
forallx
CALGARY

An Introduction to
Formal Logic

P. D. Magnus
Tim Button

with additions by
J. Robert Loftis

Robert Trueman
remixed and revised by

Aaron Thomas-Bolduc
Richard Zach

Fall 2020

forall x: Calgary
An Introduction to

Formal Logic

By P. D. Magnus
Tim Button

with additions by
J. Robert Loftis

Robert Trueman
remixed and revised by

Aaron Thomas-Bolduc
Richard Zach

Fall 2020

This book is based on forallx: Cambridge, by Tim Button (University
College London), used under a CC BY 4.0 license, which is based in
turn on forallx, by P.D. Magnus (University at Albany, State Univer-
sity of New York), used under a CC BY 4.0 license, and was remixed,
revised, & expanded by Aaron Thomas-Bolduc & Richard Zach (Uni-
versity of Calgary). It includes additional material from forallx by
P.D. Magnus and Metatheory by Tim Button, used under a CC BY 4.0
license, from forallx: Lorain County Remix, by Cathal Woods and J.
Robert Loftis, and from A Modal Logic Primer by Robert Trueman, used
with permission.

This work is licensed under a Creative Commons Attribution 4.0 license. You
are free to copy and redistribute the material in any medium or format, and
remix, transform, and build upon the material for any purpose, even commer-
cially, under the following terms:

⊲ You must give appropriate credit, provide a link to the license, and
indicate if changes were made. You may do so in any reasonable manner,
but not in any way that suggests the licensor endorses you or your use.

⊲ You may not apply legal terms or technological measures that legally
restrict others from doing anything the license permits.

The LATEX source for this book is available on GitHub and at
forallx.openlogicproject.org. This version is revision 928b2aa
(2020-08-05).

The preparation of this textbook was made possible by a grant
from the Taylor Institute for Teaching and Learning.

Cover design by Mark Lyall.

http://people.ds.cam.ac.uk/tecb2/forallx.shtml
http://nottub.com/
https://creativecommons.org/licenses/by/4.0/
https://www.fecundity.com/logic/
https://www.fecundity.com/job/
https://creativecommons.org/licenses/by/4.0/
https://richardzach.org/
http://people.ds.cam.ac.uk/tecb2/metatheory.shtml
https://creativecommons.org/licenses/by/4.0/
https://github.com/rob-helpy-chalk/openintroduction
https://sites.google.com/site/cathalwoods/
http://www.rtrueman.com/uploads/7/0/3/2/70324387/modal_logic_primer.pdf
http://www.rtrueman.com/
https://creativecommons.org/licenses/by/4.0/
https://github.com/rzach/forallx-yyc/
https://forallx.openlogicproject.org
https://www.ucalgary.ca/taylorinstitute/
https://www.ucalgary.ca/taylorinstitute/

Contents
Preface vi

I Key notions of logic 1

1 Arguments 2
2 The scope of logic 7
3 Other logical notions 18

II Truth-functional logic 26

4 First steps to symbolization 27
5 Connectives 32
6 Sentences of TFL 49
7 Ambiguity 56
8 Use and mention 62

III Truth tables 68

9 Characteristic truth tables 69
10 Truth-functional connectives 72
11 Complete truth tables 77
12 Semantic concepts 85

iii

CONTENTS iv

13 Truth table shortcuts 96
14 Partial truth tables 101

IV Natural deduction for TFL 108

15 The very idea of natural deduction 109
16 Basic rules for TFL 112
17 Constructing proofs 141
18 Additional rules for TFL 161
19 Proof-theoretic concepts 169
20 Derived rules 173
21 Soundness and completeness 181

V First-order logic 190

22 Building blocks of FOL 191
23 Sentences with one quantifier 200
24 Multiple generality 214
25 Identity 228
26 Sentences of FOL 234
27 Definite descriptions 242
28 Ambiguity 252

VI Interpretations 256

29 Extensionality 257
30 Truth in FOL 264
31 Semantic concepts 274
32 Using interpretations 276
33 Reasoning about interpretations 284

CONTENTS v

VII Natural deduction for FOL 288

34 Basic rules for FOL 289
35 Proofs with quantifiers 305
36 Conversion of quantifiers 312
37 Rules for identity 315
38 Derived rules 319
39 Proofs and semantics 321

VIII Modal logic 325

40 Introducing modal logic 326
41 Natural deduction for ML 330
42 Semantics for ML 343

IX Metatheory 356

43 Normal forms 357
44 Functional completeness 363
45 Soundness 369

Appendices 378

A Symbolic notation 378
B Alternative proof systems 383
C Quick reference 390

Glossary 400

Preface
As the title indicates, this is a textbook on formal logic. For-
mal logic concerns the study of a certain kind of language which,
like any language, can serve to express states of affairs. It is a
formal language, i.e., its expressions (such as sentences) are de-
fined formally. This makes it a very useful language for being
very precise about the states of affairs its sentences describe. In
particular, in formal logic it is impossible to be ambiguous. The
study of these languages centres on the relationship of entailment
between sentences, i.e., which sentences follow from which other
sentences. Entailment is central because by understanding it bet-
ter we can tell when some states of affairs must obtain provided
some other states of affairs obtain. But entailment is not the only
important notion. We will also consider the relationship of be-
ing satisfiable, i.e., of not being mutually contradictory. These
notions can be defined semantically, using precise definitions of
entailment based on interpretations of the language—or proof-
theoretically, using formal systems of deduction.

Formal logic is of course a central sub-discipline of philoso-
phy, where the logical relationship of assumptions to conclusions
reached from them is important. Philosophers investigate the
consequences of definitions and assumptions and evaluate these
definitions and assumptions on the basis of their consequences.
It is also important in mathematics and computer science. In
mathematics, formal languages are used to describe not “every-

vi

PREFACE vii

day” states of affairs, but mathematical states of affairs. Mathe-
maticians are also interested in the consequences of definitions
and assumptions, and for them it is equally important to estab-
lish these consequences (which they call “theorems”) using com-
pletely precise and rigorous methods. Formal logic provides such
methods. In computer science, formal logic is applied to describe
the state and behaviours of computational systems, e.g., circuits,
programs, databases, etc. Methods of formal logic can likewise
be used to establish consequences of such descriptions, such as
whether a circuit is error-free, whether a program does what it’s
intended to do, whether a database is consistent or if something
is true of the data in it.

The book is divided into nine parts. Part I introduces the
topic and notions of logic in an informal way, without introduc-
ing a formal language yet. Parts II–IV concern truth-functional
languages. In it, sentences are formed from basic sentences using
a number of connectives (‘or’, ‘and’, ‘not’, ‘if . . . then’) which just
combine sentences into more complicated ones. We discuss log-
ical notions such as entailment in two ways: semantically, using
the method of truth tables (in Part III) and proof-theoretically, us-
ing a system of formal derivations (in Part IV). Parts V–VII deal
with a more complicated language, that of first-order logic. It in-
cludes, in addition to the connectives of truth-functional logic,
also names, predicates, identity, and the so-called quantifiers.
These additional elements of the language make it much more
expressive than the truth-functional language, and we’ll spend
a fair amount of time investigating just how much one can ex-
press in it. Again, logical notions for the language of first-order
logic are defined semantically, using interpretations, and proof-
theoretically, using a more complex version of the formal deriva-
tion system introduced in Part IV. Part VIII discusses the exten-
sion of TFL by non-truth-functional operators for possibility and
necessity: modal logic. Part IX covers two advanced topics: that
of conjunctive and disjunctive normal forms and the functional
completeness of the truth-functional connectives, and the sound-
ness of natural deduction for TFL.

PREFACE viii

In the appendices you’ll find a discussion of alternative no-
tations for the languages we discuss in this text, of alternative
derivation systems, and a quick reference listing most of the im-
portant rules and definitions. The central terms are listed in a
glossary at the very end.

This book is based on a text originally written by P. D. Mag-
nus in the version revised and expanded by Tim Button. It also
includes some material (mainly exercises) by J. Robert Loftis.
The material in Part VIII is based on notes by Robert Trueman,
and the material in Part IX on two chapters from Tim Button’s
open text Metatheory. Aaron Thomas-Bolduc and Richard Zach
have combined elements of these texts into the present version,
changed some of the terminology and examples, rewritten some
sections, and added material of their own. The resulting text is
licensed under a Creative Commons Attribution 4.0 license.

PART I

Key notions of
logic

1

CHAPTER 1

Arguments
Logic is the business of evaluating arguments; sorting the good
from the bad.

In everyday language, we sometimes use the word ‘argument’
to talk about belligerent shouting matches. If you and a friend
have an argument in this sense, things are not going well between
the two of you. Logic is not concerned with such teeth-gnashing
and hair-pulling. They are not arguments, in our sense; they are
just disagreements.

An argument, as we will understand it, is something more
like this:

Either the butler or the gardener did it.
The butler didn’t do it.

∴ The gardener did it.

We here have a series of sentences. The three dots on the third
line of the argument are read ‘therefore.’ They indicate that the
final sentence expresses the conclusion of the argument. The two
sentences before that are the premises of the argument. If you be-
lieve the premises, and you think the conclusion follows from the
premises—that the argument, as we will say, is valid—then this
(perhaps) provides you with a reason to believe the conclusion.

This is the sort of thing that logicians are interested in. We
will say that an argument is any collection of premises, together
with a conclusion.

2

CHAPTER 1. ARGUMENTS 3

This Part discusses some basic logical notions that apply to
arguments in a natural language like English. It is important to
begin with a clear understanding of what arguments are and of
what it means for an argument to be valid. Later we will translate
arguments from English into a formal language. We want formal
validity, as defined in the formal language, to have at least some
of the important features of natural-language validity.

In the example just given, we used individual sentences to
express both of the argument’s premises, and we used a third
sentence to express the argument’s conclusion. Many arguments
are expressed in this way, but a single sentence can contain a
complete argument. Consider:

The butler has an alibi; so they cannot have done it.

This argument has one premise followed by a conclusion.
Many arguments start with premises, and end with a conclu-

sion, but not all of them. The argument with which this section
began might equally have been presented with the conclusion at
the beginning, like so:

The gardener did it. After all, it was either the butler
or the gardener. And the butler didn’t do it.

Equally, it might have been presented with the conclusion in the
middle:

The butler didn’t do it. Accordingly, it was the gar-
dener, given that it was either the gardener or the
butler.

When approaching an argument, we want to know whether or not
the conclusion follows from the premises. So the first thing to do
is to separate out the conclusion from the premises. As a guide,
these words are often used to indicate an argument’s conclusion:

so, therefore, hence, thus, accordingly, consequently

CHAPTER 1. ARGUMENTS 4

For this reason, they are sometimes called conclusion indica-
tor words.

By contrast, these expressions are premise indicator
words, as they often indicate that we are dealing with a premise,
rather than a conclusion:

since, because, given that

But in analysing an argument, there is no substitute for a good
nose.

1.1 Sentences

To be perfectly general, we can define an argument as a series
of sentences. The sentences at the beginning of the series are
premises. The final sentence in the series is the conclusion. If
the premises are true and the argument is a good one, then you
have a reason to accept the conclusion.

In logic, we are only interested in sentences that can figure as
a premise or conclusion of an argument, i.e., sentences that can
be true or false. So we will restrict ourselves to sentences of this
sort, and define a sentence as a sentences that can be true or
false.

You should not confuse the idea of a sentence that can be
true or false with the difference between fact and opinion. Often,
sentences in logic will express things that would count as facts—
such as ‘Kierkegaard was a hunchback’ or ‘Kierkegaard liked al-
monds.’ They can also express things that you might think of as
matters of opinion—such as, ‘Almonds are tasty.’ In other words,
a sentence is not disqualified from being part of an argument be-
cause we don’t know if it is true or false, or because its truth
or falsity is a matter of opinion. If it is the kind of sentence that
could be true or false it can play the role of premise or conclusion.

Also, there are things that would count as ‘sentences’ in a
linguistics or grammar course that we will not count as sentences
in logic.

CHAPTER 1. ARGUMENTS 5

Questions In a grammar class, ‘Are you sleepy yet?’ would
count as an interrogative sentence. Although you might be sleepy
or you might be alert, the question itself is neither true nor false.
For this reason, questions will not count as sentences in logic.
Suppose you answer the question: ‘I am not sleepy.’ This is either
true or false, and so it is a sentence in the logical sense. Generally,
questions will not count as sentences, but answers will.

‘What is this course about?’ is not a sentence (in our sense).
‘No one knows what this course is about’ is a sentence.

Imperatives Commands are often phrased as imperatives like
‘Wake up!’, ‘Sit up straight’, and so on. In a grammar class, these
would count as imperative sentences. Although it might be good
for you to sit up straight or it might not, the command is neither
true nor false. Note, however, that commands are not always
phrased as imperatives. ‘You will respect my authority’ is either
true or false—either you will or you will not—and so it counts as
a sentence in the logical sense.

Exclamations ‘Ouch!’ is sometimes called an exclamatory sen-
tence, but it is neither true nor false. We will treat ‘Ouch, I hurt
my toe!’ as meaning the same thing as ‘I hurt my toe.’ The ‘ouch’
does not add anything that could be true or false.

Practice exercises

At the end of some chapters, there are exercises that review and
explore the material covered in the chapter. There is no substitute
for actually working through some problems, because learning
logic is more about developing a way of thinking than it is about
memorizing facts.

So here’s the first exercise. Highlight the phrase which ex-
presses the conclusion of each of these arguments:

1. It is sunny. So I should take my sunglasses.

CHAPTER 1. ARGUMENTS 6

2. It must have been sunny. I did wear my sunglasses, after
all.

3. No one but you has had their hands in the cookie-jar. And
the scene of the crime is littered with cookie-crumbs. You’re
the culprit!

4. Miss Scarlett and Professor Plum were in the study at the
time of the murder. Reverend Green had the candlestick
in the ballroom, and we know that there is no blood on his
hands. Hence Colonel Mustard did it in the kitchen with
the lead pipe. Recall, after all, that the gun had not been
fired.

CHAPTER 2

The scope of
logic
2.1 Consequence and validity

In §1, we talked about arguments, i.e., a collection of sentences
(the premises), followed by a single sentence (the conclusion).
We said that some words, such as “therefore,” indicate which
sentence in is supposed to be the conclusion. “Therefore,” of
course, suggests that there is a connection between the premises
and the conclusion, namely that the conclusion follows from, or is
a consequence of, the premises.

This notion of consequence is one of the primary things logic
is concerned with. One might even say that logic is the science of
what follows from what. Logic develops theories and tools that
tell us when a sentence follows from some others.

What about the main argument discussed in §1?

Either the butler or the gardener did it.
The butler didn’t do it.

∴ The gardener did it.

We don’t have any context for what the sentences in this argu-
ment refer to. Perhaps you suspect that “did it” here means “was

7

CHAPTER 2. THE SCOPE OF LOGIC 8

the perpetrator” of some unspecified crime. You might imagine
that the argument occurs in a mystery novel or TV show, per-
haps spoken by a detective working through the evidence. But
even without having any of this information, you probably agree
that the argument is a good one in the sense that whatever the
premises refer to, if they are both true, the conclusion cannot but
be true as well. If the first premise is true, i.e., it’s true that “the
butler did it or the gardener did it,” then at least one of them
“did it,” whatever that means. And if the second premise is true,
then the butler did not “do it.” That leaves only one option: “the
gardener did it” must be true. Here, the conclusion follows from
the premises. We call arguments that have this property valid.

By way of contrast, consider the following argument:

If the driver did it, the maid didn’t do it.
The maid didn’t do it.

∴ The driver did it.

We still have no idea what is being talked about here. But, again,
you probably agree that this argument is different from the pre-
vious one in an important respect. If the premises are true, it is
not guaranteed that the conclusion is also true. The premises of
this argument do not rule out, by themselves, that someone other
than the maid or the driver “did it.” So there is a case where both
premises are true, and yet the driver didn’t do it, i.e., the conclu-
sion is not true. In this second argument, the conclusion does not
follow from the premises. If, like in this argument, the conclusion
does not follow from the premises, we say it is invalid.

2.2 Cases and types of validity

How did we determine that the second argument is invalid? We
pointed to a case in which the premises are true and in which the
conclusion is not. This was the scenario where neither the driver
nor the maid did it, but some third person did. Let’s call such a

CHAPTER 2. THE SCOPE OF LOGIC 9

case a counterexample to the argument. If there is a counterex-
ample to an argument, the conclusion cannot be a consequence
of the premises. For the conclusion to be a consequence of the
premises, the truth of the premises must guarantee the truth of
the conclusion. If there is a counterexample, the truth of the
premises does not guarantee the truth of the conclusion.

As logicians, we want to be able to determine when the
conclusion of an argument follows from the premises. And
the conclusion is a consequence of the premises if there is no
counterexample—no case where the premises are all true but the
conclusion is not. This motivates a definition:

A sentence A is a consequence of sentences B1, . . . , Bn if
and only if there is no case where B1, . . . , Bn are all true
and A is not true. (We then also say that A follows from
B1, . . . , Bn or that B1, . . . , Bn entail A.)

This “definition” is incomplete: it does not tell us what a
“case” is or what it means to be “true in a case.” So far we’ve
only seen an example: a hypothetical scenario involving three
people. Of the three people in the scenario—a driver, a maid,
and some third person—the driver and maid didn’t do it, but the
third person did. In this scenario, as described, the driver didn’t
do it, and so it is a case in which the sentence “the driver did it”
is not true. The premises of our second argument are true, but
the conclusion is not true: the scenario is a counterexample.

We said that arguments where the conclusion is a conse-
quence of the premises are called valid, and those where the con-
clusion isn’t a consequence of the premises are invalid. Since we
now have at least a first stab at a definition of “consequence,”
we’ll record this:

An argument is valid if and only if the conclusion is a
consequence of the premises.

CHAPTER 2. THE SCOPE OF LOGIC 10

An argument is invalid if and only if it is not valid, i.e.,
it has a counterexample.

Logicians are in the business of making the notion of “case”
more precise, and investigating which arguments are valid when
“case” is made precise in one way or another. If we take “case” to
mean “hypothetical scenario” like the counterexample to the sec-
ond argument, it’s clear that the first argument counts as valid. If
we imagine a scenario in which either the butler or the gardener
did it, and also the butler didn’t do it, we are automatically imag-
ining a scenario in which the gardener did it. So any hypothetical
scenario in which the premises of our first argument are true au-
tomatically makes the conclusion of our first argument true. This
makes the first argument valid.

Making “case” more specific by interpreting it as “hypothet-
ical scenario” is an advance. But it is not the end of the story.
The first problem is that we don’t know what to count as a hy-
pothetical scenario. Are they limited by the laws of physics? By
what is conceivable, in a very general sense? What answers we
give to these questions determine which arguments we count as
valid.

Suppose the answer to the first question is “yes.” Consider
the following argument:

The spaceship Rocinante took six hours to reach Jupiter
from Tycho space station.

∴ The distance between Tycho space station and Jupiter is
less than 14 billion kilometers.

A counterexample to this argument would be a scenario in which
the Rocinante makes a trip of over 14 billion kilometers in 6 hours,
exceeding the speed of light. Since such a scenario is incompat-
ible with the laws of physics, there is no such scenario if hypo-
thetical scenarios have to conform to the laws of physics. If hypo-
thetical scenarios are not limited by the laws of physics, however,

CHAPTER 2. THE SCOPE OF LOGIC 11

there is a counterexample: a scenario where the Rocinante travels
faster than the speed of light.

Suppose the answer to the second question is “yes,” and con-
sider another argument:

Priya is an ophthalmologist.
∴ Priya is an eye doctor.

If we’re allowing only conceivable scenarios, this is also a valid
argument. If you imagine Priya being an ophthalmologist, you
thereby imagine Priya being an eye doctor. That’s just what “oph-
thalmologist” and “eye doctor” mean. A scenario where Priya is
an ophthalmologist but not an eye doctor is ruled out by the con-
ceptual connection between these words.

Depending on what kinds of cases we consider as potential
counterexamples, then, we arrive at different notions of conse-
quence and validity. We might call an argument nomologically
valid if there are no counterexamples that don’t violate the laws
of nature, and an argument conceptually valid if there are no
counterexamples that don’t violate conceptual connections be-
tween words. For both of these notions of validity, aspects of the
world (e.g., what the laws of nature are) and aspects of the mean-
ing of the sentences in the argument (e.g., that “ophthalmologist”
just means a kind of eye doctor) figure into whether an argument
is valid.

2.3 Formal validity

One distinguishing feature of logical consequence, however, is
that it should not depend on the content of the premises and
conclusion, but only on their logical form. In other words, as
logicians we want to develop a theory that can make finer-grained
distinctions still. For instance, both

Either Priya is an ophthalmologist or a dentist.
Priya isn’t a dentist.

CHAPTER 2. THE SCOPE OF LOGIC 12

∴ Priya is an eye doctor.

and

Either Priya is an ophthalmologist or a dentist.
Priya isn’t a dentist.

∴ Priya is an ophthalmologist.

are valid arguments. But while the validity of the first depends on
the content (i.e., the meaning of “ophthalmologist” and “eye doc-
tor”), the second does not. The second argument is formally
valid. We can describe the “form” of this argument as a pattern,
something like this:

Either A is an X or aY .
A isn’t aY .

∴ A is an X .

Here, A, X , and Y are placeholders for appropriate expressions
that, when substituted for A, X , and Y , turn the pattern into an
argument consisting of sentences. For instance,

Either Mei is a mathematician or a botanist.
Mei isn’t a botanist.

∴ Mei is a mathematician.

is an argument of the same form, but the first argument above is
not: we would have to replace Y by different expressions (once
by “ophthalmologist” and once by “eye doctor”) to obtain it from
the pattern.

Moreover, the first argument is not formally valid. Its form is
this:

Either A is an X or aY .
A isn’t aY .

∴ A is a Z .

In this pattern we can replace X by “ophthalmologist” and Z by
“eye doctor” to obtain the original argument. But here is another
argument of the same form:

CHAPTER 2. THE SCOPE OF LOGIC 13

Either Mei is a mathematician or a botanist.
Mei isn’t a botanist.

∴ Mei is an acrobat.

This argmuent is clearly not valid, since we can imagine a math-
ematician named Mei who is not an acrobat.

Our strategy as logicians will be to come up with a notion of
“case” on which an argument turns out to be valid if it is formally
valid. Clearly such a notion of “case” will have to violate not just
some laws of nature but some laws of English. Since the first ar-
gument is invalid in this sense, we must allow as counterexample
a case where Priya is an ophthalmologist but not an eye doctor.
That case is not a conceivable situation: it is ruled out by the
meanings of “ophthalmologist” and “eye doctor.”

When we consider cases of various kinds in order to evaluate
the validity of an argument, we will make a few assumptions. The
first assumption is that every case makes every sentence true or
not true—at least, every sentence in the argument under consid-
eration. That means first of all that any imagined scenario which
leaves it undetermined if a sentence in our argument is true will
not be considered as a potential counterexample. For instance,
a scenario where Priya is a dentist but not an ophthalmologist
will count as a case to be considered in the first few arguments
in this section, but not as a case to be considered in the last two:
it doesn’t tell us if Mei is a mathematician, a botanist, or an ac-
robat. If a case doesn’t make a sentence true, we say it makes it
false. We’ll thus assume that cases make sentences true or false
but never both.1

1Even if these assumptions seem common-sensical to you, they are contro-
versial among philosophers of logic. First of all, there are logicians who want to
consider cases where sentences are neither true nor false, but have some kind
of intermediate level of truth. More controversially, some philosophers think
we should allow for the possibility of sentences to be both true and false at the
same time. There are systems of logic in which sentences can be neither true
nor false, or both, but we will not discuss them in this book.

CHAPTER 2. THE SCOPE OF LOGIC 14

2.4 Sound arguments

Before we go on and execute this strategy, a few clarifications.
Arguments in our sense, as conclusions which (supposedly) fol-
low from premises, are of course used all the time in everyday
and scientific discourse. When they are, arguments are given to
support or even prove their conclusions. Now, if an argument is
valid, it will support its conclusion, but only if its premises are all
true. Validity rules out the possibility that the premises are true
and the conclusion is not true at the same time. It does not, by
itself, rule out the possibility that the conclusion is not true, pe-
riod. In other words, it is perfectly possibly for a valid argument
to have a conclusion that isn’t true!

Consider this example:

Oranges are either fruit or musical instruments.
Oranges are not fruit.

∴ Oranges are musical instruments.

The conclusion of this argument is ridiculous. Nevertheless, it
follows from the premises. If both premises are true, then the
conclusion just has to be true. So the argument is valid.

Conversely, having true premises and a true conclusion is not
enough to make an argument valid. Consider this example:

London is in England.
Beijing is in China.

∴ Paris is in France.

The premises and conclusion of this argument are, as a matter of
fact, all true, but the argument is invalid. If Paris were to declare
independence from the rest of France, then the conclusion would
no longer be true, even though both of the premises would remain
true. Thus, there is a case where the premises of this argument
are true without the conclusion being true. So the argument is
invalid.

The important thing to remember is that validity is not about
the actual truth or falsity of the sentences in the argument. It is

CHAPTER 2. THE SCOPE OF LOGIC 15

about whether it is possible for all the premises to be true and the
conclusion to be not true at the same time (in some hypothetical
case). What is in fact the case has no special role to play; and
what the facts are does not determine whether an argument is
valid or not.2 Nothing about the way things are can by itself de-
termine if an argument is valid. It is often said that logic doesn’t
care about feelings. Actually, it doesn’t care about facts, either.

When we use an argument to prove that its conclusion is true,
then, we need two things. First, we need the argument to be valid,
i.e., we need the conclusion to follow from the premises. But we
also need the premises to be true. We will say that an argument
is sound if and only if it is both valid and all of its premises are
true.

The flip side of this is that when you want to rebut an argu-
ment, you have two options: you can show that (one or more of)
the premises are not true, or you can show that the argument is
not valid. Logic, however, will only help you with the latter!

2.5 Inductive arguments

Many good arguments are invalid. Consider this one:

Every winter so far, it has snowed in Calgary.
∴ It will snow in Calgary this coming winter.

This argument generalises from observations about many (past)
cases to a conclusion about all (future) cases. Such arguments
are called inductive arguments. Nevertheless, the argument is
invalid. Even if it has snowed in Calgary every winter thus far, it
remains possible that Calgary will stay dry all through the coming
winter. In fact, even if it will henceforth snow every January in
Calgary, we could still imagine a case in which this year is the first
year it doesn’t snow all winter. And that hypothetical scenario

2Well, there is one case where it does: if the premises are in fact true and
the conclusion is in fact not true, then we live in a counterexample; so the
argument is invalid.

CHAPTER 2. THE SCOPE OF LOGIC 16

is a case where the premises of the argument are true but the
conclusion is not, making the argument invalid.

The point of all this is that inductive arguments—even good
inductive arguments—are not (deductively) valid. They are not
watertight. Unlikely though it might be, it is possible for their con-
clusion to be false, even when all of their premises are true. In
this book, we will set aside (entirely) the question of what makes
for a good inductive argument. Our interest is simply in sorting
the (deductively) valid arguments from the invalid ones.

So: we are interested in whether or not a conclusion follows
from some premises. Don’t, though, say that the premises infer
the conclusion. Entailment is a relation between premises and
conclusions; inference is something we do. So if you want to
mention inference when the conclusion follows from the premises,
you could say that one may infer the conclusion from the premises.

Practice exercises

A. Which of the following arguments are valid? Which are in-
valid?

1. Socrates is a man.
2. All men are carrots.
∴ Socrates is a carrot.

1. Abe Lincoln was either born in Illinois or he was once pres-
ident.

2. Abe Lincoln was never president.
∴ Abe Lincoln was born in Illinois.

1. If I pull the trigger, Abe Lincoln will die.
2. I do not pull the trigger.
∴ Abe Lincoln will not die.

1. Abe Lincoln was either from France or from Luxemborg.
2. Abe Lincoln was not from Luxemborg.

CHAPTER 2. THE SCOPE OF LOGIC 17

∴ Abe Lincoln was from France.

1. If the world ends today, then I will not need to get up to-
morrow morning.

2. I will need to get up tomorrow morning.
∴ The world will not end today.

1. Joe is now 19 years old.
2. Joe is now 87 years old.
∴ Bob is now 20 years old.

B. Could there be:

1. A valid argument that has one false premise and one true
premise?

2. A valid argument that has only false premises?
3. A valid argument with only false premises and a false con-

clusion?
4. An invalid argument that can be made valid by the addition

of a new premise?
5. A valid argument that can be made invalid by the addition

of a new premise?

In each case: if so, give an example; if not, explain why not.

CHAPTER 3

Other logical
notions
In §2, we introduced the ideas of consequence and of valid argu-
ment. This is one of the most important ideas in logic. In this
section, we will introduce are some similarly important ideas.
They all rely, as did validity, on the idea that sentences are true
(or not) in cases. For the rest of this section, we’ll take cases
in the sense of conceivable scenario, i.e., in the sense in which
we used them to define conceptual validity. The points we made
about different kinds of validity can be made about our new no-
tions along similar lines: if we use a different idea of what counts
as a “case” we will get different notions. And as logicians we will,
eventually, consider a more permissive definition of case than we
do here.

3.1 Joint possibility

Consider these two sentences:

B1. Jane’s only brother is shorter than her.
B2. Jane’s only brother is taller than her.

18

CHAPTER 3. OTHER LOGICAL NOTIONS 19

Logic alone cannot tell us which, if either, of these sentences is
true. Yet we can say that if the first sentence (B1) is true, then
the second sentence (B2) must be false. Similarly, if B2 is true,
then B1 must be false. There is no possible scenario where both
sentences are true together. These sentences are incompatible
with each other, they cannot all be true at the same time. This
motivates the following definition:

Sentences are jointly possible if and only if there is a
case where they are all true together.

B1 and B2 are jointly impossible, while, say, the following two
sentences are jointly possible:

B1. Jane’s only brother is shorter than her.
B2. Jane’s only brother is younger than her.

We can ask about the joint possibility of any number of sen-
tences. For example, consider the following four sentences:

G1. There are at least four giraffes at the wild animal park.
G2. There are exactly seven gorillas at the wild animal park.
G3. There are not more than two martians at the wild animal

park.
G4. Every giraffe at the wild animal park is a martian.

G1 and G4 together entail that there are at least four martian
giraffes at the park. This conflicts with G3, which implies that
there are no more than two martian giraffes there. So the sen-
tences G1–G4 are jointly impossible. They cannot all be true
together. (Note that the sentences G1, G3 and G4 are jointly im-
possible. But if sentences are already jointly impossible, adding
an extra sentence to the mix cannot make them jointly possible!)

CHAPTER 3. OTHER LOGICAL NOTIONS 20

3.2 Necessary truths, necessary falsehoods,
and contingency

In assessing arguments for validity, we care about what would be
true if the premises were true, but some sentences just must be
true. Consider these sentences:

1. It is raining.
2. Either it is raining here, or it is not.
3. It is both raining here and not raining here.

In order to know if sentence 1 is true, you would need to look
outside or check the weather channel. It might be true; it might
be false. A sentence which is capable of being true and capa-
ble of being false (in different circumstances, of course) is called
contingent.

Sentence 2 is different. You do not need to look outside to
know that it is true. Regardless of what the weather is like, it is
either raining or it is not. That is a necessary truth.

Equally, you do not need to check the weather to determine
whether or not sentence 3 is true. It must be false, simply as a
matter of logic. It might be raining here and not raining across
town; it might be raining now but stop raining even as you finish
this sentence; but it is impossible for it to be both raining and
not raining in the same place and at the same time. So, whatever
the world is like, it is not both raining here and not raining here.
It is a necessary falsehood.

Something might always be true and still be contingent. For
instance, if there never were a time when the universe contained
fewer than seven things, then the sentence ‘At least seven things
exist’ would always be true. Yet the sentence is contingent: the
world could have been much, much smaller than it is, and then
the sentence would have been false.

CHAPTER 3. OTHER LOGICAL NOTIONS 21

3.3 Necessary equivalence

We can also ask about the logical relations between two sentences.
For example:

John went to the store after he washed the dishes.
John washed the dishes before he went to the store.

These two sentences are both contingent, since John might not
have gone to the store or washed dishes at all. Yet they must have
the same truth-value. If either of the sentences is true, then they
both are; if either of the sentences is false, then they both are.
When two sentences have the same truth value in every case, we
say that they are necessarily equivalent.

Summary of logical notions

⊲ An argument is valid if there is no case where the premises
are all true and the conclusion is not; it is invalid other-
wise.

⊲ A necessary truth is a sentence that is true in every case.

⊲ A necessary falsehood is a sentence that is false in every
case.

⊲ A contingent sentence is neither a necessary truth nor
a necessary falsehood; a sentence that is true in some case
and false in some other case.

⊲ Two sentences are necessarily equivalent if, in every
case, they are both true or both false.

⊲ A collection of sentences is jointly possible if there is a
case where they are all true together; it is jointly impos-
sible otherwise.

CHAPTER 3. OTHER LOGICAL NOTIONS 22

Practice exercises

A. For each of the following: Is it a necessary truth, a necessary
falsehood, or contingent?

1. Caesar crossed the Rubicon.
2. Someone once crossed the Rubicon.
3. No one has ever crossed the Rubicon.
4. If Caesar crossed the Rubicon, then someone has.
5. Even though Caesar crossed the Rubicon, no one has ever

crossed the Rubicon.
6. If anyone has ever crossed the Rubicon, it was Caesar.

B. For each of the following: Is it a necessary truth, a necessary
falsehood, or contingent?

1. Elephants dissolve in water.
2. Wood is a light, durable substance useful for building

things.
3. If wood were a good building material, it would be useful

for building things.
4. I live in a three story building that is two stories tall.
5. If gerbils were mammals they would nurse their young.

C.Which of the following pairs of sentences are necessarily equiv-
alent?

1. Elephants dissolve in water.
If you put an elephant in water, it will disintegrate.

2. All mammals dissolve in water.
If you put an elephant in water, it will disintegrate.

3. George Bush was the 43rd president.
Barack Obama is the 44th president.

4. Barack Obama is the 44th president.
Barack Obama was president immediately after the 43rd
president.

5. Elephants dissolve in water.
All mammals dissolve in water.

CHAPTER 3. OTHER LOGICAL NOTIONS 23

D.Which of the following pairs of sentences are necessarily equiv-
alent?

1. Thelonious Monk played piano.
John Coltrane played tenor sax.

2. Thelonious Monk played gigs with John Coltrane.
John Coltrane played gigs with Thelonious Monk.

3. All professional piano players have big hands.
Piano player Bud Powell had big hands.

4. Bud Powell suffered from severe mental illness.
All piano players suffer from severe mental illness.

5. John Coltrane was deeply religious.
John Coltrane viewed music as an expression of spirituality.

E. Consider the following sentences:

G1 There are at least four giraffes at the wild animal park.

G2 There are exactly seven gorillas at the wild animal park.

G3 There are not more than two Martians at the wild animal
park.

G4 Every giraffe at the wild animal park is a Martian.

Now consider each of the following collections of sentences.
Which are jointly possible? Which are jointly impossible?

1. Sentences G2, G3, and G4
2. Sentences G1, G3, and G4
3. Sentences G1, G2, and G4
4. Sentences G1, G2, and G3

F. Consider the following sentences.

M1 All people are mortal.

M2 Socrates is a person.

M3 Socrates will never die.

CHAPTER 3. OTHER LOGICAL NOTIONS 24

M4 Socrates is mortal.

Which combinations of sentences are jointly possible? Mark each
“possible” or “impossible.”

1. Sentences M1, M2, and M3
2. Sentences M2, M3, and M4
3. Sentences M2 and M3
4. Sentences M1 and M4
5. Sentences M1, M2, M3, and M4

G. Which of the following is possible? If it is possible, give an
example. If it is not possible, explain why.

1. A valid argument that has one false premise and one true
premise

2. A valid argument that has a false conclusion
3. A valid argument, the conclusion of which is a necessary

falsehood
4. An invalid argument, the conclusion of which is a necessary

truth
5. A necessary truth that is contingent
6. Two necessarily equivalent sentences, both of which are

necessary truths
7. Two necessarily equivalent sentences, one of which is a nec-

essary truth and one of which is contingent
8. Two necessarily equivalent sentences that together are

jointly impossible
9. A jointly possible collection of sentences that contains a

necessary falsehood
10. A jointly impossible set of sentences that contains a neces-

sary truth

H. Which of the following is possible? If it is possible, give an
example. If it is not possible, explain why.

1. A valid argument, whose premises are all necessary truths,
and whose conclusion is contingent

CHAPTER 3. OTHER LOGICAL NOTIONS 25

2. A valid argument with true premises and a false conclusion
3. A jointly possible collection of sentences that contains two

sentences that are not necessarily equivalent
4. A jointly possible collection of sentences, all of which are

contingent
5. A false necessary truth
6. A valid argument with false premises
7. A necessarily equivalent pair of sentences that are not

jointly possible
8. A necessary truth that is also a necessary falsehood
9. A jointly possible collection of sentences that are all neces-

sary falsehoods

PART II

Truth-
functional
logic

26

CHAPTER 4

First steps to
symbolization
4.1 Validity in virtue of form

Consider this argument:

It is raining outside.
If it is raining outside, then Jenny is miserable.

∴ Jenny is miserable.

and another argument:

Jenny is an anarcho-syndicalist.
If Jenny is an anarcho-syndicalist, then Dipan is an avid
reader of Tolstoy.

∴ Dipan is an avid reader of Tolstoy.

Both arguments are valid, and there is a straightforward sense in
which we can say that they share a common structure. We might
express the structure thus:

A
If A, then C

∴ C

27

CHAPTER 4. FIRST STEPS TO SYMBOLIZATION 28

This looks like an excellent argument structure. Indeed, surely
any argument with this structure will be valid, and this is not the
only good argument structure. Consider an argument like:

Jenny is either happy or sad.
Jenny is not happy.

∴ Jenny is sad.

Again, this is a valid argument. The structure here is something
like:

A or B
not-A

∴ B

A superb structure! Here is another example:

It’s not the case that Jim both studied hard and acted in
lots of plays.
Jim studied hard

∴ Jim did not act in lots of plays.

This valid argument has a structure which we might represent
thus:

not-(A and B)
A

∴ not-B

These examples illustrate an important idea, which we might de-
scribe as validity in virtue of form. The validity of the arguments
just considered has nothing very much to do with the meanings
of English expressions like ‘Jenny is miserable’, ‘Dipan is an avid
reader of Tolstoy’, or ‘Jim acted in lots of plays’. If it has to do
with meanings at all, it is with the meanings of phrases like ‘and’,
‘or’, ‘not,’ and ‘if. . . , then. . . ’.

In Parts II–IV, we are going to develop a formal language
which allows us to symbolize many arguments in such a way as
to show that they are valid in virtue of their form. That language
will be truth-functional logic, or TFL.

CHAPTER 4. FIRST STEPS TO SYMBOLIZATION 29

4.2 Validity for special reasons

There are plenty of arguments that are valid, but not for reasons
relating to their form. Take an example:

Juanita is a vixen
∴ Juanita is a fox

It is impossible for the premise to be true and the conclusion false.
So the argument is valid. However, the validity is not related to
the form of the argument. Here is an invalid argument with the
same form:

Juanita is a vixen
∴ Juanita is a cathedral

This might suggest that the validity of the first argument is keyed
to the meaning of the words ‘vixen’ and ‘fox’. But, whether or
not that is right, it is not simply the shape of the argument that
makes it valid. Equally, consider the argument:

The sculpture is green all over.
∴ The sculpture is not red all over.

Again, it seems impossible for the premise to be true and the
conclusion false, for nothing can be both green all over and red
all over. So the argument is valid, but here is an invalid argument
with the same form:

The sculpture is green all over.
∴ The sculpture is not shiny all over.

The argument is invalid, since it is possible to be green all over
and shiny all over. (One might paint their nails with an elegant
shiny green varnish.) Plausibly, the validity of the first argument
is keyed to the way that colours (or colour-words) interact, but,
whether or not that is right, it is not simply the shape of the argu-
ment that makes it valid.

The important moral can be stated as follows. At best, TFL
will help us to understand arguments that are valid due to their form.

CHAPTER 4. FIRST STEPS TO SYMBOLIZATION 30

4.3 Atomic sentences

We started isolating the form of an argument, in §4.1, by replac-
ing subsentences of sentences with individual letters. Thus in the
first example of this section, ‘it is raining outside’ is a subsen-
tence of ‘If it is raining outside, then Jenny is miserable’, and we
replaced this subsentence with ‘A’.

Our artificial language, TFL, pursues this idea absolutely
ruthlessly. We start with some sentence letters. These will be the
basic building blocks out of which more complex sentences are
built. We will use single uppercase letters as sentence letters of
TFL. There are only twenty-six letters of the alphabet, but there
is no limit to the number of sentence letters that we might want to
consider. By adding subscripts to letters, we obtain new sentence
letters. So, here are five different sentence letters of TFL:

A,P,P1,P2,A234

We will use sentence letters to represent, or symbolize, certain
English sentences. To do this, we provide a symbolization key,
such as the following:

A: It is raining outside
C : Jenny is miserable

In doing this, we are not fixing this symbolization once and for
all. We are just saying that, for the time being, we will think of
the sentence letter of TFL, ‘A’, as symbolizing the English sen-
tence ‘It is raining outside’, and the sentence letter of TFL, ‘C ’,
as symbolizing the English sentence ‘Jenny is miserable’. Later,
when we are dealing with different sentences or different argu-
ments, we can provide a new symbolization key; as it might be:

A: Jenny is an anarcho-syndicalist
C : Dipan is an avid reader of Tolstoy

It is important to understand that whatever structure an English
sentence might have is lost when it is symbolized by a sentence

CHAPTER 4. FIRST STEPS TO SYMBOLIZATION 31

letter of TFL. From the point of view of TFL, a sentence letter is
just a letter. It can be used to build more complex sentences, but
it cannot be taken apart.

CHAPTER 5

Connectives
In the previous chapter, we considered symbolizing fairly basic
English sentences with sentence letters of TFL. This leaves us
wanting to deal with the English expressions ‘and’, ‘or’, ‘not’,
and so forth. These are connectives—they can be used to form new
sentences out of old ones. In TFL, we will make use of logical
connectives to build complex sentences from atomic components.
There are five logical connectives in TFL. This table summarises
them, and they are explained throughout this section.

symbol what it is called rough meaning
¬ negation ‘It is not the case that. . .’
∧ conjunction ‘Both. . . and . . .’
∨ disjunction ‘Either. . . or . . .’
→ conditional ‘If . . . then . . .’
↔ biconditional ‘. . . if and only if . . .’

These are not the only connectives of English of interest. Oth-
ers are, e.g., ‘unless’, ‘neither . . . nor . . . ’, and ‘because’. We will
see that the first two can be expressed by the connectives we will
discuss, while the last cannot. ‘Because’, in contrast to the others,
is not truth functional.

32

CHAPTER 5. CONNECTIVES 33

5.1 Negation

Consider how we might symbolize these sentences:

1. Mary is in Barcelona.
2. It is not the case that Mary is in Barcelona.
3. Mary is not in Barcelona.

In order to symbolize sentence 1, we will need a sentence letter.
We might offer this symbolization key:

B : Mary is in Barcelona.

Since sentence 2 is obviously related to sentence 1, we will not
want to symbolize it with a completely different sentence letter.
Roughly, sentence 2 means something like ‘It is not the case
that B ’. In order to symbolize this, we need a symbol for nega-
tion. We will use ‘¬’. Now we can symbolize sentence 2 with
‘¬B ’.

Sentence 3 also contains the word ‘not’, and it is obviously
equivalent to sentence 2. As such, we can also symbolize it with
‘¬B ’.

A sentence can be symbolized as ¬A if it can be para-
phrased in English as ‘It is not the case that. . . ’.

It will help to offer a few more examples:

4. The widget can be replaced.
5. The widget is irreplaceable.
6. The widget is not irreplaceable.

Let us use the following representation key:

R: The widget is replaceable

Sentence 4 can now be symbolized by ‘R’. Moving on to sentence
5: saying the widget is irreplaceable means that it is not the case

CHAPTER 5. CONNECTIVES 34

that the widget is replaceable. So even though sentence 5 does
not contain the word ‘not’, we will symbolize it as follows: ‘¬R’.

Sentence 6 can be paraphrased as ‘It is not the case that the
widget is irreplaceable.’ Which can again be paraphrased as ‘It
is not the case that it is not the case that the widget is replace-
able’. So we might symbolize this English sentence with the TFL
sentence ‘¬¬R’.

But some care is needed when handling negations. Consider:

7. Jane is happy.
8. Jane is unhappy.

If we let the TFL-sentence ‘H ’ symbolize ‘Jane is happy’, then we
can symbolize sentence 7 as ‘H ’. However, it would be a mistake
to symbolize sentence 8 with ‘¬H ’. If Jane is unhappy, then she is
not happy; but sentence 8 does not mean the same thing as ‘It is
not the case that Jane is happy’. Jane might be neither happy nor
unhappy; she might be in a state of blank indifference. In order to
symbolize sentence 8, then, we would need a new sentence letter
of TFL.

5.2 Conjunction

Consider these sentences:

9. Adam is athletic.
10. Barbara is athletic.
11. Adam is athletic, and also Barbara is athletic.

We will need separate sentence letters of TFL to symbolize sen-
tences 9 and 10; perhaps

A: Adam is athletic.
B : Barbara is athletic.

Sentence 9 can now be symbolized as ‘A’, and sentence 10 can
be symbolized as ‘B ’. Sentence 11 roughly says ‘A and B’. We

CHAPTER 5. CONNECTIVES 35

need another symbol, to deal with ‘and’. We will use ‘∧’. Thus
we will symbolize it as ‘(A ∧ B)’. This connective is called con-
junction. We also say that ‘A’ and ‘B ’ are the two conjuncts
of the conjunction ‘(A ∧ B)’.

Notice that we make no attempt to symbolize the word ‘also’
in sentence 11. Words like ‘both’ and ‘also’ function to draw our
attention to the fact that two things are being conjoined. Maybe
they affect the emphasis of a sentence, but we will not (and can-
not) symbolize such things in TFL.

Some more examples will bring out this point:

12. Barbara is athletic and energetic.
13. Barbara and Adam are both athletic.
14. Although Barbara is energetic, she is not athletic.
15. Adam is athletic, but Barbara is more athletic than him.

Sentence 12 is obviously a conjunction. The sentence says two
things (about Barbara). In English, it is permissible to refer to
Barbara only once. It might be tempting to think that we need to
symbolize sentence 12 with something along the lines of ‘B and
energetic’. This would be a mistake. Once we symbolize part of
a sentence as ‘B ’, any further structure is lost, as ‘B ’ is a sentence
letter of TFL. Conversely, ‘energetic’ is not an English sentence
at all. What we are aiming for is something like ‘B and Barbara
is energetic’. So we need to add another sentence letter to the
symbolization key. Let ‘E’ symbolize ‘Barbara is energetic’. Now
the entire sentence can be symbolized as ‘(B ∧ E)’.

Sentence 13 says one thing about two different subjects. It
says of both Barbara and Adam that they are athletic, even though
in English we use the word ‘athletic’ only once. The sentence can
be paraphrased as ‘Barbara is athletic, and Adam is athletic’. We
can symbolize this in TFL as ‘(B ∧ A)’, using the same symbol-
ization key that we have been using.

Sentence 14 is slightly more complicated. The word ‘al-
though’ sets up a contrast between the first part of the sentence
and the second part. Nevertheless, the sentence tells us both

CHAPTER 5. CONNECTIVES 36

that Barbara is energetic and that she is not athletic. In order to
make each of the conjuncts a sentence letter, we need to replace
‘she’ with ‘Barbara’. So we can paraphrase sentence 14 as, ‘Both
Barbara is energetic, and Barbara is not athletic’. The second
conjunct contains a negation, so we paraphrase further: ‘Both
Barbara is energetic and it is not the case that Barbara is athletic’.
Now we can symbolize this with the TFL sentence ‘(E ∧ ¬B)’.
Note that we have lost all sorts of nuance in this symbolization.
There is a distinct difference in tone between sentence 14 and
‘Both Barbara is energetic and it is not the case that Barbara is
athletic’. TFL does not (and cannot) preserve these nuances.

Sentence 15 raises similar issues. There is a contrastive struc-
ture, but this is not something that TFL can deal with. So we can
paraphrase the sentence as ‘Both Adam is athletic, and Barbara
is more athletic than Adam’. (Notice that we once again replace
the pronoun ‘him’ with ‘Adam’.) How should we deal with the
second conjunct? We already have the sentence letter ‘A’, which
is being used to symbolize ‘Adam is athletic’, and the sentence
‘B ’ which is being used to symbolize ‘Barbara is athletic’; but
neither of these concerns their relative athleticity. So, to sym-
bolize the entire sentence, we need a new sentence letter. Let
the TFL sentence ‘R’ symbolize the English sentence ‘Barbara is
more athletic than Adam’. Now we can symbolize sentence 15 by
‘(A ∧R)’.

A sentence can be symbolized as (A ∧ B) if it can be
paraphrased in English as ‘Both. . . , and. . . ’, or as ‘. . . , but
. . . ’, or as ‘although . . . , . . . ’.

You might be wondering why we put brackets around the con-
junctions. The reason can be brought out by thinking about how
negation interacts with conjunction. Consider:

16. It’s not the case that you will get both soup and salad.
17. You will not get soup but you will get salad.

CHAPTER 5. CONNECTIVES 37

Sentence 16 can be paraphrased as ‘It is not the case that: both
you will get soup and you will get salad’. Using this symbolization
key:

S1: You will get soup.
S2: You will get salad.

we would symbolize ‘both you will get soup and you will get salad’
as ‘(S1 ∧ S2)’. To symbolize sentence 16, then, we simply negate
the whole sentence, thus: ‘¬(S1 ∧ S2)’.

Sentence 17 is a conjunction: you will not get soup, and you
will get salad. ‘You will not get soup’ is symbolized by ‘¬S1’. So
to symbolize sentence 17 itself, we offer ‘(¬S1 ∧ S2)’.

These English sentences are very different, and their symbol-
izations differ accordingly. In one of them, the entire conjunction
is negated. In the other, just one conjunct is negated. Brackets
help us to keep track of things like the scope of the negation.

5.3 Disjunction

Consider these sentences:

18. Either Fatima will play videogames, or she will watch
movies.

19. Either Fatima or Omar will play videogames.

For these sentences we can use this symbolization key:

F : Fatima will play videogames.
O : Omar will play videogames.
M : Fatima will watch movies.

However, we will again need to introduce a new symbol. Sen-
tence 18 is symbolized by ‘(F ∨ M)’. The connective is called
disjunction. We also say that ‘F ’ and ‘M ’ are the disjuncts of
the disjunction ‘(F ∨M)’.

CHAPTER 5. CONNECTIVES 38

Sentence 19 is only slightly more complicated. There are two
subjects, but the English sentence only gives the verb once. How-
ever, we can paraphrase sentence 19 as ‘Either Fatima will play
videogames, or Omar will play videogames’. Now we can obvi-
ously symbolize it by ‘(F ∨O)’ again.

A sentence can be symbolized as (A ∨ B) if it can be
paraphrased in English as ‘Either. . . , or. . . .’

Sometimes in English, the word ‘or’ is used in a way that
excludes the possibility that both disjuncts are true. This is called
an exclusive or. An exclusive or is clearly intended when it says,
on a restaurant menu, ‘Entrees come with either soup or salad’:
you may have soup; you may have salad; but, if you want both
soup and salad, then you have to pay extra.

At other times, the word ‘or’ allows for the possibility that
both disjuncts might be true. This is probably the case with sen-
tence 19, above. Fatima might play videogames alone, Omar
might play videogames alone, or they might both play. Sen-
tence 19 merely says that at least one of them plays videogames.
This is an inclusive or. The TFL symbol ‘∨’ always symbolizes
an inclusive or.

It will also help to see how negation interacts with disjunction.
Consider:

20. Either you will not have soup, or you will not have salad.
21. You will have neither soup nor salad.
22. You get either soup or salad, but not both.

Using the same symbolization key as before, sentence 20 can be
paraphrased in this way: ‘Either it is not the case that you get
soup, or it is not the case that you get salad’. To symbolize this
in TFL, we need both disjunction and negation. ‘It is not the
case that you get soup’ is symbolized by ‘¬S1’. ‘It is not the case
that you get salad’ is symbolized by ‘¬S2’. So sentence 20 itself
is symbolized by ‘(¬S1 ∨ ¬S2)’.

CHAPTER 5. CONNECTIVES 39

Sentence 21 also requires negation. It can be paraphrased as,
‘It is not the case that: either you get soup or you get salad’. Since
this negates the entire disjunction, we symbolize sentence 21 with
‘¬(S1 ∨ S2)’.

Sentence 22 is an exclusive or. We can break the sentence into
two parts. The first part says that you get one or the other. We
symbolize this as ‘(S1 ∨ S2)’. The second part says that you do
not get both. We can paraphrase this as: ‘It is not the case both
that you get soup and that you get salad’. Using both negation
and conjunction, we symbolize this with ‘¬(S1∧S2)’. Now we just
need to put the two parts together. As we saw above, ‘but’ can
usually be symbolized with ‘∧’. So sentence 22 can be symbolized
as ‘((S1 ∨ S2) ∧ ¬(S1 ∧ S2))’.

This last example shows something important. Although the
TFL symbol ‘∨’ always symbolizes inclusive or, we can symbolize
an exclusive or in TFL. We just have to use a few other symbols as
well.

5.4 Conditional

Consider these sentences:

23. If Jean is in Paris, then Jean is in France.
24. Jean is in France only if Jean is in Paris.

Let’s use the following symbolization key:

P : Jean is in Paris.
F : Jean is in France

Sentence 23 is roughly of this form: ‘if P , then F ’. We will use
the symbol ‘→’ to symbolize this ‘if. . . , then. . . ’ structure. So we
symbolize sentence 23 by ‘(P → F)’. The connective is called
the conditional. Here, ‘P ’ is called the antecedent of the
conditional ‘(P → F)’, and ‘F ’ is called the consequent.

