating orbital. Dur-
ing the transition phase, only the orbital radius changes, the
electron itself has a passive role.

Fig. 5: alpha orbital transition animation 2D [3]

Fig. 6: alpha orbital transition animation 3D [3]

3 3 Transition (theory)
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4 Hypersphere

The above is depicted on a 2D plane (in 3D space). If we
place the orbital in a 4D expanding hypersphere [4] then we
find the orbital is rotating at c in hypersphere co-ordinates [1].
In (fig. 7), while B has a circular orbit period on the 2-axis

Fig. 7: illustration of B’s orbit relative to the A time-line axis

δ-y plane (horizontal axis as 3-D space) around A (center
of mass), it also follows a cylindrical orbit (from B′ to B′′)
around the A (vertical) hyper-sphere time-line expansion axis
(the z-axis of the simulation). A moves with the universe ex-
pansion (along the time-line axis) at (v = c) but is stationary
in 3-D space (v = 0). B is orbiting A at (v = c) but the time-
line axis motion is equivalent (and so ‘invisible’) to both A
and B, as a result the orbital period and velocity measures will
be defined in terms of 3-D space co-ordinates by observers on
A and B giving the familiar formula [2].

td = t

√
1 −
v2

c2 (11)

5 Transition (method)

rorbital = (2α + δ) (12)

Period of orbit; lstep is the distance traveled along the x-y
plane (3D space) giving torbital as the period measured along
the orbital timeline (z-axis) in hyper-sphere co-ordinates.

torbital = ni2πrorbital

√
1 − l2step

lstep
(13)

Electron transition, raising the electron to a higher energy
level, can occur when a photon strikes. The incoming pho-
ton separates, torbital is the period of the λi photon.

λphoton = (+λi) + (−λ f ) (14)

Once λi has been absorbed, λ f continues adding to the orbital
radius until it too is absorbed, giving ttransition. For a transition
from an (n = i) initial orbital to (n = f ) final orbital, lstep is
a function of angle β and thus of radius (β, as a function of
radius, reduces as the radius extends), and so an lstep value
is calculated for each step, ttransition then becoming the total

period summed (from each lstep) over the transition. Periods
torbital and ttransition are then added.

Hni−n f = (n f − ni)
2c

(λe + λp)
1

(torbital + ttransition)
(15)

To calibrate the average radius (2α + δ) over the transition
process we can use the following frequencies.

H1s−2s = 2466 061 413 187.035 kHz( [5])
H1s−3s = 2922 743 278 665.79 kHz ( [6])
H1s−4s = 3082 581 563 822.63 kHz [7])

δ values for each n

raveraged = 2α + δns (16)

δ2s = −0.000954660863, 4r1s − r2s = 0.00124 (17)

δ3s = −0.001483071027, 9r1s − r3s = 0.00547 (18)

δ4s = −0.001672037031, 16r1s − r2s = 0.0123 (19)

Extrapolating

n2 = 2, δ = −0.000044356388 (20)

δ = 0, n2 = 1.951048816 (21)

Ionization energy/2

eV = 6.79922, δ = −0.00004437128 (22)

δ = 0, eV = 6.62856911 (23)

Ionization energy

n = 224, δ = −0.0019181476 (24)

eV = 13.59843797, δ = −0.0019181479 (25)

Measuring transition energy in eV, whereby 0eV would be a
state of no-transition (the electron remaining in the n = 1s
orbital). See atomic orbitals fig. 1, 2.

eV = 0, δ = 0.00163335174 (26)

δ = 0.00163335174, n = 1.00000723202 (27)

For clarity, if we shift our graph by δ = −0.00004437128 then
we see an apparent correlation between δ=0 and n=sqrt(2)
giving a classical Bohr radius λorbital = 2α(λe + λp)n2.

eV = 6.79922, δ = 0, n2 = 2.000016823 (28)

The Positronium 1s − 2s transition
P ( f1s−2s) = 1233 607 216.4 MHz [8]

rorbital = 2α + 0.01311882852 (29)

4 4 Hypersphere
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6 He atom

The above considered a charge equivalence, 1 electron to 1
proton. If we expose the electron to more charge, then we
can speculate on further changes to the orbital radius. To il-
lustrate this, in this example tre f = 471964 represents the ion-
ization energy of H = 13.59844 eV, we then divide this into
4 parts each of tre f /4 = 117986, with each part equivalent to
13.59844 eV. Under this scenario, if an electron orbits at a ra-
dius where torbit = 117986, then it will require 3*13.59844eV
to reach a base H orbital (tre f = 117986 + 3*117986) and then
a further 13.59844eV to ionize from there. Total ionization
energy = 4*13.59844eV = 54.4eV.