CHAPTER 5. CONNECTIVES 40

Sentence 24 is also a conditional. Since the word ‘if’ appears
in the second half of the sentence, it might be tempting to sym-
bolize this in the same way as sentence 23. That would be a
mistake. Your knowledge of geography tells you that sentence 23
is unproblematically true: there is no way for Jean to be in Paris
that doesn’t involve Jean being in France. But sentence 24 is
not so straightforward: were Jean in Dieppe, Lyons, or Toulouse,
Jean would be in France without being in Paris, thereby render-
ing sentence 24 false. Since geography alone dictates the truth of
sentence 23, whereas travel plans (say) are needed to know the
truth of sentence 24, they must mean different things.

In fact, sentence 24 can be paraphrased as ‘If Jean is in
France, then Jean is in Paris’. So we can symbolize it by ‘(F →
P)’.

A sentence can be symbolized as A → B if it can be
paraphrased in English as ‘If A, then B’ or ‘A only if B’.

In fact, the conditional can represent many English expressions.
Consider:

25. For Jean to be in Paris, it is necessary that Jean be in France.
26. It is a necessary condition on Jean’s being in Paris that she

be in France.
27. For Jean to be in France, it is sufficient that Jean be in Paris.
28. It is a sufficient condition on Jean’s being in France that she

be in Paris.

If we think about it, all four of these sentences mean the same
as ‘If Jean is in Paris, then Jean is in France’. So they can all be
symbolised by ‘(P → F)’.

It is important to bear in mind that the connective ‘→’ tells us
only that, if the antecedent is true, then the consequent is true. It
says nothing about a causal connection between two events (for
example). In fact, we lose a huge amount when we use ‘→’ to
symbolize English conditionals. We will return to this in §§10.3
and 12.5.

CHAPTER 5. CONNECTIVES 41

5.5 Biconditional

Consider these sentences:

29. Laika is a dog only if she is a mammal
30. Laika is a dog if she is a mammal
31. Laika is a dog if and only if she is a mammal

We will use the following symbolization key:

D : Laika is a dog
M : Laika is a mammal

For reasons discussed above, sentence 29 can be symbolised by
‘(H → M)’.

Sentence 30 is importantly different. It can be paraphrased
as, ‘If Laika is a mammal then Laika is a dog’. So it can be
symbolized by ‘M → D ’.

Sentence 31 says something stronger than either 29 or 30. It
can be paraphrased as ‘Laika is a dog if Laika is a mammal,
and Laika is a dog only if Laika is a mammal’. This is just the
conjunction of sentences 29 and 30. So we can symbolize it as
‘(D → M) ∧ (M → D)’. We call this a biconditional, because
it amounts to stating both directions of the conditional.

We could treat every biconditional this way. So, just as we
do not need a new TFL symbol to deal with exclusive or, we do
not really need a new TFL symbol to deal with biconditionals.
Because the biconditional occurs so often, however, we will use
the symbol ‘↔’ for it. We can then symbolize sentence 31 with
the TFL sentence ‘(D ↔ M)’.

The expression ‘if and only if’ occurs a lot especially in phi-
losophy, mathematics, and logic. For brevity, we can abbreviate
it with the snappier word ‘iff’. We will follow this practice. So ‘if’
with only one ‘f’ is the English conditional. But ‘iff’ with two ‘f’s
is the English biconditional. Armed with this we can say:

CHAPTER 5. CONNECTIVES 42

A sentence can be symbolized as A ↔ B if it can be
paraphrased in English as ‘A iff B’; that is, as ‘A if and
only if B’.

A word of caution. Ordinary speakers of English often use
‘if . . . , then. . . ’ when they really mean to use something more
like ‘. . . if and only if . . . ’. Perhaps your parents told you, when
you were a child: ‘if you don’t eat your greens, you won’t get
any dessert’. Suppose you ate your greens, but that your parents
refused to give you any dessert, on the grounds that they were
only committed to the conditional (roughly ‘if you get dessert,
then you will have eaten your greens’), rather than the bicondi-
tional (roughly, ‘you get dessert iff you eat your greens’). Well,
a tantrum would rightly ensue. So, be aware of this when inter-
preting people; but in your own writing, make sure you use the
biconditional iff you mean to.

5.6 Unless

We have now introduced all of the connectives of TFL. We can
use them together to symbolize many kinds of sentences. An
especially difficult case is when we use the English-language con-
nective ‘unless’:

32. Unless you wear a jacket, you will catch a cold.
33. You will catch a cold unless you wear a jacket.

These two sentences are clearly equivalent. To symbolize them,
we will use the symbolization key:

J : You will wear a jacket.
D : You will catch a cold.

Both sentences mean that if you do not wear a jacket, then you
will catch a cold. With this in mind, we might symbolize them as
‘(¬ J → D)’.

CHAPTER 5. CONNECTIVES 43

Equally, both sentences mean that if you do not catch a cold,
then you must have worn a jacket. With this in mind, we might
symbolize them as ‘(¬D → J)’.

Equally, both sentences mean that either you will wear a jacket
or you will catch a cold. With this in mind, we might symbolize
them as ‘(J ∨D)’.

All three are correct symbolizations. Indeed, in chapter 12
we will see that all three symbolizations are equivalent in TFL.

If a sentence can be paraphrased as ‘Unless A, B ,’ then it
can be symbolized as ‘(A∨ B)’.

Again, though, there is a little complication. ‘Unless’ can be
symbolized as a conditional; but as we said above, people often
use the conditional (on its own) when they mean to use the bi-
conditional. Equally, ‘unless’ can be symbolized as a disjunction;
but there are two kinds of disjunction (exclusive and inclusive).
So it will not surprise you to discover that ordinary speakers of
English often use ‘unless’ to mean something more like the bicon-
ditional, or like exclusive disjunction. Suppose someone says: ‘I
will go running unless it rains’. They probably mean something
like ‘I will go running iff it does not rain’ (i.e., the biconditional),
or ‘either I will go running or it will rain, but not both’ (i.e., ex-
clusive disjunction). Again: be aware of this when interpreting
what other people have said, but be precise in your writing.

Practice exercises

A. Using the symbolization key given, symbolize each English
sentence in TFL.

M : Those creatures are men in suits.
C : Those creatures are chimpanzees.
G : Those creatures are gorillas.

1. Those creatures are not men in suits.

CHAPTER 5. CONNECTIVES 44

2. Those creatures are men in suits, or they are not.
3. Those creatures are either gorillas or chimpanzees.
4. Those creatures are neither gorillas nor chimpanzees.
5. If those creatures are chimpanzees, then they are neither

gorillas nor men in suits.
6. Unless those creatures are men in suits, they are either

chimpanzees or they are gorillas.

B. Using the symbolization key given, symbolize each English
sentence in TFL.

A: Mister Ace was murdered.
B : The butler did it.
C : The cook did it.
D : The Duchess is lying.
E : Mister Edge was murdered.
F : The murder weapon was a frying pan.

1. Either Mister Ace or Mister Edge was murdered.
2. If Mister Ace was murdered, then the cook did it.
3. If Mister Edge was murdered, then the cook did not do it.
4. Either the butler did it, or the Duchess is lying.
5. The cook did it only if the Duchess is lying.
6. If the murder weapon was a frying pan, then the culprit

must have been the cook.
7. If the murder weapon was not a frying pan, then the culprit

was either the cook or the butler.
8. Mister Ace was murdered if and only if Mister Edge was

not murdered.
9. The Duchess is lying, unless it was Mister Edge who was

murdered.
10. If Mister Ace was murdered, he was done in with a frying

pan.
11. Since the cook did it, the butler did not.
12. Of course the Duchess is lying!

CHAPTER 5. CONNECTIVES 45

C. Using the symbolization key given, symbolize each English
sentence in TFL.

E1: Ava is an electrician.
E2: Harrison is an electrician.
F1: Ava is a firefighter.
F2: Harrison is a firefighter.
S1: Ava is satisfied with her career.
S2: Harrison is satisfied with his career.

1. Ava and Harrison are both electricians.
2. If Ava is a firefighter, then she is satisfied with her career.
3. Ava is a firefighter, unless she is an electrician.
4. Harrison is an unsatisfied electrician.
5. Neither Ava nor Harrison is an electrician.
6. Both Ava and Harrison are electricians, but neither of them

find it satisfying.
7. Harrison is satisfied only if he is a firefighter.
8. If Ava is not an electrician, then neither is Harrison, but if

she is, then he is too.
9. Ava is satisfied with her career if and only if Harrison is

not satisfied with his.
10. If Harrison is both an electrician and a firefighter, then he

must be satisfied with his work.
11. It cannot be that Harrison is both an electrician and a fire-

fighter.
12. Harrison and Ava are both firefighters if and only if neither

of them is an electrician.

D. Using the symbolization key given, symbolize each English-
language sentence in TFL.

J1: John Coltrane played tenor sax.
J2: John Coltrane played soprano sax.
J3: John Coltrane played tuba
M1: Miles Davis played trumpet
M2: Miles Davis played tuba

CHAPTER 5. CONNECTIVES 46

1. John Coltrane played tenor and soprano sax.
2. Neither Miles Davis nor John Coltrane played tuba.
3. John Coltrane did not play both tenor sax and tuba.
4. John Coltrane did not play tenor sax unless he also played

soprano sax.
5. John Coltrane did not play tuba, but Miles Davis did.
6. Miles Davis played trumpet only if he also played tuba.
7. If Miles Davis played trumpet, then John Coltrane played

at least one of these three instruments: tenor sax, soprano
sax, or tuba.

8. If John Coltrane played tuba then Miles Davis played nei-
ther trumpet nor tuba.

9. Miles Davis and John Coltrane both played tuba if and only
if Coltrane did not play tenor sax and Miles Davis did not
play trumpet.

E. Give a symbolization key and symbolize the following English
sentences in TFL.

1. Alice and Bob are both spies.
2. If either Alice or Bob is a spy, then the code has been bro-

ken.
3. If neither Alice nor Bob is a spy, then the code remains

unbroken.
4. The German embassy will be in an uproar, unless someone

has broken the code.
5. Either the code has been broken or it has not, but the Ger-

man embassy will be in an uproar regardless.
6. Either Alice or Bob is a spy, but not both.

F. Give a symbolization key and symbolize the following English
sentences in TFL.

1. If there is food to be found in the pridelands, then Rafiki
will talk about squashed bananas.

2. Rafiki will talk about squashed bananas unless Simba is
alive.

CHAPTER 5. CONNECTIVES 47

3. Rafiki will either talk about squashed bananas or he won’t,
but there is food to be found in the pridelands regardless.

4. Scar will remain as king if and only if there is food to be
found in the pridelands.

5. If Simba is alive, then Scar will not remain as king.

G. For each argument, write a symbolization key and symbolize
all of the sentences of the argument in TFL.

1. If Dorothy plays the piano in the morning, then Roger
wakes up cranky. Dorothy plays piano in the morning un-
less she is distracted. So if Roger does not wake up cranky,
then Dorothy must be distracted.

2. It will either rain or snow on Tuesday. If it rains, Neville
will be sad. If it snows, Neville will be cold. Therefore,
Neville will either be sad or cold on Tuesday.

3. If Zoog remembered to do his chores, then things are clean
but not neat. If he forgot, then things are neat but not clean.
Therefore, things are either neat or clean; but not both.

H. For each argument, write a symbolization key and symbolize
the argument as well as possible in TFL. The part of the passage
in italics is there to provide context for the argument, and doesn’t
need to be symbolized.

1. It is going to rain soon. I know because my leg is hurting,
and my leg hurts if it’s going to rain.

2. Spider-man tries to figure out the bad guy’s plan. If Doctor Oc-
topus gets the uranium, he will blackmail the city. I am
certain of this because if Doctor Octopus gets the uranium,
he can make a dirty bomb, and if he can make a dirty bomb,
he will blackmail the city.

3. A westerner tries to predict the policies of the Chinese government.
If the Chinese government cannot solve the water shortages
in Beijing, they will have to move the capital. They don’t
want to move the capital. Therefore they must solve the

CHAPTER 5. CONNECTIVES 48

water shortage. But the only way to solve the water short-
age is to divert almost all the water from the Yangzi river
northward. Therefore the Chinese government will go with
the project to divert water from the south to the north.

I.We symbolized an exclusive or using ‘∨’, ‘∧’, and ‘¬’. How could
you symbolize an exclusive or using only two connectives? Is there
any way to symbolize an exclusive or using only one connective?

CHAPTER 6

Sentences of
TFL
The sentence ‘either apples are red, or berries are blue’ is a sen-
tence of English, and the sentence ‘(A∨B)’ is a sentence of TFL.
Although we can identify sentences of English when we encounter
them, we do not have a formal definition of ‘sentence of English’.
But in this chapter, we will define exactly what will count as a
sentence of TFL. This is one respect in which a formal language
like TFL is more precise than a natural language like English.

6.1 Expressions

We have seen that there are three kinds of symbols in TFL:

Atomic sentences A,B ,C , . . . ,Z
with subscripts, as needed A1,B1,Z1,A2,A25, J375, . . .

Connectives ¬,∧,∨,→,↔

Brackets (,)

Define an expression of tfl as any string of symbols of TFL.
So: write down any sequence of symbols of TFL, in any order,

49

CHAPTER 6. SENTENCES OF TFL 50

and you have an expression of TFL.

6.2 Sentences

Given what we just said, ‘(A∧B)’ is an expression of TFL, and so
is ‘¬)(∨()∧(¬¬())((B ’. But the former is a sentence, and the latter
is gibberish. We want some rules to tell us which TFL expressions
are sentences.

Obviously, individual sentence letters like ‘A’ and ‘G13’ should
count as sentences. (We’ll also call them atomic sentences.) We
can form further sentences out of these by using the various con-
nectives. Using negation, we can get ‘¬A’ and ‘¬G13’. Using
conjunction, we can get ‘(A ∧ G13)’, ‘(G13 ∧ A)’, ‘(A ∧ A)’, and
‘(G13 ∧ G13)’. We could also apply negation repeatedly to get
sentences like ‘¬¬A’ or apply negation along with conjunction to
get sentences like ‘¬(A∧G13)’ and ‘¬(G13 ∧¬G13)’. The possible
combinations are endless, even starting with just these two sen-
tence letters, and there are infinitely many sentence letters. So
there is no point in trying to list all the sentences one by one.

Instead, we will describe the process by which sentences can
be constructed. Consider negation: Given any sentence Aof TFL,
¬A is a sentence of TFL. (Why the funny fonts? We return to this
in §8.3.)

We can say similar things for each of the other connectives.
For instance, if A and B are sentences of TFL, then (A∧ B)
is a sentence of TFL. Providing clauses like this for all of the
connectives, we arrive at the following formal definition for a
sentence of tfl:

CHAPTER 6. SENTENCES OF TFL 51

1. Every sentence letter is a sentence.

2. If A is a sentence, then ¬A is a sentence.

3. If Aand Bare sentences, then (A∧B) is a sentence.

4. If Aand Bare sentences, then (A∨B) is a sentence.

5. If A and B are sentences, then (A → B) is a sen-
tence.

6. If A and B are sentences, then (A ↔ B) is a sen-
tence.

7. Nothing else is a sentence.

Definitions like this are called inductive. inductive definitions
begin with some specifiable base elements, and then present ways
to generate indefinitely many more elements by compounding
together previously established ones. To give you a better idea of
what an inductive definition is, we can give an inductive definition
of the idea of an ancestor of mine. We specify a base clause.

• My parents are ancestors of mine.

and then offer further clauses like:

• If x is an ancestor of mine, then x ’s parents are ancestors
of mine.

• Nothing else is an ancestor of mine.

Using this definition, we can easily check to see whether someone
is my ancestor: just check whether she is the parent of the parent
of. . . one of my parents. And the same is true for our inductive
definition of sentences of TFL. Just as the inductive definition
allows complex sentences to be built up from simpler parts, the
definition allows us to decompose sentences into their simpler
parts. Once we get down to sentence letters, then we know we
are ok.

CHAPTER 6. SENTENCES OF TFL 52

Let’s consider some examples.
Suppose we want to know whether or not ‘¬¬¬D ’ is a sentence

of TFL. Looking at the second clause of the definition, we know
that ‘¬¬¬D ’ is a sentence if ‘¬¬D ’ is a sentence. So now we need
to ask whether or not ‘¬¬D ’ is a sentence. Again looking at the
second clause of the definition, ‘¬¬D ’ is a sentence if ‘¬D ’ is.
So, ‘¬D ’ is a sentence if ‘D ’ is a sentence. Now ‘D ’ is a sentence
letter of TFL, so we know that ‘D ’ is a sentence by the first clause
of the definition. So for a compound sentence like ‘¬¬¬D ’, we
must apply the definition repeatedly. Eventually we arrive at the
sentence letters from which the sentence is built up.

Next, consider the example ‘¬(P ∧ ¬(¬Q ∨ R))’. Looking
at the second clause of the definition, this is a sentence if ‘(P ∧
¬(¬Q ∨R))’ is, and this is a sentence if both ‘P ’ and ‘¬(¬Q ∨R)’
are sentences. The former is a sentence letter, and the latter is a
sentence if ‘(¬Q ∨ R)’ is a sentence. It is. Looking at the fourth
clause of the definition, this is a sentence if both ‘¬Q ’ and ‘R’ are
sentences, and both are!

Ultimately, every sentence is constructed nicely out of sen-
tence letters. When we are dealing with a sentence other than a
sentence letter, we can see that there must be some sentential
connective that was introduced last, when constructing the sen-
tence. We call that connective the main logical operator of
the sentence. In the case of ‘¬¬¬D ’, the main logical operator is
the very first ‘¬’ sign. In the case of ‘(P ∧¬(¬Q ∨R))’, the main
logical operator is ‘∧’. In the case of ‘((¬E ∨ F) → ¬¬G)’, the
main logical operator is ‘→’.

As a general rule, you can find the main logical operator for
a sentence by using the following method:

• If the first symbol in the sentence is ‘¬’, then that is the
main logical operator

• Otherwise, start counting the brackets. For each open-
bracket, i.e., ‘(’, add 1; for each closing-bracket, i.e., ‘)’,
subtract 1. When your count is at exactly 1, the first oper-
ator you hit (apart from a ‘¬’) is the main logical operator.

CHAPTER 6. SENTENCES OF TFL 53

(Note: if you do use this method, then make sure to include
all the brackets in the sentence, rather than omitting some as per
the conventions of §6.3!)

The inductive structure of sentences in TFL will be important
when we consider the circumstances under which a particular sen-
tence would be true or false. The sentence ‘¬¬¬D ’ is true if and
only if the sentence ‘¬¬D ’ is false, and so on through the struc-
ture of the sentence, until we arrive at the atomic components.
We will return to this point in Part III.

The inductive structure of sentences in TFL also allows us to
give a formal definition of the scope of a negation (mentioned in
§5.2). The scope of a ‘¬’ is the subsentence for which ‘¬’ is the
main logical operator. Consider a sentence like:

(P ∧ (¬(R ∧ B) ↔ Q))

which was constructed by conjoining ‘P ’ with ‘(¬(R ∧B) ↔ Q)’.
This last sentence was constructed by placing a biconditional
between ‘¬(R ∧ B)’ and ‘Q ’. The former of these sentences—a
subsentence of our original sentence—is a sentence for which ‘¬’
is the main logical operator. So the scope of the negation is just
‘¬(R ∧ B)’. More generally:

The scope of a connective (in a sentence) is the subsen-
tence for which that connective is the main logical opera-
tor.

6.3 Bracketing conventions

Strictly speaking, the brackets in ‘(Q ∧ R)’ are an indispensable
part of the sentence. Part of this is because we might use ‘(Q ∧R)’
as a subsentence in a more complicated sentence. For example,
we might want to negate ‘(Q ∧ R)’, obtaining ‘¬(Q ∧ R)’. If we
just had ‘Q ∧R’ without the brackets and put a negation in front
of it, we would have ‘¬Q ∧ R’. It is most natural to read this as

CHAPTER 6. SENTENCES OF TFL 54

meaning the same thing as ‘(¬Q ∧R)’, but as we saw in §5.2, this
is very different from ‘¬(Q ∧R)’.

Strictly speaking, then, ‘Q ∧R’ is not a sentence. It is a mere
expression.

When working with TFL, however, it will make our lives eas-
ier if we are sometimes a little less than strict. So, here are some
convenient conventions.

First, we allow ourselves to omit the outermost brackets of a
sentence. Thus we allow ourselves to write ‘Q ∧ R’ instead of
the sentence ‘(Q ∧ R)’. However, we must remember to put the
brackets back in, when we want to embed the sentence into a
more complicated sentence!

Second, it can be a bit painful to stare at long sentences with
many nested pairs of brackets. To make things a bit easier on
the eyes, we will allow ourselves to use square brackets, ‘[’ and
‘]’, instead of rounded ones. So there is no logical difference
between ‘(P ∨Q)’ and ‘[P ∨Q]’, for example.

Combining these two conventions, we can rewrite the un-
wieldy sentence

(((H → I) ∨ (I → H)) ∧ (J ∨ K))

rather more clearly as follows:[︁
(H → I) ∨ (I → H)

]︁
∧ (J ∨ K)

The scope of each connective is now much easier to pick out.

Practice exercises

A. For each of the following: (a) Is it a sentence of TFL, strictly
speaking? (b) Is it a sentence of TFL, allowing for our relaxed
bracketing conventions?

1. (A)
2. J374 ∨ ¬ J374
3. ¬¬¬¬F

CHAPTER 6. SENTENCES OF TFL 55

4. ¬ ∧ S
5. (G ∧ ¬G)
6. (A → (A ∧ ¬F)) ∨ (D ↔ E)
7. [(Z ↔ S) →W] ∧ [J ∨ X]
8. (F ↔ ¬D → J) ∨ (C ∧D)

B. Are there any sentences of TFL that contain no sentence
letters? Explain your answer.

C. What is the scope of each connective in the sentence[︁
(H → I) ∨ (I → H)

]︁
∧ (J ∨ K)

CHAPTER 7

Ambiguity
In English, sentences can be ambiguous, i.e., they can have more
than one meaning. There are many sources of ambiguity. One is
lexical ambiguity: a sentence can contain words which have more
than one meaning. For instance, ‘bank’ can mean the bank of
a river, or a financial institution. So I might say that ‘I went to
the bank’ when I took a stroll along the river, or when I went to
deposit a check. Depending on the situation, a different meaning
of ‘bank’ is intended, and so the sentence, when uttered in these
different contexts, expresses different meanings.

A different kind of ambiguity is structural ambiguity. This
arises when a sentence can be interpreted in different ways, and
depending on the interpretation, a different meaning is selected.
A famous example due to Noam Chomsky is the following:

Flying planes can be dangerous.

There is one reading in which ‘flying’ is used as an adjective which
modifies ‘planes’. In this sense, what’s claimed to be dangerous
are airplanes which are in the process of flying. In another read-
ing, ‘flying’ is a gerund: what’s claimed to be dangerous is the act
of flying a plane. In the first case, you might use the sentence to
warn someone who’s about to launch a hot air baloon. In the sec-
ond case, you might use it to counsel someone against becoming
a pilot.

56

CHAPTER 7. AMBIGUITY 57

When the sentence is uttered, usually only one meaning is
intended. Which of the possible meanings an utterance of a sen-
tence intends is determined by context, or sometimes by how it
is uttered (which parts of the sentence are stressed, for instance).
Often one interpretation is much more likely to be intended, and
in that case it will even be difficult to “see” the unintended read-
ing. This is often the reason why a joke works, as in this example
from Groucho Marx:

One morning I shot an elephant in my pajamas.
How he got in my pajamas, I don’t know.

Ambiguity is related to, but not the same as, vagueness. An
adjective, for instance ‘rich’ or ‘tall,’ is vaguewhen it is not always
possible to determine if it applies or not. For instance, a person
who’s 6 ft 4 in (1.9 m) tall is pretty clearly tall, but a building
that size is tiny. Here, context has a role to play in determining
what the clear cases and clear non-cases are (‘tall for a person,’
‘tall for a basketball player,’ ‘tall for a building’). Even when the
context is clear, however, there will still be cases that fall in a
middle range.

In TFL, we generally aim to avoid ambiguity. We will try to
give our symbolization keys in such a way that they do not use
ambiguous words or disambiguate them if a word has different
meanings. So, e.g., your symbolization key will need two differ-
ent sentence letters for ‘Rebecca went to the (money) bank’ and
‘Rebecca went to the (river) bank.’ Vagueness is harder to avoid.
Since we have stipulated that every case (and later, every valua-
tion) must make every basic sentence (or sentence letter) either
true or false and nothing in between, we cannot accommodate
borderline cases in TFL.

It is an important feature of sentences of TFL that they can-
not be structurally ambiguous. Every sentence of TFL can be
read in one, and only one, way. This feature of TFL is also a
strength. If an English sentence is ambiguous, TFL can help us
make clear what the different meanings are. Although we are

CHAPTER 7. AMBIGUITY 58

pretty good at dealing with ambiguity in everyday conversation,
avoiding it can sometimes be terribly important. Logic can then
be usefully applied: it helps philosopher express their thoughts
clearly, mathematicians to state their theorems rigorously, and
software engineers to specify loop conditions, database queries,
or verification criteria unambiguously.

Stating things without ambiguity is of crucial importance in
the law as well. Here, ambiguity can, without exaggeration, be
a matter of life and death. Here is a famous example of where a
death sentence hinged on the interpretation of an ambiguity in
the law. Roger Casement (1864–1916) was a British diplomat who
was famous in his time for publicizing human-rights violations in
the Congo and Peru (for which he was knighted in 1911). He was
also an Irish nationalist. In 1914–16, Casement secretly travelled
to Germany, with which Britain was at war at the time, and tried
to recruit Irish prisoners of war to fight against Britain and for
Irish independence. Upon his return to Ireland, he was captured
by the British and tried for high treason.

The law under which Casement was tried is the Treason Act
of 1351. That act specifies what counts as treason, and so the
prosecution had to establish at trial that Casement’s actions met
the criteria set forth in the Treason Act. The relevant passage
stipulated that someone is guilty of treason

if a man is adherent to the King’s enemies in his
realm, giving to them aid and comfort in the realm,
or elsewhere.

Casement’s defense hinged on the last comma in this sentence,
which is not present in the original French text of the law from
1351. It was not under dispute that Casement had been ‘adher-
ent to the King’s enemies’, but the question was whether being
adherent to the King’s enemies constituted treason only when it
was done in the realm, or also when it was done abroad. The de-
fense argued that the law was ambiguous. The claimed ambiguity
hinged on whether ‘or elsewhere’ attaches only to ‘giving aid and

CHAPTER 7. AMBIGUITY 59

comfort to the King’s enemies’ (the natural reading without the
comma), or to both ‘being adherent to the King’s enemies’ and
‘giving aid and comfort to the King’s enemies’ (the natural read-
ing with the comma). Although the former interpretation might
seem far fetched, the argument in its favor was actually not unper-
suasive. Nevertheless, the court decided that the passage should
be read with the comma, so Casement’s antics in Germany were
treasonous, and he was sentenced to death. Casement himself
wrote that he was ‘hanged by a comma’.

We can use TFL to symbolize both readings of the passage,
and thus to provide a disambiguiation. First, we need a symbol-
ization key:

A: Casement was adherent to the King’s enemies in the
realm.
G : Casement gave aid and comfort to the King’s enemies
in the realm.
B : Casement was adherent to the King’s enemies abroad.
H : Casement gave aid and comfort to the King’s enemies
abroad.

The interpretation according to which Casement’s behavior was
not treasonous is this:

A ∨ (G ∨H)

The interpretation which got him executed, on the other hand,
can be symbolized by:

(A ∨ B) ∨ (G ∨H)

Remember that in the case we’re dealing with Casement, was
adherent to the King’s enemies abroad (B is true), but not in the
realm, and he did not give the King’s enemies aid or comfort in
or outside the realm (A, G , and H are false).

One common source of structural ambiguity in English arises
from its lack of parentheses. For instance, if I say ‘I like movies
that are not long and boring’, you will most likely think that what

CHAPTER 7. AMBIGUITY 60

I dislike are movies that are long and boring. A less likely, but
possible, interpretation is that I like movies that are both (a) not
long and (b) boring. The first reading is more likely because
who likes boring movies? But what about ‘I like dishes that are
not sweet and flavorful’? Here, the more likely interpretation
is that I like savory, flavorful dishes. (Of course, I could have
said that better, e.g., ‘I like dishes that are not sweet, yet flavor-
ful’.) Similar ambiguities result from the interaction of ‘and’ with
‘or’. For instance, suppose I ask you to send me a picture of a
small and dangerous or stealthy animal. Would a leopard count?
It’s stealthy, but not small. So it depends whether I’m looking
for small animals that are dangerous or stealthy (leopard doesn’t
count), or whether I’m after either a small, dangerous animal or
a stealthy animal (of any size).

These kinds of ambiguities are called scope ambiguities, since
they depend on whether or not a connective is in the scope of
another. For instance, the sentence, ‘Avengers: Endgame is not
long and boring’ is ambiguous between:

1. Avengers: Endgame is not: both long and boring.
2. Avengers: Endgame is both: not long and boring.

Sentence 2 is certainly false, since Avengers: Endgame is over three
hours long. Whether you think 1 is true depends on if you think
it is boring or not. We can use the symbolization key:

B : Avengers: Endgame is boring.
L: Avengers: Endgame is long.

Sentence 1 can now be symbolized as ‘¬(L ∧ B)’, whereas sen-
tence 2 would be ‘¬L∧B ’. In the first case, the ‘∧’ is in the scope
of ‘¬’, in the second case ‘¬’ is in the scope of ‘∧’.

The sentence ‘Tai Lung is small and dangerous or stealthy’ is
ambiguous between:

3. Tai Lung is either both small and dangerous or stealthy.
4. Tai Lung is both small and either dangerous or stealthy.

CHAPTER 7. AMBIGUITY 61

We can use the following symbolization key:

D : Tai Lung is dangerous.
S : Tai Lung is small.
T : Tai Lung is stealthy.

The symbolization of sentence 3 is ‘(S ∧ D) ∨ T ’ and that of
sentence 4 is ‘S ∧ (D ∨T)’. In the first, ∧is in the scope of ∨, and
in the second ∨is in the scope of ∧.

Practice exercises

A. The following sentences are ambiguous. Give symbolization
keys for each and symbolize the different readings.

1. Haskell is a birder and enjoys watching cranes.
2. The zoo has lions or tigers and bears.
3. The flower is not red or fragrant.

CHAPTER 8

Use and
mention
In this Part, we have talked a lot about sentences. So we should
pause to explain an important, and very general, point.

8.1 Quotation conventions

Consider these two sentences:

• Justin Trudeau is the Prime Minister.
• The expression ‘Justin Trudeau’ is composed of two upper-
case letters and eleven lowercase letters

When we want to talk about the Prime Minister, we use his name.
When we want to talk about the Prime Minister’s name, we men-
tion that name, which we do by putting it in quotation marks.

There is a general point here. When we want to talk about
things in the world, we just use words. When we want to talk
about words, we typically have to mention those words. We need
to indicate that we are mentioning them, rather than using them.
To do this, some convention is needed. We can put them in
quotation marks, or display them centrally in the page (say). So
this sentence:

62

CHAPTER 8. USE AND MENTION 63

• ‘Justin Trudeau’ is the Prime Minister.

says that some expression is the Prime Minister. That’s false. The
man is the Prime Minister; his name isn’t. Conversely, this sen-
tence:

• Justin Trudeau is composed of two uppercase letters and
eleven lowercase letters.

also says something false: Justin Trudeau is a man, made of flesh
rather than letters. One final example:

• “ ‘Justin Trudeau’ ” is the name of ‘Justin Trudeau’.

On the left-hand-side, here, we have the name of a name. On the
right hand side, we have a name. Perhaps this kind of sentence
only occurs in logic textbooks, but it is true nonetheless.

Those are just general rules for quotation, and you should ob-
serve them carefully in all your work! To be clear, the quotation-
marks here do not indicate reported speech. They indicate that
you are moving from talking about an object, to talking about a
name of that object.

8.2 Object language and metalanguage

These general quotation conventions are very important for us.
After all, we are describing a formal language here, TFL, and so
we must often mention expressions from TFL.

When we talk about a language, the language that we are
talking about is called the object language. The language that
we use to talk about the object language is called the metalan-
guage.

For the most part, the object language in this chapter has been
the formal language that we have been developing: TFL. The
metalanguage is English. Not conversational English exactly, but
English supplemented with some additional vocabulary to help
us get along.

CHAPTER 8. USE AND MENTION 64

Now, we have used uppercase letters as sentence letters of
TFL:

A,B ,C ,Z ,A1,B4,A25, J375, . . .

These are sentences of the object language (TFL). They are not
sentences of English. So we must not say, for example:

• D is a sentence letter of TFL.

Obviously, we are trying to come out with an English sentence
that says something about the object language (TFL), but ‘D ’ is
a sentence of TFL, and not part of English. So the preceding is
gibberish, just like:

• Schnee ist weiß is a German sentence.

What we surely meant to say, in this case, is:

• ‘Schnee ist weiß’ is a German sentence.

Equally, what we meant to say above is just:

• ‘D ’ is a sentence letter of TFL.

The general point is that, whenever we want to talk in English
about some specific expression of TFL, we need to indicate that
we are mentioning the expression, rather than using it. We can
either deploy quotation marks, or we can adopt some similar
convention, such as placing it centrally in the page.

8.3 Metavariables

However, we do not just want to talk about specific expressions of
TFL. We also want to be able to talk about any arbitrary sentence
of TFL. Indeed, we had to do this in §6.2, when we presented
the inductive definition of a sentence of TFL. We used uppercase
script letters to do this, namely:

A,B, C,D, . . .

CHAPTER 8. USE AND MENTION 65

These symbols do not belong to TFL. Rather, they are part of
our (augmented) metalanguage that we use to talk about any ex-
pression of TFL. To explain why we need them, recall the second
clause of the recursive definition of a sentence of TFL:

2. If A is a sentence, then ¬A is a sentence.

This talks about arbitrary sentences. If we had instead offered:

• If ‘A’ is a sentence, then ‘¬A’ is a sentence.

this would not have allowed us to determine whether ‘¬B ’ is a
sentence. To emphasize:

‘A’ is a symbol (called a metavariable) in augmented En-
glish, which we use to talk about expressions of TFL. ‘A’
is a particular sentence letter of TFL.

But this last example raises a further complication, concern-
ing quotation conventions. We did not include any quotation
marks in the second clause of our inductive definition. Should
we have done so?

The problem is that the expression on the right-hand-side of
this rule, i.e., ‘¬A’, is not a sentence of English, since it contains
‘¬’. So we might try to write:

2′. If A is a sentence, then ‘¬A’ is a sentence.

But this is no good: ‘¬A’ is not a TFL sentence, since ‘A’ is a
symbol of (augmented) English rather than a symbol of TFL.

What we really want to say is something like this:

2′′. If A is a sentence, then the result of concatenating the sym-
bol ‘¬’ with the sentence A is a sentence.

This is impeccable, but rather long-winded. But we can avoid
long-windedness by creating our own conventions. We can per-
fectly well stipulate that an expression like ‘¬A’ should simply be

CHAPTER 8. USE AND MENTION 66

read directly in terms of rules for concatenation. So, officially, the
metalanguage expression ‘¬A’ simply abbreviates:

the result of concatenating the symbol ‘¬’ with the
sentence A

and similarly, for expressions like ‘(A∧ B)’, ‘(A∨ B)’, etc.

8.4 Quotation conventions for arguments

One of our main purposes for using TFL is to study arguments,
and that will be our concern in chapter III. In English, the
premises of an argument are often expressed by individual sen-
tences, and the conclusion by a further sentence. Since we can
symbolize English sentences, we can symbolise English argu-
ments using TFL.

Or rather, we can use TFL to symbolize each of the sentences
used in an English argument. However, TFL itself has no way to
flag some of them as the premises and another as the conclusion
of an argument. (Contrast this with natural English, which uses
words like ‘so’, ‘therefore’, etc., to mark that a sentence is the
conclusion of an argument.)

So, we need another bit of notation. Suppose we want to
symbolize the premises of an argument with A1, . . . , An and the
conclusion with C. Then we will write:

A1, . . . ,An ∴ C

The role of the symbol ‘∴’ is simply to indicate which sentences
are the premises and which is the conclusion.

Strictly, the symbol ‘∴’ will not be a part of the object lan-
guage, but of the metalanguage. As such, one might think that we
would need to put quote-marks around the TFL-sentences which
flank it. That is a sensible thought, but adding these quote-marks
would make things harder to read. Moreover—and as above—
recall that we are stipulating some new conventions. So, we can

CHAPTER 8. USE AND MENTION 67

simply stipulate that these quote-marks are unnecessary. That is,
we can simply write:

A,A → B ∴ B

without any quotation marks, to indicate an argument whose
premises are (symbolized by) ‘A’ and ‘A → B ’ and whose con-
clusion is (symbolized by) ‘B ’.

PART III

Truth tables

68

CHAPTER 9

Characteristic
truth tables
Any sentence of TFL is composed of sentence letters, possibly
combined using sentential connectives. The truth value of the
compound sentence depends only on the truth value of the sen-
tence letters that comprise it. In order to know the truth value of
‘(D ∧ E)’, for instance, you only need to know the truth value of
‘D ’ and the truth value of ‘E’.

We introduced five connectives in chapter 5. So we just need
to explain how they map between truth values. For convenience,
we abbreviate ‘True’ with ‘T’ and ‘False’ with ‘F’. (But, to be clear,
the two truth values are True and False; the truth values are not
letters!)

Negation. For any sentence A: If A is true, then ¬A is false;
and if ¬A is true, then A is false. We can summarize this in the
characteristic truth table for negation:

A ¬A
T F
F T

69

CHAPTER 9. CHARACTERISTIC TRUTH TABLES 70

Conjunction. For any sentences A and B, A∧B is true if and
only if both A and B are true. We can summarize this in the
characteristic truth table for conjunction:

A B A∧ B

T T T
T F F
F T F
F F F

Note that conjunction is symmetrical. The truth value for A∧ B

is always the same as the truth value for B∧ A.

Disjunction. Recall that ‘∨’ always represents inclusive or. So,
for any sentences A and B, A∨B is true if and only if either A
or B is true. We can summarize this in the characteristic truth
table for disjunction:

A B A∨ B

T T T
T F T
F T T
F F F

Like conjunction, disjunction is symmetrical.

Conditional. We’re just going to come clean and admit it: Con-
ditionals are a mess in TFL. Exactly how much of a mess they
are is philosophically contentious. We’ll discuss a few of the sub-
tleties in §§10.3 and 12.5. For now, we are going to stipulate the
following: A→ B is false if and only if A is true and B is false.
We can summarize this with a characteristic truth table for the
conditional.

CHAPTER 9. CHARACTERISTIC TRUTH TABLES 71

A B A→ B

T T T
T F F
F T T
F F T

The conditional is asymmetric. You cannot swap the antecedent
and consequent without changing the meaning of the sentence;
A→ B and B→ A have different truth tables.

Biconditional. Since a biconditional is to be the same as the
conjunction of the conditionals running in both directions, we
will want the truth table for the biconditional to be:

A B A↔ B

T T T
T F F
F T F
F F T

Unsurprisingly, the biconditional is symmetrical.

CHAPTER 10

Truth-
functional
connectives
10.1 The idea of truth-functionality

Let’s introduce an important idea.

A connective is truth-functional iff the truth value of
a sentence with that connective as its main logical oper-
ator is uniquely determined by the truth value(s) of the
constituent sentence(s).

Every connective in TFL is truth-functional. The truth value
of a negation is uniquely determined by the truth value of the
unnegated sentence. The truth value of a conjunction is uniquely
determined by the truth value of both conjuncts. The truth value
of a disjunction is uniquely determined by the truth value of both
disjuncts, and so on. To determine the truth value of some TFL
sentence, we only need to know the truth value of its components.

72

CHAPTER 10. TRUTH-FUNCTIONAL CONNECTIVES 73

This is what gives TFL its name: it is truth-functional logic.
Many languages use connectives that are not truth-functional.

In English, for example, we can form a new sentence from any
simpler sentence by prefixing it with ‘It is necessarily the case
that. . . ’. The truth value of this new sentence is not fixed solely
by the truth value of the original sentence. For consider two true
sentences:

1. 2 + 2 = 4
2. Shostakovich wrote fifteen string quartets

Whereas it is necessarily the case that 2 + 2 = 4, it is not nec-
essarily the case that Shostakovich wrote fifteen string quartets.
If Shostakovich had died earlier, he would have failed to finish
Quartet no. 15; if he had lived longer, he might have written a few
more. So ‘It is necessarily the case that. . . ’ is not truth-functional.

10.2 Symbolizing versus translating

All of the connectives of TFL are truth-functional, but more than
that: they really do nothing but map us between truth values.

When we symbolize a sentence or an argument in TFL, we
ignore everything besides the contribution that the truth values of
a component might make to the truth value of the whole. There
are subtleties to our ordinary claims that far outstrip their mere
truth values. Sarcasm; poetry; snide implicature; emphasis; these
are important parts of everyday discourse, but none of this is
retained in TFL. As remarked in §5, TFL cannot capture the
subtle differences between the following English sentences:

1. Dana is a logician and Dana is a nice person
2. Although Dana is a logician, Dana is a nice person
3. Dana is a logician despite being a nice person
4. Dana is a nice person, but also a logician
5. Dana’s being a logician notwithstanding, he is a nice person

CHAPTER 10. TRUTH-FUNCTIONAL CONNECTIVES 74

All of the above sentences will be symbolized with the same TFL
sentence, perhaps ‘L ∧ N ’.

Now, we keep saying that we use TFL sentences to symbolize
English sentences. Many other textbooks talk about translating
English sentences into TFL. However, a good translation should
preserve certain facets of meaning, and—as we just saw—TFL
just cannot do that. This is why we will speak of symbolizing En-
glish sentences, rather than of translating them.

This affects how we should understand our symbolization
keys. Consider a key like:

L: Dana is a logician.
N : Dana is a nice person.

Other textbooks will understand this as a stipulation that the
TFL sentence ‘L’ should mean that Dana is a logician, and that
the TFL sentence ‘N ’ should mean that Dana is a nice person.
But TFL just is totally unequipped to deal with meaning. The
preceding symbolization key is doing no more and no less than
stipulating that the TFL sentence ‘L’ should take the same truth
value as the English sentence ‘Dana is a logician’ (whatever that
might be), and that the TFL sentence ‘N ’ should take the same
truth value as the English sentence ‘Dana is a nice person’ (what-
ever that might be).

When we treat a TFL sentence as symbolizing an English
sentence, we are stipulating that the TFL sentence is to
take the same truth value as that English sentence.

10.3 Indicative versus subjunctive
conditionals

We want to bring home the point that TFL can only deal with
truth functions by considering the case of the conditional. When
we introduced the characteristic truth table for the material con-

CHAPTER 10. TRUTH-FUNCTIONAL CONNECTIVES 75

ditional in §9, we did not say anything to justify it. Let’s now offer
a justification, which follows Dorothy Edgington.1

Suppose that Lara has drawn some shapes on a piece of pa-
per, and coloured some of them in. We have not seen them, but
nevertheless claim:

If any shape is grey, then that shape is also circular.

As it happens, Lara has drawn the following:

A C D

In this case, our claim is surely true. Shapes C and D are not grey,
and so can hardly present counterexamples to our claim. Shape A
is grey, but fortunately it is also circular. So our claim has no
counterexamples. It must be true. That means that each of the
following instances of our claim must be true too:

• If A is grey, then it is circular (true antecedent, true
consequent)

• If C is grey, then it is circular (false antecedent, true
consequent)

• If D is grey, then it is circular (false antecedent, false
consequent)

However, if Lara had drawn a fourth shape, thus:

A B C D

then our claim would have been false. So this claim must also be
false:

• If B is grey, then it is circular (true antecedent, false
consequent)

1Dorothy Edgington, ‘Conditionals’, 2014, in the Stanford Encyclopedia of
Philosophy (http://plato.stanford.edu/entries/conditionals/).

http://plato.stanford.edu/entries/conditionals/

CHAPTER 10. TRUTH-FUNCTIONAL CONNECTIVES 76

Now, recall that every connective of TFL has to be truth-
functional. This means that merely the truth values of the an-
tecedent and consequent must uniquely determine the truth value
of the conditional as a whole. Thus, from the truth values of our
four claims—which provide us with all possible combinations of
truth and falsity in antecedent and consequent—we can read off
the truth table for the material conditional.

What this argument shows is that ‘→’ is the best candidate
for a truth-functional conditional. Otherwise put, it is the best
conditional that TFL can provide. But is it any good, as a surrogate
for the conditionals we use in everyday language? Consider two
sentences:

1. If Hillary Clinton had won the 2016 election, then she
would have been the first woman president of the USA.

2. If Hillary Clinton had won the 2016 election, then she
would have turned into a helium-filled balloon and floated
away into the night sky.

Sentence 1 is true; sentence 2 is false, but both have false an-
tecedents and false consequents. (Hillary did not win; she did
not become the first woman president of the US; and she did not
fill with helium and float away.) So the truth value of the whole
sentence is not uniquely determined by the truth value of the
parts.

The crucial point is that sentences 1 and 2 employ subjunctive
conditionals, rather than indicative conditionals. They ask us to
imagine something contrary to fact—after all, Hillary Clinton
lost the 2016 election—and then ask us to evaluate what would
have happened in that case. Such considerations simply cannot
be tackled using ‘→’.

We will say more about the difficulties with conditionals in
§12.5. For now, we will content ourselves with the observation
that ‘→’ is the only candidate for a truth-functional conditional
for TFL, but that many English conditionals cannot be repre-
sented adequately using ‘→’. TFL is an intrinsically limited lan-
guage.

CHAPTER 11

Complete
truth tables
So far, we have used symbolization keys to assign truth values to
TFL sentences indirectly. For example, we might say that the TFL
sentence ‘B ’ is to be true iff Big Ben is in London. Since Big Ben
is in London, this symbolisation would make ‘B ’ true. But we can
also assign truth values directly. We can simply stipulate that ‘B ’
is to be true, or stipulate that it is to be false. Such stipulations
are called valuations:

A valuation is any assignment of truth values to particu-
lar sentence letters of TFL.

The power of truth tables lies in the following. Each row
of a truth table represents a possible valuation. The complete
truth table represents all possible valuations. And the truth table
provides us with a means to calculate the truth value of complex
sentences, on each possible valuation. But all of this is easiest to
explain by example.

77

CHAPTER 11. COMPLETE TRUTH TABLES 78

11.1 A worked example

Consider the sentence ‘(H ∧ I) → H ’. There are four possible
ways to assign True and False to the sentence letter ‘H ’ and ‘I ’—
four valuations—which we can represent as follows:

H I (H ∧I)→H
T T
T F
F T
F F

To calculate the truth value of the entire sentence ‘(H ∧I) → H ’,
we first copy the truth values for the sentence letters and write
them underneath the letters in the sentence:

H I (H ∧I)→H
T T T T T
T F T F T
F T F T F
F F F F F

Now consider the subsentence ‘(H ∧ I)’. This is a conjunction,
(A∧B), with ‘H ’ as Aand with ‘I ’ as B. The characteristic truth
table for conjunction gives the truth conditions for any sentence
of the form (A∧ B), whatever A and Bmight be. It represents
the point that a conjunction is true iff both conjuncts are true. In
this case, our conjuncts are just ‘H ’ and ‘I ’. They are both true
on (and only on) the first line of the truth table. Accordingly, we
can calculate the truth value of the conjunction on all four rows.

A ∧B

H I (H ∧ I)→H
T T T TT T
T F T F F T
F T F F T F
F F F F F F

CHAPTER 11. COMPLETE TRUTH TABLES 79

Now, the entire sentence that we are dealing with is a conditional,
A→ B, with ‘(H ∧ I)’ as A and with ‘H ’ as B. On the second
row, for example, ‘(H ∧ I)’ is false and ‘H ’ is true. Since a con-
ditional is true when the antecedent is false, we write a ‘T’ in the
second row underneath the conditional symbol. We continue for
the other three rows and get this:

A →B

H I (H ∧ I)→H
T T T T T
T F F T T
F T F T F
F F F T F

The conditional is the main logical operator of the sentence, so
the column of ‘T’s underneath the conditional tells us that the
sentence ‘(H ∧ I) → H ’ is true regardless of the truth values of
‘H ’ and ‘I ’. They can be true or false in any combination, and
the compound sentence still comes out true. Since we have con-
sidered all four possible assignments of truth and falsity to ‘H ’
and ‘I ’—since, that is, we have considered all the different valua-
tions—we can say that ‘(H ∧ I) → H ’ is true on every valuation.

In this example, we have not repeated all of the entries in
every column in every successive table. When actually writing
truth tables on paper, however, it is impractical to erase whole
columns or rewrite the whole table for every step. Although it is
more crowded, the truth table can be written in this way:

H I (H ∧ I)→H
T T T TT T T
T F T F F T T
F T F F T T F
F F F F F T F

Most of the columns underneath the sentence are only there for
bookkeeping purposes. The column that matters most is the col-
umn underneath the main logical operator for the sentence, since

CHAPTER 11. COMPLETE TRUTH TABLES 80

this tells you the truth value of the entire sentence. We have em-
phasized this, by putting this column in bold. When you work
through truth tables yourself, you should similarly emphasize it
(perhaps by highlighting).

11.2 Building complete truth tables

A complete truth table has a line for every possible assign-
ment of True and False to the relevant sentence letters. Each line
represents a valuation, and a complete truth table has a line for
all the different valuations.

The size of the complete truth table depends on the num-
ber of different sentence letters in the table. A sentence that
contains only one sentence letter requires only two rows, as in
the characteristic truth table for negation. This is true even
if the same letter is repeated many times, as in the sentence
‘[(C ↔ C) → C] ∧ ¬(C → C)’. The complete truth table re-
quires only two lines because there are only two possibilities: ‘C ’
can be true or it can be false. The truth table for this sentence
looks like this:

C [(C↔C)→C] ∧¬ (C→C)
T T T T T T FF T T T
F F T F F F FF F T F

Looking at the column underneath the main logical operator, we
see that the sentence is false on both rows of the table; i.e., the
sentence is false regardless of whether ‘C ’ is true or false. It is
false on every valuation.

There will be four lines in the complete truth table for a
sentence containing two sentence letters, as in the characteris-
tic truth tables, or the truth table for ‘(H ∧ I) → H ’.

There will be eight lines in the complete truth table for a
sentence containing three sentence letters, e.g.:

CHAPTER 11. COMPLETE TRUTH TABLES 81

M N P M ∧ (N ∨P)
T T T T T T T T
T T F T T T T F
T F T T T F T T
T F F T F F F F
F T T F F T T T
F T F F F T T F
F F T F F F T T
F F F F F F F F

From this table, we know that the sentence ‘M ∧ (N ∨P)’ can be
true or false, depending on the truth values of ‘M ’, ‘N ’, and ‘P ’.

A complete truth table for a sentence that contains four dif-
ferent sentence letters requires 16 lines. Five letters, 32 lines. Six
letters, 64 lines. And so on. To be perfectly general: If a complete
truth table has n different sentence letters, then it must have 2n

lines.
In order to fill in the columns of a complete truth table, begin

with the right-most sentence letter and alternate between ‘T’ and
‘F’. In the next column to the left, write two ‘T’s, write two ‘F’s,
and repeat. For the third sentence letter, write four ‘T’s followed
by four ‘F’s. This yields an eight line truth table like the one
above. For a 16 line truth table, the next column of sentence
letters should have eight ‘T’s followed by eight ‘F’s. For a 32 line
table, the next column would have 16 ‘T’s followed by 16 ‘F’s,
and so on.

11.3 More about brackets

Consider these two sentences:

((A ∧ B) ∧C)
(A ∧ (B ∧C))

These are truth functionally equivalent. Consequently, it will
never make any difference from the perspective of truth value—

CHAPTER 11. COMPLETE TRUTH TABLES 82

which is all that TFL cares about (see §10)—which of the two sen-
tences we assert (or deny). Even though the order of the brackets
does not matter as to their truth, we should not just drop them.
The expression

A ∧ B ∧C

is ambiguous between the two sentences above. The same obser-
vation holds for disjunctions. The following sentences are logi-
cally equivalent:

((A ∨ B) ∨C)
(A ∨ (B ∨C))

But we should not simply write:

A ∨ B ∨C

In fact, it is a specific fact about the characteristic truth table of ∨
and ∧ that guarantees that any two conjunctions (or disjunctions)
of the same sentences are truth functionally equivalent, however
you place the brackets. This is only true of conjunctions and disjunc-
tions, however. The following two sentences have different truth
tables:

((A → B) → C)
(A → (B → C))

So if we were to write:

A → B → C

it would be dangerously ambiguous. Leaving out brackets in this
case would be disastrous. Equally, these sentences have different
truth tables:

((A ∨ B) ∧C)
(A ∨ (B ∧C))

CHAPTER 11. COMPLETE TRUTH TABLES 83

So if we were to write:

A ∨ B ∧C

it would be dangerously ambiguous. Never write this. The moral
is: never drop brackets (except the outermost ones).

Practice exercises

A. Offer complete truth tables for each of the following:

1. A → A
2. C → ¬C
3. (A ↔ B) ↔ ¬(A ↔ ¬B)
4. (A → B) ∨ (B → A)
5. (A ∧ B) → (B ∨ A)
6. ¬(A ∨ B) ↔ (¬A ∧ ¬B)
7.

[︁
(A ∧ B) ∧ ¬(A ∧ B)

]︁
∧C

8. [(A ∧ B) ∧C] → B
9. ¬

[︁
(C ∨ A) ∨ B

]︁
B. Check all the claims made in introducing the new notational
conventions in §11.3, i.e. show that:

1. ‘((A∧B) ∧C)’ and ‘(A∧ (B ∧C))’ have the same truth table
2. ‘((A∨B) ∨C)’ and ‘(A∨ (B ∨C))’ have the same truth table
3. ‘((A ∨ B) ∧ C)’ and ‘(A ∨ (B ∧ C))’ do not have the same

truth table
4. ‘((A → B) → C)’ and ‘(A → (B → C))’ do not have the

same truth table

Also, check whether:

5. ‘((A ↔ B) ↔ C)’ and ‘(A ↔ (B ↔ C))’ have the same
truth table

C. Write complete truth tables for the following sentences and
mark the column that represents the possible truth values for the
whole sentence.

CHAPTER 11. COMPLETE TRUTH TABLES 84

1. ¬(S ↔ (P → S))
2. ¬[(X ∧Y) ∨ (X ∨Y)]
3. (A → B) ↔ (¬B ↔ ¬A)
4. [C ↔ (D ∨ E)] ∧ ¬C
5. ¬(G ∧ (B ∧H)) ↔ (G ∨ (B ∨H))

D. Write complete truth tables for the following sentences and
mark the column that represents the possible truth values for the
whole sentence.

1. (D ∧ ¬D) → G
2. (¬P ∨ ¬M) ↔ M
3. ¬¬(¬A ∧ ¬B)
4. [(D ∧R) → I] → ¬(D ∨R)
5. ¬[(D ↔ O) ↔ A] → (¬D ∧O)

If you want additional practice, you can construct truth tables
for any of the sentences and arguments in the exercises for the
previous chapter.

CHAPTER 12

Semantic
concepts
In the previous section, we introduced the idea of a valuation and
showed how to determine the truth value of any TFL sentence,
on any valuation, using a truth table. In this section, we will
introduce some related ideas, and show how to use truth tables
to test whether or not they apply.

12.1 Tautologies and contradictions

In §3, we explained necessary truth and necessary falsity. Both no-
tions have surrogates in TFL. We will start with a surrogate for
necessary truth.

A is a tautology iff it is true on every valuation.

We can use truth tables to decide whether a sentence is a
tautology. If the sentence is true on every line of its complete
truth table, then it is true on every valuation, so it is a tautology.
In the example of §11, ‘(H ∧ I) → H ’ is a tautology.

This is only, though, a surrogate for necessary truth. There
are some necessary truths that we cannot adequately symbolize

85

CHAPTER 12. SEMANTIC CONCEPTS 86

in TFL. One example is ‘2+2 = 4’. This must be true, but if we try
to symbolize it in TFL, the best we can offer is an sentence letter,
and no sentence letter is a tautology. Still, if we can adequately
symbolize some English sentence using a TFL sentence which
is a tautology, then that English sentence expresses a necessary
truth.

We have a similar surrogate for necessary falsity:

A is a contradiction (in TFL) iff it is false on every
valuation.

We can use truth tables to decide whether a sentence is a con-
tradiction. If the sentence is false on every line of its complete
truth table, then it is false on every valuation, so it is a contra-
diction. In the example of §11, ‘[(C ↔ C) → C] ∧ ¬(C → C)’ is
a contradiction.

12.2 Equivalence

Here is a similar useful notion:

Aand B are equivalent (in TFL) iff, for every valuation,
their truth values agree, i.e., if there is no valuation in
which they have opposite truth values.

We have already made use of this notion, in effect, in §11.3;
the point was that ‘(A ∧B) ∧C ’ and ‘A ∧ (B ∧C)’ are equivalent.
Again, it is easy to test for equivalence using truth tables. Con-
sider the sentences ‘¬(P ∨Q)’ and ‘¬P ∧¬Q ’. Are they equivalent?
To find out, we construct a truth table.

P Q ¬ (P ∨Q) ¬P ∧ ¬Q
T T F T T T FTF FT
T F F T T F FTFTF
F T F F T T TF F FT
F F T F F F T FTTF

CHAPTER 12. SEMANTIC CONCEPTS 87

Look at the columns for the main logical operators; negation for
the first sentence, conjunction for the second. On the first three
rows, both are false. On the final row, both are true. Since they
match on every row, the two sentences are equivalent.

12.3 Satisfiability

In §3, we said that sentences are jointly possible iff it is possible
for all of them to be true at once. We can offer a surrogate for
this notion too:

A1,A2, . . . ,An are jointly satisfiable (in TFL) iff there
is some valuation which makes them all true.

Derivatively, sentences are jointly unsatisfiable iff no val-
uation makes them all true. Again, it is easy to test for joint
satisfiability using truth tables.

12.4 Entailment and validity

The following idea is closely related to that of joint satisfiability:

The sentences A1,A2, . . . ,An entail (in TFL) the sen-
tence C iff no valuation of the relevant sentence letters
makes all of A1,A2, . . . ,An true and C false.

Again, it is easy to test this with a truth table. To check
whether ‘¬L → (J ∨ L)’ and ‘¬L’ entail ‘ J ’, we simply need to
check whether there is any valuation which makes both ‘¬L →
(J ∨L)’ and ‘¬L’ true whilst making ‘ J ’ false. So we use a truth
table:

CHAPTER 12. SEMANTIC CONCEPTS 88

J L ¬L→(J ∨L) ¬ L J
T T FTT T T T FT T
T F TF T T T F TF T
F T FTT F T T FT F
F F TF F F F F TF F

The only row on which both‘¬L → (J ∨ L)’ and ‘¬L’ are true is
the second row, and that is a row on which ‘ J ’ is also true. So
‘¬L → (J ∨ L)’ and ‘¬L’ entail ‘ J ’.

We now make an important observation:

If A1,A2, . . . ,An entail C, in TFL then A1,A2, . . . ,An ∴ C

is valid.

Here’s why. If A1,A2, . . . ,An entail C, then there is no val-
uation which makes all of A1,A2, . . . ,An true and also makes C

false. Any case in which all of A1,A2, . . . ,An are true and C is
false would generate a valuation with this property: take the truth
value of any sentence letter to be just the truth value the corre-
sponding sentence in that case. Since there is no such valuation,
there is no case in which all of A1,A2, . . . ,An are true and C is
false. But this is just what it takes for an argument, with premises
A1,A2, . . . ,An and conclusion C, to be valid!

In short, we have a way to test for the validity of English
arguments. First, we symbolize them in TFL; then we test for
entailment in TFL using truth tables.

12.5 The limits of these tests

This is an important milestone: a test for the validity of argu-
ments! However, we should not get carried away just yet. It is
important to understand the limits of our achievement. We will
illustrate these limits with three examples.

First, consider the argument:

1. Daisy has four legs. So Daisy has more than two legs.

CHAPTER 12. SEMANTIC CONCEPTS 89

To symbolize this argument in TFL, we would have to use two
different sentence letters—perhaps ‘F ’ and ‘T ’—for the premise
and the conclusion respectively. Now, it is obvious that ‘F ’ does
not entail ‘T ’. But the English argument is surely valid!

Second, consider the sentence:

2. Jan is neither bald nor not-bald.

To symbolize this sentence in TFL, we would offer something like
‘¬ J ∧¬¬ J ’. This a contradiction (check this with a truth-table),
but sentence 2 does not itself seem like a contradiction; for we
might have happily added ‘Jan is on the borderline of baldness’!

Third, consider the following sentence:

3. It’s not the case that, if God exists, She answers malevolent
prayers.

Symbolizing this in TFL, we would offer something like ‘¬(G →
M)’. Now, ‘¬(G → M)’ entails ‘G ’ (again, check this with a truth
table). So if we symbolize sentence 3 in TFL, it seems to entail
that God exists. But that’s strange: surely even an atheist can
accept sentence 3, without contradicting herself!

One lesson of this is that the symbolization of 3 as ‘¬(G →
M)’ shows that 3 does not express what we intend. Perhaps we
should rephrase it as

3. If God exists, She does not answer malevolent prayers.

and symbolize 3 as ‘G → ¬M ’. Now, if atheists are right, and
there is no God, then ‘G ’ is false and so ‘G → ¬M ’ is true, and
the puzzle disappears. However, if ‘G ’ is false, ‘G → M ’, i.e. ‘If
God exists, She answers malevolent prayers’, is also true!

In different ways, these four examples highlight some of the
limits of working with a language (like TFL) that can only han-
dle truth-functional connectives. Moreover, these limits give rise
to some interesting questions in philosophical logic. The case of
Jan’s baldness (or otherwise) raises the general question of what
logic we should use when dealing with vague discourse. The case

CHAPTER 12. SEMANTIC CONCEPTS 90

of the atheist raises the question of how to deal with the (so-
called) paradoxes of the material conditional. Part of the purpose of
this course is to equip you with the tools to explore these ques-
tions of philosophical logic. But we have to walk before we can
run; we have to become proficient in using TFL, before we can
adequately discuss its limits, and consider alternatives.

12.6 The double turnstile

In what follow, we will use the notion of entailment rather a lot
in this book. It will help us, then, to introduce a symbol that
abbreviates it. Rather than saying that the TFL sentences A1,
A2, . . . and An together entail C, we will abbreviate this by:

A1,A2, . . . ,An ⊨ C

The symbol ‘⊨’ is known as the double turnstile, since it looks like
a turnstile with two horizontal beams.

Let’s be clear. ‘⊨’ is not a symbol of TFL. Rather, it is a
symbol of our metalanguage, augmented English (recall the dif-
ference between object language and metalanguage from §8). So
the metalanguage sentence:

• P,P → Q ⊨ Q

is just an abbreviation for this metalanguage sentence:

• The TFL sentences ‘P ’ and ‘P → Q ’ entail ‘Q ’

Note that there is no limit on the number of TFL sentences that
can be mentioned before the symbol ‘⊨’. Indeed, we can even
consider the limiting case:

⊨ C

This says that there is no valuation which makes all the sentences
mentioned on the left side of ‘⊨’ true whilst making C false. Since
no sentences are mentioned on the left side of ‘⊨’ in this case, this

CHAPTER 12. SEMANTIC CONCEPTS 91

just means that there is no valuation which makes C false. Oth-
erwise put, it says that every valuation makes C true. Otherwise
put, it says that C is a tautology. Equally, to say that A is a
contradiction, we can write:

A ⊨

For this says that no valuation makes A true.
Sometimes, we will want to deny that there is a tautological

entailment, and say something of this shape:

it is not the case that A1, . . . ,An ⊨ C

In that case, we can just slash the turnstile through, and write:

A1,A2, . . . ,An ⊭ C

This means that some valuation makes all ofA1, . . . ,An true whilst
making C false. (But note that it does not immediately follow that
A1, . . . ,An ⊨ ¬C, for that would mean that every valuation makes
all of A1, . . . ,An true whilst making C false.)

12.7 ‘⊨’ versus ‘→’

We now want to compare and contrast ‘⊨’ and ‘→’.
Observe: A ⊨ C iff no valuation of the sentence letters makes

A true and C false.
Observe: A → C is a tautology iff no valuation of the sen-

tence letters makes A→ C false. Since a conditional is true ex-
cept when its antecedent is true and its consequent false, A→ C

is a tautology iff no valuation makes A true and C false.
Combining these two observations, we see that A → C is

a tautology iff A ⊨ C. But there is a really, really important
difference between ‘⊨’ and ‘→’:

‘→’ is a sentential connective of TFL.
‘⊨’ is a symbol of augmented English.

CHAPTER 12. SEMANTIC CONCEPTS 92

Indeed, when ‘→’ is flanked with two TFL sentences, the re-
sult is a longer TFL sentence. By contrast, when we use ‘⊨’, we
form a metalinguistic sentence thatmentions the surrounding TFL
sentences.

Practice exercises

A. Revisit your answers to §11A. Determine which sentences
were tautologies, which were contradictions, and which were nei-
ther tautologies nor contradictions.

B. Use truth tables to determine whether these sentences are
jointly satisfiable, or jointly unsatisfiable:

1. A → A, ¬A → ¬A, A ∧ A, A ∨ A
2. A ∨ B , A → C , B → C
3. B ∧ (C ∨ A), A → B , ¬(B ∨C)
4. A ↔ (B ∨C), C → ¬A, A → ¬B

C. Use truth tables to determine whether each argument is valid
or invalid.

1. A → A ∴ A
2. A → (A ∧ ¬A) ∴ ¬A
3. A ∨ (B → A) ∴ ¬A → ¬B
4. A ∨ B ,B ∨C ,¬A ∴ B ∧C
5. (B ∧ A) → C , (C ∧ A) → B ∴ (C ∧ B) → A

D. Determine whether each sentence is a tautology, a contradic-
tion, or a contingent sentence, using a complete truth table.

1. ¬B ∧ B
2. ¬D ∨D
3. (A ∧ B) ∨ (B ∧ A)
4. ¬[A → (B → A)]
5. A ↔ [A → (B ∧ ¬B)]

CHAPTER 12. SEMANTIC CONCEPTS 93

6. [(A ∧ B) ↔ B] → (A → B)

E. Determine whether each the following sentences are logically
equivalent using complete truth tables. If the two sentences re-
ally are logically equivalent, write “equivalent.” Otherwise write,
“Not equivalent.”

1. A and ¬A
2. A ∧ ¬A and ¬B ↔ B
3. [(A ∨ B) ∨C] and [A ∨ (B ∨C)]
4. A ∨ (B ∧C) and (A ∨ B) ∧ (A ∨C)
5. [A ∧ (A ∨ B)] → B and A → B

F. Determine whether each the following sentences are logically
equivalent using complete truth tables. If the two sentences really
are equivalent, write “equivalent.” Otherwise write, “not equiva-
lent.”

1. A → A and A ↔ A
2. ¬(A → B) and ¬A → ¬B
3. A ∨ B and ¬A → B
4. (A → B) → C and A → (B → C)
5. A ↔ (B ↔ C) and A ∧ (B ∧C)

G. Determine whether each collection of sentences is jointly sat-
isfiable or jointly unsatisfiable using a complete truth table.

1. A ∧ ¬B , ¬(A → B), B → A

2. A ∨ B , A → ¬A, B → ¬B
3. ¬(¬A ∨ B), A → ¬C , A → (B → C)
4. A → B , A ∧ ¬B
5. A → (B → C), (A → B) → C , A → C

H. Determine whether each collection of sentences is jointly sat-
isfiable or jointly unsatisfiable, using a complete truth table.

1. ¬B , A → B , A

CHAPTER 12. SEMANTIC CONCEPTS 94

2. ¬(A ∨ B), A ↔ B , B → A

3. A ∨ B , ¬B , ¬B → ¬A
4. A ↔ B , ¬B ∨ ¬A, A → B

5. (A ∨ B) ∨C , ¬A ∨ ¬B , ¬C ∨ ¬B

I. Determine whether each argument is valid or invalid, using a
complete truth table.

1. A → B , B ∴ A
2. A ↔ B , B ↔ C ∴ A ↔ C
3. A → B , A → C ∴ B → C
4. A → B , B → A ∴ A ↔ B

J. Determine whether each argument is valid or invalid, using a
complete truth table.

1. A ∨
[︁
A → (A ↔ A)

]︁
∴ A

2. A ∨ B , B ∨C , ¬B ∴ A ∧C
3. A → B , ¬A ∴ ¬B
4. A, B ∴ ¬(A → ¬B)
5. ¬(A ∧ B), A ∨ B , A ↔ B ∴ C

K. Answer each of the questions below and justify your answer.

1. Suppose that A and B are logically equivalent. What can
you say about A↔ B?

2. Suppose that (A∧ B) → C is neither a tautology nor a
contradiction. What can you say about whether A,B ∴ C

is valid?
3. Suppose that A, B and C are jointly unsatisfiable. What

can you say about (A∧ B∧ C)?
4. Suppose that A is a contradiction. What can you say about

whether A,B ⊨ C?
5. Suppose that C is a tautology. What can you say about

whether A,B ⊨ C?
6. Suppose that A and B are logically equivalent. What can

you say about (A∨ B)?

CHAPTER 12. SEMANTIC CONCEPTS 95

7. Suppose that A and B are not logically equivalent. What
can you say about (A∨ B)?

L. Consider the following principle:

• Suppose A and B are logically equivalent. Suppose an ar-
gument contains A (either as a premise, or as the conclu-
sion). The validity of the argument would be unaffected, if
we replaced Awith B.

Is this principle correct? Explain your answer.

CHAPTER 13

Truth table
shortcuts
With practice, you will quickly become adept at filling out truth
tables. In this section, we consider (and justify) some shortcuts
which will help you along the way.

13.1 Working through truth tables

You will quickly find that you do not need to copy the truth value
of each sentence letter, but can simply refer back to them. So you
can speed things up by writing:

P Q (P ∨Q)↔¬P
T T T F F
T F T F F
F T T T T
F F F F T

You also know for sure that a disjunction is true whenever one
of the disjuncts is true. So if you find a true disjunct, there is no
need to work out the truth values of the other disjuncts. Thus
you might offer:

96

CHAPTER 13. TRUTH TABLE SHORTCUTS 97

P Q (¬P ∨¬Q) ∨ ¬P
T T F F F F F
T F F TT TF
F T TT
F F TT

Equally, you know for sure that a conjunction is false whenever
one of the conjuncts is false. So if you find a false conjunct, there
is no need to work out the truth value of the other conjunct. Thus
you might offer:

P Q ¬ (P ∧¬Q) ∧ ¬P
T T F F
T F F F
F T T F TT
F F T F TT

A similar short cut is available for conditionals. You immediately
know that a conditional is true if either its consequent is true, or
its antecedent is false. Thus you might present:

P Q ((P→Q)→P)→P
T T T
T F T
F T T F T
F F T F T

So ‘((P → Q) → P) → P ’ is a tautology. In fact, it is an instance
of Peirce’s Law, named after Charles Sanders Peirce.

13.2 Testing for validity and entailment

In §12, we saw how to use truth tables to test for validity. In that
test, we look for bad lines: lines where the premises are all true
and the conclusion is false. Now:

• If the conclusion is true on a line, then that line is not bad.
(And we don’t need to evaluate anything else on that line
to confirm this.)

CHAPTER 13. TRUTH TABLE SHORTCUTS 98

• If any premise is false on a line, then that line is not bad.
(And we don’t need to evaluate anything else on that line
to confirm this.)

With this in mind, we can speed up our tests for validity quite
considerably.

Let’s consider how we might test the following:

¬L → (J ∨ L),¬L ∴ J

The first thing we should do is evaluate the conclusion. If we find
that the conclusion is true on some line, then that is not a bad
line. So we can simply ignore the rest of the line. So, after our
first stage, we are left with something like this:

J L ¬L→(J ∨L) ¬L J
T T T
T F T
F T ? ? F
F F ? ? F

where the blanks indicate that we won’t bother with any more
investigation (since the line is not bad), and the question marks
indicate that we need to keep digging.

The easiest premise to evaluate is the second, so we do that
next, and get:

J L ¬L→(J ∨L) ¬L J
T T T
T F T
F T F F
F F ? T F

Note that we no longer need to consider the third line on the
table: it is certainly not bad, because some premise is false on
that line. And finally, we complete the truth table:

CHAPTER 13. TRUTH TABLE SHORTCUTS 99

J L ¬L→(J ∨L) ¬L J
T T T
T F T
F T F F
F F T F F T F

The truth table has no bad lines, so the argument is valid. Any
valuation which makes every premise true makes the conclusion
true.

It’s probably worth illustrating the tactic again. Consider this
argument:

A ∨ B ,¬(B ∧C) ∴ (A ∨ ¬C)

Again, we start by evaluating the conclusion. Since this is a dis-
junction, it is true whenever either disjunct is true, so we can
speed things along a bit.

A B C A ∨ B ¬(B ∧C) (A ∨ ¬C)
T T T T
T T F T
T F T T
T F F T
F T T ? ? F F
F T F TT
F F T ? ? F F
F F F TT

We can now ignore all but the two lines where the sentence after
the turnstile is false. Evaluating the two sentences on the left of
the turnstile, we get:

CHAPTER 13. TRUTH TABLE SHORTCUTS 100

A B C A ∨ B ¬(B ∧C) (A ∨ ¬C)
T T T T
T T F T
T F T T
T F F T
F T T T F T F F
F T F TT
F F T F F F
F F F TT

So the entailment holds! And our shortcuts saved us a lot of
work.

We have been discussing shortcuts in testing for validity. But
exactly the same shortcuts can be used in testing for entailment.
By employing a similar notion of bad lines, you can save yourself
a huge amount of work.

Practice exercises

A. Using shortcuts, check whether each sentence is a tautology,
a contradiction, or neither.

1. ¬B ∧ B
2. ¬D ∨D
3. (A ∧ B) ∨ (B ∧ A)
4. ¬[A → (B → A)]
5. A ↔ [A → (B ∧ ¬B)]
6. ¬(A ∧ B) ↔ A
7. A → (B ∨C)
8. (A ∧ ¬A) → (B ∨C)
9. (B ∧D) ↔ [A ↔ (A ∨C)]

CHAPTER 14

Partial truth
tables
Sometimes, we do not need to know what happens on every line
of a truth table. Sometimes, just a line or two will do.

Tautology. In order to show that a sentence is a tautology, we
need to show that it is true on every valuation. That is to say,
we need to know that it comes out true on every line of the truth
table. So we need a complete truth table.

To show that a sentence is not a tautology, however, we only
need one line: a line on which the sentence is false. Therefore, in
order to show that some sentence is not a tautology, it is enough
to provide a single valuation—a single line of the truth table—
which makes the sentence false.

Suppose that we want to show that the sentence ‘(U ∧T) →
(S ∧W)’ is not a tautology. We set up a partial truth table:

S T U W (U ∧T)→(S ∧W)
F

We have only left space for one line, rather than 16, since we are
only looking for one line, on which the sentence is false (hence,
also, the ‘F’).

101

CHAPTER 14. PARTIAL TRUTH TABLES 102

The main logical operator of the sentence is a conditional. In
order for the conditional to be false, the antecedent must be true
and the consequent must be false. So we fill these in on the table:

S T U W (U ∧T)→(S ∧W)
T F F

In order for the ‘(U ∧T)’ to be true, both ‘U ’ and ‘T ’ must be
true.

S T U W (U ∧T)→(S ∧W)
T T T T T F F

Now we just need to make ‘(S ∧W)’ false. To do this, we need to
make at least one of ‘S ’ and ‘W ’ false. We can make both ‘S ’ and
‘W ’ false if we want. All that matters is that the whole sentence
turns out false on this line. Making an arbitrary decision, we
finish the table in this way:

S T U W (U ∧T)→(S ∧W)
F T T F T T T F F F F

We now have a partial truth table, which shows that ‘(U ∧T) →
(S ∧W)’ is not a tautology. Put otherwise, we have shown that
there is a valuation which makes ‘(U ∧ T) → (S ∧W)’ false,
namely, the valuation which makes ‘S ’ false, ‘T ’ true, ‘U ’ true
and ‘W ’ false.

Contradicitions. Showing that something is a contradicition
in TFL requires a complete truth table: we need to show that
there is no valuation which makes the sentence true; that is, we
need to show that the sentence is false on every line of the truth
table.

However, to show that something is not a contradiction, all
we need to do is find a valuation which makes the sentence true,
and a single line of a truth table will suffice. We can illustrate this
with the same example.

CHAPTER 14. PARTIAL TRUTH TABLES 103

S T U W (U ∧T)→(S ∧W)
T

To make the sentence true, it will suffice to ensure that the an-
tecedent is false. Since the antecedent is a conjunction, we can
just make one of them false. Making an arbitrary choice, let’s
make ‘U ’ false; we can then assign any truth value we like to the
other sentence letters.

S T U W (U ∧T)→(S ∧W)
F T F F F F T T F F F

Equivalence. To show that two sentences are equivalent, we
must show that the sentences have the same truth value on every
valuation. So this requires a complete truth table.

To show that two sentences are not equivalent, we only need
to show that there is a valuation on which they have different
truth values. So this requires only a one-line partial truth table:
make the table so that one sentence is true and the other false.

Consistency. To show that some sentences are jointly satisfi-
able, we must show that there is a valuation which makes all of
the sentences true,so this requires only a partial truth table with
a single line.

To show that some sentences are jointly unsatisfiable, we must
show that there is no valuation which makes all of the sentence
true. So this requires a complete truth table: You must show that
on every row of the table at least one of the sentences is false.

Validity and entailment. To show that an argument is valid,
we must show that there is no valuation which makes all of the
premises true and the conclusion false. So this requires a com-
plete truth table. (Likewise for entailment.)

To show that argument is invalid, we must show that there is a
valuation which makes all of the premises true and the conclusion
false. So this requires only a one-line partial truth table on which

CHAPTER 14. PARTIAL TRUTH TABLES 104

all of the premises are true and the conclusion is false. (Likewise
for a failure of entailment.)

This table summarises what is required:

Yes No
tautology? complete one-line partial
contradiction? complete one-line partial
equivalent? complete one-line partial
satisfiable? one-line partial complete
valid? complete one-line partial
entailment? complete one-line partial

Practice exercises

A. Use complete or partial truth tables (as appropriate) to deter-
mine whether these pairs of sentences are logically equivalent:

1. A, ¬A
2. A, A ∨ A
3. A → A, A ↔ A
4. A ∨ ¬B , A → B
5. A ∧ ¬A, ¬B ↔ B
6. ¬(A ∧ B), ¬A ∨ ¬B
7. ¬(A → B), ¬A → ¬B
8. (A → B), (¬B → ¬A)

B. Use complete or partial truth tables (as appropriate) to de-
termine whether these sentences are jointly satisfiable, or jointly
unsatisfiable:

1. A ∧ B , C → ¬B , C
2. A → B , B → C , A, ¬C
3. A ∨ B , B ∨C , C → ¬A
4. A, B , C , ¬D , ¬E, F
5. A ∧ (B ∨C), ¬(A ∧C), ¬(B ∧C)
6. A → B , B → C , ¬(A → C)

CHAPTER 14. PARTIAL TRUTH TABLES 105

C. Use complete or partial truth tables (as appropriate) to deter-
mine whether each argument is valid or invalid:

1. A ∨
[︁
A → (A ↔ A)

]︁
∴ A

2. A ↔ ¬(B ↔ A) ∴ A
3. A → B ,B ∴ A
4. A ∨ B ,B ∨C ,¬B ∴ A ∧C
5. A ↔ B ,B ↔ C ∴ A ↔ C

D. Determine whether each sentence is a tautology, a contradic-
tion, or a contingent sentence. Justify your answer with a com-
plete or partial truth table where appropriate.

1. A → ¬A
2. A → (A ∧ (A ∨ B))
3. (A → B) ↔ (B → A)
4. A → ¬(A ∧ (A ∨ B))
5. ¬B → [(¬A ∧ A) ∨ B]
6. ¬(A ∨ B) ↔ (¬A ∧ ¬B)
7. [(A ∧ B) ∧C] → B

8. ¬
[︁
(C ∨ A) ∨ B

]︁
9.

[︁
(A ∧ B) ∧ ¬(A ∧ B)

]︁
∧C

10. (A ∧ B)] → [(A ∧C) ∨ (B ∧D)]

E. Determine whether each sentence is a tautology, a contradic-
tion, or a contingent sentence. Justify your answer with a com-
plete or partial truth table where appropriate.

1. ¬(A ∨ A)
2. (A → B) ∨ (B → A)
3. [(A → B) → A] → A

4. ¬[(A → B) ∨ (B → A)]
5. (A ∧ B) ∨ (A ∨ B)
6. ¬(A ∧ B) ↔ A

CHAPTER 14. PARTIAL TRUTH TABLES 106

7. A → (B ∨C)
8. (A ∧ ¬A) → (B ∨C)
9. (B ∧D) ↔ [A ↔ (A ∨C)]
10. ¬[(A → B) ∨ (C → D)]

F. Determine whether each the following pairs of sentences are
logically equivalent using complete truth tables. If the two sen-
tences really are logically equivalent, write “equivalent.” Other-
wise write, “not equivalent.”

1. A and A ∨ A
2. A and A ∧ A
3. A ∨ ¬B and A → B
4. (A → B) and (¬B → ¬A)
5. ¬(A ∧ B) and ¬A ∨ ¬B
6. ((U → (X ∨ X)) ∨U) and ¬(X ∧ (X ∧U))
7. ((C ∧ (N ↔ C)) ↔ C) and (¬¬¬N → C)
8. [(A ∨ B) ∧C] and [A ∨ (B ∧C)]
9. ((L ∧C) ∧ I) and L ∨C

G. Determine whether each collection of sentences is jointly satis-
fiable or jointly unsatisfiable. Justify your answer with a complete
or partial truth table where appropriate.

1. A → A, ¬A → ¬A, A ∧ A, A ∨ A
2. A → ¬A, ¬A → A
3. A ∨ B , A → C , B → C
4. A ∨ B , A → C , B → C , ¬C
5. B ∧ (C ∨ A), A → B , ¬(B ∨C)
6. (A ↔ B) → B , B → ¬(A ↔ B), A ∨ B
7. A ↔ (B ∨C), C → ¬A, A → ¬B
8. A ↔ B , ¬B ∨ ¬A, A → B
9. A ↔ B , A → C , B → D , ¬(C ∨D)
10. ¬(A ∧ ¬B), B → ¬A, ¬B

CHAPTER 14. PARTIAL TRUTH TABLES 107

H. Determine whether each argument is valid or invalid. Justify
your answer with a complete or partial truth table where appro-
priate.

1. A → (A ∧ ¬A) ∴ ¬A
2. A ∨ B , A → B , B → A ∴ A ↔ B
3. A ∨ (B → A) ∴ ¬A → ¬B
4. A ∨ B , A → B , B → A ∴ A ∧ B
5. (B ∧ A) → C , (C ∧ A) → B ∴ (C ∧ B) → A
6. ¬(¬A ∨ ¬B), A → ¬C ∴ A → (B → C)
7. A ∧ (B → C), ¬C ∧ (¬B → ¬A) ∴ C ∧ ¬C
8. A ∧ B , ¬A → ¬C , B → ¬D ∴ A ∨ B
9. A → B ∴ (A ∧ B) ∨ (¬A ∧ ¬B)
10. ¬A → B ,¬B → C ,¬C → A ∴ ¬A → (¬B ∨ ¬C)

I. Determine whether each argument is valid or invalid. Justify
your answer with a complete or partial truth table where appro-
priate.

1. A ↔ ¬(B ↔ A) ∴ A
2. A ∨ B , B ∨C , ¬A ∴ B ∧C
3. A → C , E → (D ∨B), B → ¬D ∴ (A∨C) ∨ (B → (E ∧D))
4. A ∨ B , C → A, C → B ∴ A → (B → C)
5. A → B , ¬B ∨ A ∴ A ↔ B

PART IV

Natural
deduction for

TFL

108

CHAPTER 15

The very idea
of natural
deduction
Way back in §2, we said that an argument is valid iff there is no
case in which all of the premises are true and the conclusion is
false.

In the case of TFL, this led us to develop truth tables. Each
line of a complete truth table corresponds to a valuation. So,
when faced with a TFL argument, we have a very direct way to
assess whether there is a valuation on which the premises are true
and the conclusion is false: just thrash through the truth table.

However, truth tables may not give us much insight. Consider
two arguments in TFL:

P ∨Q ,¬P ∴ Q
P → Q ,P ∴ Q

Clearly, these are valid arguments. You can confirm that they are
valid by constructing four-line truth tables, but we might say that
they make use of different forms of reasoning. It might be nice to
keep track of these different forms of inference.

109

CHAPTER 15. THE VERY IDEA OF NATURAL DEDUCTION 110

One aim of a natural deduction system is to show that particular
arguments are valid, in a way that allows us to understand the
reasoning that the arguments might involve. We begin with very
basic rules of inference. These rules can be combined to offer
more complicated arguments. Indeed, with just a small starter
pack of rules of inference, we hope to capture all valid arguments.

This is a very different way of thinking about arguments.
With truth tables, we directly consider different ways to make

sentences true or false. With natural deduction systems, we ma-
nipulate sentences in accordance with rules that we have set down
as good rules. The latter promises to give us a better insight—or
at least, a different insight—into how arguments work.

The move to natural deduction might be motivated by more
than the search for insight. It might also be motivated by necessity.
Consider:

A1 → C1 ∴ (A1 ∧ A2 ∧ A3 ∧ A4 ∧ A5) → (C1 ∨C2 ∨C3 ∨C4 ∨C5)

To test this argument for validity, you might use a 1024-line truth
table. If you do it correctly, then you will see that there is no line
on which all the premises are true and on which the conclusion
is false. So you will know that the argument is valid. (But, as just
mentioned, there is a sense in which you will not know why the
argument is valid.) But now consider:

A1 → C1 ∴ (A1 ∧ A2 ∧ A3 ∧ A4 ∧ A5 ∧ A6 ∧ A7 ∧ A8 ∧ A9 ∧ A10) →
(C1 ∨C2 ∨C3 ∨C4 ∨C5 ∨C6 ∨C7 ∨C8 ∨C9 ∨C10)

This argument is also valid—as you can probably tell—but to test
it requires a truth table with 220 = 1048576 lines. In principle, we
can set a machine to grind through truth tables and report back
when it is finished. In practice, complicated arguments in TFL
can become intractable if we use truth tables.

When we get to first-order logic (FOL) (beginning in chapter
22), though, the problem gets dramatically worse. There is noth-
ing like the truth table test for FOL. To assess whether or not an
argument is valid, we have to reason about all interpretations,

CHAPTER 15. THE VERY IDEA OF NATURAL DEDUCTION 111

but, as we will see, there are infinitely many possible interpreta-
tions. We cannot even in principle set a machine to grind through
infinitely many possible interpretations and report back when it
is finished: it will never finish. We either need to come up with
some more efficient way of reasoning about all interpretations, or
we need to look for something different.

There are, indeed, systems that codify ways to reason about
all possible interpretations. They were developed in the 1950s by
Evert Beth and Jaakko Hintikka, but we will not follow this path.
We will, instead, look to natural deduction.

Rather than reasoning directly about all valuations (in the
case of TFL), we will try to select a few basic rules of inference.
Some of these will govern the behaviour of the sentential con-
nectives. Others will govern the behaviour of the quantifiers and
identity that are the hallmarks of FOL. The resulting system of
rules will give us a new way to think about the validity of ar-
guments. The modern development of natural deduction dates
from simultaneous and unrelated papers by Gerhard Gentzen and
Stanisław Jaśkowski (1934). However, the natural deduction sys-
tem that we will consider is based largely around work by Frederic
Fitch (first published in 1952).

CHAPTER 16

Basic rules for
TFL
We will develop a natural deduction system. For each con-
nective, there will be introduction rules, that allow us to prove
a sentence that has that connective as the main logical operator,
and elimination rules, that allow us to prove something given a
sentence that has that connective as the main logical operator.

16.1 The idea of a formal proof

A formal proof is a sequence of sentences, some of which are
marked as being initial assumptions (or premises). The last line
of the formal proof is the conclusion. (Henceforth, we will simply
call these ‘proofs’, but be aware that there are informal proofs too.)

As an illustration, consider:

¬(A ∨ B) ∴ ¬A ∧ ¬B

We will start a proof by writing the premise:

1 ¬(A ∨ B)

112

CHAPTER 16. BASIC RULES FOR TFL 113

Note that we have numbered the premise, since we will want to
refer back to it. Indeed, every line on of proof is numbered, so
that we can refer back to it.

Note also that we have drawn a line underneath the premise.
Everything written above the line is an assumption. Everything
written below the line will either be something which follows from
the assumptions, or it will be some new assumption. We are
hoping to conclude ‘¬A ∧ ¬B ’; so we are hoping ultimately to
conclude our proof with

n ¬A ∧ ¬B

for some number n. It doesn’t matter what line number we end
on, but we would obviously prefer a short proof to a long one.

Similarly, suppose we wanted to consider:

A ∨ B ,¬(A ∧C),¬(B ∧ ¬D) ∴ ¬C ∨D

The argument has three premises, so we start by writing them all
down, numbered, and drawing a line under them:

1 A ∨ B

2 ¬(A ∧C)

3 ¬(B ∧ ¬D)

and we are hoping to conclude with some line:

n ¬C ∨D

All that remains to do is to explain each of the rules that we can
use along the way from premises to conclusion. The rules are
broken down by our logical connectives.

CHAPTER 16. BASIC RULES FOR TFL 114

16.2 Reiteration

The very first rule is so breathtakingly obvious that it is surprising
we bother with it at all.

If you already have shown something in the course of a proof,
the reiteration rule allows you to repeat it on a new line. For
example:

4 A ∧ B
...

...

10 A ∧ B R 4

This indicates that we have written ‘A∧B ’ on line 4. Now, at some
later line—line 10, for example—we have decided that we want
to repeat this. So we write it down again. We also add a citation
which justifies what we have written. In this case, we write ‘R’, to
indicate that we are using the reiteration rule, and we write ‘4’,
to indicate that we have applied it to line 4.

Here is a general expression of the rule:

m A

A R m

The point is that, if any sentence A occurs on some line, then
we can repeat A on later lines. Each line of our proof must be
justified by some rule, and here we have ‘R m’. This means:
Reiteration, applied to line m.

Two things need emphasizing. First ‘A’ is not a sentence of
TFL. Rather, it a symbol in the metalanguage, which we use when
we want to talk about any sentence of TFL (see §8). Second, and
similarly, ‘m’ is not a symbol that will appear on a proof. Rather,
it is a symbol in the metalanguage, which we use when we want
to talk about any line number of a proof. In an actual proof, the
lines are numbered ‘1’, ‘2’, ‘3’, and so forth. But when we define

CHAPTER 16. BASIC RULES FOR TFL 115

the rule, we use variables like ‘m’ to underscore the point that
the rule may be applied at any point.

16.3 Conjunction

Suppose we want to show that Ludwig is both reactionary and
libertarian. One obvious way to do this would be as follows: first
we show that Ludwig is reactionary; then we show that Ludwig
is libertarian; then we put these two demonstrations together, to
obtain the conjunction.

Our natural deduction system will capture this thought
straightforwardly. In the example given, we might adopt the fol-
lowing symbolization key:

R: Ludwig is reactionary
L: Ludwig is libertarian

Perhaps we are working through a proof, and we have obtained
‘R’ on line 8 and ‘L’ on line 15. Then on any subsequent line we
can obtain ‘R ∧ L’ thus:

8 R

15 L

R ∧ L ∧I 8, 15

Note that every line of our proof must either be an assumption, or
must be justified by some rule. We cite ‘∧I 8, 15’ here to indicate
that the line is obtained by the rule of conjunction introduction
(∧I) applied to lines 8 and 15. We could equally well obtain:

8 R

15 L

L ∧R ∧I 15, 8

CHAPTER 16. BASIC RULES FOR TFL 116

with the citation reversed, to reflect the order of the conjuncts.
More generally, here is our conjunction introduction rule:

m A

n B

A∧ B ∧I m, n

To be clear, the statement of the rule is schematic. It is not
itself a proof. ‘A’ and ‘B’ are not sentences of TFL. Rather, they
are symbols in the metalanguage, which we use when we want to
talk about any sentence of TFL (see §8). Similarly, ‘m’ and ‘n’
are not a numerals that will appear on any actual proof. Rather,
they are symbols in the metalanguage, which we use when we
want to talk about any line number of any proof. In an actual
proof, the lines are numbered ‘1’, ‘2’, ‘3’, and so forth, but when
we define the rule, we use variables to emphasize that the rule
may be applied at any point. The rule requires only that we have
both conjuncts available to us somewhere in the proof. They can
be separated from one another, and they can appear in any order.

The rule is called ‘conjunction introduction’ because it intro-
duces the symbol ‘∧’ into our proof where it may have been ab-
sent. Correspondingly, we have a rule that eliminates that sym-
bol. Suppose you have shown that Ludwig is both reactionary
and libertarian. You are entitled to conclude that Ludwig is re-
actionary. Equally, you are entitled to conclude that Ludwig is
libertarian. Putting this together, we obtain our conjunction elim-
ination rule(s):

m A∧ B

A ∧E m

and equally:

CHAPTER 16. BASIC RULES FOR TFL 117

m A∧ B

B ∧E m

The point is simply that, when you have a conjunction on
some line of a proof, you can obtain either of the conjuncts by
∧E. One point is worth emphasising: you can only apply this rule
when conjunction is the main logical operator. So you cannot
infer ‘D ’ just from ‘C ∨ (D ∧ E)’!

Even with just these two rules, we can start to see some of the
power of our formal proof system. Consider:

[(A ∨ B) → (C ∨D)] ∧ [(E ∨ F) → (G ∨H)]
∴ [(E ∨ F) → (G ∨H)] ∧ [(A ∨ B) → (C ∨D)]

The main logical operator in both the premise and conclusion of
this argument is ‘∧’. In order to provide a proof, we begin by
writing down the premise, which is our assumption. We draw a
line below this: everything after this line must follow from our
assumptions by (repeated applications of) our rules of inference.
So the beginning of the proof looks like this:

1 [(A ∨ B) → (C ∨D)] ∧ [(E ∨ F) → (G ∨H)]

From the premise, we can get each of the conjuncts by ∧E. The
proof now looks like this:

1 [(A ∨ B) → (C ∨D)] ∧ [(E ∨ F) → (G ∨H)]

2 [(A ∨ B) → (C ∨D)] ∧E 1

3 [(E ∨ F) → (G ∨H)] ∧E 1

So by applying the ∧I rule to lines 3 and 2 (in that order), we
arrive at the desired conclusion. The finished proof looks like
this:

CHAPTER 16. BASIC RULES FOR TFL 118

1 [(A ∨ B) → (C ∨D)] ∧ [(E ∨ F) → (G ∨H)]

2 [(A ∨ B) → (C ∨D)] ∧E 1

3 [(E ∨ F) → (G ∨H)] ∧E 1

4 [(E ∨ F) → (G ∨H)] ∧ [(A ∨ B) → (C ∨D)] ∧I 3, 2

This is a very simple proof, but it shows how we can chain rules
of proof together into longer proofs. In passing, note that investi-
gating this argument with a truth table would have required 256
lines; our formal proof required only four lines.

It is worth giving another example. Back in §11.3, we noted
that this argument is valid:

A ∧ (B ∧C) ∴ (A ∧ B) ∧C

To provide a proof corresponding to this argument, we start by
writing:

1 A ∧ (B ∧C)

From the premise, we can get each of the conjuncts by applying
∧E twice. We can then apply ∧E twice more, so our proof looks
like:

1 A ∧ (B ∧C)

2 A ∧E 1

3 B ∧C ∧E 1

4 B ∧E 3

5 C ∧E 3

But now we can merrily reintroduce conjunctions in the order we
wanted them, so that our final proof is:

CHAPTER 16. BASIC RULES FOR TFL 119

1 A ∧ (B ∧C)

2 A ∧E 1

3 B ∧C ∧E 1

4 B ∧E 3

5 C ∧E 3

6 A ∧ B ∧I 2, 4

7 (A ∧ B) ∧C ∧I 6, 5

Recall that our official definition of sentences in TFL only allowed
conjunctions with two conjuncts. The proof just given suggests
that we could drop inner brackets in all of our proofs. However,
this is not standard, and we will not do this. Instead, we will
maintain our more austere bracketing conventions. (Though we
will still allow ourselves to drop outermost brackets, for legibility.)

Let’s give one final illustration. When using the ∧I rule, there
is no requirement to apply it to different sentences. So, if we
want, we can formally prove ‘A ∧ A’ from ‘A’ thus:

1 A

2 A ∧ A ∧I 1, 1

Simple, but effective.

16.4 Conditional

Consider the following argument:

If Jane is smart then she is fast.
Jane is smart.

∴ Jane is fast.

This argument is certainly valid, and it suggests a straightforward
conditional elimination rule (→E):

CHAPTER 16. BASIC RULES FOR TFL 120

m A→ B

n A

B →E m, n

This rule is also sometimes called modus ponens. Again, this
is an elimination rule, because it allows us to obtain a sentence
that may not contain ‘→’, having started with a sentence that
did contain ‘→’. Note that the conditional A→ B and the an-
tecedent A can be separated from one another in the proof, and
they can appear in any order. However, in the citation for →E,
we always cite the conditional first, followed by the antecedent.

The rule for conditional introduction is also quite easy to
motivate. The following argument should be valid:

Ludwig is reactionary. Therefore if Ludwig is libertar-
ian, then Ludwig is both reactionary and libertarian.

If someone doubted that this was valid, we might try to convince
them otherwise by explaining ourselves as follows:

Assume that Ludwig is reactionary. Now, additionally
assume that Ludwig is libertarian. Then by conjunc-
tion introduction—which we just discussed—Ludwig
is both reactionary and libertarian. Of course, that’s
conditional on the assumption that Ludwig is libertar-
ian. But this just means that, if Ludwig is libertarian,
then he is both reactionary and libertarian.

Transferred into natural deduction format, here is the pattern
of reasoning that we just used. We started with one premise,
‘Ludwig is reactionary’, thus:

1 R

CHAPTER 16. BASIC RULES FOR TFL 121

The next thing we did is to make an additional assumption (‘Lud-
wig is libertarian’), for the sake of argument. To indicate that we
are no longer dealing merely with our original assumption (‘R’),
but with some additional assumption, we continue our proof as
follows:

1 R

2 L

Note that we are not claiming, on line 2, to have proved ‘L’ from
line 1, so we do not write in any justification for the additional
assumption on line 2. We do, however, need to mark that it is
an additional assumption. We do this by drawing a line under it
(to indicate that it is an assumption) and by indenting it with a
further vertical line (to indicate that it is additional).

With this extra assumption in place, we are in a position to
use ∧I. So we can continue our proof:

1 R

2 L

3 R ∧ L ∧I 1, 2

So we have now shown that, on the additional assumption, ‘L’,
we can obtain ‘R ∧ L’. We can therefore conclude that, if ‘L’
obtains, then so does ‘R ∧ L’. Or, to put it more briefly, we can
conclude ‘L → (R ∧ L)’:

1 R

2 L

3 R ∧ L ∧I 1, 2

4 L → (R ∧ L) →I 2–3

Observe that we have dropped back to using one vertical line on
the left. We have discharged the additional assumption, ‘L’, since

CHAPTER 16. BASIC RULES FOR TFL 122

the conditional itself follows just from our original assumption,
‘R’.

The general pattern at work here is the following. We first
make an additional assumption, A; and from that additional as-
sumption, we prove B. In that case, we know the following: If A
is true, then B is true. This is wrapped up in the rule for condi-
tional introduction:

i A

j B

A→ B →I i– j

There can be as many or as few lines as you like between lines
i and j .

It will help to offer a second illustration of →I in action. Sup-
pose we want to consider the following:

P → Q ,Q → R ∴ P → R

We start by listing both of our premises. Then, since we want
to arrive at a conditional (namely, ‘P → R’), we additionally
assume the antecedent to that conditional. Thus our main proof
starts:

1 P → Q

2 Q → R

3 P

Note that we have made ‘P ’ available, by treating it as an addi-
tional assumption, but now, we can use →E on the first premise.
This will yield ‘Q ’. We can then use →E on the second premise.
So, by assuming ‘P ’ we were able to prove ‘R’, so we apply the

CHAPTER 16. BASIC RULES FOR TFL 123

→I rule—discharging ‘P ’—and finish the proof. Putting all this
together, we have:

1 P → Q

2 Q → R

3 P

4 Q →E 1, 3

5 R →E 2, 4

6 P → R →I 3–5

16.5 Additional assumptions and subproofs

The rule →I invoked the idea of making additional assumptions.
These need to be handled with some care. Consider this proof:

1 A

2 B

3 B R 2

4 B → B →I 2–3

This is perfectly in keeping with the rules we have laid down
already, and it should not seem particularly strange. Since ‘B →
B ’ is a tautology, no particular premises should be required to
prove it.

But suppose we now tried to continue the proof as follows:

CHAPTER 16. BASIC RULES FOR TFL 124

1 A

2 B

3 B R 2

4 B → B →I 2–3

5 B naughty attempt

to invoke →E 4, 3

If we were allowed to do this, it would be a disaster. It would
allow us to prove any sentence letter from any other sentence
letter. However, if you tell me that Anne is fast (symbolized by
‘A’), we shouldn’t be able to conclude that Queen Boudica stood
twenty-feet tall (symbolized by ‘B ’)! We must be prohibited from
doing this, but how are we to implement the prohibition?

We can describe the process of making an additional assump-
tion as one of performing a subproof : a subsidiary proof within the
main proof. When we start a subproof, we draw another vertical
line to indicate that we are no longer in the main proof. Then we
write in the assumption upon which the subproof will be based.
A subproof can be thought of as essentially posing this question:
what could we show, if we also make this additional assumption?

When we are working within the subproof, we can refer to the
additional assumption that we made in introducing the subproof,
and to anything that we obtained from our original assumptions.
(After all, those original assumptions are still in effect.) At some
point though, we will want to stop working with the additional
assumption: we will want to return from the subproof to the main
proof. To indicate that we have returned to the main proof, the
vertical line for the subproof comes to an end. At this point,
we say that the subproof is closed. Having closed a subproof,
we have set aside the additional assumption, so it will be illegit-
imate to draw upon anything that depends upon that additional
assumption. Thus we stipulate:

CHAPTER 16. BASIC RULES FOR TFL 125

To cite an individual line when applying a rule:

1. the line must come before the line where the rule is
applied, but

2. not occur within a subproof that has been closed
before the line where the rule is applied.

This stipulation rules out the disastrous attempted proof
above. The rule of →E requires that we cite two individual lines
from earlier in the proof. In the purported proof, above, one of
these lines (namely, line 4) occurs within a subproof that has (by
line 5) been closed. This is illegitimate.

Closing a subproof is called discharging the assumptions of
that subproof. So we can put the point this way: you cannot refer
back to anything that was obtained using discharged assumptions.

Subproofs, then, allow us to think about what we could show,
if we made additional assumptions. The point to take away from
this is not surprising—in the course of a proof, we have to keep
very careful track of what assumptions we are making, at any
given moment. Our proof system does this very graphically. (In-
deed, that’s precisely why we have chosen to use this proof sys-
tem.)

Once we have started thinking about what we can show by
making additional assumptions, nothing stops us from posing
the question of what we could show if we were to make even more
assumptions? This might motivate us to introduce a subproof
within a subproof. Here is an example using only the rules which
we have considered so far:

CHAPTER 16. BASIC RULES FOR TFL 126

1 A

2 B

3 C

4 A ∧ B ∧I 1, 2

5 C → (A ∧ B) →I 3–4

6 B → (C → (A ∧ B)) →I 2–5

Notice that the citation on line 4 refers back to the initial assump-
tion (on line 1) and an assumption of a subproof (on line 2).
This is perfectly in order, since neither assumption has been dis-
charged at the time (i.e., by line 4).

Again, though, we need to keep careful track of what we are
assuming at any given moment. Suppose we tried to continue the
proof as follows:

1 A

2 B

3 C

4 A ∧ B ∧I 1, 2

5 C → (A ∧ B) →I 3–4

6 B → (C → (A ∧ B)) →I 2–5

7 C → (A ∧ B) naughty attempt

to invoke →I 3–4

This would be awful. If we tell you that Anne is smart, you should
not be able to infer that, if Cath is smart (symbolized by ‘C ’) then
both Anne is smart and Queen Boudica stood 20-feet tall! But this
is just what such a proof would suggest, if it were permissible.

The essential problem is that the subproof that began with
the assumption ‘C ’ depended crucially on the fact that we had

CHAPTER 16. BASIC RULES FOR TFL 127

assumed ‘B ’ on line 2. By line 6, we have discharged the assump-
tion ‘B ’: we have stopped asking ourselves what we could show,
if we also assumed ‘B ’. So it is simply cheating, to try to help
ourselves (on line 7) to the subproof that began with the assump-
tion ‘C ’. Thus we stipulate, much as before, that a subproof can
only be cited on a line if it does not occur within some other
subproof which is already closed at that line. The attempted dis-
astrous proof violates this stipulation. The subproof of lines 3–4
occurs within a subproof that ends on line 5. So it cannot be
invoked on line 7.

Here is one further case we have to exclude:

1 A

2 B

3 C

4 B ∧C ∧I 2, 3

5 C ∧E 4

6 B → C naughty attempt

to invoke →I 2–5

Here we are trying to cite a subproof that begins on line 2 and
ends on line 5—but the sentence on line 5 depends not only on
the assumption on line 2, but also on one another assumption
(line 3) which we have not discharged at the end of the subproof.
The subproof started on line 3 is still open at line 3. But →I re-
quires that the last line of the subproof only relies on the assump-
tion of the subproof being cited, i.e., the subproof beginning on
line 2 (and anything before it), and not on assumptions of any
subproofs within it. In particular, the last line of the subproof
cited must not itself lie within a nested subproof.

CHAPTER 16. BASIC RULES FOR TFL 128

To cite a subproof when applying a rule:

1. the cited subproof must come entirely before the ap-
plication of the rule where it is cited,

2. the cited subproof must not lie within some other
closed subproof which is closed at the line it is cited,
and

3. its last line of the cited subproof must not occur in-
side a nested subproof.

One last point to emphasize how rules can be applied: where
a rule requires you to cite an individual line, you cannot cite a
subproof instead; and where it requires you to cite a subproof,
you cannot cite an individual line instead. So for instance, this is
incorrect:

1 A

2 B

3 C

4 B ∧C ∧I 2, 3

5 C ∧E 4

6 C naughty attempt

to invoke R 3–5

7 B → C →I 2–6

Here, we have tried to justify C on line 6 by the reiteration rule,
but we have cited the subproof on lines 3–5 with it. That subproof
is closed and can in principle be cited on line 6. (For instance, we
could use it to justifyC → C by→I.) But the reiteration rule R re-
quires you to cite an individual line, so citing the entire subproof

CHAPTER 16. BASIC RULES FOR TFL 129

is inadmissible (even if that subproof contains the sentence C we
want to reiterate).

It is always permissible to open a subproof with any assump-
tion. However, there is some strategy involved in picking a useful
assumption. Starting a subproof with an arbitrary, wacky assump-
tion would just waste lines of the proof. In order to obtain a con-
ditional by →I, for instance, you must assume the antecedent of
the conditional in a subproof.

Equally, it is always permissible to close a subproof (and dis-
charge its assumptions). However, it will not be helpful to do so
until you have reached something useful. Once the subproof is
closed, you can only cite the entire subproof in any justification.
Those rules that call for a subproof or subproofs, in turn, require
that the last line of the subproof is a sentence of some form or
other. For instance, you are only allowed to cite a subproof for
→I if the line you are justifying is of the form A → B, A is
the assumption of your subproof, and B is the last line of your
subproof.

16.6 Biconditional

The rules for the biconditional will be like double-barrelled ver-
sions of the rules for the conditional.