Ionization energies (1H = 13.59844 eV)

λHe =
lpmP

6.64465723010−27kg
= 0.529399491 10−16m (30)

The ionization energy of e2 = 4.00018*H (54.417760 eV,
43890887.89 1/m). Measured in orbital radius units;

te2 =
2

(λHe + λe)43890887.89
= tre f H/e2 = 117986 (31)

e1 = 24.587387 eV (19831066.9 1/m)
te1 = tre f H/e1 = 261027

As the first He electron e1 is ionized (absorbing momentum),
the remaining He electron e2 drops to a lower orbital (ejecting
momentum), thus subsidizing the ionization of e1.

Fig. 8: He ionization; red electron dissociates forcing reduction in
blue electron radius (to the new n=1 orbital) [3]

What this means is that e1 can be at a lower orbital radius
(than for the 261027). For example, both electrons are orbit-
ing at a reduced radius whereby torbit ∼ 247310. From there
for e1 to reach tre f requires 1.904H, but as e2 simultaneously
drops to 117986 (-1.096H), it transfers momentum in the pro-
cess to e1 (1.904-1.096 = 0.8081). From tre f , e1 then requires

Fig. 9: subsequent He transition n=1 to n=2 (blue electron) [3]

1H to ionize; He -> He+ = 1.8081H = 24.58 eV. Note, if we
were to simultaneously ionize both electrons (He -> He2+),
then we would require 2.904H*2 = 78.98 eV. With only 1
electron remaining, the He atom is now treated as in the H
atom example albeit the orbital radius is (1/2)α.

7 Molecular bonding

Diatomic H2 atomic radius = 37pm. The orbital radius for
the H atom was calculated at 2α (the base orbital) * (λe +

λp) = 105.89pm. To simulate as a ’gravitational’ orbit (anti-
clockwise rotation with no allowance for charge); electrons
(mass=1 point), protons (mass=1836 points), number of point
to point orbitals = 6747301 [1]. We then adjust the distance
between the protons while maintaining the distance from each
electron to each proton = 105.89 respectively.

10.1. Proton start co-ordinates (0, 37) blue and (0, -37) red.
Electron start co-ordinates (-99, 0) and (99, 0). Orbit cen-
ter (0, 0). The electrons, although still 105.89pm from each
proton, are now closer to each other at 2*99.46pm.

The H2 ionization energy (15.426eV) is 1.1344x greater
than for the H atom (13.59844eV). Likewise combining the 2
electrons 105.89/99.46 = 1.06727 gives 1.13454.

Electrons 1/2 orbit, protons 1x orbit (fig.10), electrons 1x
orbit, protons 2x orbit (fig.11). Period of electron orbit (r =
99.46) = 174230 = 2.8*(2πr2).
10.2. Protons (0, 33) and (0, -33), electrons (-100.6, 0) and
(100.6, 0). At this radius the 2 protons act as a single center
mass resulting in a circular orbit (fig.12).
10.3. Protons (0, 75) and (0, -75), electrons (-75, 0) and (75,
0), (fig.13). Although the electrons begin at 105.89pm from
the protons, the electron path goes around the protons and the
orbital radius increases proportionately.

5 6 He atom
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Fig. 10: 74pm proton-proton separation; protons 1x orbit [3]

Fig. 11: 74pm proton-proton separation; protons 2x orbit [3]

Fig. 12: 66pm proton-proton separation; start (0, 33), (101, 0) [3]

Fig. 13: 150pm proton-proton separation; start (0, 75), (75, 0) [3]
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