In order to prove ‘F ↔ G ’, for instance, you must be able to
prove ‘G ’ on the assumption ‘F ’ and prove ‘F ’ on the assumption
‘G ’. The biconditional introduction rule (↔I) therefore requires
two subproofs. Schematically, the rule works like this:

CHAPTER 16. BASIC RULES FOR TFL 130

i A

j B

k B

l A

A↔ B ↔I i– j , k–l

There can be as many lines as you like between i and j , and as
many lines as you like between k and l . Moreover, the subproofs
can come in any order, and the second subproof does not need
to come immediately after the first.

The biconditional elimination rule (↔E) lets you do a bit
more than the conditional rule. If you have the left-hand subsen-
tence of the biconditional, you can obtain the right-hand subsen-
tence. If you have the right-hand subsentence, you can obtain the
left-hand subsentence. So we allow:

m A↔ B

n A

B ↔E m, n

and equally:

m A↔ B

n B

A ↔E m, n

Note that the biconditional, and the right or left half, can be
separated from one another, and they can appear in any order.

CHAPTER 16. BASIC RULES FOR TFL 131

However, in the citation for ↔E, we always cite the biconditional
first.

16.7 Disjunction

Suppose Ludwig is reactionary. Then Ludwig is either reac-
tionary or libertarian. After all, to say that Ludwig is either reac-
tionary or libertarian is to say something weaker than to say that
Ludwig is reactionary.

Let’s emphasize this point. Suppose Ludwig is reactionary. It
follows that Ludwig is either reactionary or a kumquat. Equally, it
follows that either Ludwig is reactionary or that kumquats are the
only fruit. Equally, it follows that either Ludwig is reactionary or
that God is dead. Many of these are strange inferences to draw,
but there is nothing logically wrong with them (even if they maybe
violate all sorts of implicit conversational norms).

Armed with all this, we present the disjunction introduction
rule(s):

m A

A∨ B ∨I m

and

m A

B∨ A ∨I m

Notice that B can be any sentence whatsoever, so the follow-
ing is a perfectly acceptable proof:

1 M

2 M ∨ ([(A ↔ B) → (C ∧D)] ↔ [E ∧ F]) ∨I 1

CHAPTER 16. BASIC RULES FOR TFL 132

Using a truth table to show this would have taken 128 lines.
The disjunction elimination rule is, though, slightly trickier.

Suppose that either Ludwig is reactionary or he is libertarian.
What can you conclude? Not that Ludwig is reactionary; it might
be that he is libertarian instead. Equally, not that Ludwig is liber-
tarian; for he might merely be reactionary. Disjunctions, just by
themselves, are hard to work with.

But suppose that we could somehow show both of the fol-
lowing: first, that Ludwig’s being reactionary entails that he is
an Austrian economist: second, that Ludwig’s being libertarian
entails that he is an Austrian economist. Then if we know that
Ludwig is either reactionary or libertarian, then we know that,
whichever he is, Ludwig is an Austrian economist. This insight
can be expressed in the following rule, which is our disjunction
elimination (∨E) rule:

m A∨ B

i A

j C

k B

l C

C ∨E m, i– j , k–l

This is obviously a bit clunkier to write down than our previ-
ous rules, but the point is fairly simple. Suppose we have some
disjunction, A∨ B. Suppose we have two subproofs, showing us
that C follows from the assumption that A, and that C follows
from the assumption that B. Then we can infer C itself. As
usual, there can be as many lines as you like between i and j ,
and as many lines as you like between k and l . Moreover, the
subproofs and the disjunction can come in any order, and do not
have to be adjacent.

CHAPTER 16. BASIC RULES FOR TFL 133

Some examples might help illustrate this. Consider this argu-
ment:

(P ∧Q) ∨ (P ∧R) ∴ P

An example proof might run thus:

1 (P ∧Q) ∨ (P ∧R)

2 P ∧Q

3 P ∧E 2

4 P ∧R

5 P ∧E 4

6 P ∨E 1, 2–3, 4–5

Here is a slightly harder example. Consider:

A ∧ (B ∨C) ∴ (A ∧ B) ∨ (A ∧C)

Here is a proof corresponding to this argument:

1 A ∧ (B ∨C)

2 A ∧E 1

3 B ∨C ∧E 1

4 B

5 A ∧ B ∧I 2, 4

6 (A ∧ B) ∨ (A ∧C) ∨I 5

7 C

8 A ∧C ∧I 2, 7

9 (A ∧ B) ∨ (A ∧C) ∨I 8

10 (A ∧ B) ∨ (A ∧C) ∨E 3, 4–6, 7–9

CHAPTER 16. BASIC RULES FOR TFL 134

Don’t be alarmed if you think that you wouldn’t have been able
to come up with this proof yourself. The ability to come up with
novel proofs comes with practice, and we’ll cover some strategies
for finding proofs in §17. The key question at this stage is whether,
looking at the proof, you can see that it conforms to the rules that
we have laid down. That just involves checking every line, and
making sure that it is justified in accordance with the rules we
have laid down.

16.8 Contradiction and negation

We have only one connective left to deal with: negation. But to
tackle it, we must connect negation with contradiction.

An effective form of argument is to argue your opponent into
contradicting themselves. At that point, you have them on the
ropes. They have to give up at least one of their assumptions.
We are going to make use of this idea in our proof system, by
adding a new symbol, ‘⊥’, to our proofs. This should be read
as something like ‘contradiction!’ or ‘reductio!’ or ‘but that’s ab-
surd!’ The rule for introducing this symbol is that we can use
it whenever we explicitly contradict ourselves, i.e., whenever we
find both a sentence and its negation appearing in our proof:

m ¬A

n A

⊥ ¬E m, n

It does not matter what order the sentence and its negation
appear in, and they do not need to appear on adjacent lines.
However, we always cite the line number of the negation first,
followed by that of the sentence it is a negation of.

There is obviously a tight link between contradiction and
negation. The rule ¬E lets us proceed from two contradictory

CHAPTER 16. BASIC RULES FOR TFL 135

sentences—Aand its negation ¬A—to an explicit contradition⊥.
We choose the label for a reason: it is the the most basic rule that
lets us proceed from a premise containing a negation, i.e., ¬A,
to a sentence not containing it, i.e., ⊥. So it is a rule that elimi-
nates ¬.

We have said that ‘⊥’ should be read as something like ‘con-
tradiction!’ but this does not tell us much about the symbol.
There are, roughly, three ways to approach the symbol.

• We might regard ‘⊥’ as a new atomic sentence of TFL, but
one which can only ever have the truth value False.

• We might regard ‘⊥’ as an abbreviation for some canonical
contradiction, such as ‘A ∧ ¬A’. This will have the same
effect as the above—obviously, ‘A ∧ ¬A’ only ever has the
truth value False—but it means that, officially, we do not
need to add a new symbol to TFL.

• We might regard ‘⊥’, not as a symbol of TFL, but as some-
thing more like a punctuation mark that appears in our
proofs. (It is on a par with the line numbers and the vertical
lines, say.)

There is something very philosophically attractive about the third
option, but here we will officially adopt the first. ‘⊥’ is to be read
as a sentence letter that is always false. This means that we can
manipulate it, in our proofs, just like any other sentence.

We still have to state a rule for negation introduction. The
rule is very simple: if assuming something leads you to a con-
tradiction, then the assumption must be wrong. This thought
motivates the following rule:

i A

j ⊥

¬A ¬I i– j

CHAPTER 16. BASIC RULES FOR TFL 136

There can be as many lines between i and j as you like. To
see this in practice, and interacting with negation, consider this
proof:

1 D

2 ¬D

3 ⊥ ¬E 2, 1

4 ¬¬D ¬I 2–3

If the assumption that A is true leads to a contradiction, A
cannot be true, i.e., it must be false, i.e., ¬Amust be true. Of
course, if the assumption that A is false (i.e., the assumption that
¬A is true) leads to a contradiction, then A cannot be false, i.e.,
Amust be true. So we can consider the following rule:

i ¬A

j ⊥

A IP i– j

This rule is called indirect proof, since it allows us to prove A

indirectly, by assuming its negation. Formally, the rule is very
similar to ¬I, but A and ¬A have changed places. Since ¬A is
not the conclusion of the rule, we are not introducing ¬, so IP
is not a rule that introduces any connective. It also doesn’t elim-
inate a connective, since it has no free-standing premises which
contain ¬, only a subproof with an assumption of the form ¬A.
By contrast, ¬E does have a premise of the form ¬A: that’s why
¬E eliminates ¬, but IP does not.1

1There are logicians who have qualms about IP, but not about ¬E. They are
called “intuitionists.” Intuitionists don’t buy our basic assumption that every
sentence has one of two truth values, true or false. They also think that ¬
works differently—for them, a proof of ⊥ from A guarantees ¬A, but a proof

CHAPTER 16. BASIC RULES FOR TFL 137

Using ¬I, we were able to give a proof of ¬¬D from D. Us-
ing IP, we can go the other direction (with essentially the same
proof).

1 ¬¬D

2 ¬D

3 ⊥ ¬E 1, 2

4 D IP 2–3

We need one last rule. It is a kind of elimination rule for ‘⊥’,
and known as explosion.2 If we obtain a contradiction, symbol-
ized by ‘⊥’, then we can infer whatever we like. How can this
be motivated, as a rule of argumentation? Well, consider the En-
glish rhetorical device ‘. . . and if that’s true, I’ll eat my hat’. Since
contradictions simply cannot be true, if one is true then not only
will I eat my hat, I’ll have it too. Here is the formal rule:

m ⊥

A X m

Note that A can be any sentence whatsoever.
The explosion rule is a bit odd. It looks like A arrives in our

proof like a bunny out of a hat. When trying to find proofs, it
is very tempting to try to use it everywhere, since it seems so
powerful. Resist this temptation: you can only apply it when you
already have ⊥! And you get ⊥ only when your assumptions are
contradictory.

Still, isn’t it odd that from a contradiction anything whatso-
ever should follow? Not according to our notion of entailment

of ⊥ from ¬A does not guarantee that A, but only ¬¬A. So, for them, A and
¬¬A are not equivalent.

2The latin name for this principle is ex contradictione quod libet, “from con-
tradiction, anything.”

CHAPTER 16. BASIC RULES FOR TFL 138

and validity. For A entails B iff there is no valuation of the sen-
tence letters which makes A true and B false at the same time.
Now ⊥ is a contradiction—it is never true, whatever the valuation
of the sentence letters. Since there is no valuation which makes ⊥
true, there of course is also no valuation that makes ⊥ true and
B false! So according to our definition of entailment, ⊥ ⊨ B,
whatever B is. A contradiction entails anything.3

These are all of the basic rules for the proof system for TFL.

Practice exercises

A. The following two ‘proofs’ are incorrect. Explain the mistakes
they make.

1 (¬L ∧ A) ∨ L

2 ¬L ∧ A

3 ¬L ∧E 3

4 A ∧E 1

5 L

6 ⊥ ¬E 3, 5

7 A X 6

8 A ∨E 1, 2–4, 5–7

3There are some logicians who don’t buy this. They think that if A entails
B, there must be some relevant connection between A and B—and there isn’t
one between ⊥ and some arbitrary sentence B. So these logicians develop
other, “relevant” logics in which you aren’t allowed the explosion rule.

CHAPTER 16. BASIC RULES FOR TFL 139

1 A ∧ (B ∧C)

2 (B ∨C) → D

3 B ∧E 1

4 B ∨C ∨I 3

5 D →E 4, 2

B. The following three proofs are missing their citations (rule
and line numbers). Add them, to turn them into bona fide proofs.
Additionally, write down the argument that corresponds to each
proof.

1 P ∧ S

2 S → R

3 P

4 S

5 R

6 R ∨ E

1 A → D

2 A ∧ B

3 A

4 D

5 D ∨ E

6 (A ∧ B) → (D ∨ E)

1 ¬L → (J ∨ L)

2 ¬L

3 J ∨ L

4 J

5 J ∧ J

6 J

7 L

8 ⊥

9 J

10 J

C. Give a proof for each of the following arguments:

1. J → ¬ J ∴ ¬ J

CHAPTER 16. BASIC RULES FOR TFL 140

2. Q → (Q ∧ ¬Q) ∴ ¬Q
3. A → (B → C) ∴ (A ∧ B) → C
4. K ∧ L ∴ K ↔ L
5. (C ∧D) ∨ E ∴ E ∨D
6. A ↔ B ,B ↔ C ∴ A ↔ C
7. ¬F → G ,F → H ∴ G ∨H
8. (Z ∧ K) ∨ (K ∧M),K → D ∴ D
9. P ∧ (Q ∨R),P → ¬R ∴ Q ∨ E
10. S ↔ T ∴ S ↔ (T ∨ S)
11. ¬(P → Q) ∴ ¬Q
12. ¬(P → Q) ∴ P

CHAPTER 17

Constructing
proofs
There is no simple recipe for finding proofs, and there is no sub-
stitute for practice. Here, though, are some rules of thumb and
strategies to keep in mind.

17.1 Working backward from what we want

So you’re trying to find a proof of some conclusion C, which
will be the last line of your proof. The first thing you do is look
at C and ask what the introduction rule is for its main logical
operator. This gives you an idea of what should happen before
the last line of the proof. The justifications for the introduction
rule require one or two other sentences above the last line, or
one or two subproofs. Moreover, you can tell from Cwhat those
sentences are, or what the assumptions and conclusions of the
subproof(s) are. Then you can write down those sentence or
outline the subproof(s) above the last line, and treat those as
your new goals.

For example: If your conclusion is a conditional A→ B, plan
to use the→I rule. This requires starting a subproof in which you
assume A. The subproof ought to end with B. Then, continue by

141

CHAPTER 17. CONSTRUCTING PROOFS 142

thinking about what you should do to get B inside that subproof,
and how you can use the assumption A.

If your goal is a conjunction, conditional, or negated sen-
tence, you should start by working backward in this way. We’ll
describe what you have to do in each of these cases in detail.

Working backward from a conjunction

If we want to prove A∧ B, working backward means we should
write A∧B at the bottom of our proof, and try to prove it using
∧I. At the top, we’ll write out the premises of the proof, if there
are any. Then, at the bottom, we write the sentence we want to
prove. If it is a conjunction, we’ll prove it using ∧I.

1 P1

...

k Pk
...

n A

...

m B

m + 1 A∧ B ∧I n, m

For ∧I, we need to prove A first, then prove B. For the last line,
we have to cite the lines where we (will have) proved A and B,

and use ∧I. The parts of the proof labelled
... have to still be filled

in. We’ll mark the line numbers m, n for now. When the proof is
complete, these placeholders can be replaced by actual numbers.

CHAPTER 17. CONSTRUCTING PROOFS 143

Working backward from a conditional

If our goal is to prove a conditional A → B, we’ll have to use
→I. This requires a subproof starting with Aand ending with B.
We’ll set up our proof as follows:

n A

...

m B

m + 1 A→ B →I n–m

Again we’ll leave placeholders in the line number slots. We’ll
record the last inference as →I, citing the subproof.

Working backward from a negated sentence

If we want to prove ¬A, we’ll have to use ¬I.

n A

...

m ⊥

m + 1 ¬A ¬I n–m

For ¬I, we have to start a subproof with assumption A; the last
line of the subproof has to be ⊥. We’ll cite the subproof, and
use ¬I as the rule.

When working backward, continue to do so as long as you
can. So if you’re working backward to prove A → B and have
set up a subproof in which you want to prove B. Now look at B.
If, say, it is a conjunction, work backward from it, and write down
the two conjuncts inside your subproof. Etc.

CHAPTER 17. CONSTRUCTING PROOFS 144

Working backward from a disjunction

Of course, you can also work backward from a disjunction A∨B,
if that is your goal. The ∨I rule requires that you have one of the
disjuncts in order to infer A∨B. So to work backward, you pick
a disjunct, infer A∨ B from it, and then continue to look for a
proof of the disjunct you picked:

...

n A

n + 1 A∨ B ∨I n

However, you may not be able to prove the disjunct you picked.

In that case you have to backtrack. When you can’t fill in the
...,

delete everything, and try with the other disjunct:

...

n B

n + 1 A∨ B ∨I n

Obviously, deleting everything and starting over is frustrating,
so you should avoid it. If your goal is a disjunction, therefore,
you should not start by working backward: try working forward
first, and apply the ∨I strategy only when working forward (and
working backward using ∧I, →I, and ¬I) no longer work.

17.2 Work forward from what you have

Your proof may have premises. And if you’ve worked backward in
order to prove a conditional or a negated sentence, you will have
set up subproofs with an assumption, and be looking to prove a
final sentence in the subproof. These premises and assumptions
are sentences you can work forward from in order to fill in the
missing steps in your proof. That means applying elimination

CHAPTER 17. CONSTRUCTING PROOFS 145

rules for the main operators of these sentences. The form of the
rules will tell you what you’ll have to do.

Working forward from a conjunction

To work forward from a sentence of the form A∧B, we use ∧E.
That rule allows us to do two things: infer A, and infer B. So in
a proof where we have A∧B, we can work forward by writing A

and/or B immediately below the conjunction:

n A∧ B

n + 1 A ∧E n

n + 2 B ∧E n

Usually it will be clear in the particular situation you’re in which
one of Aor Byou’ll need. It doesn’t hurt, however, to write them
both down.

Working forward from a disjunction

Working forward from a disjunction works a bit differently. To
use a disjunction, we use the ∨E rule. In order to apply that rule,
it is not enough to know what the disjuncts of the disjunction are
that we want to use. We must also keep in mind what we want to
prove. Suppose we want to prove C, and we have A∨ B to work
with. (That A∨B may be a premise of the proof, an assumption
of a subproof, or something already proved.) In order to be able
to apply the ∨E rule, we’ll have to set up two subproofs:

CHAPTER 17. CONSTRUCTING PROOFS 146

n A∨ B

n + 1 A

...

m C

m + 1 B

...

k C

k + 1 C ∨E n, (n + 1)–m, (m + 1)–k

The first subproof starts with the first disjunct, A, and ends with
the sentence we’re looking for, C. The second subproof starts
with the other disjunct, B, and also ends with the goal sen-
tence C. Each of these subproofs have to be filled in further.
We can then justify the goal sentence C by using ∨E, citing the
line with A∨ B and the two subproofs.

Working forward from a conditional

In order to use a conditional A → B, you also need the an-
tecedent A in order to apply →E. So to work forward from a
conditional, you will derive B, justify it by →E, and set up A as
a new subgoal.

n A→ B

...

m A

m + 1 B →E n, m

CHAPTER 17. CONSTRUCTING PROOFS 147

Working forward from a negated sentence

Finally, to use a negated sentence ¬A, you would apply ¬E. It
requires, in addition to ¬A, also the corresponding sentence A

without the negation. The sentence you’ll get is always the same:
⊥. So working forward from a negated sentence works especially
well inside a subproof that you’ll want to use for ¬I (or IP). You
work forward from ¬A if you already have ¬A and you want to
prove ⊥. To do it, you set up A as a new subgoal.

n ¬A
...

m A

m + 1 ⊥ ¬E n, m

17.3 Strategies at work

Suppose we want to show that the argument (A ∧B) ∨ (A ∧C) ∴
A ∧ (B ∨ C) is valid. We start the proof by writing the premise
and conclusion down. (On a piece of paper, you would want as
much space as possible between them, so write the premises at
the top of the sheet and the conclusion at the bottom.)

1 (A ∧ B) ∨ (A ∧C)
...

n A ∧ (B ∨C)

We now have two options: either work backward from the con-
clusion, or work forward from the premise. We’ll pick the sec-
ond strategy: we use the disjunction on line 1, and set up the
subproofs we need for ∨E. The disjunction on line 1 has two dis-
juncts, A ∧ B and A ∧ C . The goal sentence you want to prove
is A ∧ (B ∨C). So in this case you have to set up two subproofs,

CHAPTER 17. CONSTRUCTING PROOFS 148

one with assumption A ∧ B and last line A ∧ (B ∨ C), the other
with assumption A∧C and last line A∧ (B ∨C). The justification
for the conclusion on line n will be ∨E, citing the disjunction on
line 1 and the two subproofs. So your proof now looks like this:

1 (A ∧ B) ∨ (A ∧C)

2 A ∧ B
...

n A ∧ (B ∨C)

n + 1 A ∧C
...

m A ∧ (B ∨C)

m + 1 A ∧ (B ∨C) ∨E 1, 2–n, n + 1–m

You now have two separate tasks, namely to fill in each of the two
subproofs. In the first subproof, we now work backward from the
conclusion A ∧ (B ∨C). That is a conjunction, so inside the first
subproof, you will have two separate subgoals: proving A, and
proving B ∨C . These subgoals will let you justify line n using ∧I.
Your proof now looks like this:

CHAPTER 17. CONSTRUCTING PROOFS 149

1 (A ∧ B) ∨ (A ∧C)

2 A ∧ B
...

i A
...

n − 1 B ∨C

n A ∧ (B ∨C) ∧I i , n − 1

n + 1 A ∧C
...

m A ∧ (B ∨C)

m + 1 A ∧ (B ∨C) ∨E 1, 2–n, (n + 1)–m

We immediately see that we can get line i from line 2 by ∧E. So
line i is actually line 3, and can be justified with ∧E from line 2.
The other subgoal B ∨C is a disjunction. We’ll apply the strategy
for working backward from a disjunctions to line n − 1. We have
a choice of which disjunct to pick as a subgoal, B or C . Picking
C wouldn’t work and we’d end up having to backtrack. And you
can already see that if you pick B as a subgoal, you could get that
by working forward again from the conjunction A ∧ B on line 2.
So we can complete the first subproof as follows:

CHAPTER 17. CONSTRUCTING PROOFS 150

1 (A ∧ B) ∨ (A ∧C)

2 A ∧ B

3 A ∧E 2

4 B ∧E 2

5 B ∨C ∨I 4

6 A ∧ (B ∨C) ∧I 3, 5

7 A ∧C
...

m A ∧ (B ∨C)

m + 1 A ∧ (B ∨C) ∨E 1, 2–6, 7–m

Like line 3, we get line 4 from 2 by ∧E. Line 5 is justified by ∨I
from line 4, since we were working backward from a disjunction
there.

That’s it for the first subproof. The second subproof is almost
exactly the same. We’ll leave it as an exercise.

Remember that when we started, we had the option of work-
ing forward from the premise, or working backward from the
conclusion, and we picked the first option. The second option
also leads to a proof, but it will look different. The first steps
would be to work backward from the conclusion and set up two
subgoals, A and B ∨C , and then work forward from the premise
to prove them, e.g.,:

CHAPTER 17. CONSTRUCTING PROOFS 151

1 (A ∧ B) ∨ (A ∧C)

2 A ∧ B
...

k A

k + 1 A ∧C
...

n − 1 A

n A ∨E 1, 2–k , (k + 1)–(n − 1)

n + 1 A ∧ B
...

l B ∨C

l + 1 A ∧C
...

m − 1 B ∨C

m B ∨C ∨E 1, (n + 1)–l , (l + 1)–(m − 1)

m + 1 A ∧ (B ∨C) ∧I n, m

We’ll leave you to fill in the missing pieces indicated by
....

Let’s give another example to illustrate how to apply the
strategies to deal with conditionals and negation. The sentence
(A → B) → (¬B → ¬A) is a tautology. Let’s see if we can find a
proof of it, from no premises, using the strategies. We first write
the sentence at the bottom of a sheet of paper. Since working
forward is not an option (there is nothing to work forward from),
we work backward, and set up a subproof to establish the sen-
tence we want (A → B) → (¬B → ¬A) using→I. Its assumption

CHAPTER 17. CONSTRUCTING PROOFS 152

must be the antecedent of the conditional we want to prove, i.e.,
A → B , and its last line the consequent ¬B → ¬A.

1 A → B
...

n ¬B → ¬A

n + 1 (A → B) → (¬B → ¬A) →I 1–n

The new goal, ¬B → ¬A is itself a conditional, so working back-
ward we set up another subproof:

1 A → B

2 ¬B
...

n − 1 ¬A

n ¬B → ¬A →I 2–(n − 1)

n + 1 (A → B) → (¬B → ¬A) →I 1–n

From ¬A we again work backward. To do this, look at the ¬I
rule. It requires a subproof with A as assumption, and ⊥ as its
last line. So the proof is now:

CHAPTER 17. CONSTRUCTING PROOFS 153

1 A → B

2 ¬B

3 A
...

n − 2 ⊥

n − 1 ¬A ¬I 3–(n − 2)

n ¬B → ¬A →I 2–(n − 1)

n + 1 (A → B) → (¬B → ¬A) →I 1–n

Now our goal is to prove ⊥. We said above, when discussing how
to work forward from a negated sentence, that the ¬E rule allows
you to prove ⊥, which is our goal in the innermost subproof. So
we look for a negated sentence which we can work forward from:
that would be ¬B on line 2. That means we have to derive B in-
side the subproof, since ¬E requires not just ¬B (which we have
already), but also B . And B , in turn, we get by working forward
from A → B , since →E will allow us to justify the consequent
of that conditional B by →E. The rule →E also requires the an-
tecedent A of the conditional, but that is also already available
(on line 3). So we finish with:

CHAPTER 17. CONSTRUCTING PROOFS 154

1 A → B

2 ¬B

3 A

4 B →E 1, 3

5 ⊥ ¬E 2, 4

6 ¬A ¬I 3–5

7 ¬B → ¬A →I 2–6

8 (A → B) → (¬B → ¬A) →I 1–7

17.4 Working forward from ⊥
When applying the strategies, you will sometimes find yourself
in a situation where you can justify ⊥. Using the explosion rule,
this would allow you to justify anything. So ⊥ works like a wild-
card in proofs. For instance, suppose you want to give a proof
of the argument A ∨ B ,¬A ∴ B . You set up your proof, writing
the premises A ∨ B and ¬A at the top on lines 1 and 2, and the
conclusion B at the bottom of the page. B has no main connec-
tive, so you can’t work backward from it. Instead, you must work
forward from A ∨ B : That requires two subproofs, like so:

CHAPTER 17. CONSTRUCTING PROOFS 155

1 A ∨ B

2 ¬A

3 A
...

m B

m + 1 B
...

k B

k + 1 B ∨E 1, 3–m, (m + 1)–k

Notice that you have ¬A on line 2 and A as the assumption of
your first subproof. That gives you ⊥ using ¬E, and from ⊥ you
get the conclusion B of the first subroof using X. Recall that you
can repeat a sentence you already have by using the reiteration
rule R. So our proof would be:

1 A ∨ B

2 ¬A

3 A

4 ⊥ ¬E 2, 3

5 B X 4

6 B

7 B R 6

8 B ∨E 1, 3–5, 6–7

CHAPTER 17. CONSTRUCTING PROOFS 156

17.5 Proceed indirectly

In very many cases, the strategies of working forward and back-
ward will eventually pan out. But there are cases where they do
not work. If you cannot find a way to show Adirectly using those,
use IP instead. To do this, set up a subproof in which you assume
¬A and look for a proof of ⊥ inside that subproof.

n ¬A
...

m ⊥

m + 1 A IP n–m

Here, we have to start a subproof with assumption ¬A; the last
line of the subproof has to be ⊥. We’ll cite the subproof, and
use IP as the rule. In the subproof, we now have an additional
assumption (on line n) to work with.

Suppose we used the indirect proof strategy, or we’re in some
other situation where we’re looking for a proof of ⊥. What’s a
good candidate? Of course the obvious candidate would be to use
a negated sentence, since (as we saw above) ¬E always yields ⊥.
If you set up a proof as above, trying to prove A using IP, you
will have ¬A as the assumption of your subproof—so working
forward from it to justify ⊥ inside your subproof, you would next
set up A as a goal inside your subproof. If you are using this IP
strategy, you will find yourself in the following situation:

n ¬A
...

m − 1 A

m ⊥ ¬E n, m − 1

m + 1 A IP n–m

CHAPTER 17. CONSTRUCTING PROOFS 157

This looks weird: We wanted to prove Aand the strategies failed
us; so we used IP as a last resort. And now we find ourselves in
the same situation: we are again looking for a proof of A. But
notice that we are now inside a subproof, and in that subproof
we have an additional assumption (¬A) to work with which we
didn’t have before. Let’s look at an example.

17.6 Indirect proof of excluded middle

The sentence A ∨ ¬A is a tautology, and so should have a proof
even without any premises. But working backward fails us: to get
A ∨ ¬A using ∨I we would have to prove either A or ¬A—again,
from no premises. Neither of these is a tautology, so we won’t be
able to prove either. Working forward doesn’t work either, since
there is nothing to work forward from. So, the only option is
indirect proof.

1 ¬(A ∨ ¬A)
...

m ⊥

m + 1 A ∨ ¬A IP 1–m

Now we do have something to work forward from: the assumption
¬(A ∨ ¬A). To use it, we justify ⊥ by ¬E, citing the assumption
on line 1, and also the corresponding unnegated sentence A∨¬A,
yet to be proved.

1 ¬(A ∨ ¬A)
...

m − 1 A ∨ ¬A

m ⊥ ¬E 1, m − 1

m + 1 A ∨ ¬A IP 1–m

CHAPTER 17. CONSTRUCTING PROOFS 158

At the outset, working backward to prove A ∨ ¬A by ∨I did not
work. But we are now in a different situation: we want to prove
A ∨ ¬A inside a subproof. In general, when dealing with new
goals we should go back and start with the basic strategies. In this
case, we should first try to work backward from the disjunction
A ∨ ¬A, i.e., we have to pick a disjunct and try to prove it. Let’s
pick ¬A. This would let us justify A ∨ ¬A on line m − 1 using ∨I.
Then working backward from ¬A, we start another subproof in
order to justify ¬A using ¬I. That subproof must have A as the
assumption and ⊥ as its last line.

1 ¬(A ∨ ¬A)

2 A
...

m − 3 ⊥

m − 2 ¬A ¬I 2–(m − 3)

m − 1 A ∨ ¬A ∨I m − 2

m ⊥ ¬E 1, m − 1

m + 1 A ∨ ¬A IP 1–m

Inside this new subproof, we again need to justify⊥. The best way
to do this is to work forward from a negated sentence; ¬(A∨¬A)
on line 1 is the only negated sentence we can use. The corre-
sponding unnegated sentence, A ∨ ¬A, however, directly follows
from A (which we have on line 2) by ∨I. Our complete proof is:

CHAPTER 17. CONSTRUCTING PROOFS 159

1 ¬(A ∨ ¬A)

2 A

3 A ∨ ¬A ∨I 2

4 ⊥ ¬E 1, 3

5 ¬A ¬I 2–4

6 A ∨ ¬A ∨I 5

7 ⊥ ¬E 1, 6

8 A ∨ ¬A IP 1–7

Practice exercises

A. Use the strategies to find proofs for each of the following ar-
guments:

1. A → B ,A → C ∴ A → (B ∧C)
2. (A ∧ B) → C ∴ A → (B → C)
3. A → (B → C) ∴ (A → B) → (A → C)
4. A ∨ (B ∧C) ∴ (A ∨ B) ∧ (A ∨C)
5. (A ∧ B) ∨ (A ∧C) ∴ A ∧ (B ∨C)
6. A ∨ B ,A → C ,B → D ∴ C ∨D
7. ¬A ∨ ¬B ∴ ¬(A ∧ B)
8. A ∧ ¬B ∴ ¬(A → B)

B. Formulate strategies for working backward and forward from
A↔ B.
C. Use the strategies to find proofs for each of the following sen-
tences:

1. ¬A → (A → ⊥)
2. ¬(A ∧ ¬A)
3. [(A → C) ∧ (B → C)] → [(A ∨ B) → C]
4. ¬(A → B) → (A ∧ ¬B)

CHAPTER 17. CONSTRUCTING PROOFS 160

5. (A ∨ ¬B) → (A → B)

Since these should be proofs of sentences from no premises, you
will start with the respective sentence at the bottom of the proof,
which will have no premises.
D. Use the strategies to find proofs for each one of the following
arguments and sentences:

1. ¬¬A → A
2. ¬A → ¬B ∴ B → A
3. A → B ∴ ¬A ∨ B
4. ¬(A ∧ B) → (¬A ∨ ¬B)
5. A → (B ∨C) ∴ (A → B) ∨ (A → C)
6. (A → B) ∨ (B → A)
7. ((A → B) → A) → A

These all will require the IP strategy. The last three especially
are quite hard!

CHAPTER 18

Additional
rules for TFL
In §16, we introduced the basic rules of our proof system for TFL.
In this section, we will add some additional rules to our system.
Our extended proof system is a bit easier to work with. (However,
in §20 we will see that they are not strictly speaking necessary.)

18.1 Disjunctive syllogism

Here is a very natural argument form.

Elizabeth is either in Massachusetts or in DC. She is
not in DC. So, she is in Massachusetts.

This is called disjunctive syllogism. We add it to our proof system
as follows:

m A∨ B

n ¬A

B DS m, n

161

CHAPTER 18. ADDITIONAL RULES FOR TFL 162

and

m A∨ B

n ¬B

A DS m, n

As usual, the disjunction and the negation of one disjunct
may occur in either order and need not be adjacent. However,
we always cite the disjunction first.

18.2 Modus tollens

Another useful pattern of inference is embodied in the following
argument:

If Hilary has won the election, then he is in the White
House. She is not in the White House. So she has not
won the election.

This inference pattern is called modus tollens. The corresponding
rule is:

m A→ B

n ¬B

¬A MT m, n

As usual, the premises may occur in either order, but we al-
ways cite the conditional first.

CHAPTER 18. ADDITIONAL RULES FOR TFL 163

18.3 Double-negation elimination

Another useful rule is double-negation elimination. It does exactly
what it says on the tin:

m ¬¬A

A DNE m

The justification for this is that, in natural language, double-
negations tend to cancel out.

That said, you should be aware that context and emphasis can
prevent them from doing so. Consider: ‘Jane is not not happy’.
Arguably, one cannot infer ‘Jane is happy’, since the first sen-
tence should be understood as meaning the same as ‘Jane is not
unhappy’. This is compatible with ‘Jane is in a state of profound
indifference’. As usual, moving to TFL forces us to sacrifice cer-
tain nuances of English expressions.

18.4 Excluded middle

Suppose that we can show that if it’s sunny outside, then Bill will
have brought an umbrella (for fear of burning). Suppose we can
also show that, if it’s not sunny outside, then Bill will have brought
an umbrella (for fear of rain). Well, there is no third way for the
weather to be. So, whatever the weather, Bill will have brought an
umbrella.

This line of thinking motivates the following rule:

CHAPTER 18. ADDITIONAL RULES FOR TFL 164

i A

j B

k ¬A

l B

B LEM i– j , k–l

The rule is sometimes called the law of excluded middle, since
it encapsulates the idea that Amay be true or ¬Amay be true,
but there is no middle way where neither is true.1 There can be
as many lines as you like between i and j , and as many lines
as you like between k and l . Moreover, the subproofs can come
in any order, and the second subproof does not need to come
immediately after the first.

To see the rule in action, consider:

P ∴ (P ∧D) ∨ (P ∧ ¬D)

Here is a proof corresponding with the argument:

1You may sometimes find logicians or philosophers talking about “tertium
non datur.” That’s the same principle as excluded middle; it means “no third
way.” Logicians who have qualms about indirect proof also have qualms about
LEM.

CHAPTER 18. ADDITIONAL RULES FOR TFL 165

1 P

2 D

3 P ∧D ∧I 1, 2

4 (P ∧D) ∨ (P ∧ ¬D) ∨I 3

5 ¬D

6 P ∧ ¬D ∧I 1, 5

7 (P ∧D) ∨ (P ∧ ¬D) ∨I 6

8 (P ∧D) ∨ (P ∧ ¬D) LEM 2–4, 5–7

Here is another example:

1 A → ¬A

2 A

3 ¬A →E 1, 2

4 ¬A

5 ¬A R 4

6 ¬A LEM 2–3, 4–5

18.5 De Morgan Rules

Our final additional rules are called De Morgan’s Laws (named
after Augustus De Morgan). The shape of the rules should be
familiar from truth tables.

The first De Morgan rule is:

CHAPTER 18. ADDITIONAL RULES FOR TFL 166

m ¬(A∧ B)

¬A∨ ¬B DeM m

The second De Morgan is the reverse of the first:

m ¬A∨ ¬B

¬(A∧ B) DeM m

The third De Morgan rule is the dual of the first:

m ¬(A∨ B)

¬A∧ ¬B DeM m

And the fourth is the reverse of the third:

m ¬A∧ ¬B

¬(A∨ B) DeM m

These are all of the additional rules of our proof system for TFL.

Practice exercises

A. The following proofs are missing their citations (rule and line
numbers). Add them wherever they are required:

CHAPTER 18. ADDITIONAL RULES FOR TFL 167

1.

1 W → ¬B

2 A ∧W

3 B ∨ (J ∧ K)

4 W

5 ¬B

6 J ∧ K

7 K

2.

1 L ↔ ¬O

2 L ∨ ¬O

3 ¬L

4 ¬O

5 L

6 ⊥

7 ¬¬L

8 L

CHAPTER 18. ADDITIONAL RULES FOR TFL 168

3.

1 Z → (C ∧ ¬N)

2 ¬Z → (N ∧ ¬C)

3 ¬(N ∨C)

4 ¬N ∧ ¬C

5 ¬N

6 ¬C

7 Z

8 C ∧ ¬N

9 C

10 ⊥

11 ¬Z

12 N ∧ ¬C

13 N

14 ⊥

15 ¬¬(N ∨C)

16 N ∨C

B. Give a proof for each of these arguments:

1. E ∨ F , F ∨G , ¬F ∴ E ∧G
2. M ∨ (N → M) ∴ ¬M → ¬N
3. (M ∨ N) ∧ (O ∨ P), N → P , ¬P ∴ M ∧O
4. (X ∧Y) ∨ (X ∧ Z), ¬(X ∧D), D ∨M ∴ M

CHAPTER 19

Proof-theoretic
concepts
In this chapter we will introduce some new vocabulary. The fol-
lowing expression:

A1,A2, . . . ,An ⊢ C

means that there is some proof which ends with C whose undis-
charged assumptions are among A1,A2, . . . ,An . When we want
to say that it is not the case that there is some proof which ends
with C from A1, A2, . . . , An , we write:

A1,A2, . . . ,An ⊬ C

The symbol ‘⊢’ is called the single turnstile. We want to em-
phasize that this is not the double turnstile symbol (‘⊨’) that we
introduced in chapter 12 to symbolize entailment. The single
turnstile, ‘⊢’, concerns the existence of proofs; the double turn-
stile, ‘⊨’, concerns the existence of valuations (or interpretations,
when used for FOL). They are very different notions.

Armed with our ‘⊢’ symbol, we can introduce some more ter-
minology. To say that there is a proof of Awith no undischarged
assumptions, we write: ⊢ A. In this case, we say that A is a
theorem.

169

CHAPTER 19. PROOF-THEORETIC CONCEPTS 170

A is a theorem iff ⊢ A

To illustrate this, suppose we want to show that ‘¬(A ∧ ¬A)’
is a theorem. So we need a proof of ‘¬(A ∧ ¬A)’ which has no
undischarged assumptions. However, since we want to prove a
sentence whose main logical operator is a negation, we will want
to start with a subproof within which we assume ‘A ∧ ¬A’, and
show that this assumption leads to contradiction. All told, then,
the proof looks like this:

1 A ∧ ¬A

2 A ∧E 1

3 ¬A ∧E 1

4 ⊥ ¬E 3, 2

5 ¬(A ∧ ¬A) ¬I 1–4

We have therefore proved ‘¬(A ∧ ¬A)’ on no (undischarged) as-
sumptions. This particular theorem is an instance of what is
sometimes called the Law of Non-Contradiction.

To show that something is a theorem, you just have to find a
suitable proof. It is typically much harder to show that something
is not a theorem. To do this, you would have to demonstrate, not
just that certain proof strategies fail, but that no proof is possible.
Even if you fail in trying to prove a sentence in a thousand differ-
ent ways, perhaps the proof is just too long and complex for you
to make out. Perhaps you just didn’t try hard enough.

Here is another new bit of terminology:

Two sentences Aand Bare provably equivalent iff each
can be proved from the other; i.e., both A ⊢ B and B ⊢ A.

As in the case of showing that a sentence is a theorem, it is
relatively easy to show that two sentences are provably equivalent:

CHAPTER 19. PROOF-THEORETIC CONCEPTS 171

it just requires a pair of proofs. Showing that sentences are not
provably equivalent would be much harder: it is just as hard as
showing that a sentence is not a theorem.

Here is a third, related, bit of terminology:

The sentences A1,A2, . . . ,An are provably inconsis-
tent iff a contradiction can be proved from them, i.e.,
A1,A2, . . . ,An ⊢ ⊥. If they are not inconsistent, we call
them provably consistent.

It is easy to show that some sentences are provably inconsis-
tent: you just need to prove a contradiction from assuming all the
sentences. Showing that some sentences are not provably incon-
sistent is much harder. It would require more than just providing
a proof or two; it would require showing that no proof of a certain
kind is possible.

This table summarises whether one or two proofs suffice, or
whether we must reason about all possible proofs.

Yes No
theorem? one proof all possible proofs
inconsistent? one proof all possible proofs
equivalent? two proofs all possible proofs
consistent? all possible proofs one proof

Practice exercises

A. Show that each of the following sentences is a theorem:

1. O → O
2. N ∨ ¬N
3. J ↔ [J ∨ (L ∧ ¬L)]
4. ((A → B) → A) → A

B. Provide proofs to show each of the following:

CHAPTER 19. PROOF-THEORETIC CONCEPTS 172

1. C → (E ∧G),¬C → G ⊢ G
2. M ∧ (¬N → ¬M) ⊢ (N ∧M) ∨ ¬M
3. (Z ∧ K) ↔ (Y ∧M),D ∧ (D → M) ⊢Y → Z
4. (W ∨ X) ∨ (Y ∨ Z),X →Y,¬Z ⊢W ∨Y

C. Show that each of the following pairs of sentences are provably
equivalent:

1. R ↔ E, E ↔ R
2. G , ¬¬¬¬G
3. T → S , ¬S → ¬T
4. U → I , ¬(U ∧ ¬I)
5. ¬(C → D),C ∧ ¬D
6. ¬G ↔ H , ¬(G ↔ H)

D. If you know that A ⊢ B, what can you say about (A∧ C) ⊢ B?
What about (A∨ C) ⊢ B? Explain your answers.

E. In this chapter, we claimed that it is just as hard to show that
two sentences are not provably equivalent, as it is to show that a
sentence is not a theorem. Why did we claim this? (Hint: think
of a sentence that would be a theorem iff Aand Bwere provably
equivalent.)

CHAPTER 20

Derived rules
In this section, we will see why we introduced the rules of our
proof system in two separate batches. In particular, we want to
show that the additional rules of §18 are not strictly speaking
necessary, but can be derived from the basic rules of §16.

20.1 Derivation of Reiteration

To illustrate what it means to derive a rule from other rules, first
consider reiteration. It is a basic rule of our system, but it is also
not necessary. Suppose you have some sentence on some line of
your deduction:

m A

You now want to repeat yourself, on some line k . You could just
invoke the rule R. But equally well, you can do this with other
basic rules of §16:

m A

k A∧ A ∧I m, m

k + 1 A ∧E k

173

CHAPTER 20. DERIVED RULES 174

To be clear: this is not a proof. Rather, it is a proof scheme. After
all, it uses a variable, ‘A’, rather than a sentence of TFL, but the
point is simple: Whatever sentences of TFL we plugged in for
‘A’, and whatever lines we were working on, we could produce a
bona fide proof. So you can think of this as a recipe for producing
proofs.

Indeed, it is a recipe which shows us the following: anything
we can prove using the rule R, we can prove (with one more line)
using just the basic rules of §16 without R. That is what it means
to say that the rule R can be derived from the other basic rules:
anything that can be justified using R can be justified using only
the other basic rules.

20.2 Derivation of Disjunctive Syllogism

Suppose that you are in a proof, and you have something of this
form:

m A∨ B

n ¬A

You now want, on line k , to prove B. You can do this with the
rule of DS, introduced in §18, but equally well, you can do this
with the basic rules of §16:

CHAPTER 20. DERIVED RULES 175

m A∨ B

n ¬A

k A

k + 1 ⊥ ¬E n, k

k + 2 B X k + 1

k + 3 B

k + 4 B R k + 3

k + 5 B ∨E m, k–k + 2, k + 3–k + 4

So the DS rule, again, can be derived from our more basic rules.
Adding it to our system did not make any new proofs possible.
Anytime you use the DS rule, you could always take a few extra
lines and prove the same thing using only our basic rules. It is a
derived rule.

20.3 Derivation of Modus Tollens

Suppose you have the following in your proof:

m A→ B

n ¬B

You now want, on line k , to prove ¬A. You can do this with the
rule of MT, introduced in §18. Equally well, you can do this with
the basic rules of §16:

CHAPTER 20. DERIVED RULES 176

m A→ B

n ¬B

k A

k + 1 B →E m, k

k + 2 ⊥ ¬E n, k + 1

k + 3 ¬A ¬I k–k + 2

Again, the rule of MT can be derived from the basic rules of §16.

20.4 Derivation of Double-Negation
Elimination

Consider the following deduction scheme:

m ¬¬A

k ¬A

k + 1 ⊥ ¬E m, k

k + 2 A IP k–k + 1

Again, we can derive the DNE rule from the basic rules of §16.

20.5 Derivation of Excluded Middle

Suppose you want to prove something using the LEM rule, i.e.,
you have in your proof

CHAPTER 20. DERIVED RULES 177

m A

n B

k ¬A

l B

You now want, on line l + 1, to prove B. The rule LEM from §18
would allow you to do it. But can do this with the basic rules of
§16?

One option is to first prove A∨ ¬A, and then apply ∨E, i.e.
proof by cases:

m A

n B

k ¬A

l B

...

i A∨ ¬A

i + 1 B ∨E i , m–n, k–l

(We gave a proof of A∨ ¬A using only our basic rules in §17.6.)
Here is another way that is a bit more complicated than the

ones before. What you have to do is embed your two subproofs
inside another subproof. The assumption of the subproof will be
¬B, and the last line will be ⊥. Thus, the complete subproof is
the kind you need to conclude Busing IP. Inside the proof, you’d
have to do a bit more work to get ⊥:

CHAPTER 20. DERIVED RULES 178

m ¬B

m + 1 A

...

n B

n + 1 ⊥ ¬E m, n

n + 2 ¬A
...

l B

l + 1 ⊥ ¬E m, l

l + 2 ¬A ¬I (m + 1)–(n + 1)

l + 3 ¬¬A ¬I (n + 2)–(l + 1)

l + 4 ⊥ ¬E l + 3, l + 2

l + 5 B IP m–(l + 4)

Note that because we add an assumption at the top and additional
conclusions inside the subproofs, the line numbers change. You
may have to stare at this for a while before you understand what’s
going on.

20.6 Derivation of De Morgan rules

Here is a demonstration of how we could derive the first De Mor-
gan rule:

CHAPTER 20. DERIVED RULES 179

m ¬(A∧ B)

k A

k + 1 B

k + 2 A∧ B ∧I k , k + 1

k + 3 ⊥ ¬E m, k + 2

k + 4 ¬B ¬I k + 1–k + 3

k + 5 ¬A∨ ¬B ∨I k + 4

k + 6 ¬A

k + 7 ¬A∨ ¬B ∨I k + 6

k + 8 ¬A∨ ¬B LEM k–k + 5, k + 6–k + 7

Here is a demonstration of how we could derive the second De
Morgan rule:

m ¬A∨ ¬B

k A∧ B

k + 1 A ∧E k

k + 2 B ∧E k

k + 3 ¬A

k + 4 ⊥ ¬E k + 3, k + 1

k + 5 ¬B

k + 6 ⊥ ¬E k + 5, k + 2

k + 7 ⊥ ∨E m, k + 3–k + 4, k + 5–k + 6

k + 8 ¬(A∧ B) ¬I k–k + 7

CHAPTER 20. DERIVED RULES 180

Similar demonstrations can be offered explaining how we could
derive the third and fourth De Morgan rules. These are left as
exercises.

Practice exercises

A. Provide proof schemes that justify the addition of the third
and fourth De Morgan rules as derived rules.

B. The proofs you offered in response to the practice exercises of
§§18–19 used derived rules. Replace the use of derived rules, in
such proofs, with only basic rules. You will find some ‘repetition’
in the resulting proofs; in such cases, offer a streamlined proof
using only basic rules. (This will give you a sense, both of the
power of derived rules, and of how all the rules interact.)

C. Give a proof of A∨ ¬A. Then give a proof that uses only the
basic rules.

D. Show that if you had LEM as a basic rule, you could justify
IP as a derived rule. That is, suppose you had the proof:

m ¬A

. . .

n ⊥

How could you use it to prove Awithout using IP but with using
LEM as well as all the other basic rules?

E. Give a proof of the first De Morgan rule, but using only the
basic rules, in particular, without using LEM. (Of course, you can
combine the proof using LEM with the proof of LEM. Try to find
a proof directly.)

CHAPTER 21

Soundness
and
completeness
In §19, we saw that we could use derivations to test for the same
concepts we used truth tables to test for. Not only could we use
derivations to prove that an argument is valid, we could also use
them to test if a sentence is a tautology or a pair of sentences are
equivalent. We also started using the single turnstile the same
way we used the double turnstile. If we could prove that Awas a
tautology with a truth table, we wrote ⊨ A, and if we could prove
it using a derivation, we wrote ⊢ A.

You may have wondered at that point if the two kinds of turn-
stiles always worked the same way. If you can show that A is a
tautology using truth tables, can you also always show that it is a
theorem using a derivation? Is the reverse true? Are these things
also true for valid arguments and pairs of equivalent sentences?
As it turns out, the answer to all these questions and many more
like them is yes. We can show this by defining all these concepts
separately and then proving them equivalent. That is, we imag-

181

CHAPTER 21. SOUNDNESS AND COMPLETENESS 182

ine that we actually have two notions of validity, valid⊨ and valid⊢
and then show that the two concepts always work the same way.

To begin with, we need to define all of our logical concepts
separately for truth tables and derivations. A lot of this work has
already been done. We handled all of the truth table definitions in
§12. We have also already given syntactic definitions for tautolo-
gies (theorems) and pairs of logically equivalent sentences. The
other definitions follow naturally. For most logical properties we
can devise a test using derivations, and those that we cannot test
for directly can be defined in terms of the concepts that we can
define.

For instance, we defined a theorem as a sentence that can
be derived without any premises (p. 170). Since the negation of
a contradiction is a tautology, we can define a syntactic con-
tradiction in tfl as a sentence whose negation can be derived
without any premises. The syntactic definition of a contingent
sentence is a little different. We don’t have any practical, finite
method for proving that a sentence is contingent using deriva-
tions, the way we did using truth tables. So we have to content
ourselves with defining “contingent sentence” negatively. A sen-
tence is syntactically contingent in tfl if it is not a theorem
or a contradiction.

A collection of sentences are provably inconsistent in tfl
if and only if one can derive a contradiction from them. Consis-
tency, on the other hand, is like contingency, in that we do not
have a practical finite method to test for it directly. So again,
we have to define a term negatively. A collection of sentences is
provably consistent in tfl if and only if they are not provably
inconsistent.

Finally, an argument is provably valid in tfl if and only if
there is a derivation of its conclusion from its premises. All of
these definitions are given in Table 21.1.

All of our concepts have now been defined both semantically
and syntactically. How can we prove that these definitions always
work the same way? A full proof here goes well beyond the scope
of this book. However, we can sketch what it would be like. We

CHAPTER 21. SOUNDNESS AND COMPLETENESS 183

C
on

ce
p
t

T
ru
th

ta
bl
e
(s
em

an
ti
c)

d
efi

n
it
io
n

P
ro
of
-t
h
eo

re
ti
c
(s
yn

ta
ct
ic
)
d
efi

n
it
io
n

Ta
ut
ol
og

y
A

se
nt
en
ce

w
ho

se
tr
ut
h
ta
bl
e
on

ly
ha
s
Ts

un
de
r
th
e
m
ai
n
co
nn

ec
ti
ve

A
se
nt
en
ce

th
at

ca
n
be

de
ri
ve
d
w
it
ho

ut
an
y
pr
em

is
es
.

C
on

tr
ad

ic
ti
on

A
se
nt
en
ce

w
ho

se
tr
ut
h
ta
bl
e
on

ly
ha
s
Fs

un
de
r
th
e
m
ai
n
co
nn

ec
ti
ve

A
se
nt
en
ce

w
ho

se
ne
ga
ti
on

ca
n
be

de
ri
ve
d
w
it
ho

ut
an
y
pr
em

is
es

C
on

ti
ng
en
t
se
nt
en
ce

A
se
nt
en
ce

w
ho

se
tr
ut
h
ta
bl
e
co
nt
ai
ns

bo
th

Ts
an

d
Fs

un
de
r
th
e
m
ai
n
co
nn

ec
ti
ve

A
se
nt
en
ce

th
at

is
no

t
a
th
eo
re
m

or
co
nt
ra
di
ct
io
n

E
qu

iv
al
en
t
se
nt
en
ce
s

T
he

co
lu
m
ns

un
de
r
th
e
m
ai
n
co
nn

ec
ti
ve
s

ar
e
id
en
ti
ca
l.

T
he

se
nt
en
ce
s
ca
n
be

de
ri
ve
d
fr
om

ea
ch

ot
he
r

U
ns
at
is
fia
bl
e/

in
co
ns
is
te
nt

se
nt
en
ce
s

Se
nt
en
ce
s
w
hi
ch

do
no

t
ha
ve

a
si
ng

le
lin

e
in

th
ei
r
tr
ut
h
ta
bl
e
w
he
re

th
ey

ar
e
al
lt
ru
e.

Se
nt
en
ce
s
fr
om

w
hi
ch

on
e
ca
n
de
ri
ve

a
co
nt
ra
di
ct
io
n

Sa
ti
sfi
ab
le
/

C
on

si
st
en
t
se
nt
en
ce
s

Se
nt
en
ce
s
w
hi
ch

ha
ve

at
le
as
t
on

e
lin

e
in

th
ei
r
tr
ut
h
ta
bl
e
w
he
re

th
ey

ar
e
al
lt
ru
e.

Se
nt
en
ce
s
fr
om

w
hi
ch

on
e
ca
nn

ot
de
ri
ve

a
co
nt
ra
di
ct
io
n

V
al
id

ar
gu

m
en
t

A
n
ar
gu

m
en
t
w
ho

se
tr
ut
h
ta
bl
e
ha
s
no

lin
es

w
he
re

th
er
e
ar
e
al
lT

s
un

de
r
m
ai
n

co
nn

ec
ti
ve
s
fo
r
th
e
pr
em

is
es

an
d
an

F
un

de
r
th
e
m
ai
n
co
nn

ec
ti
ve

fo
r
th
e

co
nc
lu
si
on

.

A
n
ar
gu

m
en
t
w
he
re

on
e
ca
n
de
ri
ve

th
e

co
nc
lu
si
on

fr
om

th
e
pr
em

is
es

Ta
bl
e
21
.1
:T
w
o
w
ay
s
to
de
fi
ne
lo
gi
ca
l
co
nc
ep
ts
.

CHAPTER 21. SOUNDNESS AND COMPLETENESS 184

will focus on showing the two notions of validity to be equivalent.
From that the other concepts will follow quickly. The proof will
have to go in two directions. First we will have to show that things
which are syntactically valid will also be semantically valid. In
other words, everything that we can prove using derivations could
also be proven using truth tables. Put symbolically, we want to
show that valid⊢ implies valid⊨. Afterwards, we will need to show
things in the other directions, valid⊨ implies valid⊢

This argument from ⊢ to ⊨ is the problem of soundness. A
proof system is sound if there are no derivations of arguments
that can be shown invalid by truth tables. Demonstrating that the
proof system is sound would require showing that any possible
proof is the proof of a valid argument. It would not be enough
simply to succeed when trying to prove many valid arguments
and to fail when trying to prove invalid ones.

The proof that we will sketch depends on the fact that we
initially defined a sentence of TFL using an inductive definition
(see p. 51). We could have also used inductive definitions to de-
fine a proper proof in TFL and a proper truth table. (Although
we didn’t.) If we had these definitions, we could then use a in-
ductive proof to show the soundness of TFL. An inductive proof
works the same way as an inductive definition. With the induc-
tive definition, we identified a group of base elements that were
stipulated to be examples of the thing we were trying to define.
In the case of a TFL sentence, the base class was the set of sen-
tence letters A, B , C , We just announced that these were
sentences. The second step of an inductive definition is to say
that anything that is built up from your base class using certain
rules also counts as an example of the thing you are defining.
In the case of a definition of a sentence, the rules corresponded
to the five sentential connectives (see p. 51). Once you have es-
tablished an inductive definition, you can use that definition to
show that all the members of the class you have defined have a
certain property. You simply prove that the property is true of
the members of the base class, and then you prove that the rules
for extending the base class don’t change the property. This is

CHAPTER 21. SOUNDNESS AND COMPLETENESS 185

what it means to give an inductive proof.
Even though we don’t have an inductive definition of a proof

in TFL, we can sketch how an inductive proof of the soundness
of TFL would go. Imagine a base class of one-line proofs, one
for each of our eleven rules of inference. The members of this
class would look like this A,B ⊢ A∧B; A∧B ⊢ A; A∨B,¬A ⊢
B . . . etc. Since some rules have a couple different forms, we
would have to have add some members to this base class, for
instance A∧ B ⊢ B Notice that these are all statements in the
metalanguage. The proof that TFL is sound is not a part of TFL,
because TFL does not have the power to talk about itself.

You can use truth tables to prove to yourself that each of these
one-line proofs in this base class is valid⊨. For instance the proof
A,B ⊢ A∧Bcorresponds to a truth table that showsA,B ⊨ A∧B
This establishes the first part of our inductive proof.

The next step is to show that adding lines to any proof will
never change a valid⊨ proof into an invalid⊨ one. We would need
to do this for each of our eleven basic rules of inference. So,
for instance, for ∧I we need to show that for any proof A1, . . . ,
An ⊢ B adding a line where we use ∧I to infer C∧ D, where
C∧ D can be legitimately inferred from A1, . . . , An , B, would
not change a valid proof into an invalid proof. But wait, if we can
legitimately derive C∧ D from these premises, then C and D

must be already available in the proof. They are either already
among A1, . . . , An , B, or can be legitimately derived from them.
As such, any truth table line in which the premises are true must
be a truth table line in which C and D are true. According to
the characteristic truth table for ∧, this means that C ∧ D is
also true on that line. Therefore, C∧ D validly follows from the
premises. This means that using the ∧E rule to extend a valid
proof produces another valid proof.

In order to show that the proof system is sound, we would
need to show this for the other inference rules. Since the derived
rules are consequences of the basic rules, it would suffice to pro-
vide similar arguments for the 11 other basic rules. This tedious
exercise falls beyond the scope of this book.

CHAPTER 21. SOUNDNESS AND COMPLETENESS 186

So we have shown that A ⊢ B implies A ⊨ B. What about
the other direction, that is why think that every argument that
can be shown valid using truth tables can also be proven using a
derivation.

This is the problem of completeness. A proof system has the
property of completeness if and only if there is a derivation of
every semantically valid argument. Proving that a system is com-
plete is generally harder than proving that it is sound. Proving
that a system is sound amounts to showing that all of the rules of
your proof system work the way they are supposed to. Showing
that a system is complete means showing that you have included
all the rules you need, that you haven’t left any out. Showing this
is beyond the scope of this book. The important point is that,
happily, the proof system for TFL is both sound and complete.
This is not the case for all proof systems or all formal languages.
Because it is true of TFL, we can choose to give proofs or give
truth tables—whichever is easier for the task at hand.

Now that we know that the truth table method is interchange-
able with the method of derivations, you can chose which method
you want to use for any given problem. Students often prefer to
use truth tables, because they can be produced purely mechani-
cally, and that seems ‘easier’. However, we have already seen that
truth tables become impossibly large after just a few sentence let-
ters. On the other hand, there are a couple situations where using
proofs simply isn’t possible. We syntactically defined a contingent
sentence as a sentence that couldn’t be proven to be a tautology
or a contradiction. There is no practical way to prove this kind of
negative statement. We will never know if there isn’t some proof
out there that a statement is a contradiction and we just haven’t
found it yet. We have nothing to do in this situation but resort
to truth tables. Similarly, we can use derivations to prove two
sentences equivalent, but what if we want to prove that they are
not equivalent? We have no way of proving that we will never find
the relevant proof. So we have to fall back on truth tables again.

Table 21.2 summarizes when it is best to give proofs and when
it is best to give truth tables.

CHAPTER 21. SOUNDNESS AND COMPLETENESS 187

Logical
property

To prove it present To prove it absent

Being a
theorem

Derive the sentence
Find a false line in the
truth table for the
sentence

Being a
contradiction

Derive the negation of
the sentence

Find a true line in the
truth table for the
sentence

Contingency
Find a false line and a
true line in the truth
table for the sentence

Prove the sentence or
its negation

Equivalence Derive each sentence
from the other

Find a line in the
truth tables for the
sentence where they
have different values

Consistency
Find a line in truth
table for the sentence
where they all are true

Derive a contradiction
from the sentences

Validity
Derive the conclusion
from the premises

Find a line in the
truth table where the
premises are true and
the conclusion false.

Table 21.2: When to provide a truth table and when to provide a proof.

Practice exercises

A. Use either a derivation or a truth table for each of the follow-
ing.

1. Show that A → [((B ∧C) ∨D) → A] is a theorem.

2. Show that A → (A → B) is not a theorem.

3. Show that the sentence A → ¬A is not a contradiction.

4. Show that the sentence A ↔ ¬A is a contradiction.

CHAPTER 21. SOUNDNESS AND COMPLETENESS 188

5. Show that the sentence ¬(W → (J ∨ J)) is contingent.

6. Show that the sentence ¬(X ∨ (Y ∨Z)) ∨ (X ∨ (Y ∨Z)) is
not contingent.

7. Show that the sentence B → ¬S is equivalent to the sen-
tence ¬¬B → ¬S .

8. Show that the sentence ¬(X ∨O) is not equivalent to the
sentence X ∧O .

9. Show that the sentences ¬(A ∨ B), C , C → A are jointly
inconsistent.

10. Show that the sentences ¬(A ∨ B), ¬B , B → A are jointly
consistent.

11. Show that ¬(A ∨ (B ∨C)) ∴¬C is valid.

12. Show that ¬(A ∧ (B ∨C)) ∴¬C is invalid.

B. Use either a derivation or a truth table for each of the follow-
ing.

1. Show that A → (B → A) is a theoremy.

2. Show that ¬(((N ↔ Q) ∨Q) ∨ N) is not a theorem.

3. Show that Z ∨ (¬Z ↔ Z) is contingent.

4. show that (L ↔ ((N → N) → L)) ∨H is not contingent.

5. Show that (A ↔ A) ∧ (B ∧ ¬B) is a contradiction.

6. Show that (B ↔ (C ∨ B)) is not a contradiction.

7. Show that ((¬X ↔ X) ∨ X) is equivalent to X .

8. Show that F ∧(K ∧R) is not equivalent to (F ↔ (K ↔ R)).

9. Show that the sentences ¬(W → W), (W ↔ W) ∧W ,
E ∨ (W → ¬(E ∧W)) are jointly inconsistent.

CHAPTER 21. SOUNDNESS AND COMPLETENESS 189

10. Show that the sentences ¬R ∨ C , (C ∧ R) → ¬R, (¬(R ∨
R) → R) are jointly consistent.

11. Show that ¬¬(C ↔ ¬C), ((G ∨C) ∨G) ∴ ((G → C) ∧G)
is valid.

12. Show that ¬¬L, (C → ¬L) → C) ∴ ¬C is invalid.

PART V

First-order
logic

190

CHAPTER 22

Building
blocks of FOL
22.1 The need to decompose sentences

Consider the following argument, which is obviously valid in En-
glish:

Willard is a logician.
All logicians wear funny hats.

∴ Willard wears a funny hat.

To symbolize it in TFL, we might offer a symbolization key:

L: Willard is a logician.
A: All logicians wear funny hats.
F : Willard wears a funny hat.

And the argument itself becomes:

L,A ∴ F

But the truth-table test will now indicate that this is invalid. What
has gone wrong?

191

CHAPTER 22. BUILDING BLOCKS OF FOL 192

The problem is not that we have made a mistake while sym-
bolizing the argument. This is the best symbolization we can
give in TFL. The problem lies with TFL itself. ‘All logicians wear
funny hats’ is about both logicians and hat-wearing. By not re-
taining this structure in our symbolization, we lose the connec-
tion between Willard’s being a logician and Willard’s wearing a
hat.

The basic units of TFL are sentence letters, and TFL cannot
decompose these. To symbolize arguments like the preceding
one, we will have to develop a new logical language which will
allow us to split the atom. We will call this language first-order logic,
or FOL.

The details of FOL will be explained throughout this chapter,
but here is the basic idea for splitting the atom.

First, we have names. In FOL, we indicate these with lowercase
italic letters. For instance, we might let ‘b ’ stand for Bertie, or let
‘i ’ stand for Willard.

Second, we have predicates. English predicates are expres-
sions like ‘ is a dog’ or ‘ is a logician’. These are not
complete sentences by themselves. In order to make a complete
sentence, we need to fill in the gap. We need to say something
like ‘Bertie is a dog’ or ‘Willard is a logician’. In FOL, we in-
dicate predicates with uppercase italic letters. For instance, we
might let the FOL predicate ‘D ’ symbolize the English predicate
‘ is a dog’. Then the expression ‘D (b)’ will be a sentence
in FOL, which symbolizes the English sentence ‘Bertie is a dog’.
Equally, we might let the FOL predicate ‘L’ symbolize the En-
glish predicate ‘ is a logician’. Then the expression ‘L(i)’
will symbolize the English sentence ‘Willard is a logician’.

Third, we have quantifiers. For instance, ‘∃’ will roughly con-
vey ‘There is at least one . . . ’. So we might symbolize the English
sentence ‘there is a dog’ with the FOL sentence ‘∃x D (x)’, which
we might read aloud as ‘there is at least one thing, x , such that x
is a dog’.

That is the general idea, but FOL is significantly more subtle
than TFL, so we will come at it slowly.

CHAPTER 22. BUILDING BLOCKS OF FOL 193

22.2 Names

In English, a singular term is a word or phrase that refers to a
specific person, place, or thing. The word ‘dog’ is not a singular
term, because there are a great many dogs. The phrase ‘Bertie’
is a singular term, because it refers to a specific terrier. Likewise,
the phrase ‘Philip’s dog Bertie’ is a singular term, because it refers
to a specific little terrier.

Proper names are a particularly important kind of singular
term. These are expressions that pick out individuals without
describing them. The name ‘Emerson’ is a proper name, and
the name alone does not tell you anything about Emerson. Of
course, some names are traditionally given to boys and other are
traditionally given to girls. If ‘Hilary’ is used as a singular term,
you might guess that it refers to a woman. You might, though, be
guessing wrongly. Indeed, the name does not necessarily mean
that the person referred to is even a person: Hilary might be a
giraffe, for all you could tell just from the name.

In FOL, our names are lower-case letters ‘a’ through to ‘r ’.
We can add subscripts if we want to use some letter more than
once. So here are some singular terms in FOL:

a,b ,c , . . . ,r ,a1, f32, j390,m12

These should be thought of along the lines of proper names in
English, but with one difference. ‘Tim Button’ is a proper name,
but there are several people with this name. (Equally, there are
at least two people with the name ‘P.D. Magnus’.) We live with
this kind of ambiguity in English, allowing context to individuate
the fact that ‘Tim Button’ refers to an author of this book, and
not some other Tim. In FOL, we do not tolerate any such ambi-
guity. Each name must pick out exactly one thing. (However, two
different names may pick out the same thing.)

As with TFL, we can provide symbolization keys. These indi-
cate, temporarily, what a name will pick out. So we might offer:

e : Elsa

CHAPTER 22. BUILDING BLOCKS OF FOL 194

g : Gregor
m: Marybeth

22.3 Predicates

The simplest predicates are properties of individuals. They are
things you can say about an object. Here are some examples of
English predicates:

is a dog
is a member of Monty Python

A piano fell on

In general, you can think about predicates as things which com-
bine with singular terms to make sentences. Conversely, you can
start with sentences and make predicates out of them by remov-
ing terms. Consider the sentence, ‘Vinnie borrowed the family
car from Nunzio.’ By removing a singular term, we can obtain
any of three different predicates:

borrowed the family car from Nunzio
Vinnie borrowed from Nunzio
Vinnie borrowed the family car from

In FOL, predicates are capital letters A through Z , with or with-
out subscripts. We might write a symbolization key for predicates
thus:

A(x): x is angry
H (x): x is happy

(Why the subscripts on the gaps? We will return to this in §24.)
If we combine our two symbolization keys, we can start to

symbolize some English sentences that use these names and pred-
icates in combination. For example, consider the English sen-
tences:

1. Elsa is angry.

CHAPTER 22. BUILDING BLOCKS OF FOL 195

2. Gregor and Marybeth are angry.
3. If Elsa is angry, then so are Gregor and Marybeth.

Sentence 1 is straightforward: we symbolize it by ‘A(e)’.
Sentence 2: this is a conjunction of two simpler sentences.

The simple sentences can be symbolized just by ‘A(g)’ and
‘A(m)’. Then we help ourselves to our resources from TFL, and
symbolize the entire sentence by ‘A(g)∧A(m)’. This illustrates an
important point: FOL has all of the truth-functional connectives
of TFL.

Sentence 3: this is a conditional, whose antecedent is sen-
tence 1 and whose consequent is sentence 2, so we can symbolize
this with ‘A(e) → (A(g) ∧ A(m))’.

22.4 Quantifiers

We are now ready to introduce quantifiers. Consider these sen-
tences:

4. Everyone is happy.
5. Someone is angry.

It might be tempting to symbolize sentence 4 as ‘H (e) ∧H (g) ∧
H (m)’. Yet this would only say that Elsa, Gregor, and Marybeth
are happy. We want to say that everyone is happy, even those with
no names. In order to do this, we introduce the ‘∀’ symbol. This
is called the universal quantifier.

A quantifier must always be followed by a variable. In FOL,
variables are italic lowercase letters ‘s ’ through ‘z ’, with or with-
out subscripts. So we might symbolize sentence 4 as ‘∀x H (x)’.
The variable ‘x ’ is serving as a kind of placeholder. The ex-
pression ‘∀x ’ intuitively means that you can pick anyone and put
them in as ‘x ’. The subsequent ‘H (x)’ indicates, of that thing you
picked out, that it is happy.

It should be pointed out that there is no special reason to use
‘x ’ rather than some other variable. The sentences ‘∀x H (x)’,

CHAPTER 22. BUILDING BLOCKS OF FOL 196

‘∀y H (y)’, ‘∀z H (z)’, and ‘∀x5H (x5)’ use different variables, but
they will all be logically equivalent.

To symbolize sentence 5, we introduce another new symbol:
the existential quantifier, ‘∃’. Like the universal quantifier,
the existential quantifier requires a variable. Sentence 5 can be
symbolized by ‘∃x A(x)’. Whereas ‘∀x A(x)’ is read naturally as
‘for all x , x is angry’, ‘∃x A(x)’ is read naturally as ‘there is some-
thing, x , such that x is angry’. Once again, the variable is a kind
of placeholder; we could just as easily have symbolized sentence 5
by ‘∃z A(z)’, ‘∃w256A(w256)’, or whatever.

Some more examples will help. Consider these further sen-
tences:

6. No one is angry.
7. There is someone who is not happy.
8. Not everyone is happy.

Sentence 6 can be paraphrased as, ‘It is not the case that some-
one is angry’. We can then symbolize it using negation and
an existential quantifier: ‘¬∃x A(x)’. Yet sentence 6 could also
be paraphrased as, ‘Everyone is not angry’. With this in mind,
it can be symbolized using negation and a universal quantifier:
‘∀x ¬A(x)’. Both of these are acceptable symbolizations. Indeed,
it will transpire that, in general, ∀x ¬A is logically equivalent to
¬∃x A. (Notice that we have here returned to the practice of us-
ing ‘A’ as a metavariable, from §8.) Symbolizing a sentence one
way, rather than the other, might seem more ‘natural’ in some
contexts, but it is not much more than a matter of taste.

Sentence 7 is most naturally paraphrased as, ‘There is some x ,
such that x is not happy’. This then becomes ‘∃x ¬H (x)’. Of
course, we could equally have written ‘¬∀x H (x)’, which we
would naturally read as ‘it is not the case that everyone is happy’.
That too would be a perfectly adequate symbolization of sen-
tence 8.

CHAPTER 22. BUILDING BLOCKS OF FOL 197

22.5 Domains

Given the symbolization key we have been using, ‘∀x H (x)’ sym-
bolizes ‘Everyone is happy’. Who is included in this everyone?
When we use sentences like this in English, we usually do not
mean everyone now alive on the Earth. We certainly do not mean
everyone who was ever alive or who will ever live. We usually
mean something more modest: everyone now in the building,
everyone enrolled in the ballet class, or whatever.

In order to eliminate this ambiguity, we will need to specify
a domain. The domain is the collection of things that we are
talking about. So if we want to talk about people in Chicago, we
define the domain to be people in Chicago. We write this at the
beginning of the symbolization key, like this:

domain: people in Chicago

The quantifiers range over the domain. Given this domain, ‘∀x ’ is
to be read roughly as ‘Every person in Chicago is such that. . . ’
and ‘∃x ’ is to be read roughly as ‘Some person in Chicago is such
that. . . ’.

In FOL, the domain must always include at least one thing.
Moreover, in English we can legitimately infer ‘something is an-
gry’ from ‘Gregor is angry’. In FOL, then, we will want to be able
to infer ‘∃x A(x)’ from ‘A(g)’. So we will insist that each name
must pick out exactly one thing in the domain. If we want to
name people in places beside Chicago, then we need to include
those people in the domain.

A domain must have at least one member. Every name
must pick out exactly one member of the domain, but a
member of the domain may be picked out by one name,
many names, or none at all.

Even allowing for a domain with just one member can pro-
duce some strange results. Suppose we have this as a symboliza-
tion key:

CHAPTER 22. BUILDING BLOCKS OF FOL 198

domain: the Eiffel Tower
P (x): x is in Paris.

The sentence ∀x P (x) might be paraphrased in English as ‘Ev-
erything is in Paris.’ Yet that would be misleading. It means
that everything in the domain is in Paris. This domain contains
only the Eiffel Tower, so with this symbolization key ∀x P (x) just
means that the Eiffel Tower is in Paris.

Non-referring terms

In FOL, each name must pick out exactly one member of the
domain. A name cannot refer to more than one thing—it is a
singular term. Each name must still pick out something. This is
connected to a classic philosophical problem: the so-called prob-
lem of non-referring terms.

Medieval philosophers typically used sentences about the
chimera to exemplify this problem. Chimera is a mythological
creature; it does not really exist. Consider these two sentences:

9. Chimera is angry.
10. Chimera is not angry.

It is tempting just to define a name to mean ‘chimera.’ The sym-
bolization key would look like this:

domain: creatures on Earth
A(x): x is angry.

c : chimera

We could then symbolize sentence 9 as A(c) and sentence 10 as
¬A(c).

Problems will arise when we ask whether these sentences are
true or false.

One option is to say that sentence 9 is not true, because there
is no chimera. If sentence 9 is false because it talks about a non-
existent thing, then sentence 10 is false for the same reason. Yet

CHAPTER 22. BUILDING BLOCKS OF FOL 199

this would mean that A(c) and ¬A(c) would both be false. Given
the truth conditions for negation, this cannot be the case.

Since we cannot say that they are both false, what should
we do? Another option is to say that sentence 9 is meaningless
because it talks about a non-existent thing. So A(c) would be a
meaningful expression in FOL for some interpretations but not
for others. Yet this would make our formal language hostage
to particular interpretations. Since we are interested in logical
form, we want to consider the logical force of a sentence like A(c)
apart from any particular interpretation. If A(c) were sometimes
meaningful and sometimes meaningless, we could not do that.

This is the problem of non-referring terms, and we will return
to it later (see p. 242.) The important point for now is that each
name of FOL must refer to something in the domain, although the
domain can contain any things we like. If we want to symbolize
arguments about mythological creatures, then we must define a
domain that includes them. This option is important if we want
to consider the logic of stories. We can symbolize a sentence
like ‘Sherlock Holmes lived at 221B Baker Street’ by including
fictional characters like Sherlock Holmes in our domain.

CHAPTER 23

Sentences with
one quantifier
We now have all of the pieces of FOL. Symbolizing more com-
plicated sentences is just a matter of knowing how to combine
predicates, names, quantifiers, and connectives. There is a knack
to this, and there is no substitute for practice.

23.1 Common quantifier phrases

Consider these sentences:

1. Every coin in my pocket is a quarter.
2. Some coin on the table is a dime.
3. Not all the coins on the table are dimes.
4. None of the coins in my pocket are dimes.

In providing a symbolization key, we need to specify a domain.
Since we are talking about coins in my pocket and on the table,
the domain must at least contain all of those coins. Since we are
not talking about anything besides coins, we let the domain be
all coins. Since we are not talking about any specific coins, we
do not need to deal with any names. So here is our key:

200

CHAPTER 23. SENTENCES WITH ONE QUANTIFIER 201

domain: all coins
P (x): x is in my pocket
T (x): x is on the table
Q (x): x is a quarter
D (x): x is a dime

Sentence 1 is most naturally symbolized using a universal quanti-
fier. The universal quantifier says something about everything in
the domain, not just about the coins in my pocket. Sentence 1 can
be paraphrased as ‘for any coin, if that coin is in my pocket then
it is a quarter’. So we can symbolize it as ‘∀x (P (x) → Q (x))’.

Since sentence 1 is about coins that are both in my pocket
and that are quarters, it might be tempting to symbolize it using
a conjunction. However, the sentence ‘∀x (P (x) ∧ Q (x))’ would
symbolize the sentence ‘every coin is both a quarter and in my
pocket’. This obviously means something very different than sen-
tence 1. And so we see:

A sentence can be symbolized as ∀x (F(x) → G(x)) if it
can be paraphrased in English as ‘every F is G ’.

Sentence 2 is most naturally symbolized using an existential
quantifier. It can be paraphrased as ‘there is some coin which is
both on the table and which is a dime’. So we can symbolize it
as ‘∃x (T (x) ∧D (x))’.

Notice that we needed to use a conditional with the universal
quantifier, but we used a conjunction with the existential quanti-
fier. Suppose we had instead written ‘∃x (T (x) → D (x))’. That
would mean that there is some object in the domain of which
‘(T (x) → D (x))’ is true. Recall that, in TFL, A→ B is logically
equivalent (in TFL) to ¬A∨ B. This equivalence will also hold
in FOL. So ‘∃x (T (x) → D (x))’ is true if there is some object
in the domain, such that ‘(¬T (x) ∨ D (x))’ is true of that object.
That is, ‘∃x (T (x) → D (x))’ is true if some coin is either not on
the table or is a dime. Of course there is a coin that is not on
the table: there are coins in lots of other places. So it is very easy

CHAPTER 23. SENTENCES WITH ONE QUANTIFIER 202

for ‘∃x (T (x) → D (x))’ to be true. A conditional will usually be
the natural connective to use with a universal quantifier, but a
conditional within the scope of an existential quantifier tends to
say something very weak indeed. As a general rule of thumb, do
not put conditionals in the scope of existential quantifiers unless
you are sure that you need one.

A sentence can be symbolized as ∃x (F(x) ∧G(x)) if it can
be paraphrased in English as ‘some F is G ’.

Sentence 3 can be paraphrased as, ‘It is not the case that
every coin on the table is a dime’. So we can symbolize it by
‘¬∀x (T (x) → D (x))’. You might look at sentence 3 and para-
phrase it instead as, ‘Some coin on the table is not a dime’. You
would then symbolize it by ‘∃x (T (x) ∧ ¬D (x))’. Although it is
probably not immediately obvious yet, these two sentences are
logically equivalent. (This is due to the logical equivalence be-
tween ¬∀x A and ∃x¬A, mentioned in §22, along with the equiv-
alence between ¬(A→ B) and A∧ ¬B.)

Sentence 4 can be paraphrased as, ‘It is not the case that
there is some dime in my pocket’. This can be symbolized by
‘¬∃x (P (x) ∧D (x))’. It might also be paraphrased as, ‘Everything
in my pocket is a non-dime’, and then could be symbolized by
‘∀x (P (x) → ¬D (x))’. Again the two symbolizations are logically
equivalent; both are correct symbolizations of sentence 4.

A sentence that can be paraphrased as ‘no F is G ’ can be
symbolized as ¬∃x (F(x) ∧ G(x)) and also as ∀x (F(x) →
¬G(x)).

Finally, consider ‘only’, as in:

5. Only dimes are on the table.

How should we symbolize this? A good strategy is to consider
when the sentence would be false. If we are saying that only dimes

CHAPTER 23. SENTENCES WITH ONE QUANTIFIER 203

are on the table, we are excluding all the cases where something
on the table is a non-dime. So we can symbolize the sentence
the same way we would symbolize ‘No non-dimes are on the ta-
ble.’ Remembering the lesson we just learned, and symbolizing
‘x is a non-dime’ as ‘¬D (x)’, the possible symbolizations are:
‘¬∃x (T (x) ∧ ¬D (x))’, or alternatively: ‘∀x (T (x) → ¬¬D (x))’.
Since double negations cancel out, the second is just as good as
‘∀x (T (x) → D (x))’. In other words, ‘Only dimes are on the ta-
ble’ and ‘Everything on the table is a dime’ are symbolized the
same way.

A sentence that can be paraphrased as ‘only F s are G s’
can be symbolized as ¬∃x (G(x) ∧ ¬F(x)) and also as
∀x (G(x) → F(x)).

23.2 Empty predicates

In §22, we emphasized that a name must pick out exactly one
object in the domain. However, a predicate need not apply to
anything in the domain. A predicate that applies to nothing in the
domain is called an empty predicate. This is worth exploring.

Suppose we want to symbolize these two sentences:

6. Every monkey knows sign language
7. Some monkey knows sign language

It is possible to write the symbolization key for these sentences
in this way:

domain: animals
M (x): x is a monkey.
S (x): x knows sign language.

Sentence 6 can now be symbolized by ‘∀x (M (x) → S (x))’. Sen-
tence 7 can be symbolized as ‘∃x (M (x) ∧ S (x))’.

It is tempting to say that sentence 6 entails sentence 7. That
is, we might think that it is impossible that every monkey knows

CHAPTER 23. SENTENCES WITH ONE QUANTIFIER 204

sign language unless some monkey knows sign language. But this
would be a mistake. It is possible for the sentence ‘∀x (M (x) →
S (x))’ to be true even though the sentence ‘∃x (M (x) ∧ S (x))’ is
false.

How can this be? The answer comes from considering
whether these sentences would be true or false if there were no
monkeys. If there were no monkeys at all (in the domain), then
‘∀x (M (x) → S (x))’ would be vacuously true: take any monkey
you like—it knows sign language! But if there were no monkeys
at all (in the domain), then ‘∃x (M (x) ∧ S (x))’ would be false.

Another example will help to bring this home. Suppose we
extend the above symbolization key, by adding:

R (x): x is a refrigerator

Now consider the sentence ‘∀x (R (x) → M (x))’. This symbol-
izes ‘every refrigerator is a monkey’. This sentence is true, given
our symbolization key, which is counterintuitive, since we (pre-
sumably) do not want to say that there are a whole bunch of
refrigerator monkeys. It is important to remember, though, that
‘∀x (R (x) → M (x))’ is true iff any member of the domain that
is a refrigerator is a monkey. Since the domain is animals, there
are no refrigerators in the domain. Again, then, the sentence is
vacuously true.

If you were actually dealing with the sentence ‘All refrigera-
tors are monkeys’, then you would most likely want to include
kitchen appliances in the domain. Then the predicate ‘R’ would
not be empty and the sentence ‘∀x (R (x) → M (x))’ would be
false.

When F is an empty predicate, any sentence ∀x (F(x) →
. . .) is vacuously true.

CHAPTER 23. SENTENCES WITH ONE QUANTIFIER 205

23.3 Picking a domain

The appropriate symbolization of an English language sentence
in FOL will depend on the symbolization key. Choosing a key can
be difficult. Suppose we want to symbolize the English sentence:

8. Every rose has a thorn.

We might offer this symbolization key:

R (x): x is a rose
T (x): x has a thorn

It is tempting to say that sentence 8 should be symbolized as
‘∀x (R (x) → T (x))’, but we have not yet chosen a domain. If
the domain contains all roses, this would be a good symboliza-
tion. Yet if the domain is merely things on my kitchen table, then
‘∀x (R (x) → T (x))’ would only come close to covering the fact
that every rose on my kitchen table has a thorn. If there are no
roses on my kitchen table, the sentence would be trivially true.
This is not what we want. To symbolize sentence 8 adequately,
we need to include all the roses in the domain, but now we have
two options.

First, we can restrict the domain to include all roses but
only roses. Then sentence 8 can, if we like, be symbolized with
‘∀x T (x)’. This is true iff everything in the domain has a thorn;
since the domain is just the roses, this is true iff every rose has a
thorn. By restricting the domain, we have been able to symbolize
our English sentence with a very short sentence of FOL. So this
approach can save us trouble, if every sentence that we want to
deal with is about roses.

Second, we can let the domain contain things besides roses:
rhododendrons; rats; rifles; whatevers, and we will certainly need
to include a more expansive domain if we simultaneously want
to symbolize sentences like:

9. Every cowboy sings a sad, sad song.

CHAPTER 23. SENTENCES WITH ONE QUANTIFIER 206

Our domain must now include both all the roses (so that we can
symbolize sentence 8) and all the cowboys (so that we can sym-
bolize sentence 9). So we might offer the following symbolization
key:

domain: people and plants
C (x): x is a cowboy
S (x): x sings a sad, sad song
R (x): x is a rose
T (x): x has a thorn

Now we will have to symbolize sentence 8 with ‘∀x (R (x) →
T (x))’, since ‘∀x T (x)’ would symbolize the sentence ‘every per-
son or plant has a thorn’. Similarly, we will have to symbolize
sentence 9 with ‘∀x (C (x) → S (x))’.

In general, the universal quantifier can be used to symbolize
the English expression ‘everyone’ if the domain only contains
people. If there are people and other things in the domain, then
‘everyone’ must be treated as ‘every person’.

23.4 The utility of paraphrase

When symbolizing English sentences in FOL, it is important to
understand the structure of the sentences you want to symbolize.
What matters is the final symbolization in FOL, and sometimes
you will be able to move from an English language sentence di-
rectly to a sentence of FOL. Other times, it helps to paraphrase
the sentence one or more times. Each successive paraphrase
should move from the original sentence closer to something that
you can easily symbolize directly in FOL.

For the next several examples, we will use this symbolization
key:

domain: people
B (x): x is a bassist.
R (x): x is a rock star.

CHAPTER 23. SENTENCES WITH ONE QUANTIFIER 207

k : Kim Deal

Now consider these sentences:

10. If Kim Deal is a bassist, then she is a rock star.
11. If a person is a bassist, then she is a rock star.

The same words appear as the consequent in sentences 10 and
11 (‘. . . she is a rock star’), but they mean very different things.
To make this clear, it often helps to paraphrase the original sen-
tences, removing pronouns.

Sentence 10 can be paraphrased as, ‘If Kim Deal is a bassist,
then Kim Deal is a rockstar’. This can obviously be symbolized
as ‘B (k) → R (k)’.

Sentence 11 must be paraphrased differently: ‘If a person is
a bassist, then that person is a rock star’. This sentence is not
about any particular person, so we need a variable. As an inter-
mediate step, we can paraphrase this as, ‘For any person x, if x
is a bassist, then x is a rockstar’. Now this can be symbolized
as ‘∀x (B (x) → R (x))’. This is the same sentence we would have
used to symbolize ‘Everyone who is a bassist is a rock star’. On
reflection, that is surely true iff sentence 11 is true, as we would
hope.

Consider these further sentences:

12. If anyone is a bassist, then Kim Deal is a rock star.
13. If anyone is a bassist, then she is a rock star.

The same words appear as the antecedent in sentences 12 and 13
(‘If anyone is a bassist. . .’), but it can be tricky to work out how
to symbolize these two uses. Again, paraphrase will come to our
aid.

Sentence 12 can be paraphrased, ‘If there is at least one
bassist, then Kim Deal is a rock star’. It is now clear that this is
a conditional whose antecedent is a quantified expression; so we
can symbolize the entire sentence with a conditional as the main
logical operator: ‘∃xB (x) → R (k)’.

CHAPTER 23. SENTENCES WITH ONE QUANTIFIER 208

Sentence 13 can be paraphrased, ‘For all people x , if x is
a bassist, then x is a rock star’. Or, in more natural English,
it can be paraphrased by ‘All bassists are rock stars’. It is best
symbolized as ‘∀x (B (x) → R (x))’, just like sentence 11.

The moral is that the English words ‘any’ and ‘anyone’ should
typically be symbolized using quantifiers, and if you are having
a hard time determining whether to use an existential or a uni-
versal quantifier, try paraphrasing the sentence with an English
sentence that uses words besides ‘any’ or ‘anyone’.

23.5 Quantifiers and scope

Continuing the example, suppose we want to symbolize these
sentences:

14. If everyone is a bassist, then Lars is a bassist
15. Everyone is such that, if they are a bassist, then Lars is a

bassist.

To symbolize these sentences, we will have to add a new name to
the symbolization key, namely:

l : Lars

Sentence 14 is a conditional, whose antecedent is ‘everyone is
a bassist’, so we will symbolize it with ‘∀x B (x) → B (l)’. This
sentence is necessarily true: if everyone is indeed a bassist, then take
any one you like—for example Lars—and he will be a bassist.

Sentence 15, by contrast, might best be paraphrased by ‘every
person x is such that, if x is a bassist, then Lars is a bassist’.
This is symbolized by ‘∀x (B (x) → B (l))’. This sentence is false;
Kim Deal is a bassist. So ‘B (k)’ is true. Suppose that Lars is
not a bassist (say, he’s a drummer instead), so ‘B (l)’ is false.
Accordingly, ‘B (k) → B (l)’ will be false, so ‘∀x (B (x) → B (l))’
will be false as well.

In short, ‘∀xB (x) → B (l)’ and ‘∀x (B (x) → B (l))’ are very
different sentences. We can explain the difference in terms of the

CHAPTER 23. SENTENCES WITH ONE QUANTIFIER 209

scope of the quantifier. The scope of quantification is very much
like the scope of negation, which we considered when discussing
TFL, and it will help to explain it in this way.

In the sentence ‘¬B (k) → B (l)’, the scope of ‘¬’ is just the
antecedent of the conditional. We are saying something like:
if ‘B (k)’ is false, then ‘B (l)’ is true. Similarly, in the sentence
‘∀xB (x) → B (l)’, the scope of ‘∀x ’ is just the antecedent of the
conditional. We are saying something like: if ‘B (x)’ is true of
everything, then ‘B (l)’ is also true.

In the sentence ‘¬(B (k) → B (l))’, the scope of ‘¬’ is the en-
tire sentence. We are saying something like: ‘(B (k) → B (l))’ is
false. Similarly, in the sentence ‘∀x (B (x) → B (l))’, the scope
of ‘∀x ’ is the entire sentence. We are saying something like:
‘(B (x) → B (l))’ is true of everything.

The moral of the story is simple. When you are using condi-
tionals, be very careful to make sure that you have sorted out the
scope correctly.

Ambiguous predicates

Suppose we just want to symbolize this sentence:

16. Adina is a skilled surgeon.

Let the domain be people, let K (x) mean ‘x is a skilled surgeon’,
and let a mean Adina. Sentence 16 is simply K (a).

Suppose instead that we want to symbolize this argument:

The hospital will only hire a skilled surgeon. All sur-
geons are greedy. Billy is a surgeon, but is not skilled.
Therefore, Billy is greedy, but the hospital will not
hire him.

We need to distinguish being a skilled surgeon from merely being
a surgeon. So we define this symbolization key:

domain: people
G (x): x is greedy.

CHAPTER 23. SENTENCES WITH ONE QUANTIFIER 210

H (x): The hospital will hire x .
R (x): x is a surgeon.
K (x): x is skilled.

b : Billy

Now the argument can be symbolized in this way:

∀x
[︁
¬(R (x) ∧ K (x)) → ¬H (x)

]︁
∀x (R (x) → G (x))
R (b) ∧ ¬K (b)

∴ G (b) ∧ ¬H (b)

Next suppose that we want to symbolize this argument:

Carol is a skilled surgeon and a tennis player. There-
fore, Carol is a skilled tennis player.

If we start with the symbolization key we used for the previous
argument, we could add a predicate (let T (x) mean ‘x is a tennis
player’) and a name (let c mean Carol). Then the argument
becomes:

(R (c) ∧ K (c)) ∧T (c)
∴ T (c) ∧ K (c)

This symbolization is a disaster! It takes what in English is a
terrible argument and symbolizes it as a valid argument in FOL.
The problem is that there is a difference between being skilled as
a surgeon and skilled as a tennis player. Symbolizing this argument
correctly requires two separate predicates, one for each type of
skill. If we let K1(x) mean ‘x is skilled as a surgeon’ and K2(x)
mean ‘x is skilled as a tennis player,’ then we can symbolize the
argument in this way:

(R (c) ∧ K1(c)) ∧T (c)
∴ T (c) ∧ K2(c)

Like the English language argument it symbolizes, this is invalid.

CHAPTER 23. SENTENCES WITH ONE QUANTIFIER 211

The moral of these examples is that you need to be careful of
symbolizing predicates in an ambiguous way. Similar problems
can arise with predicates like good, bad, big, and small. Just as
skilled surgeons and skilled tennis players have different skills,
big dogs, big mice, and big problems are big in different ways.

Is it enough to have a predicate that means ‘x is a skilled
surgeon’, rather than two predicates ‘x is skilled’ and ‘x is a sur-
geon’? Sometimes. As sentence 16 shows, sometimes we do not
need to distinguish between skilled surgeons and other surgeons.

Must we always distinguish between different ways of being
skilled, good, bad, or big? No. As the argument about Billy
shows, sometimes we only need to talk about one kind of skill. If
you are symbolizing an argument that is just about dogs, it is fine
to define a predicate that means ‘x is big.’ If the domain includes
dogs and mice, however, it is probably best to make the predicate
mean ‘x is big for a dog.’

Practice exercises

A. Here are the syllogistic figures identified by Aristotle and his
successors, along with their medieval names:

1. Barbara. All G are F. All H are G. So: All H are F
2. Celarent. No G are F. All H are G. So: No H are F
3. Ferio. No G are F. Some H is G. So: Some H is not F
4. Darii. All G are F. Some H is G. So: Some H is F.
5. Camestres. All F are G. No H are G. So: No H are F.
6. Cesare. No F are G. All H are G. So: No H are F.
7. Baroko. All F are G. Some H is not G. So: Some H is not F.
8. Festino. No F are G. Some H are G. So: Some H is not F.
9. Datisi. All G are F. Some G is H. So: Some H is F.
10. Disamis. Some G is F. All G are H. So: Some H is F.
11. Ferison. No G are F. Some G is H. So: Some H is not F.
12. Bokardo. Some G is not F. All G are H. So: Some H is

not F.
13. Camenes. All F are G. No G are H So: No H is F.

CHAPTER 23. SENTENCES WITH ONE QUANTIFIER 212

14. Dimaris. Some F is G. All G are H. So: Some H is F.
15. Fresison. No F are G. Some G is H. So: Some H is not F.

Symbolize each argument in FOL.

B. Using the following symbolization key:

domain: people
K (x): x knows the combination to the safe
S (x): x is a spy
V (x): x is a vegetarian

h: Hofthor
i : Ingmar

symbolize the following sentences in FOL:

1. Neither Hofthor nor Ingmar is a vegetarian.
2. No spy knows the combination to the safe.
3. No one knows the combination to the safe unless Ingmar

does.
4. Hofthor is a spy, but no vegetarian is a spy.

C. Using this symbolization key:

domain: all animals
A(x): x is an alligator.
M (x): x is a monkey.
R (x): x is a reptile.
Z (x): x lives at the zoo.

a: Amos
b : Bouncer
c : Cleo

symbolize each of the following sentences in FOL:

1. Amos, Bouncer, and Cleo all live at the zoo.
2. Bouncer is a reptile, but not an alligator.
3. Some reptile lives at the zoo.
4. Every alligator is a reptile.

CHAPTER 23. SENTENCES WITH ONE QUANTIFIER 213

5. Any animal that lives at the zoo is either a monkey or an
alligator.

6. There are reptiles which are not alligators.
7. If any animal is an reptile, then Amos is.
8. If any animal is an alligator, then it is a reptile.

D. For each argument, write a symbolization key and symbolize
the argument in FOL.

1. Willard is a logician. All logicians wear funny hats. So
Willard wears a funny hat

2. Nothing on my desk escapes my attention. There is a com-
puter on my desk. As such, there is a computer that does
not escape my attention.

3. All my dreams are black and white. Old TV shows are in
black and white. Therefore, some of my dreams are old TV
shows.

4. Neither Holmes nor Watson has been to Australia. A per-
son could see a kangaroo only if they had been to Australia
or to a zoo. Although Watson has not seen a kangaroo,
Holmes has. Therefore, Holmes has been to a zoo.

5. No one expects the Spanish Inquisition. No one knows
the troubles I’ve seen. Therefore, anyone who expects the
Spanish Inquisition knows the troubles I’ve seen.

6. All babies are illogical. Nobody who is illogical can man-
age a crocodile. Berthold is a baby. Therefore, Berthold is
unable to manage a crocodile.

CHAPTER 24

Multiple
generality
So far, we have only considered sentences that require one-place
predicates and one quantifier. The full power of FOL really comes
out when we start to use many-place predicates and multiple
quantifiers. For this insight, we largely have Gottlob Frege (1879)
to thank, but also C. S. Peirce.

24.1 Many-placed predicates

All of the predicates that we have considered so far concern prop-
erties that objects might have. Those predicates have one gap in
them, and to make a sentence, we simply need to slot in one term.
They are one-place predicates.

However, other predicates concern the relation between two
things. Here are some examples of relational predicates in En-
glish:

loves
is to the left of
is in debt to

214

CHAPTER 24. MULTIPLE GENERALITY 215

These are two-place predicates. They need to be filled in with
two terms in order to make a sentence. Conversely, if we start with
an English sentence containing many singular terms, we can re-
move two singular terms, to obtain different two-place predicates.
Consider the sentence ‘Vinnie borrowed the family car from Nun-
zio’. By deleting two singular terms, we can obtain any of three
different two-place predicates

Vinnie borrowed from
borrowed the family car from
borrowed from Nunzio

and by removing all three singular terms, we obtain a three-
place predicate:

borrowed from

Indeed, there is no in principle upper limit on the number of
places that our predicates may contain.

24.2 Mind the gap(s)!

We have used the same symbol, ‘ ’, to indicate a gap formed
by deleting a term from a sentence. However, as Frege empha-
sised, these are different gaps. To obtain a sentence, we can fill
them in with the same term, but we can equally fill them in with
different terms, and in various different orders. The following
are three perfectly perfectly good sentences, obtained by filling
in the gaps in ‘ loves ’ in different ways; but they all
have distinctively different meanings:

1. Karl loves Imre.
2. Imre loves Karl.
3. Karl loves Karl.

The point is that we need to keep track of the gaps in predicates,
so that we can keep track of how we are filling them in. To keep

CHAPTER 24. MULTIPLE GENERALITY 216

track of the gaps, we assign them variables. Suppose we want to
symbolize the preceding sentences. Then I might start with the
following representation key:

domain: people
i : Imre
k : Karl

L(x ,y): x loves y

Sentence 1 will be symbolized by ‘L(k ,i)’, sentence 2 will be
symbolized by ‘L(i ,k)’, and sentence 3 will be symbolised by
‘L(k ,k)’. Here are a few more sentences that we can symbolize
with the same key:

4. Imre loves himself.
5. Karl loves Imre, but not vice versa.
6. Karl is loved by Imre.

Sentence 4 can be paraphrased as ‘Imre loves Imre’, and so sym-
bolised by ‘L(i ,i)’. Sentence 5 is a conjunction. We can para-
phrase it as ‘Karl loves Imre, and Imre does not love Karl’, and
so symbolise it as ‘L(k ,i) ∧ ¬L(i ,k)’. Sentence 6 can be para-
phrased by ‘Imre loves Karl’, and so symbolised as ‘L(i ,k)’. In
this last case, of course, we have lots the difference in tone between
the active and passive voice; but we have at least preserved the
truth conditions.

But the relationship between ‘Imre loves Karl’ and ‘Karl is
loved by Imre’ highlights something important. To see what, sup-
pose we add another entry to our symbolization key:

M (x ,y): y loves x

The entry for ‘M ’ uses exactly the same English word—‘loves’—
as the entry for ‘L’. But the gaps have been swapped around! (Just
look closely at the subscripts.) And this matters.

To explain: when we see a sentence like ‘L(k ,i)’, we are being
told to take the first name (i.e., ‘k ’) and associate its value (i.e.,
Karl) with the gap labelled ‘x ’, then take the second name (i.e.,

CHAPTER 24. MULTIPLE GENERALITY 217

‘i ’) and associate its value (i.e., Imre) with the gap labelled ‘y ’,
and so come up with: Karl loves Imre. The sentence ‘M (i ,k)’ also
tells us to take the first name (i.e., ‘i ’) and plug its value into the
gap labelled ‘x ’, and take the second name (i.e., ‘k) and plug its
value into the gap labelled ‘y ’, and so come up with: Imre loves
Karl.

So, ‘L(i ,k)’ and ‘M (k ,i)’ both symbolize ‘Imre loves Karl’,
whereas ‘L(k ,i)’ and ‘M (i ,k)’ both symbolize ‘Karl loves Imre’.
Since love can be unrequited, these are different claims.

One last example might be helpful. Suppose we add this to
our symbolisation key:

P (x ,y): x prefers x to y

Now the sentence ‘P (i ,k)’ symbolises ‘Imre prefers Imre to Karl’,
and ‘P (k ,i)’ symbolises ‘Karl prefers Karl to Imre’. And note
that we could have achieved the same effect, if we had instead
specified:

P (x ,y): x prefers themselves to y

In any case, the overall moral of this is simple. When dealing with
predicates with more than one place, pay careful attention to the order
of the gaps!

24.3 The order of quantifiers

Consider the sentence ‘everyone loves someone’. This is poten-
tially ambiguous. It might mean either of the following:

7. For every person x, there is some person that x loves
8. There is some particular person whom every person loves

Sentence 7 can be symbolized by ‘∀x∃y L(x ,y)’, and would be
true of a love-triangle. For example, suppose that our domain of
discourse is restricted to Imre, Juan and Karl. Suppose also that
Karl loves Imre but not Juan, that Imre loves Juan but not Karl,
and that Juan loves Karl but not Imre. Then sentence 7 is true.

CHAPTER 24. MULTIPLE GENERALITY 218

Sentence 8 is symbolized by ‘∃y∀x L(x ,y)’. Sentence 8 is not
true in the situation just described. Again, suppose that our do-
main of discourse is restricted to Imre, Juan and Karl. Then all
of Juan, Imre and Karl must converge on (at least) one object of
love.

The point of the example is to illustrate that the order of the
quantifiers matters a great deal. Indeed, to switch them around is
called a quantifier shift fallacy. Here is an example, which comes
up in various forms throughout the philosophical literature:

For every person, there is some truth they cannot know.
(∀∃)

∴ There is some particular truth that no person can know.
(∃∀)

This argument form is obviously invalid. It’s just as bad as:1

Every dog has its day. (∀∃)
∴ There is a day for all the dogs. (∃∀)

The order of quantifiers is also important in definitions in
mathematics. For instance, there is a big difference between
pointwise and uniform continuity of functions:

⊲ A function f is pointwise continuous if

∀𝜖∀x∀y∃𝛿(
|︁|︁x − y |︁|︁ < 𝛿 →

|︁|︁F (x) − f (y)|︁|︁ < 𝜖)

⊲ A function f is uniformly continuous if

∀𝜖∃𝛿∀x∀y (
|︁|︁x − y |︁|︁ < 𝛿 →

|︁|︁F (x) − f (y)|︁|︁ < 𝜖)

The moral is simple: take great care with the order of your quan-
tifiers!.

1Thanks to Rob Trueman for the example.

CHAPTER 24. MULTIPLE GENERALITY 219

24.4 Stepping-stones to symbolization

As we are starting to see, symbolization in FOL can become a bit
tricky. So, when symbolizing a complex sentence, you should lay
down several stepping-stones. As usual, the idea is best illustrated
by example. Consider this symbolisation key:

domain: people and dogs
D (x): x is a dog

F (x ,y): x is a friend of y

O (x ,y): x owns y

g : Geraldo

Now let’s try to symbolize these sentences:

9. Geraldo is a dog owner.
10. Someone is a dog owner.
11. All of Geraldo’s friends are dog owners.
12. Every dog owner is a friend of a dog owner.
13. Every dog owner’s friend owns a dog of a friend.

Sentence 9 can be paraphrased as, ‘There is a dog that Geraldo
owns’. This can be symbolized by ‘∃x (D (x) ∧O (g ,x))’.

Sentence 10 can be paraphrased as, ‘There is some y such
that y is a dog owner’. Dealing with part of this, we might write
‘∃y (y is a dog owner)’. Now the fragment we have left as ‘y is a
dog owner’ is much like sentence 9, except that it is not specifi-
cally about Geraldo. So we can symbolize sentence 10 by:

∃y∃x (D (x) ∧O (y ,x))

We should pause to clarify something here. In working
out how to symbolize the last sentence, we wrote down
‘∃y (y is a dog owner)’. To be very clear: this is neither an FOL
sentence nor an English sentence: it uses bits of FOL (‘∃’, ‘y ’) and
bits of English (‘dog owner’). It is really is just a stepping-stone on
the way to symbolizing the entire English sentence with a FOL
sentence. You should regard it as a bit of rough-working-out, on

CHAPTER 24. MULTIPLE GENERALITY 220

a par with the doodles that you might absent-mindedly draw in
the margin of this book, whilst you are concentrating fiercely on
some problem.

Sentence 11 can be paraphrased as, ‘Everyone who is a friend
of Geraldo is a dog owner’. Using our stepping-stone tactic, we
might write

∀x
[︁
F (x , g) → x is a dog owner

]︁
Now the fragment that we have left to deal with, ‘x is a dog
owner’, is structurally just like sentence 9. However, it would be
a mistake for us simply to write

∀x
[︁
F (x , g) → ∃x (D (x) ∧O (x ,x))

]︁
for we would here have a clash of variables. The scope of the
universal quantifier, ‘∀x ’, is the entire conditional, so the ‘x ’ in
‘D (x)’ should be governed by that, but ‘D (x)’ also falls under
the scope of the existential quantifier ‘∃x ’, so the ‘x ’ in ‘D (x)’
should be governed by that. Now confusion reigns: which ‘x ’ are
we talking about? Suddenly the sentence becomes ambiguous (if
it is even meaningful at all), and logicians hate ambiguity. The
broad moral is that a single variable cannot serve two quantifier-
masters simultaneously.

To continue our symbolization, then, we must choose some
different variable for our existential quantifier. What we want is
something like:

∀x
[︁
F (x , g) → ∃z (D (z) ∧O (x ,z))

]︁
This adequately symbolizes sentence 11.

Sentence 12 can be paraphrased as ‘For any x that is a dog
owner, there is a dog owner who x is a friend of’. Using our
stepping-stone tactic, this becomes

∀x
[︁
x is a dog owner → ∃y (y is a dog owner ∧ F (x ,y))

]︁
Completing the symbolization, we end up with

∀x
[︁
∃z (D (z) ∧O (x ,z)) → ∃y

(︁
∃z (D (z) ∧O (y ,z)) ∧ F (x ,y)

)︁]︁

CHAPTER 24. MULTIPLE GENERALITY 221

Note that we have used the same letter, ‘z ’, in both the antecedent
and the consequent of the conditional, but that these are gov-
erned by two different quantifiers. This is ok: there is no clash
here, because it is clear which quantifier that variable falls under.
We might graphically represent the scope of the quantifiers thus:

scope of ‘∀x ’⏟ˉ̄ ˉ̄⏞⏞ˉ̄ ˉ̄⏟
∀x

[︁ scope of 1st ‘∃z ’⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏞⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏟
∃z (D (z) ∧O (x ,z)) →

scope of ‘∃y ’⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏞⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏟
∃y (

scope of 2nd ‘∃z ’⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏞⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏟
∃z (D (z) ∧O (y ,z)) ∧F (x ,y))

]︁
This shows that no variable is being forced to serve two masters
simultaneously.

Sentence 13 is the trickiest yet. First we paraphrase it as ‘For
any x that is a friend of a dog owner, x owns a dog which is
also owned by a friend of x ’. Using our stepping-stone tactic, this
becomes:

∀x
[︁
x is a friend of a dog owner →

x owns a dog which is owned by a friend of x
]︁

Breaking this down a bit more:

∀x
[︁
∃y (F (x ,y) ∧ y is a dog owner) →

∃y (D (y) ∧O (x ,y) ∧ y is owned by a friend of x)
]︁

And a bit more:

∀x
[︁
∃y (F (x ,y) ∧ ∃z (D (z) ∧O (y ,z))) →

∃y (D (y) ∧O (x ,y) ∧ ∃z (F (z ,x) ∧O (z ,y)))
]︁

And we are done!

CHAPTER 24. MULTIPLE GENERALITY 222

24.5 Supressed quantifiers

Logic can often help to get clear on the meanings of English
claims, especially where the quantifiers are left implicit or their
order is ambiguous or unclear. The clarity of expression and
thinking afforded by FOL can give you a significant advantage
in argument, as can be seen in the following takedown by British
political philosopher Mary Astell (1666–1731) of her contempo-
rary, the theologian William Nicholls. In Discourse IV: The Duty
of Wives to their Husbands of his The Duty of Inferiors towards their
Superiors, in Five Practical Discourses (London 1701), Nicholls ar-
gued that women are naturally inferior to men. In the preface
to the 3rd edition of her treatise Some Reflections upon Marriage,
Occasion’d by the Duke and Duchess of Mazarine’s Case; which is also
considered, Astell responded as follows:

’Tis true, thro’ Want of Learning, and of that Su-
perior Genius which Men as Men lay claim to, she
[Astell] was ignorant of the Natural Inferiority of our
Sex, which our Masters lay down as a Self-Evident
and Fundamental Truth. She saw nothing in the Rea-
son of Things, to make this either a Principle or a
Conclusion, but much to the contrary; it being Sedi-
tion at least, if not Treason to assert it in this Reign.

For if by the Natural Superiority of their Sex,
they mean that every Man is by Nature superior to ev-
ery Woman, which is the obvious meaning, and that
which must be stuck to if they would speak Sense,
it wou’d be a Sin in any Woman to have Dominion
over any Man, and the greatest Queen ought not to
command but to obey her Footman, because no Mu-
nicipal Laws can supersede or change the Law of Na-
ture; so that if the Dominion of the Men be such,
the Salique Law,2 as unjust as English Men have ever

2The Salique law was the common law of France which prohibited the crown
be passed on to female heirs.

CHAPTER 24. MULTIPLE GENERALITY 223

thought it, ought to take place over all the Earth, and
the most glorious Reigns in the English, Danish, Castil-
ian, and other Annals, were wicked Violations of the
Law of Nature!

If they mean that some Men are superior to some
Women this is no great Discovery; had they turn’d
the Tables they might have seen that someWomen are
Superior to some Men. Or had they been pleased to
remember their Oaths of Allegiance and Supremacy,
they might have known that One Woman is superior
to All the Men in these Nations, or else they have
sworn to very little purpose.3 And it must not be
suppos’d, that their Reason and Religion wou’d suffer
them to take Oaths, contrary to the Laws of Nature
and Reason of things.4

We can symbolize the different interpretations Astell offers of
Nicholls’ claim that men are superior to women: He either meant
that every man is superior to every woman, i.e.,

∀x (M (x) → ∀y (W (y) → S (x ,y)))

or that some men are superior to some women,

∃x (M (x) ∧ ∃y (W (y) ∧ S (x ,y))).

The latter is true, but so is

∃y (W (y) ∧ ∃x (M (x) ∧ S (y ,x))).

(some women are superior to some men), so that would be “no
great discovery.” In fact, since the Queen is superior to all her
subjects, it’s even true that some woman is superior to every man,
i.e.,

∃y (W (y) ∧ ∀x (M (x) → S (y ,x))).
3In 1706, England was ruled by Queen Anne.
4Mary Astell, Reflections upon Marriage, 1706 Preface, iii–iv, and Mary

Astell, Political Writings, ed. Patricia Springborg, Cambridge University Press,
1996, 9–10.

CHAPTER 24. MULTIPLE GENERALITY 224

But this is incompatible with the “obvious meaning” of Nicholls’
claim, i.e., the first reading. So what Nicholls claims amounts to
treason against the Queen!

Practice exercises

A. Using this symbolization key:

domain: all animals
A(x): x is an alligator
M (x): x is a monkey
R (x): x is a reptile
Z (x): x lives at the zoo

L(x ,y): x loves y

a: Amos
b : Bouncer
c : Cleo

symbolize each of the following sentences in FOL:

1. If Cleo loves Bouncer, then Bouncer is a monkey.
2. If both Bouncer and Cleo are alligators, then Amos loves

them both.
3. Cleo loves a reptile.
4. Bouncer loves all the monkeys that live at the zoo.
5. All the monkeys that Amos loves love him back.
6. Every monkey that Cleo loves is also loved by Amos.
7. There is a monkey that loves Bouncer, but sadly Bouncer

does not reciprocate this love.

B. Using the following symbolization key:

domain: all animals
D (x): x is a dog
S (x): x likes samurai movies

L(x ,y): x is larger than y

r : Rave

CHAPTER 24. MULTIPLE GENERALITY 225

h: Shane
d : Daisy

symbolize the following sentences in FOL:

1. Rave is a dog who likes samurai movies.
2. Rave, Shane, and Daisy are all dogs.
3. Shane is larger than Rave, and Daisy is larger than Shane.
4. All dogs like samurai movies.
5. Only dogs like samurai movies.
6. There is a dog that is larger than Shane.
7. If there is a dog larger than Daisy, then there is a dog larger

than Shane.
8. No animal that likes samurai movies is larger than Shane.
9. No dog is larger than Daisy.
10. Any animal that dislikes samurai movies is larger than

Rave.
11. There is an animal that is between Rave and Shane in size.
12. There is no dog that is between Rave and Shane in size.
13. No dog is larger than itself.
14. Every dog is larger than some dog.
15. There is an animal that is smaller than every dog.
16. If there is an animal that is larger than any dog, then that

animal does not like samurai movies.

C. Using the symbolization key given, symbolize each English-
language sentence into FOL.

domain: candies
C (x): x has chocolate in it.
M (x): x has marzipan in it.
S (x): x has sugar in it.
T (x): Boris has tried x .

B (x ,y): x is better than y .

1. Boris has never tried any candy.
2. Marzipan is always made with sugar.

CHAPTER 24. MULTIPLE GENERALITY 226

3. Some candy is sugar-free.
4. The very best candy is chocolate.
5. No candy is better than itself.
6. Boris has never tried sugar-free chocolate.
7. Boris has tried marzipan and chocolate, but never together.
8. Any candy with chocolate is better than any candy without

it.
9. Any candy with chocolate and marzipan is better than any

candy that lacks both.

D. Using the following symbolization key:

domain: people and dishes at a potluck
R (x): x has run out.
T (x): x is on the table.
F (x): x is food.
P (x): x is a person.

L(x ,y): x likes y .
e : Eli
f : Francesca
g : the guacamole

symbolize the following English sentences in FOL:

1. All the food is on the table.
2. If the guacamole has not run out, then it is on the table.
3. Everyone likes the guacamole.
4. If anyone likes the guacamole, then Eli does.
5. Francesca only likes the dishes that have run out.
6. Francesca likes no one, and no one likes Francesca.
7. Eli likes anyone who likes the guacamole.
8. Eli likes anyone who likes the people that he likes.
9. If there is a person on the table already, then all of the food

must have run out.

E. Using the following symbolization key:

domain: people

CHAPTER 24. MULTIPLE GENERALITY 227

D (x): x dances ballet.
F (x): x is female.
M (x): x is male.
C (x ,y): x is a child of y .
S (x ,y): x is a sibling of y .

e : Elmer
j : Jane
p : Patrick

symbolize the following sentences in FOL:

1. All of Patrick’s children are ballet dancers.
2. Jane is Patrick’s daughter.
3. Patrick has a daughter.
4. Jane is an only child.
5. All of Patrick’s sons dance ballet.
6. Patrick has no sons.
7. Jane is Elmer’s niece.
8. Patrick is Elmer’s brother.
9. Patrick’s brothers have no children.
10. Jane is an aunt.
11. Everyone who dances ballet has a brother who also dances

ballet.
12. Every woman who dances ballet is the child of someone

who dances ballet.

CHAPTER 25

Identity
Consider this sentence:

1. Pavel owes money to everyone

Let the domain be people; this will allow us to symbolize ‘ev-
eryone’ with a universal quantifier. Offering the symbolization
key:

O (x ,y): x owes money to y

p : Pavel

we can symbolize sentence 1 by ‘∀x O (p ,x)’. But this has a (per-
haps) odd consequence. It requires that Pavel owes money to ev-
ery member of the domain (whatever the domain may be). The
domain certainly includes Pavel. So this entails that Pavel owes
money to himself. And maybe we did not want to say that. Maybe
we meant to say:

2. Pavel owes money to everyone else
3. Pavel owes money to everyone other than Pavel
4. Pavel owes money to everyone except Pavel himself

But we do not have any way for dealing with the italicised words
yet. The solution is to add another symbol to FOL.

228

CHAPTER 25. IDENTITY 229

25.1 Adding identity

The symbol ‘=’ will be a two-place predicate. Since it will have
a special meaning, we shall write it a bit differently: we put it
between two terms, rather than out front. (This should also be
familiar; consider a mathematical equation like 1

2 = 0.5.) And
the special meaning for ‘=’ is given by the fact that we always
adopt the following symbolization key:

x = y : x is identical to y

This does not mean merely that the objects in question are in-
distinguishable, or that all of the same things are true of them.
Rather, it means that the objects in question are the very same
object.

To put this to use, suppose we want to symbolize this sen-
tence:

5. Pavel is Mister Checkov.

Let us add to our symbolization key:

c : Mister Checkov

Now sentence 5 can be symbolized as ‘p = c ’. This tells us that
the names ‘p’ and ‘c ’ both name the same thing.

We can also now deal with sentences 2–4. All of these sen-
tences can be paraphrased as ‘Everyone who is not Pavel is owed
money by Pavel’. Paraphrasing some more, we get: ‘For all x , if
x is not Pavel, then x is owed money by Pavel’. Now that we are
armed with our new identity symbol, we can symbolize this as
‘∀x (¬x = p → O (p ,x))’.

This last sentence contains the formula ‘¬x = p’. That might
look a bit strange, because the symbol that comes immediately
after the ‘¬’ is a variable, rather than a predicate, but this is not
a problem. We are simply negating the entire formula, ‘x = p’.

CHAPTER 25. IDENTITY 230

In addition to sentences that use the word ‘else’, ‘other than’
and ‘except’, identity will be helpful when symbolizing some sen-
tences that contain the words ‘besides’ and ‘only.’ Consider these
examples:

6. No one besides Pavel owes money to Hikaru.
7. Only Pavel owes Hikaru money.

Let ‘h’ name Hikaru. Sentence 6 can be paraphrased as, ‘No
one who is not Pavel owes money to Hikaru’. This can be sym-
bolized by ‘¬∃x (¬x = p ∧ O (x ,h))’. Equally, sentence 6 can be
paraphrased as ‘for all x , if x owes money to Hikaru, then x is
Pavel’. It can then be symbolized as ‘∀x (O (x ,h) → x = p)’.

Sentence 7 can be treated similarly, but there is one subtlety
here. Do either sentence 6 or 7 entail that Pavel himself owes
money to Hikaru?

25.2 There are at least. . .

We can also use identity to say how many things there are of a
particular kind. For example, consider these sentences:

8. There is at least one apple
9. There are at least two apples
10. There are at least three apples

We will use the symbolization key:

A(x): x is an apple

Sentence 8 does not require identity. It can be adequately sym-
bolized by ‘∃x A(x)’: There is an apple; perhaps many, but at
least one.

It might be tempting to also symbolize sentence 9 without
identity. Yet consider the sentence ‘∃x∃y (A(x) ∧A(y))’. Roughly,
this says that there is some apple x in the domain and some
apple y in the domain. Since nothing precludes these from being

CHAPTER 25. IDENTITY 231

one and the same apple, this would be true even if there were
only one apple. In order to make sure that we are dealing with
different apples, we need an identity predicate. Sentence 9 needs
to say that the two apples that exist are not identical, so it can be
symbolized by ‘∃x∃y ((A(x) ∧ A(y)) ∧ ¬x = y)’.

Sentence 10 requires talking about three different apples.
Now we need three existential quantifiers, and we need to make
sure that each will pick out something different:

∃x∃y∃z [((A(x) ∧ A(y)) ∧ A(z)) ∧ ((¬x = y ∧ ¬y = z) ∧ ¬x = z)] .

Note that it is not enough to use ‘¬x = y ∧ ¬y = z ’ to symbolize
‘x , y , and z are all different.’ For that would be true if x and y
were different, but x = z . In general, to say that x1, . . . , xn are
all different, we must have a conjunction of ¬xi = x j for every
different pair i and j .

25.3 There are at most. . .

Now consider these sentences:

11. There is at most one apple
12. There are at most two apples

Sentence 11 can be paraphrased as, ‘It is not the case that there
are at least two apples’. This is just the negation of sentence 9:

¬∃x∃y [(A(x) ∧ A(y)) ∧ ¬x = y]

But sentence 11 can also be approached in another way. It means
that if you pick out an object and it’s an apple, and then you pick
out an object and it’s also an apple, you must have picked out the
same object both times. With this in mind, it can be symbolized
by

∀x∀y
[︁
(A(x) ∧ A(y)) → x = y

]︁
The two sentences will turn out to be logically equivalent.

CHAPTER 25. IDENTITY 232

Similarly, sentence 12 can be approached in two equivalent
ways. It can be paraphrased as, ‘It is not the case that there are
three or more distinct apples’, so we can offer:

¬∃x∃y∃z
[︁
((A(x) ∧A(y)) ∧A(z)) ∧ ((¬x = y ∧¬x = z) ∧ ¬y = z)

]︁
Alternatively we can read it as saying that if you pick out an
apple, and an apple, and an apple, then you will have picked out
(at least) one of these objects more than once. Thus:

∀x∀y∀z
[︁
((A(x) ∧ A(y)) ∧ A(z)) → ((x = y ∨ x = z) ∨ y = z)

]︁
25.4 There are exactly. . .

We can now consider precise of numerical quantity, like:

13. There is exactly one apple.
14. There are exactly two apples.
15. There are exactly three apples.

Sentence 13 can be paraphrased as, ‘There is at least one apple
and there is at most one apple’. This is just the conjunction of
sentence 8 and sentence 11. So we can offer:

∃xA(x) ∧ ∀x∀y
[︁
(A(x) ∧ A(y)) → x = y

]︁
But it is perhaps more straightforward to paraphrase sentence 13
as, ‘There is a thing x which is an apple, and everything which is
an apple is just x itself’. Thought of in this way, we offer:

∃x
[︁
A(x) ∧ ∀y (A(y) → x = y)

]︁
Similarly, sentence 14 may be paraphrased as, ‘There are at least
two apples, and there are at most two apples’. Thus we could
offer

∃x∃y ((A(x) ∧ A(y)) ∧ ¬x = y) ∧
∀x∀y∀z

[︁
((A(x) ∧ A(y)) ∧ A(z)) → ((x = y ∨ x = z) ∨ y = z)

]︁

CHAPTER 25. IDENTITY 233

More efficiently, though, we can paraphrase it as ‘There are at
least two different apples, and every apple is one of those two
apples’. Then we offer:

∃x∃y
[︁
((A(x) ∧ A(y)) ∧ ¬x = y) ∧ ∀z (A(z) → (x = z ∨ y = z))

]︁
Finally, consider these sentence:

16. There are exactly two things
17. There are exactly two objects

It might be tempting to add a predicate to our symbolization key,
to symbolize the English predicate ‘ is a thing’ or ‘ is
an object’, but this is unnecessary. Words like ‘thing’ and ‘object’
do not sort wheat from chaff: they apply trivially to everything,
which is to say, they apply trivially to every thing. So we can
symbolize either sentence with either of the following:

∃x∃y¬x = y ∧ ¬∃x∃y∃z ((¬x = y ∧ ¬y = z) ∧ ¬x = z)
∃x∃y

[︁
¬x = y ∧ ∀z (x = z ∨ y = z)

]︁
Practice exercises

A. Explain why:

• ‘∃x∀y (A(y) ↔ x = y)’ is a good symbolization of ‘there is
exactly one apple’.

• ‘∃x∃y
[︁
¬x = y ∧ ∀z (A(z) ↔ (x = z ∨ y = z))

]︁
’ is a good

symbolization of ‘there are exactly two apples’.

CHAPTER 26

Sentences of
FOL
We know how to represent English sentences in FOL. The time
has finally come to define the notion of a sentence of FOL.

26.1 Expressions

There are six kinds of symbols in FOL:

Predicates A,B ,C , . . . ,Z , or with subscripts, as needed:
A1,B1,Z1,A2,A25, J375, . . .

Names a,b ,c , . . . ,r , or with subscripts, as needed
a1,b224,h7,m32, . . .

Variables s ,t ,u ,v ,w ,x ,y ,z , or with subscripts, as needed
x1,y1,z1,x2, . . .

Connectives ¬,∧,∨,→,↔

Brackets (,)

Quantifiers ∀,∃

234

CHAPTER 26. SENTENCES OF FOL 235

We define an expression of fol as any string of symbols of
FOL. Take any of the symbols of FOL and write them down, in
any order, and you have an expression.

26.2 Terms and formulas

In §6, we went straight from the statement of the vocabulary of
TFL to the definition of a sentence of TFL. In FOL, we will have
to go via an intermediary stage: via the notion of a formula.
The intuitive idea is that a formula is any sentence, or anything
which can be turned into a sentence by adding quantifiers out
front. But this intuitive idea will take some time to unpack.

We start by defining the notion of a term.

A term is any name or any variable.

So, here are some terms:

a,b ,x ,x1x2,y ,y254,z

Next we need to define atomic formulas.

1. Any sentence letter is an atomic formula.

2. If R is an n-place predicate and t1, t2, . . . , tn are
terms, then R(t1, t2, . . . , tn) is an atomic formula.

3. If t1 and t2 are terms, then t1 = t2 is an atomic
formula.

4. Nothing else is an atomic formula.

Note that we consider sentence letters also formulas of FOL,
so every sentence of TFL is also a formula of FOL.

The use of script letters here follows the conventions laid
down in §8. So, ‘R’ is not itself a predicate of FOL. Rather, it is
a symbol of our metalanguage (augmented English) that we use

CHAPTER 26. SENTENCES OF FOL 236

to talk about any predicate of FOL. Similarly, ‘t1’ is not a term of
FOL, but a symbol of the metalanguage that we can use to talk
about any term of FOL. So, where ‘F ’ is a one-place predicate,
‘G ’ is a three-place predicate, and ‘S ’ is a six-place predicate, here
are some atomic formulas:

D F (a)
x = a G (x ,a,y)
a = b G (a,a,a)
F (x) S (x1,x2,a,b ,y ,x1)

Once we know what atomic formulas are, we can offer recursion
clauses to define arbitrary formulas. The first few clauses are
exactly the same as for TFL.

1. Every atomic formula is a formula.

2. If A is a formula, then ¬A is a formula.

3. If A and B are formulas, then (A∧B) is a formula.

4. If A and B are formulas, then (A∨B) is a formula.

5. IfAandBare formulas, then (A→ B) is a formula.

6. IfAandBare formulas, then (A↔ B) is a formula.

7. If A is a formula and x is a variable, then ∀xA is a
formula.

8. If A is a formula and x is a variable, then ∃xA is a
formula.

9. Nothing else is a formula.

So, assuming again that ‘F ’ is a one-place predicate, ‘G ’ is
a three-place predicate and ‘S ’ is a six place-predicate, here are

CHAPTER 26. SENTENCES OF FOL 237

some formulas you can build this way:

F (x)
G (a,y ,z)
S (y ,z ,y ,a,y ,x)

(G (a,y ,z) → S (y ,z ,y ,a,y ,x))
∀z (G (a,y ,z) → S (y ,z ,y ,a,y ,x))

F (x) ∧ ∀z (G (a,y ,z) → S (y ,z ,y ,a,y ,x))
∃y (F (x) ∧ ∀z (G (a,y ,z) → S (y ,z ,y ,a,y ,x)))

∀x∃y (F (x) ∧ ∀z (G (a,y ,z) → S (y ,z ,y ,a,y ,x)))

We can now give a formal definition of scope, which incorpo-
rates the definition of the scope of a quantifier. Here we follow
the case of TFL, though we note that a logical operator can be
either a connective or a quantifier:

The main logical operator in a formula is the operator
that was introduced most recently, when that formula was
constructed using the recursion rules.

The scope of a logical operator in a formula is the subfor-
mula for which that operator is the main logical operator.

So we can graphically illustrate the scope of the quantifiers in
the preceding example thus:

scope of ‘∀x ’⏟ˉ̄ ˉ̄⏞⏞ˉ̄ ˉ̄⏟
∀x

scope of ‘∃y ’⏟ˉ̄ ˉ̄⏞⏞ˉ̄ ˉ̄⏟
∃y (F (x) ↔

scope of ‘∀z ’⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏞⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏟
∀z (G (a,y ,z) → S (y ,z ,y ,a,y ,x)))

CHAPTER 26. SENTENCES OF FOL 238

26.3 Sentences and free variables

Recall that we are largely concerned in logic with assertoric sen-
tences: sentences that can be either true or false. Many formulas
are not sentences. Consider the following symbolization key:

domain: people
L(x ,y): x loves y

b : Boris

Consider the atomic formula ‘L(z ,z)’. All atomic formula are
formulas, so ‘L(z ,z)’ is a formula, but can it be true or false?
You might think that it will be true just in case the person named
by ‘z ’ loves themself, in the same way that ‘L(b ,b)’ is true just in
case Boris (the person named by ‘b ’) loves himself. However, ‘z ’
is a variable, and does not name anyone or any thing.

Of course, if we put an existential quantifier out front, obtain-
ing ‘∃zL(z ,z)’, then this would be true iff someone loves them-
selves. Equally, if we wrote ‘∀zL(z ,z)’, this would be true iff ev-
eryone loves themselves. The point is that we need a quantifier
to tell us how to deal with a variable.

Let’s make this idea precise.

An occurrence of a variable x is bound iff it falls within
the scope of either ∀x or ∃x. An occurrence of a variable
which is not bound is free.

For example, consider the formula

(∀x (E (x) ∨D (y)) → ∃z (E (x) → L(z ,x)))

The scope of the universal quantifier ‘∀x ’ is ‘∀x (E (x) ∨ D (y))’,
so the first ‘x ’ is bound by the universal quantifier. However, the
second and third occurrence of ‘x ’ are free. Equally, the ‘y ’ is free.
The scope of the existential quantifier ‘∃z ’ is ‘(E (x) → L(z ,x))’,
so ‘z ’ is bound.

Finally we can say the following.

CHAPTER 26. SENTENCES OF FOL 239

A sentence of FOL is any formula of FOL that contains
no free variables.

26.4 Bracketing conventions

We will adopt the same notational conventions governing brack-
ets that we did for TFL (see §6 and §11.3.) First, we may omit
the outermost brackets of a formula. Second, we may use square
brackets, ‘[’ and ‘]’, in place of brackets to increase the readability
of formulas.

Sentences of FOL used in our examples can become quite
cumbersome, and so we also introduce a convention to deal with
conjunctions and disjunctions of more than two sentences. We
stipulate that A1 ∧A2 ∧ · · · ∧An and A1 ∨A2 ∨ · · · ∨An are to be
interpreted as, respectively:

(. . . (A1 ∧ A2) ∧ · · · ∧ An)
(. . . (A1 ∨ A2) ∨ · · · ∨ An)

In practice, this just means that you are allowed to leave out
parentheses in long conjucntions and disjunctions. But remember
that (unless they are the outermost parentheses of the sentence)
you must still enclose the entire conjucntion or disjunction in
parentheses. Also, you cannot mix conjunctions and disjunctions
with each other or with other connectives. So the following are
still not allowed, and would be ambiguous if they were:

A ∨ B ∧C ∧D
B ∨C → D

26.5 Superscripts on predicates

Above, we said that an n-place predicate followed by n terms is
an atomic formula. But there is a small issue with this definition:
the symbols we use for predicates do not, themselves, indicate

CHAPTER 26. SENTENCES OF FOL 240

how many places the predicate has. Indeed, in some places in
this book, we have used the letter ‘G ’ as a one-place predicate;
in other places we have used it as a three-place predicate. So,
unless we state explicitly whether we want to use ‘G ’ as a one-
place predicate or as a three place predicate, it is indeterminate
whether ‘G (a)’ is an atomic formula or not.

There is an easy way to avoid this, which many books adopt.
Instead of saying that our predicates are just capital letters (with
numerical subscripts as necessary), we could say that they are
capital letters with numerical superscripts (and with numerical sub-
scripts as necessary). The purpose of the superscript would be
to say explicitly how many places the predicate has. On this ap-
proach, ‘G 1’ would be a one-place predicate, and ‘G 3’ would be
an (entirely different) three places predicate. They would need
to have different entries in any symbolisation key. And ‘G 1(a)’
would be an atomic formula, whereas ‘G 3(a)’ would not; likewise
‘G 3(a,b ,c)’ would be an atomic formula, and ‘G 1(a,b ,c)’ would
not.

So, we could add superscripts to all our predicates. This would
have the advantage of making certain things completely explicit.
However, it would have the disadvantage of making our formulas
much harder to read; the superscripts would distract the eye.
So, we will not bother to make this change. Our predicates will
remain without superscripts. (And, in practice, any book which
includes superscripts almost immediately stops including them!)

However, this leaves open a possibility of ambiguity. So, when
any ambiguity could arise—in practice, very rarely—you should
say, explicitly, how many places your predicate(s) have.

Practice exercises

A. Identify which variables are bound and which are free.

1. ∃x L(x ,y) ∧ ∀y L(y ,x)
2. ∀x A(x) ∧ B (x)
3. ∀x (A(x) ∧ B (x)) ∧ ∀y (C (x) ∧D (y))

CHAPTER 26. SENTENCES OF FOL 241

4. ∀x∃y [R (x ,y) → (J (z) ∧ K (x))] ∨R (y ,x)
5. ∀x1(M (x2) ↔ L(x2,x1)) ∧ ∃x2 L(x3,x2)

CHAPTER 27

Definite
descriptions
Consider sentences like:

1. Nick is the traitor.
2. The traitor went to Cambridge.
3. The traitor is the deputy

These are definite descriptions: they are meant to pick out a
unique object. They should be contrasted with indefinite descrip-
tions, such as ‘Nick is a traitor’. They should equally be con-
trasted with generics, such as ‘The whale is a mammal’ (when it’s
inappropriate to ask which whale). The question we face is: how
should we deal with definite descriptions in FOL?

27.1 Treating definite descriptions as terms

One option would be to introduce new names whenever we come
across a definite description. This is probably not a great idea.
We know that the traitor—whoever it is—is indeed a traitor. We
want to preserve that information in our symbolization.

A second option would be to use a new definite description
operator, such as ‘]’. The idea would be to symbolize ‘the F ’ as

242

CHAPTER 27. DEFINITE DESCRIPTIONS 243

‘]x F (x)’ (think ‘the x such that F (x)’); or to symbolize ‘the G ’
as ‘]x G (x)’, etc. Expressions of the form]xA(x) would then
behave like names. If we were to follow this path, we could use
the following symbolization key:

domain: people
T (x): x is a traitor
D (x): x is a deputy
C (x): x went to Cambridge

n: Nick

Then, we could symbolize sentence 1 with ‘n =

]x T (x)’, sentence
2 with ‘C (]x T (x))’, and sentence 3 with ‘]x T (x) =]x D (x)’.

However, it would be nice if we didn’t have to add a new
symbol to FOL. And we might be able to make do without one.

27.2 Russell’s analysis

Bertrand Russell offered an analysis of definite descriptions. Very
briefly put, he observed that, when we say ‘the F ’ in the context of
a definite description, our aim is to pick out the one and only thing
that is F (in the appropriate context). Thus Russell analysed the
notion of a definite description as follows:1

the F is G iff there is at least one F , and

there is at most one F , and

every F is G

Note a very important feature of this analysis: ‘the’ does not appear
on the right-side of the equivalence. Russell is aiming to provide
an understanding of definite descriptions in terms that do not
presuppose them.

Now, one might worry that we can say ‘the table is brown’
without implying that there is one and only one table in the uni-
verse. But this is not (yet) a fantastic counterexample to Russell’s

1Bertrand Russell, ‘On Denoting’, 1905, Mind 14, pp. 479–93; also Russell,
Introduction to Mathematical Philosophy, 1919, London: Allen and Unwin, ch. 16.

CHAPTER 27. DEFINITE DESCRIPTIONS 244

analysis. The domain of discourse is likely to be restricted by
context (e.g., to salient objects in my vicinity).

If we accept Russell’s analysis of definite descriptions, then
we can symbolize sentences of the form ‘the F is G ’ using our
strategy for numerical quantification in FOL. After all, we can
deal with the three conjuncts on the right-hand side of Russell’s
analysis as follows:

∃xF (x) ∧ ∀x∀y ((F (x) ∧ F (y)) → x = y) ∧ ∀x (F (x) → G (x))

In fact, we could express the same point rather more crisply, by
recognizing that the first two conjuncts just amount to the claim
that there is exactly one F , and that the last conjunct tells us that
that object is G . So, equivalently, we could offer:

∃x
[︁
(F (x) ∧ ∀y (F (y) → x = y)) ∧G (x)

]︁
Using these sorts of techniques, we can now symbolize sentences
1–3 without using any new-fangled fancy operator, such as ‘]’.

Sentence 1 is exactly like the examples we have just consid-
ered. So we would symbolize it by

∃x
[︁
T (x) ∧ ∀y (T (y) → x = y) ∧ x = n

]︁
.

Sentence 2 poses no problems either:

∃x
[︁
T (x) ∧ ∀y (T (y) → x = y) ∧C (x)

]︁
.

Sentence 3 is a little trickier, because it links two definite descrip-
tions. But, deploying Russell’s analysis, it can be paraphrased by
‘there is exactly one traitor, x , and there is exactly one deputy, y ,
and x = y ’. So we can symbolize it by:

∃x∃y
(︁ [︁
T (x) ∧ ∀z (T (z) → x = z)

]︁
∧[︁

D (y) ∧ ∀z (D (z) → y = z)
]︁
∧ x = y

)︁
Note that the formula ‘x = y ’ must fall within the scope of both
quantifiers!

CHAPTER 27. DEFINITE DESCRIPTIONS 245

27.3 Empty definite descriptions

One of the nice features of Russell’s analysis is that it allows us
to handle empty definite descriptions neatly.

France has no king at present. Now, if we were to introduce
a name, ‘k ’, to name the present King of France, then everything
would go wrong: remember from §22 that a name must always
pick out some object in the domain, and whatever we choose as
our domain, it will contain no present kings of France.

Russell’s analysis neatly avoids this problem. Russell tells us
to treat definite descriptions using predicates and quantifiers, in-
stead of names. Since predicates can be empty (see §23), this
means that no difficulty now arises when the definite description
is empty.

Indeed, Russell’s analysis helpfully highlights two ways to go
wrong in a claim involving a definite description. To adapt an
example from Stephen Neale (1990),2 suppose Alex claims:

4. I am dating the present king of France.

Using the following symbolization key:

a: Alex
K (x): x is a present king of France

D (x ,y): x is dating y

(Note that the symbolization key speaks of a present King of
France, not the present King of France; i.e., it employs indefinite,
rather than definite, description.) Sentence 4 would be symbol-
ized by ‘∃x

[︁
(K (x) ∧ ∀y (K (y) → x = y)) ∧ D (a,x)

]︁
’. Now, this

can be false in (at least) two ways, corresponding to these two
different sentences:

5. There is noone who is both the present King of France and
such that he and Alex are dating.

2Neale, Descriptions, 1990, Cambridge: MIT Press.

CHAPTER 27. DEFINITE DESCRIPTIONS 246

6. There is a unique present King of France, but Alex is not
dating him.

Sentence 5 might be paraphrased by ‘It is not the case that: the
present King of France and Alex are dating’. It will then be sym-
bolized by ‘¬∃x

[︁
(K (x) ∧ ∀y (K (y) → x = y)) ∧ D (a,x)

]︁
’. We

might call this outer negation, since the negation governs the en-
tire sentence. Note that the sentence is true if there is no present
King of France.

Sentence 6 can be symbolized by ‘∃x
[︁
(K (x) ∧ ∀y (K (y) →

x = y)) ∧ ¬D (a,x)
]︁
’. We might call this inner negation, since

the negation occurs within the scope of the definite description.
Note that its truth requires that there is a present King of France,
albeit one who is not dating Alex.

27.4 Possessives, ‘both’, ‘neither’

We can use Russell’s analysis of definite descriptions also to deal
with singular possessive constructions in English. For instance,
‘Smith’s murderer’ means something like ‘the person who mur-
dered Smith’, i.e., it is a disguised definite description. On Rus-
sell’s analysis, the sentence

7. Smith’s murderer is insane.

can be false in one of three ways. It can be false because the one
person who murdered Smith is not, in fact, insane. But it can
also be false if the definite description is empty, namely if either
no-one murdered Smith (e.g., if Smith met with an unfortunate
accident) or if more than one person murdered Smith.

To symbolize sentences containing singular possessives such
as ‘Smith’s murderer’ you should paraphrase them using an ex-
plicit definite description, e.g., ‘The person who murdered Smith
is insane’ and then symbolize it according to Russell’s analysis.
In our case, we would use the symbolization key:

Domain: people

CHAPTER 27. DEFINITE DESCRIPTIONS 247

I (x): x is insane
M (x ,y): x murdered y

s : Smith

Our symbolization then reads, ‘∃x
[︁
M (x ,s) ∧ ∀y (M (y ,s) → x =

y) ∧ I (x)
]︁
’.

Two other determiners that we can extend Russell’s analysis
to are ‘both’ and ‘neither’. To say ‘both F s are G ’ is to say that
there are exactly two F s, and each of them is G . To say that
‘neither F is G ’, is to also say that there are exactly two F s, and
neither of them is G . In FOL, the symbolizations would read,
respectively,

∃x∃y
[︁
F (x) ∧ F (y) ∧ ¬x = y ∧

∀z (F (z) → (x = z ∨ y = z)) ∧G (x) ∧G (y)
]︁

∃x∃y
[︁
F (x) ∧ F (y) ∧ ¬x = y ∧

∀z (F (z) → (x = z ∨ y = z)) ∧ ¬G (x) ∧ ¬G (y)
]︁

Compare these symbolizations with the symbolizations of ‘ex-
actly two F s are G s’ from section 25.4, i.e., of ‘there are exactly
two things that are both F and G ’:

∃x∃y
[︁
(F (x) ∧G (x)) ∧ (F (y) ∧G (y)) ∧ ¬x = y ∧

∀z ((F (z) ∧G (z)) → (x = z ∨ y = z))
]︁

The difference between the symbolization of this and that of ‘both
F s are G s’ lies in the antecedent of the conditional. For ‘exactly
two F s are G s’, we only require that there are no F s that are
also G s other than x and y , whereas for ‘both F s are G s’, there
cannot be any F s, whether they areG s or not, other than x and y .
In other words, ‘both F s are G s’ implies that exactly two F s
are G s. However, ‘exactly two F s are G s’ does not imply that
both F s are G s (there might be a third F which isn’t a G).

CHAPTER 27. DEFINITE DESCRIPTIONS 248

27.5 The adequacy of Russell’s analysis

How good is Russell’s analysis of definite descriptions? This ques-
tion has generated a substantial philosophical literature, but we
will restrict ourselves to two observations.

One worry focusses on Russell’s treatment of empty definite
descriptions. If there are no F s, then on Russell’s analysis, both
‘the F is G ’ is and ‘the F is non-G ’ are false. P.F. Strawson sug-
gested that such sentences should not be regarded as false, ex-
actly, but involve presupposition failure, and so need to be treated
as neither true nor false.3

If we agree with Strawson here, we will need to revise our
logic. For, in our logic, there are only two truth values (True and
False), and every sentence is assigned exactly one of these truth
values.

But there is room to disagree with Strawson. Strawson is ap-
pealing to some linguistic intuitions, but it is not clear that they
are very robust. For example: isn’t it just false, not ‘gappy’, that
Tim is dating the present King of France?

Keith Donnellan raised a second sort of worry, which (very
roughly) can be brought out by thinking about a case of mistaken
identity.4 Two men stand in the corner: a very tall man drinking
what looks like a gin martini; and a very short man drinking what
looks like a pint of water. Seeing them, Malika says:

8. The gin-drinker is very tall!

Russell’s analysis will have us render Malika’s sentence as:

8′. There is exactly one gin-drinker [in the corner], and who-
ever is a gin-drinker [in the corner] is very tall.

Now suppose that the very tall man is actually drinking water
from a martini glass; whereas the very short man is drinking a

3P.F. Strawson, ‘On Referring’, 1950, Mind 59, pp. 320–34.
4Keith Donnellan, ‘Reference and Definite Descriptions’, 1966, Philosophi-

cal Review 77, pp. 281–304.

CHAPTER 27. DEFINITE DESCRIPTIONS 249

pint of (neat) gin. By Russell’s analysis, Malika has said some-
thing false, but don’t we want to say that Malika has said some-
thing true?

Again, one might wonder how clear our intuitions are on this
case. We can all agree that Malika intended to pick out a partic-
ular man, and say something true of him (that he was tall). On
Russell’s analysis, she actually picked out a different man (the
short one), and consequently said something false of him. But
maybe advocates of Russell’s analysis only need to explain why
Malika’s intentions were frustrated, and so why she said some-
thing false. This is easy enough to do: Malika said something
false because she had false beliefs about the men’s drinks; if Ma-
lika’s beliefs about the drinks had been true, then she would have
said something true.5

To say much more here would lead us into deep philosophical
waters. That would be no bad thing, but for now it would distract
us from the immediate purpose of learning formal logic. So, for
now, we will stick with Russell’s analysis of definite descriptions,
when it comes to putting things into FOL. It is certainly the best
that we can offer, without significantly revising our logic, and it
is quite defensible as an analysis.

Practice exercises

A. Using the following symbolization key:

domain: people
K (x): x knows the combination to the safe.
S (x): x is a spy.
V (x): x is a vegetarian.

T (x ,y): x trusts y .
h: Hofthor

5Interested parties should read Saul Kripke, ‘Speaker Reference and Se-
mantic Reference’, 1977, in French et al (eds.), Contemporary Perspectives in the
Philosophy of Language, Minneapolis: University of Minnesota Press, pp. 6-27.

CHAPTER 27. DEFINITE DESCRIPTIONS 250

i : Ingmar

symbolize the following sentences in FOL:

1. Hofthor trusts a vegetarian.
2. Everyone who trusts Ingmar trusts a vegetarian.
3. Everyone who trusts Ingmar trusts someone who trusts a

vegetarian.
4. Only Ingmar knows the combination to the safe.
5. Ingmar trusts Hofthor, but no one else.
6. The person who knows the combination to the safe is a

vegetarian.
7. The person who knows the combination to the safe is not

a spy.

B. Using the following symbolization key:

domain: cards in a standard deck
B (x): x is black.
C (x): x is a club.
D (x): x is a deuce.
J (x): x is a jack.
M (x): x is a man with an axe.
O (x): x is one-eyed.
W (x): x is wild.

symbolize each sentence in FOL:

1. All clubs are black cards.
2. There are no wild cards.
3. There are at least two clubs.
4. There is more than one one-eyed jack.
5. There are at most two one-eyed jacks.
6. There are two black jacks.
7. There are four deuces.
8. The deuce of clubs is a black card.
9. One-eyed jacks and the man with the axe are wild.

CHAPTER 27. DEFINITE DESCRIPTIONS 251

10. If the deuce of clubs is wild, then there is exactly one wild
card.

11. The man with the axe is not a jack.
12. The deuce of clubs is not the man with the axe.

C. Using the following symbolization key:

domain: animals in the world
B (x): x is in Farmer Brown’s field.
H (x): x is a horse.
P (x): x is a Pegasus.
W (x): x has wings.

symbolize the following sentences in FOL:

1. There are at least three horses in the world.
2. There are at least three animals in the world.
3. There is more than one horse in Farmer Brown’s field.
4. There are three horses in Farmer Brown’s field.
5. There is a single winged creature in Farmer Brown’s field;

any other creatures in the field must be wingless.
6. The Pegasus is a winged horse.
7. The animal in Farmer Brown’s field is not a horse.
8. The horse in Farmer Brown’s field does not have wings.

D. In this chapter, we symbolized ‘Nick is the traitor’ by
‘∃x (T (x) ∧ ∀y (T (y) → x = y) ∧ x = n)’. Explain why these
would be equally good symbolisations:

• T (n) ∧ ∀y (T (y) → n = y)
• ∀y (T (y) ↔ y = n)

CHAPTER 28

Ambiguity
In chapter 7 we discussed the fact that sentences of English can be
ambiguous, and pointed out that sentences of TFL are not. One
important application of this fact is that the structural ambigu-
ity of English sentences can often, and usefully, be straightened
out using different symbolizations. One common source of am-
biguity is scope ambiguity, where the English sentence does not
make it clear which logical word is supposed to be in the scope
of which other. Multiple interpretations are possible. In FOL, ev-
ery connective and quantifier has a well-determined scope, and
so whether or not one of them occurs in the scope of another in
a given sentence of FOL is always determined.

For instance, consider the English idiom,

1. Everything that glitters is not gold.

If we think of this sentence as of the form ‘every F is notG ’ where
F (x) symbolizes ‘ x glitters’ andG (x) is ‘ x is not gold’,
we would symbolize it as:

∀x (F (x) → ¬G (x)),

in other words, we symbolize it the same way as we would ‘Noth-
ing that glitters is gold’. But the idiom does not mean that! It
means that one should not assume that just because something
glitters, it is gold; not everything that appears valuable is in fact

252

CHAPTER 28. AMBIGUITY 253

valuable. To capture the actual meaning of the idiom, we would
have to symbolize it instead as we would ‘Not everything that
glitters is gold’, i.e., in the following way:

¬∀x (F (x) → G (x))

Compare the first of these with the previous symbolization: again
we see that the difference in the two meanings of the ambiguous
sentence lies in whether the ‘¬’ is in the scope of the ‘∀’ (in the
first symbolization) or ‘∀’ is in the scope of ‘¬’ (in the second).

Of course we can alternatively symbolize the two readings
using existential quantifiers as well:

¬∃x (F (x) ∧G (x))
∃x (F (x) ∧ ¬G (x))

In chapter 23 we discussed how to symbolize sentences in-
volving ‘only’. Consider the sentence:

2. Only young cats are playful.

According to our schema, we would symbolize it this way:

∀x (P (x) → (Y (x) ∧C (x)))

The meaning of this sentence of FOL is something like, ‘If an
animal is playful, it is a young cat’. (Assuming that the domain
is animals, of course.) This is probably not what’s intended in
uttering sentence 2, however. It’s more likely that we want to say
that old cats are not playful. In other words, what we mean to say
is that if something is a cat and playful, it must be young. This
would be symbolized as:

∀x ((C (x) ∧ P (x)) →Y (x))

There is even a third reading! Suppose we’re talking about young
animals and their characteristics. And suppose you wanted to say
that of all the young animals, only the cats are playful. You could
symbolize this reading as:

CHAPTER 28. AMBIGUITY 254

∀x ((Y (x) ∧ P (x)) → C (x))

Each of the last two readings can be made salient in English by
placing the stress appropriately. For instance, to suggest the last
reading, you would say ‘Only young cats are playful’, and to get
the other reading you would say ‘Only young cats are playful’.
The very first reading can be indicate by stressing both ‘young’
and ‘cats’: ‘Only young cats are playful’ (but not old cats, or dogs
of any age).

In sections 24.3 and 24.5 we discussed the importance of the
order of quantifiers. This is relevant here because, in English,
the order of quantifiers is sometimes not completely determined.
When both universal (‘all’) and existential (‘some’, ‘a’) quantifiers
are involved, this can result in scope ambiguities. Consider:

3. Everyone went to see a movie.

This sentence is ambiguous. In one interpretatation, it means
that there is a single movie that everyone went to see. In the other,
it means that everyone went to see some movie or other, but not
necessarily the same one. The two readings can be symbolized,
respectively, by

∃x (M (x) ∧ ∀y (P (y) → S (y ,x)))
∀y (P (y) → ∃x (M (x) ∧ S (y ,x)))

We assume here that the domain contains (at least) people and
movies, and the symbolization key,

P (y): y is a person,
M (x): x is a movie
S (y ,x): y went to see x .

In the first reading, we say that the existential quantifier has wide
scope (and its scope contains the universal quantifier, which has
narrow scope), and the other way round in the second.

In chapter 27, we encountered another scope ambiguity, aris-
ing from definite descriptions interacting with negation. Con-
sider Russell’s own example:

CHAPTER 28. AMBIGUITY 255

4. The King of France is not bald.

If the definite description has wide scope, and we are interpreting
the ‘not’ as an ‘inner’ negation (as we said before), sentence 4 is
interpreted to assert the existence of a single King of France,
to whom we are ascribing non-baldness. In this reading, it is
symbolized as ‘∃x

[︁
K (x) ∧ ∀y (K (y) → x = y)) ∧ ¬B (x)

]︁
’. In the

other reading, the ‘not’ denies the sentence ‘The King of France is
bald’, and we would symbolize it as: ‘¬∃x

[︁
K (x)∧∀y (K (y) → x =

y)) ∧B (x)
]︁
’. In the first case, we say that the definite description

has wide scope and in the second that it has narrow scope.

Practice exercises

A. Each of the following sentences is ambiguous. Provide a sym-
bolization key for each, and symbolize all readings.

1. Noone likes a quitter.
2. CSI found only red hair at the scene.
3. Smith’s murderer hasn’t been arrested.

B. Russell gave the following example in his paper ‘On Denoting’:

I have heard of a touchy owner of a yacht to whom
a guest, on first seeing it, remarked, ‘I thought your
yacht was larger than it is’; and the owner replied,
‘No, my yacht is not larger than it is’.

Explain what’s going on.

PART VI

Interpretations

256

CHAPTER 29

Extensionality
Recall that TFL is a truth-functional language. Its connectives
are all truth-functional, and all that we can do with TFL is key
sentences to particular truth values. We can do this directly. For
example, we might stipulate that the TFL sentence ‘P ’ is to be
true. Alternatively, we can do this indirectly, offering a symbol-
ization key, e.g.:

P : Big Ben is in London

But recall from §10 that this is just a means of specifying ‘P ’s truth
value; the symbolization key statement amounts to something like
the following stipulation:

• The TFL sentence ‘P ’ is true iff Big Ben is in London

And we emphasised in §10 that TFL cannot handle differences
in meaning that go beyond mere differences in truth value.

29.1 Symbolizing versus translating

FOL has some similar limitations. It gets beyond mere truth val-
ues, since it enables us to split up sentences into terms, predicates
and quantifiers. This enables us to consider what is true of some
particular object, or of some or all objects. But that’s it.

To unpack this a bit, consider this symbolization key:

257

CHAPTER 29. EXTENSIONALITY 258

C (x): x teaches Logic III in Calgary

This stipulation does not carry the meaning of the English pred-
icate across into our FOL predicate. We are simply stipulating
something like this:

• ‘C (x)’ and ‘ x teaches Logic III in Calgary’ are to be
true of exactly the same things.

So, in particular:

• ‘C (x)’ is to be true of exactly those things which teach Logic
III in Calgary (whatever those things might be).

This is an indirect way of stipulating which things a predicate is
true of. Alternatively, we can stipulate predicate extensions di-
rectly. For example, we can stipulate that ‘C (x)’ is to be true
of Richard Zach, and Richard Zach alone. As it happens, this
direct stipulation would have the same effect as the indirect stip-
ulation, since Richard, and Richard alone, teaches Logic III in
Calgary. Note, however, that the English predicates ‘ is
Richard Zach’ and ‘ teaches Logic III in Calgary’ have very
different meanings!

The point is that FOL has no resources for dealing with nu-
ances of meaning. When we interpret FOL, all we are considering
is what the predicates are true of, regardless of whether we spec-
ify these things directly or indirectly. The things a predicate is
true of are known as the extension of that predicate. We say that
FOL is an extensional language because FOL does not rep-
resent differences of meaning between predicates that have the
same extension.

This is why we speak of symbolizing English sentences in FOL.
It is doubtful that we are translating English into FOL, for trans-
lation should preserve meaning.

CHAPTER 29. EXTENSIONALITY 259

29.2 A word on extensions

We can stipulate directly what predicates are to be true of. And
our stipulations can be as arbitrary as we like. For example, we
could stipulate that ‘H (x)’ should be true of, and only of, the
following objects:

Justin Trudeau
the number 𝜋

every top-F key on every piano ever made

Armed with this interpretation of ‘H (x)’, suppose we now add to
our symbolization key:

j : Justin Trudeau
a: Angela Merkel
p : the number 𝜋

Then ‘H (j)’ and ‘H (p)’ will both be true, on this interpretation,
but ‘H (a)’ will be false, since Angela Merkel was not among the
stipulated objects.

This process of explicit stipulation is sometimes described as
stipulating the extension of a predicate. Note that, in the stipula-
tion we just gave, the objects we listed have nothing particularly in
common. This doesn’t matter. Logic doesn’t care about what we
humans (at a particular moment) think ‘naturally go together’;
to logic, all objects are on an equal footing.

29.3 Many-place predicates

All of this is quite easy to understand when it comes to one-
place predicates, but it gets messier when we consider two-place
predicates. Consider a symbolization key like:

L(x ,y): x loves y

Given what we said above, this symbolization key should be read
as saying:

CHAPTER 29. EXTENSIONALITY 260

• ‘L(x ,y)’ and ‘ x loves y ’ are to be true of exactly
the same things

So, in particular:

• ‘L(x ,y)’ is to be true of x and y (in that order) iff x loves y.

It is important that we insist upon the order here, since love—
famously—is not always reciprocated. (Note that ‘x ’ and ‘y ’ on
the right here are symbols of augmented English, and that they
are being used. By contrast, ‘x ’ and ‘y ’ in ‘L(x ,y)’ are symbols of
FOL, and they are being mentioned.)

That is an indirect stipulation. What about a direct stipula-
tion? This is also tricky. If we simply list objects that fall un-
der ‘L(x ,y)’, we will not know whether they are the lover or the
beloved (or both). We have to find a way to include the order in
our explicit stipulation.

To do this, we can specify that two-place predicates are true
of pairs of objects, where the order of the pair is important. Thus
we might stipulate that ‘B (x ,y)’ is to be true of, and only of, the
following pairs of objects:

⟨Lenin, Marx⟩
⟨de Beauvoir, Sartre⟩
⟨Sartre, de Beauvoir⟩

Here the angle-brackets keep us informed concerning order. Sup-
pose we now add the following stipulations:

l : Lenin
m: Marx
b : de Beauvoir
r : Sartre

Then ‘B (l ,m)’ will be true, since ⟨Lenin, Marx⟩ is in our explicit
list, but ‘B (m,l)’ will be false, since ⟨Marx, Lenin⟩ iw not in our
list. However, both ‘B (b ,r)’ and ‘B (r ,b)’ will be true, since both

CHAPTER 29. EXTENSIONALITY 261

⟨de Beauvoir, Sartre⟩ and ⟨Sartre, de Beauvoir⟩ are in our explicit
list.

To make these ideas more precise, we would need to develop
some very elementary set theory. Set theory has formal apparatus
which allows us to deal with extensions, ordered pairs, and so
forth. However, set theory is not covered in this book. So I shall
leave these ideas at an imprecise level. Nevertheless, the general
idea should be clear.

29.4 Semantics for identity

Identity is a special predicate of FOL. We write it a bit differently
than other two-place predicates: ‘x = y ’ instead of ‘I (x ,y)’ (for
example). More important, though, its interpretation is fixed,
once and for all.

If two names refer to the same object, then swapping one
name for another will not change the truth value of any sentence.
So, in particular, if ‘a’ and ‘b ’ name the same object, then all of
the following will be true:

A(a) ↔ A(b)
B (a) ↔ B (b)

R (a,a) ↔ R (b ,b)
R (a,a) ↔ R (a,b)
R (c ,a) ↔ R (c ,b)

∀x R (x ,a) ↔ ∀x R (x ,b)

Some philosophers have believed the reverse of this claim. That
is, they have believed that when exactly the same sentences (not
containing ‘=’) are true of a and b , then a and b are the very
same object. This is a highly controversial philosophical claim—
sometimes called the identity of indiscernibles—and our logic will
not subscribe to it; we allow that exactly the same things might
be true of two distinct objects.

To bring this out, consider the following interpretation:

CHAPTER 29. EXTENSIONALITY 262

domain: P.D. Magnus, Tim Button
a: P.D. Magnus
b : Tim Button
• For every primitive predicate we care to consider, that pred-
icate is true of nothing.

Suppose ‘A’ is a one-place predicate; then ‘A(a)’ is false and
‘A(b)’ is false, so ‘A(a) ↔ A(b)’ is true. Similarly, if ‘R’ is a
two-place predicate, then ‘R (a,a)’ is false and ‘R (a,b)’ is false,
so that ‘R (a,a) ↔ R (a,b)’ is true. And so it goes: every atomic
sentence not involving ‘=’ is false, so every biconditional linking
such sentences is true. For all that, Tim Button and P.D. Magnus
are two distinct people, not one and the same!

29.5 Interpretations

We defined a valuation in TFL as any assignment of truth and
falsity to sentence letters. In FOL, we are going to define an
interpretation as consisting of four things:

• the specification of a domain
• for each sentence letter we care to consider, a truth value
• for each name that we care to consider, an assignment of
exactly one object within the domain

• for each predicate that we care to consider (apart from ‘=’),
a specification of what things (in what order) the predicate
is to be true of. (We don’t need to specify an interpretation
of ‘=’, since it has a fixed interpretation.)

The symbolization keys that we considered in Part V conse-
quently give us one very convenient way to present an interpre-
tation. We will continue to use them in this chapter.

However, it is sometimes also convenient to present an inter-
pretation diagrammatically. To illustrate (literally): suppose we
want to consider just a single two-place predicate, ‘R (x ,y)’. Then
we can represent it just by drawing an arrow between two objects,

CHAPTER 29. EXTENSIONALITY 263

and stipulate that ‘R (x ,y)’ is to hold of x and y just in case there
is an arrow running from x to y in our diagram. As an example,
we might offer:

1 2

34

This diagram could be used to describe an interpretation whose
domain is the first four positive whole numbers, and which inter-
prets ‘R (x ,y)’ as being true of and only of:

⟨1, 2⟩, ⟨2, 3⟩, ⟨3, 4⟩, ⟨4, 1⟩, ⟨1, 3⟩

Equally we might offer this diagram:

1 2

34

for an interpretation with the same domain, which takes the ex-
tension of ‘R (x ,y)’ as:

⟨1, 3⟩, ⟨3, 1⟩, ⟨3, 4⟩, ⟨1, 1⟩, ⟨3, 3⟩

If we wanted, we could make our diagrams more complex. For
example, we could add names as labels for particular objects.
Equally, to symbolize the extension of a one-place predicate, we
might simply draw a ring around some particular objects and
stipulate that the thus encircled objects (and only them) are to
fall under the predicate ‘H (x)’, say.

CHAPTER 30

Truth in FOL
We have introduced you to interpretations. Since, among other
things, they tell us which predicates are true of which objects, they
will provide us with an account of the truth of atomic sentences.
However, we now need to say, precisely, what it is for an arbitrary
FOL sentence to be true or false in an interpretation.

We know from §26 that there are three kinds of sentence in
FOL:

• atomic sentences
• sentences whose main logical operator is a sentential con-
nective

• sentences whose main logical operator is a quantifier

We need to explain truth for all three kinds of sentence.
We will provide a completely general explanation in this sec-

tion. However, to try to keep the explanation comprehensible,
we will, at several points, use the following interpretation:

domain: all people born before 2000ce
a: Aristotle
b : Beyoncé

P (x): x is a philosopher
R (x ,y): x was born before y

This will be our go-to example in what follows.

264

CHAPTER 30. TRUTH IN FOL 265

30.1 Atomic sentences

The truth of atomic sentences should be fairly straightforward.
For sentence letters, the interpretation specifies if it is true or
false. The sentence ‘P (a)’ should be true just in case ‘P (x)’ is
true of ‘a’. Given our go-to interpretation, this is true iff Aristotle
is a philosopher. Aristotle is a philosopher. So the sentence is
true. Equally, ‘P (b)’ is false on our go-to interpretation.

Likewise, on this interpretation, ‘R (a,b)’ is true iff the object
named by ‘a’ was born before the object named by ‘b ’. Well,
Aristotle was born before Beyoncé. So ‘R (a,b)’ is true. Equally,
‘R (a,a)’ is false: Aristotle was not born before Aristotle.

Dealing with atomic sentences, then, is very intuitive. When
R is an n-place predicate and a1, a2, . . . , an are names,

The sentence R(a1,a2, . . . ,an) is true in an interpreta-
tion iff
R is true of the objects named by a1, a2, . . . , an (in that
order) in that interpretation.

Recall, though, that there is a special kind of atomic sentence:
two names connected by an identity sign constitute an atomic
sentence. This kind of atomic sentence is also easy to handle.
Where a and b are any names,

a = b is true in an interpretation iff
a and b name the very same object in that interpretation

So in our go-to interpretation, ‘a = b ’ is false, since Aristotle
is distinct from Beyoncé.

30.2 Sentential connectives

We saw in §26 that FOL sentences can be built up from sim-
pler ones using the truth-functional connectives that were familiar

CHAPTER 30. TRUTH IN FOL 266

from TFL. The rules governing these truth-functional connectives
are exactly the same as they were when we considered TFL. Here
they are:

A∧ B is true in an interpretation iff
both A is true and B is true in that interpretation

A∨ B is true in an interpretation iff
either A is true or B is true in that interpretation

¬A is true in an interpretation iff
A is false in that interpretation

A→ B is true in an interpretation iff
either A is false or B is true in that interpretation

A↔ B is true in an interpretation iff
A has the same truth value as B in that interpretation

This presents the very same information as the characteristic
truth tables for the connectives; it just does so in a slightly differ-
ent way. Some examples will probably help to illustrate the idea.
(Make sure you understand them!) On our go-to interpretation:

• ‘a = a ∧ P (a)’ is true
• ‘R (a,b) ∧ P (b)’ is false because, although ‘R (a,b)’ is true,
‘P (b)’ is false

• ‘a = b ∨ P (a)’ is true
• ‘¬a = b ’ is true
• ‘P (a) ∧ ¬(a = b ∧ R (a,b))’ is true, because ‘P (a)’ is true
and ‘a = b ’ is false

Make sure you understand these examples.

CHAPTER 30. TRUTH IN FOL 267

30.3 When the main logical operator is a
quantifier

The exciting innovation in FOL, though, is the use of quantifiers,
but expressing the truth conditions for quantified sentences is a
bit more fiddly than one might first expect.

Here is a naïve first thought. We want to say that ‘∀x F (x)’ is
true iff ‘F (x)’ is true of everything in the domain. This should
not be too problematic: our interpretation will specify directly
what ‘F (x)’ is true of.

Unfortunately, this naïve thought is not general enough. For
example, we want to be able to say that ‘∀x∃y L(x ,y)’ is true
just in case (speaking roughly) ‘∃y L(x ,y)’ is true of everything
in the domain. But our interpretation does not directly specify
what ‘∃y L(x ,y)’ is true of. Instead, whether or not this is true
of something should follow just from the interpretation of the
predicate ‘L’, the domain, and the meanings of the quantifiers.

So here is a second naïve thought. We might try to say that
‘∀x∃y L(x ,y)’ is to be true in an interpretation iff ∃y L(a,y) is
true for every name a that we have included in our interpretation.
Similarly, we might try to say that ∃y L(a,y) is true just in case
L(a,b) is true for some name b that we have included in our
interpretation.

Unfortunately, this is not right either. To see this, observe
that our go-to interpretation only interprets two names, ‘a’ and
‘b ’. But the domain—all people born before the year 2000ce—
contains many more than two people. (And we have no intention
of trying to correct for this by naming all of them!)

So here is a third thought. (And this thought is not naïve,
but correct.) Although it is not the case that we have named
everyone, each person could have been given a name. So we should
focus on this possibility of extending an interpretation by adding
a new name. We will offer a few examples of how this might work,
centring on our go-to interpretation, and we will then present the
formal definition.

CHAPTER 30. TRUTH IN FOL 268

In our go-to interpretation, ‘∃x R (b ,x)’ should be true. After
all, in the domain, there is certainly someone who was born after
Beyoncé. Lady Gaga is one of those people. Indeed, if we were to
extend our go-to interpretation—temporarily, mind—by adding
the name ‘c ’ to refer to Lady Gaga, then ‘R (b ,c)’ would be true
on this extended interpretation. This, surely, should suffice to
make ‘∃x R (b ,x)’ true on the original go-to interpretation.

In our go-to interpretation, ‘∃x (P (x) ∧ R (x ,a))’ should also
be true. After all, in the domain, there is certainly someone who
was both a philosopher and born before Aristotle. Socrates is one
such person. Indeed, if we were to extend our go-to interpretation
by letting a new name, ‘c ’, denote Socrates, then ‘W (c) ∧R (c ,a)’
would be true on this extended interpretation. Again, this should
surely suffice to make ‘∃x (P (x)∧R (x ,a))’ true on the original go-
to interpretation.

In our go-to interpretation, ‘∀x∃y R (x ,y)’ should be false. Af-
ter all, consider the last person born in the year 1999. We don’t
know who that was, but if we were to extend our go-to interpre-
tation by letting a new name, ‘d ’, denote that person, then we
would not be able to find anyone else in the domain to denote
with some further new name, perhaps ‘e ’, in such a way that
‘R (d ,e)’ would be true. Indeed, no matter whom we named with
‘e ’, ‘R (d ,e)’ would be false. This observation is surely sufficient
to make ‘∃y R (d ,y)’ false in our extended interpretation, which in
turn is surely sufficient to make ‘∀x∃y R (x ,y)’ false on the original
go-to interpretation.

If you have understood these three examples, that’s what mat-
ters. It provides the basis for a formal definition of truth for
quantified sentences.

Strictly speaking, though, we still need to give that definition.
The result, sadly, is a bit ugly, and requires a few new definitions.
Brace yourself!

Suppose that A is a formula containing at least one occur-
rence of the variable x, and that x is free in A. We will write this
thus:

A(. . .x . . .x . . .)

CHAPTER 30. TRUTH IN FOL 269

Suppose also that c is a name. Then we will write:

A(. . . c . . . c . . .)

for the formula we obtain by replacing every occurrence of x in A

with c. The resulting formula is called a substitution instance
of ∀xAand ∃xA. Also, c is called the instantiating name. So:

∃x (R (e ,x) ↔ F (x))

is a substitution instance of

∀y∃x (R (y ,x) ↔ F (x))

with the instantiating name ‘e ’ and instantiated variable ‘y ’.
Our interpretation will include a specification of which names

correspond to which objects in the domain. Take any object in
the domain, say, d , and a name c which is not already assigned
by the interpretation. If our interpretation is I, then we can con-
sider the interpretation I[d/c] which is just like I except it also
assigns the name c to the object d . Then we can say that d
satisfies the formula A(. . .x . . .x . . .) in the interpretation I if,
and only if, A(. . . c . . . c . . .) is true in I[d/c]. (If d satisfies
A(. . .x . . .x . . .) we also say that A(. . .x . . .x . . .) is true of d .)

The interpretation I[d/c] is just like the interpretation I
except it also assigns the name c to the object d .

An object d satisfies A(. . .x . . .x . . .) in interpretation I
iff A(. . . c . . . c . . .) is true in I[d/c].

So, for instance, Socrates satisfies the formula P (x) since P (c)
is true in the interpretation I[Socrates/c], i.e., the interpretation:

domain: all people born before 2000ce
a: Aristotle
b : Beyoncé
c : Socrates

CHAPTER 30. TRUTH IN FOL 270

P (x): x is a philosopher
R (x ,y): x was born before y

Armed with this notation, the rough idea is as follows. The
sentence ∀xA(. . .x . . .x . . .) will be true in I iff, for any ob-
ject d in the domain, A(. . . c . . . c . . .) is true in I[d/c], i.e., no
matter what object (in the domain) we name with c. In other
words, ∀xA(. . .x . . .x . . .) is true iff every object in the domain
satisfies A(. . .x . . .x . . .). Similarly, the sentence ∃xA will be
true iff there is some object that satisifes A(. . .x . . .x . . .), i.e.,
A(. . . c . . . c . . .) true in I[d/c] for some object d .

∀xA(. . .x . . .x . . .) is true in an interpretation iff
every object in the domain satisfies A(. . .x . . .x . . .).

∃xA(. . .x . . .x . . .) is true in an interpretation iff
at least one object in the domain satisfiesA(. . .x . . .x . . .).

To be clear: all this is doing is formalizing (very pedantically)
the intuitive idea expressed on the previous page. The result
is a bit ugly, and the final definition might look a bit opaque.
Hopefully, though, the spirit of the idea is clear.

Finally, let us note that the concept of an object satisfying a
formula with a free variable can also be extended to formulas
with more than one free variable. If we have a formula A(x,y)
with two free variables x and y, then we can say that a pair of
objects ⟨a,b⟩ satisfies A(x,y) iff A(c,d) is true in the interpre-
tation extended by two names c and d, where c names a and d

names b . So, for instance, ⟨Socrates,Plato⟩ satisfies R (x ,y) since
R (c ,d) is true in the interpretation:

domain: all people born before 2000ce
a: Aristotle
b : Beyoncé
c : Socrates
d : Plato

CHAPTER 30. TRUTH IN FOL 271

P (x): x is a philosopher
R (x ,y): x was born before y

For atomic formulas, the objects, pairs of objects, etc., that sat-
isfy them are exactly the extension of the predicate given in the
interpretation. But the notion of satisfaction also applies to non-
atomic formulas, e.g., the formula P (x) ∧ R (x ,b) is satisfied by
all philosophers born before Beyoncé. It even applies to formulas
involving quantifiers, e.g., P (x) ∧ ¬∃y (P (y) ∧R (y ,x)) is satisfied
by all people who are philosophers and for whom it is true that
no philosopher was born before them—in other words, it is true
of the first philosopher.

Practice exercises

A. Consider the following interpretation:

• The domain comprises only Corwin and Benedict
• ‘A(x)’ is to be true of both Corwin and Benedict
• ‘B (x)’ is to be true of Benedict only
• ‘N (x)’ is to be true of no one
• ‘c ’ is to refer to Corwin

Determine whether each of the following sentences is true or false
in that interpretation:

1. B (c)
2. A(c) ↔ ¬N (c)
3. N (c) → (A(c) ∨ B (c))
4. ∀x A(x)
5. ∀x¬B (x)
6. ∃x (A(x) ∧ B (x))
7. ∃x (A(x) → N (x))
8. ∀x (N (x) ∨ ¬N (x))
9. ∃x B (x) → ∀x A(x)

B. Consider the following interpretation:

CHAPTER 30. TRUTH IN FOL 272

• The domain comprises only Lemmy, Courtney and Eddy
• ‘G (x)’ is to be true of Lemmy, Courtney and Eddy.
• ‘H (x)’ is to be true of and only of Courtney
• ‘M (x)’ is to be true of and only of Lemmy and Eddy
• ‘c ’ is to refer to Courtney
• ‘e ’ is to refer to Eddy

Determine whether each of the following sentences is true or false
in that interpretation:

1. H (c)
2. H (e)
3. M (c) ∨M (e)
4. G (c) ∨ ¬G (c)
5. M (c) → G (c)
6. ∃x H (x)
7. ∀x H (x)
8. ∃x ¬M (x)
9. ∃x (H (x) ∧G (x))
10. ∃x (M (x) ∧G (x))
11. ∀x (H (x) ∨M (x))
12. ∃x H (x) ∧ ∃x M (x)
13. ∀x (H (x) ↔ ¬M (x))
14. ∃x G (x) ∧ ∃x¬G (x)
15. ∀x∃y (G (x) ∧H (y))

C. Following the diagram conventions introduced at the end of
§29, consider the following interpretation:

1 2

3 4 5

Determine whether each of the following sentences is true or false
in that interpretation:

CHAPTER 30. TRUTH IN FOL 273

1. ∃x R (x ,x)
2. ∀x R (x ,x)
3. ∃x∀y R (x ,y)
4. ∃x∀y R (y ,x)
5. ∀x∀y∀z ((R (x ,y) ∧R (y ,z)) → R (x ,z))
6. ∀x∀y∀z ((R (x ,y) ∧R (x ,z)) → R (y ,z))
7. ∃x∀y ¬R (x ,y)
8. ∀x (∃y R (x ,y) → ∃y R (y ,x))
9. ∃x∃y (¬x = y ∧R (x ,y) ∧R (y ,x))
10. ∃x∀y (R (x ,y) ↔ x = y)
11. ∃x∀y (R (y ,x) ↔ x = y)
12. ∃x∃y (¬x = y ∧R (x ,y) ∧ ∀z (R (z ,x) ↔ y = z))

CHAPTER 31

Semantic
concepts
Defining truth in FOL was quite fiddly. But now that we are done,
we can define various other central logical notions. These defi-
nitions will look very similar to those for TFL, from §12. How-
ever, remember that they concern interpretations, rather than val-
uations.

We will use the symbol ‘⊨’ for FOL much as we did for TFL.
So:

A1,A2, . . . ,An ⊨ C

means that there is no interpretation in which all of A1, A2, . . . ,
An are true and in which C is false. Derivatively,

⊨ A

means that A is true in every interpretation.
The other logical notions also have corresponding definitions

in FOL:

⊲ An FOL sentence A is a validity iff A is true in every
interpretation; i.e., ⊨ A.

⊲ A is a contradiction iff A is false in every interpretation;
i.e., ⊨ ¬A.

274

CHAPTER 31. SEMANTIC CONCEPTS 275

⊲ A1,A2, . . .An ∴ C is valid in fol iff there is no interpreta-
tion in which all of the premises are true and the conclusion
is false; i.e., A1,A2, . . .An ⊨ C. It is invalid in fol other-
wise.

⊲ Two FOL sentences A and B are equivalent iff they are
true in exactly the same interpretations as each other; i.e.,
both A ⊨ B and B ⊨ A.

⊲ The FOL sentencesA1,A2, . . . ,An are jointly satisfiable
iff some interpretation makes all of them true. They are
jointly unsatisfiable iff there is no such interpretation.

CHAPTER 32

Using
interpretations
32.1 Validities and contradictions

Suppose we want to show that ‘∃x A(x ,x) → B (d)’ is not a valid-
ity. This requires showing that the sentence is not true in every
interpretation; i.e., that it is false in some interpretation. If we
can provide just one interpretation in which the sentence is false,
then we will have shown that the sentence is not a validity.

In order for ‘∃x A(x ,x) → B (d)’ to be false, the antecedent
(‘∃x A(x ,x)’) must be true, and the consequent (‘B (d)’) must be
false. To construct such an interpretation, we start by specifying
a domain. Keeping the domain small makes it easier to specify
what the predicates will be true of, so we will start with a domain
that has just one member. For concreteness, let’s say it is just the
city of Paris.

domain: Paris

The name ‘d ’ must refer to something in the domain, so we have
no option but:

d : Paris

276

CHAPTER 32. USING INTERPRETATIONS 277

Recall that we want ‘∃x A(x ,x)’ to be true, so we want all mem-
bers of the domain to be paired with themselves in the extension
of ‘A’. We can just offer:

A(x ,y): x is identical with y

Now ‘A(d ,d)’ is true, so it is surely true that ‘∃x A(x ,x)’. Next,
we want ‘B (d)’ to be false, so the referent of ‘d ’ must not be in
the extension of ‘B ’. We might simply offer:

B (x): x is in Germany

Now we have an interpretation where ‘∃x A(x ,x)’ is true, but
where ‘B (d)’ is false. So there is an interpretation where
‘∃x A(x ,x) → B (d)’ is false. So ‘∃x A(x ,x) → B (d)’ is not a
validity.

We can just as easily show that ‘∃xA(x ,x) → B (d)’ is not a
contradiction. We need only specify an interpretation in which
‘∃xA(x ,x) → B (d)’ is true; i.e., an interpretation in which either
‘∃x A(x ,x)’ is false or ‘B (d)’ is true. Here is one:

domain: Paris
d : Paris

A(x ,y): x is identical with y

B (x): x is in France

This shows that there is an interpretation where ‘∃xA(x ,x) →
B (d)’ is true. So ‘∃x A(x ,x) → B (d)’ is not a contradiction.

To show that A is not a validity, it suffices to find an inter-
pretation where A is false.
To show that A is not a contradiction, it suffices to find an
interpretation where A is true.

32.2 Logical equivalence

Suppose we want to show that ‘∀x S (x)’ and ‘∃x S (x)’ are not
logically equivalent. We need to construct an interpretation in

CHAPTER 32. USING INTERPRETATIONS 278

which the two sentences have different truth values; we want one
of them to be true and the other to be false. We start by specifying
a domain. Again, we make the domain small so that we can
specify extensions easily. In this case, we will need at least two
objects. (If we chose a domain with only one member, the two
sentences would end up with the same truth value. In order to
see why, try constructing some partial interpretations with one-
member domains.) For concreteness, let’s take:

domain: Ornette Coleman, Miles Davis

We can make ‘∃x S (x)’ true by including something in the exten-
sion of ‘S ’, and we can make ‘∀x S (x)’ false by leaving something
out of the extension of ‘S ’. For concreteness, let’s say:

S (x): x plays saxophone

Now ‘∃x S (x)’ is true, because ‘S (x)’ is true of Ornette Coleman.
Slightly more precisely, extend our interpretation by allowing ‘c ’
to name Ornette Coleman. ‘S (c)’ is true in this extended in-
terpretation, so ‘∃x S (x)’ was true in the original interpretation.
Similarly, ‘∀x S (x)’ is false, because ‘S (x)’ is false of Miles Davis.
Slightly more precisely, extend our interpretation by allowing ‘d ’
to name Miles Davis, and ‘S (d)’ is false in this extended interpre-
tation, so ‘∀x S (x)’ was false in the original interpretation. We
have provided a counter-interpretation to the claim that ‘∀x S (x)’
and ‘∃x S (x)’ are logically equivalent.

To show that A and B are not logically equivalent, it suf-
fices to find an interpretation where one is true and the
other is false.

32.3 Validity, entailment and satisfiability

To test for validity, entailment, or satisfiability, we typically need
to produce interpretations that determine the truth value of sev-
eral sentences simultaneously.

CHAPTER 32. USING INTERPRETATIONS 279

Consider the following argument in FOL:

∃x (G (x) → G (a)) ∴ ∃x G (x) → G (a)

To show that this is invalid, we must make the premise true and
the conclusion false. The conclusion is a conditional, so to make
it false, the antecedent must be true and the consequent must be
false. Clearly, our domain must contain two objects. Let’s try:

domain: Karl Marx, Ludwig von Mises
G (x): x hated communism

a: Karl Marx

Given that Marx wrote The Communist Manifesto, ‘G (a)’ is plainly
false in this interpretation. But von Mises famously hated com-
munism, so ‘∃x G (x)’ is true in this interpretation. Hence
‘∃x G (x) → G (a)’ is false, as required.

Does this interpretation make the premise true? Yes it does!
Note that ‘G (a) → G (a)’ is true. (Indeed, it is a validity.) But
then certainly ‘∃x (G (x) → G (a))’ is true, so the premise is true,
and the conclusion is false, in this interpretation. The argument
is therefore invalid.

In passing, note that we have also shown that ‘∃x (G (x) →
G (a))’ does not entail ‘∃x G (x) → G (a)’, i.e., that ∃x (G (x) →
G (a)) ⊭ ∃xG (x) → G (a). Equally, we have shown that the sen-
tences ‘∃x (G (x) → G (a))’ and ‘¬(∃x G (x) → G (a))’ are jointly
satisfiable.

Let’s consider a second example. Consider:

∀x∃y L(x ,y) ∴ ∃y∀x L(x ,y)

Again, we want to show that this is invalid. To do this, we must
make the premises true and the conclusion false. Here is a sug-
gestion:

domain: Canadian citizens currently in a domestic partnership
with another Canadian citizen

L(x ,y): x is in a domestic partnership with y

CHAPTER 32. USING INTERPRETATIONS 280

The premise is clearly true on this interpretation. Anyone in
the domain is a Canadian citizen in a domestic partnership with
some other Canadian citizen. That other citizen will also, then,
be in the domain. So for everyone in the domain, there will be
someone (else) in the domain with whom they are in a domestic
partnership. Hence ‘∀x∃y L(x ,y)’ is true. However, the conclu-
sion is clearly false, for that would require that there is some
single person who is in a domestic partnership with everyone in
the domain, and there is no such person, so the argument is in-
valid. We observe immediately that the sentences ‘∀x∃y L(x ,y)’
and ‘¬∃y∀x L(x ,y)’ are jointly satisfiable and that ‘∀x∃y L(x ,y)’
does not entail ‘∃y∀x L(x ,y)’.

For our third example, we’ll mix things up a bit. In §29, we de-
scribed how we can present some interpretations using diagrams.
For example:

1 2

3

Using the conventions employed in §29, the domain of this inter-
pretation is the first three positive whole numbers, and ‘R (x ,y)’
is true of x and y just in case there is an arrow from x to y in our
diagram. Here are some sentences that the interpretation makes
true:

• ‘∀x∃y R (y ,x)’
• ‘∃x∀y R (x ,y)’ witness 1
• ‘∃x∀y (R (y ,x) ↔ x = y)’ witness 1
• ‘∃x∃y∃z ((¬y = z ∧R (x ,y)) ∧R (z ,x))’ witness 2
• ‘∃x∀y ¬R (x ,y)’ witness 3
• ‘∃x (∃y R (y ,x) ∧ ¬∃y R (x ,y))’ witness 3

This immediately shows that all of the preceding six sentences
are jointly satisfiable. We can use this observation to generate

CHAPTER 32. USING INTERPRETATIONS 281

invalid arguments, e.g.:

∀x∃y R (y ,x),∃x∀y R (x ,y) ∴ ∀x∃y R (x ,y)
∃x∀y R (x ,y),∃x∀y¬R (x ,y) ∴ ¬∃x∃y∃z (¬y = z ∧ (R (x ,y) ∧R (z ,x)))

and many more besides.

If some interpretation makes all of A1,A2, . . . ,An true and
C is false, then:

• A1,A2, . . . ,An ∴ C is invalid ; and
• A1,A2, . . . ,An ⊭ C; and
• And A1,A2, . . . ,An ,¬C are jointly consistent.

An interpretation which refutes a claim—to logical truth, say,
or to entailment—is called a counter-interpretation, or a counter-
model.

We’ll close this section, though, with a caution about the rela-
tionship between (in)validity and (non)entailment. Recall FOL’s
limitations: it is is an extensional language; it ignores issues of
vagueness; and it cannot handle cases of validity for ‘special
reasons’. To take one illustration of these issues, consider this
natural-language argument:

Every fox is cute.
∴ All vixens are cute.

This is valid: necessarily every vixen is a fox, so it is impossible
for the premise to be true and the conclusion false. Now, we
might sensibly symbolize the argument as follows:

∀x (F (x) → C (x)) ∴ ∀x (V (x) → C (x))

However, it is easy to find counter-models which show that
∀x (F (x) → C (x)) ⊭ ∀x (V (x) → C (x)). (Exercise: find one.) So, it
would be wrong to infer that the English argument is invalid, just
because there is a counter-model to the relevant FOL-entailment.

CHAPTER 32. USING INTERPRETATIONS 282

The general moral is this. If you want to infer from the ab-
sence of an entailment in FOL to the invalidity of some English
argument, then you need to argue that nothing important is lost
in the way you have symbolized the English argument.

Practice exercises

A. Show that each of the following is neither a validity nor a
contradiction:

1. D (a) ∧D (b)
2. ∃x T (x ,h)
3. P (m) ∧ ¬∀x P (x)
4. ∀z J (z) ↔ ∃y J (y)
5. ∀x (W (x ,m,n) ∨ ∃yL(x ,y))
6. ∃x (G (x) → ∀y M (y))
7. ∃x (x = h ∧ x = i)

B. Show that the following pairs of sentences are not logically
equivalent.

1. J (a), K (a)
2. ∃x J (x), J (m)
3. ∀x R (x ,x), ∃x R (x ,x)
4. ∃x P (x) → Q (c), ∃x (P (x) → Q (c))
5. ∀x (P (x) → ¬Q (x)), ∃x (P (x) ∧ ¬Q (x))
6. ∃x (P (x) ∧Q (x)), ∃x (P (x) → Q (x))
7. ∀x (P (x) → Q (x)), ∀x (P (x) ∧Q (x))
8. ∀x∃y R (x ,y), ∃x∀y R (x ,y)
9. ∀x∃y R (x ,y), ∀x∃y R (y ,x)

C. Show that the following sentences are jointly satisfiable:

1. M (a),¬N (a),P (a),¬Q (a)
2. L(e ,e),L(e , g),¬L(g ,e),¬L(g , g)
3. ¬(M (a) ∧ ∃x A(x)),M (a) ∨ F (a),∀x (F (x) → A(x))
4. M (a) ∨M (b),M (a) → ∀x¬M (x)

CHAPTER 32. USING INTERPRETATIONS 283

5. ∀y G (y),∀x (G (x) → H (x)),∃y¬I (y)
6. ∃x (B (x) ∨ A(x)),∀x¬C (x),∀x

[︁
(A(x) ∧ B (x)) → C (x)

]︁
7. ∃x X (x),∃xY (x),∀x (X (x) ↔ ¬Y (x))
8. ∀x (P (x) ∨Q (x)),∃x¬(Q (x) ∧ P (x))
9. ∃z (N (z) ∧O (z ,z)),∀x∀y (O (x ,y) → O (y ,x))
10. ¬∃x∀y R (x ,y),∀x∃y R (x ,y)
11. ¬R (a,a), ∀x (x = a ∨R (x ,a))
12. ∀x∀y∀z [(x = y ∨ y = z) ∨ x = z], ∃x∃y ¬x = y
13. ∃x∃y ((Z (x) ∧ Z (y)) ∧ x = y), ¬Z (d), d = e

D. Show that the following arguments are invalid:

1. ∀x (A(x) → B (x)) ∴ ∃x B (x)
2. ∀x (R (x) → D (x)),∀x (R (x) → F (x)) ∴ ∃x (D (x) ∧ F (x))
3. ∃x (P (x) → Q (x)) ∴ ∃x P (x)
4. N (a) ∧ N (b) ∧ N (c) ∴ ∀x N (x)
5. R (d ,e),∃x R (x ,d) ∴ R (e ,d)
6. ∃x (E (x) ∧ F (x)),∃x F (x) → ∃x G (x) ∴ ∃x (E (x) ∧G (x))
7. ∀x O (x ,c),∀x O (c ,x) ∴ ∀x O (x ,x)
8. ∃x (J (x)∧K (x)),∃x¬K (x),∃x¬ J (x) ∴ ∃x (¬ J (x)∧¬K (x))
9. L(a,b) → ∀x L(x ,b),∃x L(x ,b) ∴ L(b ,b)
10. ∀x (D (x) → ∃y T (y ,x)) ∴ ∃y∃z ¬y = z

CHAPTER 33

Reasoning
about all
interpretations
33.1 Validities and contradictions

We can show that a sentence is not a validity just by providing
one carefully specified interpretation: an interpretation in which
the sentence is false. To show that something is a validity, on the
other hand, it would not be enough to construct ten, one hundred,
or even a thousand interpretations in which the sentence is true.
A sentence is only a validity if it is true in every interpretation,
and there are infinitely many interpretations. We need to reason
about all of them, and we cannot do this by dealing with them
one by one!

Sometimes, we can reason about all interpretations fairly eas-
ily. For example, we can offer a relatively simple argument that
‘R (a,a) ∨ ¬R (a,a)’ is a validity:

Any relevant interpretation will give ‘R (a,a)’ a truth
value. If ‘R (a,a)’ is true in an interpretation, then

284

CHAPTER 33. REASONING ABOUT INTERPRETATIONS 285

‘R (a,a) ∨ ¬R (a,a)’ is true in that interpretation. If
‘R (a,a)’ is false in an interpretation, then ¬R (a,a)
is true, and so ‘R (a,a) ∨ ¬R (a,a)’ is true in that
interpretation. These are the only alternatives. So
‘R (a,a) ∨ ¬R (a,a)’ is true in every interpretation.
Therefore, it is a validity.

This argument is valid, of course, and its conclusion is true. How-
ever, it is not an argument in FOL. Rather, it is an argument in
English about FOL: it is an argument in the metalanguage.

Note another feature of the argument. Since the sentence in
question contained no quantifiers, we did not need to think about
how to interpret ‘a’ and ‘R’; the point was just that, however we
interpreted them, ‘R (a,a)’ would have some truth value or other.
(We could ultimately have given the same argument concerning
TFL sentences.)

Let’s have another example. The sentence ‘∀x (R (x ,x) ∨
¬R (x ,x))’ should obviously be a validity. However, saying pre-
cisely why is quite tricky. We cannot say that ‘R (x ,x) ∨ ¬R (x ,x)’
is true in every interpretation, since ‘R (x ,x) ∨ ¬R (x ,x)’ is not
even a sentence of FOL (remember that ‘x ’ is a variable, not a
name). Instead, we should say something like this:

Consider some arbitrary interpretation. ∀x (R (x ,x) ∨
¬R (x ,x)) is true in our interpretation iff R (x ,x) ∨
¬R (x ,x) is satisfied by every object of its domain.
Consider some arbitrary member of the domain,
which, for convenience, we will call Fred. Either
Fred satisfies R (x ,x) or it does not. If Fred sat-
isfies ‘R (x ,x)’, then Fred also satisfies ‘R (x ,x) ∨
¬R (x ,x)’. If Fred does not satisfy ‘R (x ,x)’, it does
satisfy ‘¬R (x ,x)’ and so also ‘R (x ,x) ∨¬R (x ,x)’.1 So
either way, Fred satisfies ‘R (x ,x) ∨ ¬R (x ,x)’. Since
there was nothing special about Fred—we might have

1We use here the fact that the truth conditions for connectives also apply
to satisfaction: a satisfies A(x) ∨ B(x) iff a satisfies A(x) or B(x), etc.

CHAPTER 33. REASONING ABOUT INTERPRETATIONS 286

chosen any object—we see that every object in the do-
main satisfies ‘R (x ,x) ∨ ¬R (x ,x)’. So ‘∀x (R (x ,x) ∨
¬R (x ,x))’ is true in our interpretation. But we
chose our interpretation arbitrarily, so ‘∀x (R (x ,x) ∨
¬R (x ,x))’ is true in every interpretation. It is there-
fore a validity.

This is quite longwinded, but, as things stand, there is no alter-
native. In order to show that a sentence is a validity, we must
reason about all interpretations.

33.2 Other cases

Similar points hold of other cases too. Thus, we must reason
about all interpretations if we want to show:

• that a sentence is a contradiction; for this requires that it is
false in every interpretation.

• that two sentences are logically equivalent; for this requires
that they have the same truth value in every interpretation.

• that some sentences are jointly unsatisfiable; for this re-
quires that there is no interpretation in which all of those
sentences are true together; i.e. that, in every interpretation,
at least one of those sentences is false.

• that an argument is valid; for this requires that the conclu-
sion is true in every interpretation where the premises are
true.

• that some sentences entail another sentence.

The problem is that, with the tools available to you so far, rea-
soning about all interpretations is a serious challenge! For a final
example, here is a perfectly obvious entailment:

∀x (H (x) ∧ J (x)) ⊨ ∀x H (x)

After all, if everything is bothH and J , then everything isH . But
we can only establish the entailment by considering what must

CHAPTER 33. REASONING ABOUT INTERPRETATIONS 287

be true in every interpretation in which the premise is true. To
show this, we would have to reason as follows:

Consider an arbitrary interpretation in which
‘∀x (H (x)∧ J (x))’ is true. It follows that ‘H (x)∧ J (x)’
is satisfied by every object in this interpretation.
‘H (x)’ will, then, also be satisfied by every object.2 So
it must be that ‘∀x H (x)’ is true in the interpretation.
We’ve assumed nothing about the interpretation ex-
cept that it was one in which ‘∀x (H (x)∧ J (x))’ is true.
So any interpretation in which ‘∀x (H (x) ∧ J (x))’ is
true is one in which ‘∀x H (x)’ is true.

Even for a simple entailment like this one, the reasoning is some-
what complicated. For more complicated entailments, the rea-
soning can be extremely torturous.

The following table summarises whether a single interpreta-
tion or counter-interpretation suffices, or whether we must reason
about all interpretations.

Yes No
validity? all interpretations one counter-interpretation
contradiction? all interpretations one counter-interpretation
equivalent? all interpretations one counter-interpretation
satisfiable? one interpretation all interpretations
valid? all interpretations one counter-interpretation
entailment? all interpretations one counter-interpretation

You might want to compare this table with the table at the
end of §14. The key difference resides in the fact that TFL con-
cerns truth tables, whereas FOL concerns interpretations. This
difference is deeply important, since each truth-table only ever
has finitely many lines, so that a complete truth table is a rela-
tively tractable object. By contrast, there are infinitely many in-
terpretations for any given sentence(s), so that reasoning about
all interpretations can be a deeply tricky business.

2Here again we make use of the fact that any object that satisfies A(x) ∧
B(x) must satisfy both A(x) and B(x).

PART VII

Natural
deduction for

FOL

288

CHAPTER 34

Basic rules for
FOL
The language of FOL makes use of all of the connectives of TFL.
So proofs in FOL will use all of the basic and derived rules from
Part IV. We will also use the proof-theoretic notions (particularly,
the symbol ‘⊢’) introduced there. However, we will also need
some new basic rules to govern the quantifiers, and to govern the
identity sign.

34.1 Universal elimination

From the claim that everything is F , you can infer that any par-
ticular thing is F . You name it; it’s F . So the following should be
fine:

1 ∀x R (x ,x ,d)

2 R (a,a,d) ∀E 1

We obtained line 2 by dropping the universal quantifier and re-
placing every instance of ‘x ’ with ‘a’. Equally, the following
should be allowed:

289

CHAPTER 34. BASIC RULES FOR FOL 290

1 ∀x R (x ,x ,d)

2 R (d ,d ,d) ∀E 1

We obtained line 2 here by dropping the universal quantifier and
replacing every instance of ‘x ’ with ‘d ’. We could have done the
same with any other name we wanted.

This motivates the universal elimination rule (∀E):

m ∀xA(. . .x . . .x . . .)

A(. . . c . . . c . . .) ∀E m

The notation here was introduced in §30. The point is that
you can obtain any substitution instance of a universally quantified
formula: replace every instance of the quantified variable with
any name you like.

We should emphasize that (as with every elimination rule)
you can only apply the ∀E rule when the universal quantifier is
the main logical operator. So the following is banned :

1 ∀x B (x) → B (k)

2 B (b) → B (k) naughy attempt to invoke ∀E 1

This is illegitimate, since ‘∀x ’ is not the main logical operator in
line 1. (If you need a reminder as to why this sort of inference
should be banned, reread §23.)

34.2 Existential introduction

From the claim that some particular thing is F , you can infer that
something is F . So we ought to allow:

1 R (a,a,d)

2 ∃x R (a,a,x) ∃I 1

CHAPTER 34. BASIC RULES FOR FOL 291

Here, we have replaced the name ‘d ’ with a variable ‘x ’, and then
existentially quantified over it. Equally, we would have allowed:

1 R (a,a,d)

2 ∃x R (x ,x ,d) ∃I 1

Here we have replaced both instances of the name ‘a’ with a
variable, and then existentially generalised. But we do not need
to replace both instances of a name with a variable: if Narcissus
loves himself, then there is someone who loves Narcissus. So we
also allow:

1 R (a,a,d)

2 ∃x R (x ,a,d) ∃I 1

Here we have replaced one instance of the name ‘a’ with a vari-
able, and then existentially generalised. These observations mo-
tivate our introduction rule, although to explain it, we will need
to introduce some new notation.

Where A is a sentence containing the name c, we can
emphasize this by writing ‘A(. . . c . . . c . . .)’. We will write
‘A(. . .x . . . c . . .)’ to indicate any formula obtained by replacing
some or all of the instances of the name c with the variable x.
Armed with this, our introduction rule is:

m A(. . . c . . . c . . .)

∃xA(. . .x . . . c . . .) ∃I m

xmust not occur in A(. . . c . . . c . . .)

The constraint is included to guarantee that any application
of the rule yields a sentence of FOL. Thus the following is al-
lowed:

CHAPTER 34. BASIC RULES FOR FOL 292

1 R (a,a,d)

2 ∃x R (x ,a,d) ∃I 1

3 ∃y∃x R (x ,y ,d) ∃I 2

But this is banned:

1 R (a,a,d)

2 ∃x R (x ,a,d) ∃I 1

3 ∃x ∃x R (x ,x ,d) naughty attempt to invoke ∃I 2

since the expression on line 3 contains clashing variables, and so
is not a sentence of FOL.

34.3 Empty domains

The following proof combines our two new rules for quantifiers:

1 ∀x F (x)

2 F (a) ∀E 1

3 ∃x F (x) ∃I 2

Could this be a bad proof? If anything exists at all, then certainly
we can infer that something is F , from the fact that everything
is F . But what if nothing exists at all? Then it is surely vacuously
true that everything is F ; however, it does not following that
something is F , for there is nothing to be F . So if we claim that,
as a matter of logic alone, ‘∃x F (x)’ follows from ‘∀x F (x)’, then
we are claiming that, as a matter of logic alone, there is something
rather than nothing. This might strike us as a bit odd.

Actually, we are already committed to this oddity. In §22, we
stipulated that domains in FOL must have at least one member.
We then defined a validity (of FOL) as a sentence which is true
in every interpretation. Since ‘∃x x = x ’ will be true in every

CHAPTER 34. BASIC RULES FOR FOL 293

interpretation, this also had the effect of stipulating that it is a
matter of logic that there is something rather than nothing.

Since it is far from clear that logic should tell us that there
must be something rather than nothing, we might well be cheat-
ing a bit here.

If we refuse to cheat, though, then we pay a high cost. Here
are three things that we want to hold on to:

• ∀x F (x) ⊢ F (a): after all, that was ∀E.
• F (a) ⊢ ∃x F (x): after all, that was ∃I.
• the ability to copy-and-paste proofs together: after all, rea-
soning works by putting lots of little steps together into
rather big chains.

If we get what we want on all three counts, then we have to coun-
tenance that ∀xF x ⊢ ∃x F (x). So, if we get what we want on all
three counts, the proof system alone tells us that there is some-
thing rather than nothing. And if we refuse to accept that, then
we have to surrender one of the three things that we want to hold
on to!

Before we start thinking about which to surrender, we might
want to ask how much of a cheat this is. Granted, it may make it
harder to engage in theological debates about why there is some-
thing rather than nothing. But the rest of the time, we will get
along just fine. So maybe we should just regard our proof sys-
tem (and FOL, more generally) as having a very slightly limited
purview. If we ever want to allow for the possibility of nothing,
then we will have to cast around for a more complicated proof
system. But for as long as we are content to ignore that possibil-
ity, our proof system is perfectly in order. (As, similarly, is the
stipulation that every domain must contain at least one object.)

34.4 Universal introduction

Suppose you had shown of each particular thing that it is F (and
that there are no other things to consider). Then you would be

CHAPTER 34. BASIC RULES FOR FOL 294

justified in claiming that everything is F. This would motivate the
following proof rule. If you had established each and every single
substitution instance of ‘∀x F (x)’, then you can infer ‘∀x F (x)’.

Unfortunately, that rule would be utterly unusable. To es-
tablish each and every single substitution instance would require
proving ‘F (a)’, ‘F (b)’, . . . , ‘F (j2)’, . . . , ‘F (r79002)’, . . . , and so
on. Indeed, since there are infinitely many names in FOL, this
process would never come to an end. So we could never apply
that rule. We need to be a bit more cunning in coming up with
our rule for introducing universal quantification.

A solution will be inspired by considering:

∀x F (x) ∴ ∀y F (y)

This argument should obviously be valid. After all, alphabetical
variation ought to be a matter of taste, and of no logical conse-
quence. But how might our proof system reflect this? Suppose we
begin a proof thus:

1 ∀x F (x)

2 F (a) ∀E 1

We have proved ‘F (a)’. And, of course, nothing stops us from
using the same justification to prove ‘F (b)’, ‘F (c)’, . . . , ‘F (j2)’,
. . . , ‘F (r79002), . . . , and so on until we run out of space, time,
or patience. But reflecting on this, we see that there is a way to
prove F c, for any name c. And if we can do it for any thing, we
should surely be able to say that ‘F ’ is true of everything. This
therefore justifies us in inferring ‘∀y F (y)’, thus:

1 ∀x F (x)

2 F (a) ∀E 1

3 ∀y F (y) ∀I 2

The crucial thought here is that ‘a’ was just some arbitrary name.
There was nothing special about it—we might have chosen any

CHAPTER 34. BASIC RULES FOR FOL 295

other name—and still the proof would be fine. And this crucial
thought motivates the universal introduction rule (∀I):

m A(. . . c . . . c . . .)

∀xA(. . .x . . .x . . .) ∀I m

cmust not occur in any undischarged assumption
xmust not occur in A(. . . c . . . c . . .)

A crucial aspect of this rule, though, is bound up in the first
constraint. This constraint ensures that we are always reasoning
at a sufficiently general level. To see the constraint in action,
consider this terrible argument:

Everyone loves Kylie Minogue; therefore everyone
loves themselves.

We might symbolize this obviously invalid inference pattern as:

∀x L(x ,k) ∴ ∀x L(x ,x)

Now, suppose we tried to offer a proof that vindicates this argu-
ment:

1 ∀x L(x ,k)

2 L(k ,k) ∀E 1

3 ∀x L(x ,x) naughty attempt to invoke ∀I 2

This is not allowed, because ‘k ’ occurred already in an undis-
charged assumption, namely, on line 1. The crucial point is that,
if we have made any assumptions about the object we are working
with, then we are not reasoning generally enough to license ∀I.

Although the name may not occur in any undischarged as-
sumption, it may occur in a discharged assumption. That is, it
may occur in a subproof that we have already closed. For exam-
ple, this is just fine:

CHAPTER 34. BASIC RULES FOR FOL 296

1 G (d)

2 G (d) R 1

3 G (d) → G (d) →I 1–2

4 ∀z (G (z) → G (z)) ∀I 3

This tells us that ‘∀z (G (z) → G (z))’ is a theorem. And that is as
it should be.

We should emphasise one last point. As per the conventions
of §30.3, the use of ∀I requires that we are replacing every instance
of the name c in A(. . .x . . .x . . .) with the variable x. If we
only replace some names and not others, we end up ‘proving’
silly things. For example, consider the argument:

Everyone is as old as themselves; so everyone is as
old as Judi Dench.

We might symbolise this as follows:

∀x O (x ,x) ∴ ∀x O (x ,d)

But now suppose we tried to vindicate this terrible argument with
the following:

1 ∀x O (x ,x)

2 O (d ,d) ∀E 1

3 ∀x O (x ,d) naughty attempt to invoke ∀I 2

Fortunately, our rules do not allow for us to do this: the attempted
proof is banned, since it doesn’t replace every occurrence of ‘d ’
in line 2 with an ‘x ’.

34.5 Existential elimination

Suppose we know that something is F . The problem is that sim-
ply knowing this does not tell us which thing is F . So it would

CHAPTER 34. BASIC RULES FOR FOL 297

seem that from ‘∃x F (x)’ we cannot immediately conclude ‘F (a)’,
‘F (e23)’, or any other substitution instance of the sentence. What
can we do?

Suppose we know that something is F , and that everything
which is F is alsoG . In (almost) natural English, we might reason
thus:

Since something is F , there is some particular thing
which is an F . We do not know anything about it,
other than that it’s an F , but for convenience, let’s call
it ‘Becky’. So: Becky is F . Since everything which is
F is G , it follows that Becky is G . But since Becky
is G , it follows that something is G . And nothing
depended on which object, exactly, Becky was. So,
something is G .

We might try to capture this reasoning pattern in a proof as fol-
lows:

1 ∃x F (x)

2 ∀x (F (x) → G (x))

3 F (b)

4 F (b) → G (b) ∀E 2

5 G (b) →E 4, 3

6 ∃x G (x) ∃I 5

7 ∃x G (x) ∃E 1, 3–6

Breaking this down: we started by writing down our assumptions.
At line 3, we made an additional assumption: ‘F (b)’. This was
just a substitution instance of ‘∃x F (x)’. On this assumption, we
established ‘∃x G (x)’. Note that we had made no special assump-
tions about the object named by ‘b ’; we had only assumed that
it satisfies ‘F (x)’. So nothing depends upon which object it is.

CHAPTER 34. BASIC RULES FOR FOL 298

And line 1 told us that something satisfies ‘F (x)’, so our reason-
ing pattern was perfectly general. We can discharge the specific
assumption ‘F (b)’, and simply infer ‘∃x G (x)’ on its own.

Putting this together, we obtain the existential elimination
rule (∃E):

m ∃xA(. . .x . . .x . . .)

i A(. . . c . . . c . . .)

j B

B ∃E m, i– j

c must not occur in any assumption undischarged before
line i
cmust not occur in ∃xA(. . .x . . .x . . .)
cmust not occur in B

As with universal introduction, the constraints are extremely
important. To see why, consider the following terrible argument:

Tim Button is a lecturer. Someone is not a lecturer.
So Tim Button is both a lecturer and not a lecturer.

We might symbolize this obviously invalid inference pattern as
follows:

L(b),∃x ¬L(x) ∴ L(b) ∧ ¬L(b)

Now, suppose we tried to offer a proof that vindicates this argu-
ment:

CHAPTER 34. BASIC RULES FOR FOL 299

1 L(b)

2 ∃x ¬L(x)

3 ¬L(b)

4 L(b) ∧ ¬L(b) ∧I 1, 3

5 L(b) ∧ ¬L(b) naughty attempt

to invoke ∃E 2, 3–4

The last line of the proof is not allowed. The name that we used
in our substitution instance for ‘∃x ¬L(x)’ on line 3, namely ‘b ’,
occurs in line 4. The this would be no better:

1 L(b)

2 ∃x ¬L(x)

3 ¬L(b)

4 L(b) ∧ ¬L(b) ∧I 1, 3

5 ∃x (L(x) ∧ ¬L(x)) ∃I 4

6 ∃x (L(x) ∧ ¬L(x)) naughty attempt

to invoke ∃E 2, 3–5

The last line is still not allowed. For the name that we used in
our substitution instance for ‘∃x ¬L(x)’, namely ‘b ’, occurs in an
undischarged assumption, namely line 1.

The moral of the story is this. If you want to squeeze information
out of an existential quantifier, choose a new name for your substitu-
tion instance. That way, you can guarantee that you meet all the
constraints on the rule for ∃E.

CHAPTER 34. BASIC RULES FOR FOL 300

Practice exercises

A. Explain why these two ‘proofs’ are incorrect. Also, provide
interpretations which would invalidate the fallacious argument
forms the ‘proofs’ enshrine:

1 ∀x R (x ,x)

2 R (a,a) ∀E 1

3 ∀y R (a,y) ∀I 2

4 ∀x ∀y R (x ,y) ∀I 3

1 ∀x ∃y R (x ,y)

2 ∃y R (a,y) ∀E 1

3 R (a,a)

4 ∃x R (x ,x) ∃I 3

5 ∃x R (x ,x) ∃E 2, 3–4

B. The following three proofs are missing their citations (rule and
line numbers). Add them, to turn them into bona fide proofs.

1.

1 ∀x∃y (R (x ,y) ∨R (y ,x))

2 ∀x ¬R (m,x)

3 ∃y (R (m,y) ∨R (y ,m))

4 R (m,a) ∨R (a,m)

5 ¬R (m,a)

6 R (a,m)

7 ∃x R (x ,m)

8 ∃x R (x ,m)

CHAPTER 34. BASIC RULES FOR FOL 301

2.

1 ∀x (∃y L(x ,y) → ∀z L(z ,x))

2 L(a,b)

3 ∃y L(a,y) → ∀zL(z ,a)

4 ∃y L(a,y)

5 ∀z L(z ,a)

6 L(c ,a)

7 ∃y L(c ,y) → ∀z L(z ,c)

8 ∃y L(c ,y)

9 ∀z L(z ,c)

10 L(c ,c)

11 ∀x L(x ,x)

3.

1 ∀x (J (x) → K (x))

2 ∃x ∀y L(x ,y)

3 ∀x J (x)

4 ∀y L(a,y)

5 L(a,a)

6 J (a)

7 J (a) → K (a)

8 K (a)

9 K (a) ∧ L(a,a)

10 ∃x (K (x) ∧ L(x ,x))

11 ∃x (K (x) ∧ L(x ,x))

C. In §23 problem A, we considered fifteen syllogistic figures of

CHAPTER 34. BASIC RULES FOR FOL 302

Aristotelian logic. Provide proofs for each of the argument forms.
NB: You will find it much easier if you symbolize (for example)
‘No F is G’ as ‘∀x (F (x) → ¬G (x))’.

D. Aristotle and his successors identified other syllogistic forms
which depended upon ‘existential import’. Symbolize each of
these argument forms in FOL and offer proofs.

1. Barbari. Something is H. All G are F. All H are G. So:
Some H is F

2. Celaront. Something is H. No G are F. All H are G. So:
Some H is not F

3. Cesaro. Something is H. No F are G. All H are G. So:
Some H is not F.

4. Camestros. Something is H. All F are G. No H are G. So:
Some H is not F.

5. Felapton. Something is G. No G are F. All G are H. So:
Some H is not F.

6. Darapti. Something is G. All G are F. All G are H. So:
Some H is F.

7. Calemos. Something is H. All F are G. No G are H. So:
Some H is not F.

8. Fesapo. Something is G. No F is G. All G are H. So: Some
H is not F.

9. Bamalip. Something is F. All F are G. All G are H. So:
Some H are F.

E. Provide a proof of each claim.

1. ⊢ ∀x F (x) → ∀y (F (y) ∧ F (y))
2. ∀x (A(x) → B (x)),∃x A(x) ⊢ ∃x B (x)
3. ∀x (M (x) ↔ N (x)),M (a) ∧ ∃x R (x ,a) ⊢ ∃x N (x)
4. ∀x ∀y G (x ,y) ⊢ ∃x G (x ,x)
5. ⊢ ∀x R (x ,x) → ∃x ∃y R (x ,y)
6. ⊢ ∀y ∃x (Q (y) → Q (x))
7. N (a) → ∀x (M (x) ↔ M (a)),M (a),¬M (b) ⊢ ¬N (a)
8. ∀x ∀y (G (x ,y) → G (y ,x)) ⊢ ∀x∀y (G (x ,y) ↔ G (y ,x))

CHAPTER 34. BASIC RULES FOR FOL 303

9. ∀x (¬M (x) ∨ L(j ,x)),∀x (B (x) → L(j ,x)),∀x (M (x) ∨
B (x)) ⊢ ∀xL(j ,x)

F. Write a symbolization key for the following argument, symbol-
ize it, and prove it:

There is someone who likes everyone who likes every-
one that she likes. Therefore, there is someone who
likes herself.

G. Show that each pair of sentences is provably equivalent.

1. ∀x (A(x) → ¬B (x)), ¬∃x (A(x) ∧ B (x))
2. ∀x (¬A(x) → B (d)), ∀x A(x) ∨ B (d)
3. ∃x P (x) → Q (c), ∀x (P (x) → Q (c))

H. For each of the following pairs of sentences: If they are prov-
ably equivalent, give proofs to show this. If they are not, construct
an interpretation to show that they are not logically equivalent.

1. ∀x P (x) → Q (c),∀x (P (x) → Q (c))
2. ∀x ∀y ∀z B (x ,y ,z),∀x B (x ,x)x
3. ∀x ∀y D (x ,y),∀y ∀x D (x ,y)
4. ∃x ∀y D (x ,y),∀y ∃x D (x ,y)
5. ∀x (R (c ,a) ↔ R (x ,a)),R (c ,a) ↔ ∀x R (x ,a)

I. For each of the following arguments: If it is valid in FOL, give
a proof. If it is invalid, construct an interpretation to show that
it is invalid.

1. ∃y ∀x R (x ,y) ∴ ∀x ∃y R (x ,y)
2. ∀x ∃y R (x ,y) ∴ ∃y ∀x R (x ,y)
3. ∃x (P (x) ∧ ¬Q (x)) ∴ ∀x (P (x) → ¬Q (x))
4. ∀x (S (x) → T (a)),S (d) ∴ T (a)
5. ∀x (A(x) → B (x)),∀x (B (x) → C (x)) ∴ ∀x (A(x) → C (x))
6. ∃x (D (x) ∨ E (x)),∀x (D (x) → F (x)) ∴ ∃x (D (x) ∧ F (x))
7. ∀x ∀y (R (x ,y) ∨R (y ,x)) ∴ R (j , j)
8. ∃x ∃y (R (x ,y) ∨R (y ,x)) ∴ R (j , j)
9. ∀x P (x) → ∀x Q (x),∃x ¬P (x) ∴ ∃x ¬Q (x)

CHAPTER 34. BASIC RULES FOR FOL 304

10. ∃x M (x) → ∃x N (x), ¬∃x N (x) ∴ ∀x ¬M (x)

CHAPTER 35

Proofs with
quantifiers
In §17 we discussed strategies for constructing proofs using the
basic rules of natural deduction for TFL. The same principles
apply to the rules for the quantifiers. If we want to prove a quan-
tifier sentence ∀xA(x) or ∃xA(x). We can work backward by
justifying the sentence we want by ∀I or ∃I and trying to find a
proof of the corresponding premise of that rule. And to work
forward from a quantified sentence, we apply ∀E or ∃E, as the
case may be.

Specifically, suppose you want to prove ∀xA(x). To do so
using ∀I, we would need a proof of A(c) for some name cwhich
does not occur in any undischarged assumption. To apply the
corresponding strategy, i.e., to construct a proof of ∀xA(x) by
working backward, is thus to write A(c) above it and then to
continue to try to find a proof of that sentence.

...

n A(c)

n + 1 ∀xA(x) ∀I n

305

CHAPTER 35. PROOFS WITH QUANTIFIERS 306

A(c) is obtained from A(x) by replacing every free occurrence
of x in A(x) by c. For this to work, c must satisfy the special
condition. We can ensure that it does by always picking a name
that does not already occur in the proof constructed so far. (Of
course, it will occur in the proof we end up constructing—just
not in an assumption that is undischarged at line n + 1.)

To work backward from a sentence ∃xA(x) we similarly
write a sentence above it that can serve as a justification for an
application of the ∃I rule, i.e., a sentence of the form A(c).

...

n A(c)

n + 1 ∃xA(x) ∃I n

This looks just like what we would do if we were working back-
ward from a universally quantified sentence. The difference is
that whereas for ∀I we have to pick a name c which does not
occur in the proof (so far), for ∃I we may and in general must
pick a name c which already occurs in the proof. Just like in the
case of ∨I, it is often not clear which c will work out, and so to
avoid having to backtrack you should work backward from exis-
tentially quantified sentences only when all other strategies have
been applied.

By contrast, working forward from sentences ∃xA(x()) gen-
erally always works and you won’t have to backtrack. Working
forward from an existentially quantified sentence takes into ac-
count not just ∃xA(x) but also whatever sentence B you would
like to prove. It requires that you set up a subproof above B,
wherein B is the last line, and a substitution instance A(c) of
∃xA(x) as the assumption. In order to ensure that the condi-
tion on c that governs ∃E is satisfied, chose a name cwhich does
not already occur in the proof.

CHAPTER 35. PROOFS WITH QUANTIFIERS 307

...

m ∃xA(x)
...

n A(c)
...

k B

k + 1 B ∃E m, n–k

You’ll then continue with the goal of proving B, but now inside a
subproof in which you have an additional sentence to work with,
namely A(c).

Lastly, working forward from ∀xA(x) means that you can
always write down A(c) and justify it using ∀E, for any name c.
Of course, you wouldn’t want to do that willy-nilly. Only certain
names cwill help in your task of proving whatever goal sentence
you are working on. So, like working backward from ∃xA(x),
you should work forward from ∀xA(x) only after all other strate-
gies have been applied.

Let’s consider as an example the argument ∀x (A(x) → B) ∴
∃x A(x) → B . To start constructing a proof, we write the premise
at the top and the conclusion at the bottom.

1 ∀x (A(x) → B)
...

n ∃x A(x) → B

The strategies for connectives of TFL still apply, and you should
apply them in the same order: first work backward from condi-
tionals, negated sentences, conjunctions, and now also universal
quantifiers, then forward from disjunctions and now existential
quantifiers, and only then try to apply →E, ¬E, ∨I, ∀E, or ∃I. In
our case, that means, working backward from the conclusion:

CHAPTER 35. PROOFS WITH QUANTIFIERS 308

1 ∀x (A(x) → B)

2 ∃x A(x)
...

n − 1 B

n ∃x A(x) → B →I 2–(n − 1)

Our next step should be to work forward from ∃x A(x) on line 2.
For that, we have to pick a name not already in our proof. Since
no names appear, we can pick any name, say ‘d ’

1 ∀x (A(x) → B)

2 ∃x A(x)

3 A(d)
...

n − 2 B

n − 1 B ∃E 2, 3–(n − 2)

n ∃x A(x) → B →I 2–(n − 1)

Now we’ve exhausted our primary strategies, and it is time to
work forward from the premise ∀x (A(x) → B). Applying ∀E
means we can justify any instance of A(c) → B , regardless of
what c we choose. Of course, we’ll do well to choose d , since
that will give us A(d) → B . Then we can apply →E to justify B ,
finishing the proof.

CHAPTER 35. PROOFS WITH QUANTIFIERS 309

1 ∀x (A(x) → B)

2 ∃x A(x)

3 A(d)

4 A(d) → B ∀E 1

5 B →E 4, 3

6 B ∃E 2, 3–5

7 ∃x A(x) → B →I 2–6

Now let’s construct a proof of the converse. We begin with

1 ∃x A(x) → B
...

n ∀x (A(x) → B)

Note that the premise is a conditional, not an existentially quanti-
fied sentence, so we should not (yet) work forward from it. Work-
ing backward from the conclusion, ∀x (A(x) → B), leads us to
look for a proof of A(d) → B :

1 ∃x A(x) → B
...

n − 1 A(d) → B

n ∀x (A(x) → B) ∀I n − 1

And working backward from A(d) → B means we should set up
a subproof with A(d) as an assumption and B as the last line:

CHAPTER 35. PROOFS WITH QUANTIFIERS 310

1 ∃x A(x) → B

2 A(d)
...

n − 2 B

n − 1 A(d) → B →I 2–(n − 2)

n ∀x (A(x) → B) ∀I n − 1

Now we can work forward from the premise on line 1. That’s
a conditional, and its consequent happens to be the sentence B
we are trying to justify. So we should look for a proof of its
antecedent, ∃x A(x). Of course, that is now readily available, by
∃I from line 2, and we’re done:

1 ∃x A(x) → B

2 A(d)

3 ∃x A(x) ∃I 2

4 B →E 1, 3

5 A(d) → B →I 2–4

6 ∀x (A(x) → B) ∀I 5

Practice exercises

A. Use the strategies to find proofs for each of the following ar-
guments and theorems:

1. A → ∀x B (x) ∴ ∀x (A → B (x))
2. ∃x (A → B (x)) ∴ A → ∃x B (x)
3. ∀x (A(x) ∧ B (x)) ↔ (∀x A(x) ∧ ∀x B (x))
4. ∃x (A(x) ∨ B (x)) ↔ (∃x A(x) ∨ ∃x B (x))
5. A ∨ ∀x B (x)) ∴ ∀x (A ∨ B (x))

CHAPTER 35. PROOFS WITH QUANTIFIERS 311

6. ∀x (A(x) → B) ∴ ∃x A(x) → B
7. ∃x (A(x) → B) ∴ ∀x A(x) → B
8. ∀x (A(x) → ∃y A(y))

Use only the basic rules of TFL in addition to the basic quantifier
rules.
B. Use the strategies to find proofs for each of the following ar-
guments and theorems:

1. ∀x R (x ,x) ∴ ∀x ∃y R (x ,y)
2. ∀x ∀y ∀z [(R (x ,y) ∧R (y ,z)) → R (x ,z)]
∴ ∀x ∀y [R (x ,y) → ∀z (R (y ,z) → R (x ,z))]

3. ∀x ∀y ∀z [(R (x ,y) ∧R (y ,z)) → R (x ,z)],
∀x ∀y (R (x ,y) → R (y ,x))
∴ ∀x ∀y ∀z [(R (x ,y) ∧R (x ,z)) → R (y ,z)]

4. ∀x ∀y (R (x ,y) → R (y ,x))
∴ ∀x ∀y ∀z [(R (x ,y) ∧R (x ,z)) → ∃u (R (y ,u) ∧R (z ,u))]

5. ¬∃x ∀y (A(x ,y) ↔ ¬A(y ,y))

C. Use the strategies to find proofs for each of the following ar-
guments and theorems:

1. ∀x A(x) → B ∴ ∃x (A(x) → B)
2. A → ∃x B (x) ∴ ∃x (A → B (x))
3. ∀x (A ∨ B (x)) ∴ A ∨ ∀x B (x))
4. ∃x (A(x) → ∀y A(y))
5. ∃x (∃y A(y) → A(x))

These require the use of IP. Use only the basic rules of TFL in
addition to the basic quantifier rules.

CHAPTER 36

Conversion of
quantifiers
In this section, we will add some additional rules to the basic
rules of the previous section. These govern the interaction of
quantifiers and negation.

In §22, we noted that ¬∃xA is logically equivalent to ∀x ¬A.
We will add some rules to our proof system that govern this. In
particular, we add:

m ∀x¬A

¬∃xA CQ m

and

m ¬∃xA

∀x¬A CQ m

Equally, we add:

312

CHAPTER 36. CONVERSION OF QUANTIFIERS 313

m ∃x¬A

¬∀xA CQ m

and

m ¬∀xA

∃x¬A CQ m

Practice exercises

A. Show in each case that the sentences are provably inconsis-
tent:

1. S (a) → T (m),T (m) → S (a),T (m) ∧ ¬S (a)
2. ¬∃x R (x ,a),∀x ∀y R (y ,x)
3. ¬∃x ∃y L(x ,y),L(a,a)
4. ∀x (P (x) → Q (x)),∀z (P (z) → R (z)),∀y P (y),¬Q (a) ∧

¬R (b)

B. Show that each pair of sentences is provably equivalent:

1. ∀x (A(x) → ¬B (x)),¬∃x (A(x) ∧ B (x))
2. ∀x (¬A(x) → B (d)),∀x A(x) ∨ B (d)

C. In §23, we considered what happens when we move quanti-
fiers ‘across’ various logical operators. Show that each pair of
sentences is provably equivalent:

1. ∀x (F (x) ∧G (a)),∀x F (x) ∧G (a)
2. ∃x (F (x) ∨G (a)),∃x F (x) ∨G (a)
3. ∀x (G (a) → F (x)),G (a) → ∀x F (x)
4. ∀x (F (x) → G (a)),∃x F (x) → G (a)
5. ∃x (G (a) → F (x)),G (a) → ∃x F (x)
6. ∃x (F (x) → G (a)),∀x F (x) → G (a)

CHAPTER 36. CONVERSION OF QUANTIFIERS 314

NB: the variable ‘x ’ does not occur in ‘G (a)’. When all the quan-
tifiers occur at the beginning of a sentence, that sentence is said
to be in prenex normal form. These equivalences are sometimes
called prenexing rules, since they give us a means for putting any
sentence into prenex normal form.

CHAPTER 37

Rules for
identity
In §29, we mentioned the philosophically contentious thesis of
the identity of indiscernibles. This is the claim that objects which
are indiscernible in every way are, in fact, identical to each other.
It was also mentioned that we will not subscribe to this thesis. It
follows that, no matter how much you learn about two objects,
we cannot prove that they are identical. That is unless, of course,
you learn that the two objects are, in fact, identical, but then the
proof will hardly be very illuminating.

The general point, though, is that no sentences which do not
already contain the identity predicate could justify an inference
to ‘a = b ’. So our identity introduction rule cannot allow us to
infer to an identity claim containing two different names.

However, every object is identical to itself. No premises, then,
are required in order to conclude that something is identical to
itself. So this will be the identity introduction rule:

c = c =I

Notice that this rule does not require referring to any prior

315

CHAPTER 37. RULES FOR IDENTITY 316

lines of the proof. For any name c, you can write c = c on any
point, with only the =I rule as justification.

Our elimination rule is more fun. If you have established
‘a = b ’, then anything that is true of the object named by ‘a’ must
also be true of the object named by ‘b ’. For any sentence with ‘a’
in it, you can replace some or all of the occurrences of ‘a’ with ‘b ’
and produce an equivalent sentence. For example, from ‘R (a,a)’
and ‘a = b ’, you are justified in inferring ‘R (a,b)’, ‘R (b ,a)’ or
‘R (b ,b)’. More generally:

m a = b

n A(. . .a . . .a . . .)

A(. . . b . . .a . . .) =E m, n

The notation here is as for ∃I. So A(. . .a . . .a . . .) is a for-
mula containing the name a, and A(. . . b . . .a . . .) is a formula
obtained by replacing one or more instances of the name a with
the name b. Lines m and n can occur in either order, and do not
need to be adjacent, but we always cite the statement of identity
first. Symmetrically, we allow:

m a = b

n A(. . . b . . . b . . .)

A(. . .a . . . b . . .) =E m, n

This rule is sometimes called Leibniz’s Law, after Gottfried
Leibniz.

To see the rules in action, we will prove some quick results.
First, we will prove that identity is symmetric:

CHAPTER 37. RULES FOR IDENTITY 317

1 a = b

2 a = a =I

3 b = a =E 1, 2

4 a = b → b = a →I 1–3

5 ∀y (a = y → y = a) ∀I 4

6 ∀x ∀y (x = y → y = x) ∀I 5

We obtain line 3 by replacing one instance of ‘a’ in line 2 with
an instance of ‘b ’; this is justified given ‘a = b ’.

Second, we will prove that identity is transitive:

1 a = b ∧ b = c

2 a = b ∧E 1

3 b = c ∧E 1

4 a = c =E 2, 3

5 (a = b ∧ b = c) → a = c →I 1–4

6 ∀z ((a = b ∧ b = z) → a = z) ∀I 5

7 ∀y ∀z ((a = y ∧ y = z) → a = z) ∀I 6

8 ∀x ∀y∀z ((x = y ∧ y = z) → x = z) ∀I 7

We obtain line 4 by replacing ‘b ’ in line 3 with ‘a’; this is justified
given ‘a = b ’.

Practice exercises

A. Provide a proof of each claim.

1. P (a) ∨Q (b),Q (b) → b = c ,¬P (a) ⊢ Q (c)
2. m = n ∨ n = o,A(n) ⊢ A(m) ∨ A(o)

CHAPTER 37. RULES FOR IDENTITY 318

3. ∀x x = m,R (m,a) ⊢ ∃x R (x ,x)
4. ∀x ∀y (R (x ,y) → x = y) ⊢ R (a,b) → R (b ,a)
5. ¬∃x¬x = m ⊢ ∀x ∀y (P (x) → P (y))
6. ∃x J (x),∃x ¬ J (x) ⊢ ∃x ∃y ¬x = y
7. ∀x (x = n ↔ M (x)),∀x (O (x) ∨ ¬M (x)) ⊢ O (n)
8. ∃x D (x),∀x (x = p ↔ D (x)) ⊢ D (p)
9. ∃x

[︁
(K (x) ∧ ∀y (K (y) → x = y)) ∧ B (x)

]︁
,Kd ⊢ B (d)

10. ⊢ P (a) → ∀x (P (x) ∨ ¬x = a)

B. Show that the following are provably equivalent:

• ∃x
(︁
[F (x) ∧ ∀y (F (y) → x = y)] ∧ x = n

)︁
• F (n) ∧ ∀y (F (y) → n = y)

And hence that both have a decent claim to symbolize the En-
glish sentence ‘Nick is the F ’.

C. In §25, we claimed that the following are logically equivalent
symbolizations of the English sentence ‘there is exactly one F ’:

• ∃x F (x) ∧ ∀x ∀y
[︁
(F (x) ∧ F (y)) → x = y

]︁
• ∃x

[︁
F (x) ∧ ∀y (F (y) → x = y)

]︁
• ∃x ∀y (F (y) ↔ x = y)

Show that they are all provably equivalent. (Hint: to show that
three claims are provably equivalent, it suffices to show that the
first proves the second, the second proves the third and the third
proves the first; think about why.)

D. Symbolize the following argument

There is exactly one F . There is exactly oneG . Noth-
ing is both F and G . So: there are exactly two things
that are either F or G .

And offer a proof of it.

CHAPTER 38

Derived rules
As in the case of TFL, we first introduced some rules for FOL as
basic (in §34), and then added some further rules for conversion
of quantifiers (in §36). In fact, the CQ rules should be regarded
as derived rules, for they can be derived from the basic rules of
§34. (The point here is as in §20.) Here is a justification for the
first CQ rule:

1 ∀x ¬A(x)

2 ∃x A(x)

3 A(c)

4 ¬A(c) ∀E 1

5 ⊥ ¬E 4, 3

6 ⊥ ∃E 2, 3–5

7 ¬∃x A(x) ¬I 2–6

Here is a justification of the third CQ rule:

319

CHAPTER 38. DERIVED RULES 320

1 ∃x ¬A(x)

2 ∀x A(x)

3 ¬A(c)

4 A(c) ∀E 2

5 ⊥ ¬E 3, 4

6 ⊥ ∃E 1, 3–5

7 ¬∀x A(x) ¬I 2–6

This explains why the CQ rules can be treated as derived. Similar
justifications can be offered for the other two CQ rules.

Practice exercises

A. Offer proofs which justify the addition of the second and
fourth CQ rules as derived rules.

CHAPTER 39

Proofs and
semantics
We have used two different turnstiles in this book. This:

A1,A2, . . . ,An ⊢ C

means that there is some proof which ends with C and whose
only undischarged assumptions are among A1,A2, . . . ,An . This
is a proof-theoretic notion. By contrast, this:

A1,A2, . . . ,An ⊨ C

means that no valuation (or interpretation) makes all of
A1,A2, . . . ,An true and C false. This concerns assignments of
truth and falsity to sentences. It is a semantic notion.

It cannot be emphasized enough that these are different no-
tions. But we can emphasize it a bit more: They are different no-
tions.

Once you have internalised this point, continue reading.
Although our semantic and proof-theoretic notions are differ-

ent, there is a deep connection between them. To explain this
connection,we will start by considering the relationship between
validities and theorems.

321

CHAPTER 39. PROOFS AND SEMANTICS 322

To show that a sentence is a theorem, you need only produce
a proof. Granted, it may be hard to produce a twenty line proof,
but it is not so hard to check each line of the proof and confirm
that it is legitimate; and if each line of the proof individually is
legitimate, then the whole proof is legitimate. Showing that a sen-
tence is a validity, though, requires reasoning about all possible
interpretations. Given a choice between showing that a sentence
is a theorem and showing that it is a validity, it would be easier
to show that it is a theorem.

Contrawise, to show that a sentence is not a theorem is hard.
We would need to reason about all (possible) proofs. That is
very difficult. However, to show that a sentence is not a validity,
you need only construct an interpretation in which the sentence is
false. Granted, it may be hard to come up with the interpretation;
but once you have done so, it is relatively straightforward to check
what truth value it assigns to a sentence. Given a choice between
showing that a sentence is not a theorem and showing that it is
not a validity, it would be easier to show that it is not a validity.

Fortunately, a sentence is a theorem if and only if it is a validity.
As a result, if we provide a proof of A on no assumptions, and
thus show that A is a theorem, i.e., ⊢ A, we can legitimately
infer that A is a validity, i.e., ⊨ A. Similarly, if we construct an
interpretation in which A is false and thus show that it is not a
validity, i.e., ⊭ A, it follows that A is not a theorem, i.e., ⊬ A.

More generally, we have the following powerful result:

A1,A2, . . . ,An ⊢ B iff A1,A2, . . . ,An ⊨ B

This shows that, whilst provability and entailment are different
notions, they are extensionally equivalent. As such:

• An argument is valid iff the conclusion can be proved from the
premises.

• Two sentences are logically equivalent iff they are provably
equivalent.

• Sentences are satisfiable iff they are not provably inconsistent.

CHAPTER 39. PROOFS AND SEMANTICS 323

For this reason, you can pick and choose when to think in terms
of proofs and when to think in terms of valuations/interpretations,
doing whichever is easier for a given task. The table on the next
page summarises which is (usually) easier.

It is intuitive that provability and semantic entailment should
agree. But—let us repeat this—do not be fooled by the similarity
of the symbols ‘⊨’ and ‘⊢’. These two symbols have very differ-
ent meanings. The fact that provability and semantic entailment
agree is not an easy result to come by.

In fact, demonstrating that provability and semantic entail-
ment agree is, very decisively, the point at which introductory
logic becomes intermediate logic.

CHAPTER 39. PROOFS AND SEMANTICS 324

Y
es

N
o

Is
A
a
va

li
d
it
y?

gi
ve

a
pr
oo

f
w
hi
ch

sh
ow

s
⊢
A

gi
ve

an
in
te
rp
re
ta
ti
on

in
w
hi
ch

A
is

fa
ls
e

Is
A
a
co

n
tr
ad

ic
ti
on

?
gi
ve

a
pr
oo

f
w
hi
ch

sh
ow

s
⊢
¬A

gi
ve

an
in
te
rp
re
ta
ti
on

in
w
hi
ch

A
is

tr
ue

A
re

A
an

d
B

eq
ui
va

le
n
t?

gi
ve

tw
o
pr
oo

fs
,
on

e
fo
r
A

⊢
B

an
d

on
e
fo
r
B

⊢
A

gi
ve

an
in
te
rp
re
ta
ti
on

in
w
hi
ch

A
an

d
B

ha
ve

di
ffe
re
nt

tr
ut
h
va
lu
es

A
re

A
1,
A
2,
.
.
.,
A
n

jo
in
tl
y

sa
ti
sfi

ab
le
?

gi
ve

an
in
te
rp
re
ta
ti
on

in
w
hi
ch

al
l
of

A
1,
A
2,
.
.
.,
A
n
ar
e
tr
ue

pr
ov
e
a
co
nt
ra
di
ct
io
n
fr
om

as
su
m
p-

ti
on

s
A
1,
A
2,
.
.
.,
A
n

Is
A
1,
A
2,
.
.
.,
A
n
∴

C
va

li
d
?

gi
ve

a
pr
oo

f
w
it
h

as
su
m
pt
io
ns

A
1,
A
2,
.
.
.,
A
n

an
d

co
nc
lu
di
ng

w
it
h

C

gi
ve

an
in
te
rp
re
ta
ti
on

in
w
hi
ch

ea
ch

of
A
1,
A
2,
.
.
.,
A
n
is
tr
ue

an
d
C
is
fa
ls
e

PART VIII

Modal logic

325

CHAPTER 40

Introducing
modal logic
Modal logic (ML) is the logic of modalities, ways in which a state-
ment can be true. Necessity and possibility are two such modalities:
a statement can be true, but it can also be necessarily true (true
no matter how the world might have been). For instance, logical
truths are not just true because of some accidental feature of the
world, but true come what may. A possible statement may not
actually be true, but it might have been true. We use □ to express
necessity, and ◇ to express possibility. So you can read □A as It
is necessarily the case that A, and ◇Aas It is possibly the case that A.

There are lots of different kinds of necessity. It is humanly
impossible for me to run at 100mph. Given the sorts of creatures
that we are, no human can do that. But still, it isn’t physically
impossible for me to run that fast. We haven’t got the technology to
do it yet, but it is surely physically possible to swap my biological
legs for robotic ones which could run at 100mph. By contrast,
it is physically impossible for me to run faster than the speed of
light. The laws of physics forbid any object from accelerating up
to that speed. But even that isn’t logically impossible. It isn’t a
contradiction to imagine that the laws of physics might have been
different, and that they might have allowed objects to move faster

326

CHAPTER 40. INTRODUCING MODAL LOGIC 327

than light.
Which kind of modality does ML deal with? All of them! ML

is a very flexible tool. We start with a basic set of rules that
govern □ and ◇, and then add more rules to fit whatever kind
of modality we are interested in. In fact, ML is so flexible that
we do not even have to think of □ and ◇ as expressing necessity
and possibility. We might instead read □ as expressing provability,
so that □Ameans It is provable that A, and ◇Ameans It is not
refutable that A. Similarly, we can interpret □ to mean S knows
that A or S believes that A. Or we might read □ as expressing
moral obligation, so that □Ameans It is morally obligatory that A,
and ◇Ameans It is morally permissible that A. All we would need
to do is cook up the right rules for these different readings of □
and ◇.

A modal formula is one that includes modal operators such
as □ and ◇. Depending on the interpretation we assign to □
and ◇, different modal formulas will be provable or valid. For
instance, □A→ Amight say that “if A is necessary, it is true,”
if □ is interpreted as necessity. It might express “if A is known,
then it is true,” if □ expresses known truth. Under both these
interpretations, □A→ A is valid: All necessary propositions are
true come what may, so are true in the actual world. And if a
proposition is known to be true, it must be true (one can’t know
something that’s false). However, when □ is interpreted as “it is
believed that” or “it ought to be the case that,” □A→ A is not
valid: We can believe false propositions. Not every proposition
that ought to be true is in fact true, e.g., “Every murderer will be
brought to justice.” This ought to be true, but it isn’t.

We will consider different kinds of systems of ML. They differ
in the rules of proof allowed, and in the semantics we use to de-
fine our logical notions. The different systems we’ll consider are
calledK, T, S4, and S5. K is the basic system; everything that is
valid or provable inK is also provable in the others. But there are
some things that K does not prove, such as the formula □A → A
for sentence letter A. So K is not an appropriate modal logic for
necessity and possibility (where □A → A should be provable).

CHAPTER 40. INTRODUCING MODAL LOGIC 328

This is provable in the system T, so T is more appropriate when
dealing with necessity and possibiliity, but less apropriate when
dealing with belief or obligation, since then □A→ A should not
(always) be provable. The perhaps best system of ML for neces-
sity and possibility, and in any case the most widely accepted, is
the strongest of the systems we consider, S5.

40.1 The Language of ML

In order to do modal logic, we have to do two things. First, we
want to learn how to prove things in ML. Second, we want to
see how to construct interpretations for ML. But before we can
do either of these things, we need to explain how to construct
sentences in ML.

The language of ML is an extension of TFL. We could have
started with FOL, which would have given us Quantified Modal
Logic (QML). QML is much more powerful than ML, but it is
also much, much more complicated. So we are going to keep
things simple, and start with TFL.

Just like TFL, ML starts with an infinite stock of atoms. These
are written as capital letters, with or without numerical sub-
scripts: A, B , . . .A1, B1, . . .We then take all of the rules about
how to make sentences from TFL, and add two more for □ and
◇:

(1) Every atom of ML is a sentence of ML.

(2) If A is a sentence of ML, then ¬A is a sentence of ML.

(3) If Aand B are sentences of ML, then (A∧B) is a sentence
of ML.

(4) If Aand B are sentences of ML, then (A∨B) is a sentence
of ML.

(5) If A and B are sentences of ML, then (A→ B) is a sen-
tence of ML.

CHAPTER 40. INTRODUCING MODAL LOGIC 329

(6) If A and B are sentences of ML, then (A↔ B) is a sen-
tence of ML.

(7) If A is a sentence of ML, then □A is a sentence of ML.

(8) If A is a sentence of ML, then ◇A is a sentence of ML.

(9) Nothing else is a sentence of ML.

Here are some examples of ML sentences:

A, P ∨ Q , □A, C ∨ □D , □□(A → R), □◇(S ∧ (Z ↔
(□W ∨ ◇Q)))

CHAPTER 41

Natural
deduction for
ML
Now that we know how to make sentences in ML, we can look at
how to prove things in ML. We will use ⊢ to express provabil-
ity. So A1,A2, . . .An ⊢ C means that C can be proven from
A1,A2, . . .An . However, we will be looking at a number of dif-
ferent systems of ML, and so it will be useful to add a subscript
to indicate which system we are working with. So for example,
if we want to say that we can prove C from A1,A2, . . .An in sys-
tem K, we will write: A1,A2, . . .An ⊢K C.

41.1 System K

We start with a particularly simple system called K, in honour of
the philosopher and logician Saul Kripke. K includes all of the
natural deduction rules from TFL, including the derived rules as
well as the basic ones. K then adds a special kind of subproof,
plus two new basic rules for □.

330

CHAPTER 41. NATURAL DEDUCTION FOR ML 331

The special kind of subproof looks like an ordinary subproof,
except it has a □in its assumption line instead of a formula. We
call them strict subproofs—they allow as to reason and prove things
about alternate possibilities. What we can prove inside a strict
subproof holds in any alternate possibility, in particular, in alter-
nate possibilities where the assumptions in force in our proof may
not hold. In a strict subproofs, all assumptions are disregarded,
and we are not allowed to appeal to any lines outside the strict
subproof (except as allowed by the modal rules given below).

The □I rule allows us to derive a formula □A if we can de-
rive A inside a strict subproof. It is our fundamental method of
introducing □ into proofs. The basic idea is simple enough: if A
is a theorem, then □A should be a theorem too. (Remember that
to call A a theorem is to say that we can prove Awithout relying
on any undischarged assumptions.)

Suppose we wanted to prove □(A → A). The first thing we
need to do is prove that A → A is a theorem. You already know
how to do that using TFL. You simply present a proof of A → A
which doesn’t start with any premises, like this:

1 A

2 A R 1

3 A → A →I 1–2

But to apply □I, we need to have proven the formula inside a strict
subproof. Since our proof of A → A makes use of no assumptions
at all, this is possible.

1 □

2 A

3 A R 2

4 A → A →I 2–3

5 □(A → A) □I 1–4

CHAPTER 41. NATURAL DEDUCTION FOR ML 332

m □

n A

□A □I m–n

No line above line m may be cited by any rule within the
strict subproof begun at line m unless the rule explicitly
allows it.

It is essential to emphasise that in strict subproof you can-
not use any rule which appeals to anything you proved outside
of the strict subproof. There are exceptions, e.g., the □E rule be-
low. These rules will explicitly state that they can be used inside
strict subproofs and cite lines outside the strict subproof. This
restriction is essential, otherwise we would get terrible results.
For example, we could provide the following proof to vindicate
A ∴ □A:

1 A

2 □

3 A incorrect use of R 1

4 □A □I 2–3

This is not a legitimate proof, because at line 3 we appealed to
line 1, even though line 1 comes before the beginning of the strict
subproof at line 2.

We said above that a strict subproof allows us to reason about
arbitrary alternate possible situations. What can be proved in a
strict subproof holds in all alternate possible situtations, and so is
necessary. This is the idea behind the □I rule. On the other hand,
if we’ve assumed that something is necessary, we have therewith
assumed that it is true in all alternate possbile situations. Hence,
we have the rule □E:

CHAPTER 41. NATURAL DEDUCTION FOR ML 333

m □A

□

n A □E m

□E can only be applied if line m (containing □A) lies out-
side of the strict subproof in which line n falls, and this
strict subproof is not itself part of a strict subproof not
containing m.

□E allows you to assert A inside a strict subproof if you have
□A outside the strict subproof. The restriction means that you
can only do this in the first strict subproof, you cannot apply the
□E rule inside a nested strict subproof. So the following is not
allowed:

1 □A

2 □

3 □

4 A incorrect use of □E 1

The incorrect use of □E on line 4 violates the condition, because
although line 1 lies outside the strict subproof in which line 4
falls, the strict subproof containing line 4 lies inside the strict
subproof beginning on line 2 which does not contain line 1.

CHAPTER 41. NATURAL DEDUCTION FOR ML 334

Let’s begin with an example.

1 □A

2 □B

3 □

4 A □E 1

5 B □E 2

6 A ∧ B ∧I 4, 5

7 □(A ∧ B) □I 3–7

We can also mix regular subproofs and strict subproofs:

1 □(A → B)

2 □A

3 □

4 A □E m

5 A → B □E 1

6 B →E 4, 5

7 □B

8 □A → □B →I 2–7

This is called the Distribution Rule, because it tells us that □ ‘dis-
tributes’ over →.

The rules □I and □E look simple enough, and indeed K is a
very simple system! But K is more powerful than you might have
thought. You can prove a fair few things in it.

CHAPTER 41. NATURAL DEDUCTION FOR ML 335

41.2 Possibility

In the last subsection, we looked at all of the basic rules for K.
But you might have noticed that all of these rules were about
necessity, □, and none of them were about possibility, ◇. That’s
because we can define possibility in terms of necessity:

◇A=df ¬□¬A

In other words, to say that A is possibly true, is to say that A
is not necessarily false. As a result, it isn’t really essential to add
a ◇, a special symbol for possibility, into system K. Still, the
system will be much easier to use if we do, and so we will add the
following definitional rules:

m ¬□¬A

◇A Def◇ m

m ◇A

¬□¬A Def◇ m

Importantly, you should not think of these rules as any real
addition to K: they just record the way that ◇ is defined in terms
of □.

If we wanted, we could leave our rules for K here. But it
will be helpful to add some Modal Conversion rules, which give us
some more ways of flipping between □ and ◇:

CHAPTER 41. NATURAL DEDUCTION FOR ML 336

m ¬□A

◇¬A MC m

m ◇¬A

¬□A MC m

m ¬◇A

□¬A MC m

m □¬A

¬◇A MC m

These Modal Conversion Rules are also no addition to the
power of K, because they can be derived from the basic rules,
along with the definition of ◇.

In systemK, using Def◇ (or the modal conversion rules), one
can prove ◇A ↔ ¬□¬A. When laying out system K, we started
with □ as our primitive modal symbol, and then defined ◇ in
terms of it. But if we had preferred, we could have started with ◇
as our primitive, and then defined □ as follows: □A =df ¬◇¬A.
There is, then, no sense in which necessity is somehow more
fundamental than possibility. Necessity and possibility are exactly
as fundamental as each other.

41.3 System T

So far we have focussed on K, which is a very simple modal
system. K is so weak that it will not even let you prove A from
□A. But if we are thinking of □ as expressing necessity, then we
will want to be able to make this inference: if A is necessarily true,
then it must surely be true!

CHAPTER 41. NATURAL DEDUCTION FOR ML 337

This leads us to a new system, T, which we get by adding the
following rule to K:

m □A

n A RT m

The line n on which rule RT is applied must not lie in a
strict subproof that begins after line m.

The restriction on rule T is in a way the opposite of the re-
striction on □E: you can only use □E in a nested strict subproof,
but you cannot use T in a nested strict subproof.

We can prove things in T which we could not prove in K,
e.g., □A → A.

41.4 System S4

T allows you to strip away the necessity boxes: from □A, you
may infer A. But what if we wanted to add extra boxes? That is,
what if we wanted to go from □A to □□A? Well, that would be no
problem, if we had proved □Aby applying □I to a strict subproof
of Awhich itself does not use □E. In that case, A is a tautology,
and by nesting the strict subproof inside another strict subproof
and applying □I again, we can prove □□A. For example, we could

CHAPTER 41. NATURAL DEDUCTION FOR ML 338

prove □□(P → P) like this:

1 □

2 □

3 P

4 P R 3

5 P → P →I 3–4

6 □(P → P) □I 2–5

7 □□(P → P) □I 1–6

But what if we didn’t prove □A in this restricted way, but used
□E inside the strict subproof of A. If we put that strict subproof
inside another strict subproof, the requirement of rule □E to not
cite a line containing □A which lies in another strict subproof
that has not yet concluded, is violated. Or what if □Awere just
an assumption we started our proof with? Could we infer □□A
then? Not in T, we couldn’t. And this might well strike you as a
limitation of T, at least if we are reading □ as expressing necessity.
It seems intuitive that ifA is necessarily true, then it couldn’t have
failed to be necessarily true.

This leads us to another new system, S4, which we get by
adding the following rule to T:

CHAPTER 41. NATURAL DEDUCTION FOR ML 339

m □A

□

n □A R4 m

Note that R4 can only be applied if line m (containing □A)
lies outside of the strict subproof in which line n falls, and
this strict subproof is not itself part of a strict subproof not
containing n.

Rule R4 looks just like □E, except that instead of yielding A

from □A it yields □A inside a strict subproof. The restriction
is the same, however: R4 allows us to “import” □A into a strict
subproof, but not into a strict subproof itself nested inside a strict
subproof. However, if that is necessary, an additional application
of R4 would have the same result.

Now we can prove even more results. For instance:

1 □A

2 □

3 □A R4 1

4 □□A □I 2–3

5 □A → □□A →I 1–6

Similarly, we can prove ◇◇A → ◇A. This shows us that as well
as letting us add extra boxes, S4 lets us delete extra diamonds: from
◇◇A, you can always infer ◇A.

41.5 System S5

In S4, we can always add a box in front of another box. But S4
does not automatically let us add a box in front of a diamond.

CHAPTER 41. NATURAL DEDUCTION FOR ML 340

That is, S4 does not generally permit the inference from ◇A to
□◇A. But again, that might strike you as a shortcoming, at least
if you are reading □ and ◇ as expressing necessity and possibility.
It seems intuitive that if A is possibly true, then it couldn’t have
failed to be possibly true.

This leads us to our final modal system, S5, which we get by
adding the following rule to S4:

m ¬□A

□

n ¬□A R5 m

Rule R5 can only be applied if line m (containing ¬□A)
lies outside of the strict subproof in which line n falls, and
this strict subproof is not itself part of a strict subproof not
containing line m.

This rule allows us to show, for instance, that ◇□A ⊢S5 □A:

1 ◇□A

2 ¬□¬□A Def◇ 1

3 ¬□A

4 □

5 ¬□A R5 3

6 □¬□A □I 4–5

7 ⊥ ¬E 2, 6

8 □A IP 3–7

So, as well as adding boxes in front of diamonds, we can also
delete diamonds in front of boxes.

CHAPTER 41. NATURAL DEDUCTION FOR ML 341

We got S5 just by adding the rule R5 rule to S4. In fact, we
could have added rule R5 to T alone, and leave out rule R4).
Everything we can prove by rule R4 can also be proved using
RT together with R5. For instance, here is a proof that shows
□A ⊢S5 □□A without using R4:

1 □A

2 □¬□A

3 ¬□A RT 2

4 ⊥ ¬E 1, 3

5 ¬□¬□A ¬I 2–4

6 □

7 ¬□A

8 □

9 ¬□A R5 7

10 □¬□A □I 8–9

11 ¬□¬□A R5 5

12 ⊥ ¬E 10, 11

13 □A IP 7–12

14 □□A □I 6–13

S5 is strictly stronger than S4: there are things which can be proved
in S5, but not in S4 (e.g., ◇□A → □A).

The important point about S5 can be put like this: if you have
a long string of boxes and diamonds, in any combination what-
soever, you can delete all but the last of them. So for example,
◇□◇◇□□◇□A can be simplified down to just □A.

CHAPTER 41. NATURAL DEDUCTION FOR ML 342

Practice exercises

A. Provide proofs for the following:

1. □(A ∧ B) ⊢K □A ∧ □B
2. □A ∧ □B ⊢K □(A ∧ B)
3. □A ∨ □B ⊢K □(A ∨ B)
4. □(A ↔ B) ⊢K □A ↔ □B

B. Provide proofs for the following (without using Modal Con-
version!):

1. ¬□A ⊢K ◇¬A
2. ◇¬A ⊢K ¬□A
3. ¬◇A ⊢K □¬A
4. □¬A ⊢K ¬◇A

C. Provide proofs of the following (and now feel free to use Modal
Conversion!):

1. □(A → B),◇A ⊢K ◇B
2. □A ⊢K ¬◇¬A
3. ¬◇¬A ⊢K □A

D. Provide proofs for the following:

1. P ⊢T ◇P
2. ⊢T (A ∧ B) ∨ (¬□A ∨ ¬□B)

E. Provide proofs for the following:

1. □(□A → B),□(□B → C),□A ⊢S4 □□C
2. □A ⊢S4 □(□A ∨ B)
3. ◇◇A ⊢S4 ◇A

F. Provide proofs in S5 for the following:

1. ¬□¬A,◇B ⊢S5 □(◇A ∧ ◇B)
2. A ⊢S5 □◇A
3. ◇◇A ⊢S5 ◇A

CHAPTER 42

Semantics for
ML
So far, we have focussed on laying out various systems of Natural
Deduction for ML. Now we will look at the semantics for ML. A
semantics for a language is a method for assigning truth-values
to the sentences in that language. So a semantics for ML is a
method for assigning truth-values to the sentences of ML.

42.1 Interpretations of ML

The big idea behind the semantics for ML is this. In ML, sen-
tences are not just true or false, full stop. A sentence is true or
false at a given possible world, and a single sentence may well be
true at some worlds and false at others. We then say that □A is
true iff A is true at every world, and ◇A is true iff A is true at
some world.

That’s the big idea, but we need to refine it and make it more
precise. To do this, we need to introduce the idea of an interpre-
tation of ML. The first thing you need to include in an interpreta-
tion is a collection of possible worlds. Now, at this point you might
well want to ask: What exactly is a possible world? The intuitive
idea is that a possible world is another way that this world could

343

CHAPTER 42. SEMANTICS FOR ML 344

have been. But what exactly does that mean? This is an excellent
philosophical question, and we will look at it in a lot of detail
later. But we do not need to worry too much about it right now.
As far as the formal logic goes, possible worlds can be anything
you like. All that matters is that you supply each interpretation
with a non-empty collection of things labelled possible worlds.

Once you have chosen your collection of possible worlds, you
need to find some way of determining which sentences of ML
are true at which possible worlds. To do that, we need to intro-
duce the notion of a valuation function. Those of you who have
studied some maths will already be familiar with the general idea
of a function. But for those of you who haven’t, a function is a
mathematical entity which maps arguments to values. That might
sound a little bit abstract, but some familiar examples will help.
Take the function x+1. This is a function which takes in a number
as argument, and then spits out the next number as value. So if
you feed in the number 1 as an argument, the function x + 1 will
spit out the number 2 as a value; if you feed in 2, it will spit out 3;
if you feed in 3, it will spit out 4 . . .Or here is another example:
the function x + y . This time, you have to feed two arguments
into this function if you want it to return a value: if you feed in
2 and 3 as your arguments, it spits out 5; if you feed in 1003 and
2005, it spits out 3008; and so on.

A valuation function for ML takes in a sentence and a world
as its arguments, and then returns a truth-value as its value. So
if a is a valuation function and w is a possible world, aw (A) is
whatever truth-value a maps A and w to: if aw (A) = F , then A is
false at world w on valuation a; if aw (A) = T , then A is true at
world w on valuation a.

These valuation functions are allowed to map any atomic sen-
tence to any truth-value at any world. But there are rules about
which truth-values more complex sentences get assigned at a
world. Here are the rules for the connectives from TFL:

(1) aw (¬A) = T iff: aw (A) = F

(2) aw (A∧ B) = T iff: aw (A) = T and aw (B) = T

CHAPTER 42. SEMANTICS FOR ML 345

(3) aw (A∨ B) = T iff: aw (A) = T or aw (B) = T , or both

(4) aw (A→ B) = T iff: aw (A) = F or aw (B) = T , or both

(5) aw (A ↔ B) = T iff: aw (A) = T and aw (B) = T , or
aw (A) = F and aw (B) = F

So far, these rules should all look very familiar. Essentially, they
all work exactly like the truth-tables for TFL. The only difference
is that these truth-table rules have to be applied over and over
again, to one world at a time.

But what are the rules for the new modal operators, □ and ◇?
The most obvious idea would be to give rules like these:

aw (□A) = T iff ∀w ′(aw′ (A) = T)

aw (◇A) = T iff ∃w ′(aw′ (A) = T)

This is just the fancy formal way of writing out the idea that □A
is true at w just in case A is true at every world, and ◇A is true
at w just in case A is true at some world.

However, while these rules are nice and simple, they turn out
not to be quite as useful as we would like. As we mentioned, ML
is meant to be a very flexible tool. It is meant to be a general
framework for dealing with lots of different kinds of necessity.
As a result, we want our semantic rules for □ and ◇ to be a
bit less rigid. We can do this by introducing another new idea:
accessibility relations.

An accessibility relation, R, is a relation between possible
worlds. Roughly, to say that Rw1w2 (in English: world w1 accesses
world w2) is to say that w2 is possible relative to w1. In other
words, by introducing accessibility relations, we open up the idea
that a given world might be possible relative to some worlds but
not others. This turns out to be a very fruitful idea when studying
modal systems. We can now give the following semantic rules for
□ and ◇:

(6) aw1 (□A) = T iff ∀w2(Rw1w2 → aw2 (A) = T)

CHAPTER 42. SEMANTICS FOR ML 346

(7) aw1 (◇A) = T iff ∃w2(Rw1w2 ∧ aw2 (A) = T)

Or in plain English: □A is true in world w1 iff A is true in every
world that is possible relative to w1; and ◇A is true in world w1

iff A is true in some world that is possible relative to w1.
So, there we have it. An interpretation for ML consists of

three things: a collection of possible worlds,W ; an accessibility
relation, R; and a valuation function, a. The collection of ‘pos-
sible worlds’ can really be a collection of anything you like. It
really doesn’t matter, so long asW isn’t empty. (For many pur-
poses, it is helpful just to take a collection of numbers to be your
collection of worlds.) And for now, at least, R can be any rela-
tion between the worlds inW that you like. It could be a relation
which every world inW bears to every world inW , or one which
no world bears to any world, or anything in between. And lastly,
a can map any atomic sentence of ML to any truth-value at any
world. All that matters is that it follows the rules (1)–(7) when it
comes to the more complex sentences.

Let’s look at an example. It is often helpful to present inter-
pretations of ML as diagrams, like this:

1 2

A ¬A

¬B B

Here is how to read the interpretation off from this diagram. It
contains just two worlds, 1 and 2. The arrows between the worlds
indicate the accessibility relation. So 1 and 2 both access 1, but
neither 1 nor 2 accesses 2. The boxes at each world let us know
which atomic sentences are true at each world: A is true at 1
but false at 2; B is false at 1 but true at 2. You may only write
an atomic sentence or the negation of an atomic sentence into
one of these boxes. We can figure out what truth-values the more

CHAPTER 42. SEMANTICS FOR ML 347

complex sentences get at each world from that. For example, on
this interpretation all of the following sentences are true at w1:

A ∧ ¬B , B → A, ◇A, □¬B

If you don’t like thinking diagrammatically, then you can also
present an interpretation like this:

W : 1,2

R: ⟨1,1⟩, ⟨2,1⟩

a1(A) = T , a2(B) = F, a2(A) = F, a2(B) = T

You will get the chance to cook up some interpretations of your
own shortly, when we start looking at counter-interpretations.

42.2 A Semantics for System K

We can now extend all of the semantic concepts of TFL to cover
ML:

⊲ A1,A2, . . .An ∴ C is modally valid iff there is no
world in any interpretation at which A1,A2, . . .An
are all true and C is false.

⊲ A is a modal truth iff A is true at every world in
every interpretation.

⊲ A is a modal contradiction iff A is false at every
world in every interpretation.

⊲ A is modally satisfiable iff A is true at some world
in some interpretation.

(From now on we will drop the explicit ‘modal’ qualifications,
since they can be taken as read.)

CHAPTER 42. SEMANTICS FOR ML 348

We can also extend our use of ⊨. However, we need to add
subscripts again, just as we did with ⊢. So, when we want to say
that A1,A2, . . .An ∴ C is valid, we will write: A1,A2, . . .An ⊨K C.

Let’s get more of a feel for this semantics by presenting some
counter-interpretations. Consider the following (false) claim:

¬A ⊨K ¬◇A

In order to present a counter-interpretation to this claim, we need
to cook up an interpretation which makes ¬A true at some world
w , and ¬◇A false atw . Here is one such interpretation, presented
diagrammatically:

1 2

¬A A

It is easy to see that this will work as a counter-interpretation for
our claim. First, ¬A is true at world 1. And second, ¬◇A is false
at 1: A is true at 2, and 2 is accessible from 1. So there is some
world in this interpretation where ¬A is true and ¬◇A is false, so
it is not the case that ¬A ⊨K ¬◇A.

Why did we choose the subscript K? Well, it turns out that
there is an important relationship between system K and the def-
inition of validity we have just given. In particular, we have the
following two results:

⊲ If A1,A2, . . .An ⊢K C, then A1,A2, . . .An ⊨K C

⊲ If A1,A2, . . .An ⊨K C, then A1,A2, . . .An ⊢K C

The first result is known as a soundness result, since it tells us that
the rules ofK are good, sound rules: if you can vindicate an argu-
ment by giving a proof for it using system K, then that argument
really is valid. The second result is known as a completeness result,
since it tells us that the rules of K are broad enough to capture

CHAPTER 42. SEMANTICS FOR ML 349

all of the valid arguments: if an argument is valid, then it will be
possible to offer a proof in K which vindicates it.

Now, it is one thing to state these results, quite another to
prove them. However, we will not try to prove them here. But
the idea behind the proof of soundness will perhaps make clearer
how strict subproofs work.

In a strict subproof, we are not allowed to make use of any
information from outside the strict subproof, except what we im-
port into the strict subproof using □E. If we’ve assumed or proved
□A, by □E, we can used A inside a strict subproof. And in K,
that is the only way to import a formula into a strict subproof. So
everything that can be proved inside a strict subproof must fol-
low from formulas A where outside the strict subproof we have
□A. Let’s imagine that we are reasoning about what’s true in a
possible world in some interpretation. If we know that □A is true
in that possible world, we know that A is true in all accessible
worlds. So, everything proved inside a strict subproof is true in
all accessible possible worlds. That is why □I is a sound rule.

42.3 A Semantics for System T

A few moments ago, we said that system K is sound and com-
plete. Where does that leave the other modal systems we looked
at, namely T, S4 and S5? Well, they are all unsound, relative to
the definition of validity we gave above. For example, all of these
systems allow us to infer A from □A, even though □A ⊭K A.

Does that mean that these systems are a waste of time? Not
at all! These systems are only unsound relative to the definition
of validity we gave above. (Or to use symbols, they are unsound
relative to ⊨K.) So when we are dealing with these stronger modal
systems, we just need to modify our definition of validity to fit.
This is where accessibility relations come in really handy.

When we introduced the idea of an accessibility relation, we
said that it could be any relation between worlds that you like: you
could have it relating every world to every world, no world to any

CHAPTER 42. SEMANTICS FOR ML 350

world, or anything in between. That is how we were thinking of
accessibility relations in our definition of ⊨K. But if we wanted, we
could start putting some restrictions on the accessibility relation.
In particular, we might insist that it has to be reflexive:

⊲ ∀wRww

In English: every world accesses itself. Or in terms of relative
possibility: every world is possible relative to itself. If we imposed
this restriction, we could introduce a new consequence relation,
⊨T, as follows:

A1,A2, . . .An ⊨T C iff there is no world in any interpre-
tation which has a reflexive accessibility relation, at which
A1,A2, . . .An are all true and C is false

We have attached theT subscript to ⊨ because it turns out that
system T is sound and complete relative to this new definition of
validity:

⊲ If A1,A2, . . .An ⊢T C, then A1,A2, . . .An ⊨T C

⊲ If A1,A2, . . .An ⊨T C, then A1,A2, . . .An ⊢T C

As before, we will not try to prove these soundness and complete-
ness results. However, it is relatively easy to see how insisting that
the accessibility relation must be reflexive will vindicate the RT
rule:

m □A

A RT m

To see this, just imagine trying to cook up a counter-
interpretation to this claim:

□A ⊨T A

CHAPTER 42. SEMANTICS FOR ML 351

We would need to construct a world, w , at which □A was true,
but A was false. Now, if □A is true at w , then Amust be true
at every world w accesses. But since the accessibility relation is
reflexive, w accesses w . So Amust be true at w . But now Amust
be true and false at w . Contradiction!

42.4 A Semantics for S4

How else might we tweak our definition of validity? Well, we
might also stipulate that the accessibility relation has to be tran-
sitive:

⊲ ∀w1∀w2∀w3((Rw1w2 ∧Rw2w3) → Rw1w3)

In English: if w1 accesses w2, and w2 accesses w3, then w1 ac-
cesses w3. Or in terms of relative possibility: if w3 is possible
relative to w2, and w2 is possible relative to w1, then w3 is possi-
ble relative to w1. If we added this restriction on our accessibility
relation, we could introduce a new consequence relation, ⊨S4, as
follows:

A1,A2, . . .An ⊨S4 C iff there is no world in any interpreta-
tion which has a reflexive and transitive accessibility relation,
at which A1,A2, . . .An are all true and C is false

We have attached the S4 subscript to ⊨ because it turns out
that system S4 is sound and complete relative to this new defini-
tion of validity:

⊲ If A1,A2, . . .An ⊢S4 C, then A1,A2, . . .An ⊨S4 C

⊲ If A1,A2, . . .An ⊨S4 C, then A1,A2, . . .An ⊢S4 C

As before, we will not try to prove these soundness and complete-
ness results. However, it is relatively easy to see how insisting that
the accessibility relation must be transitive will vindicate the S4
rule:

CHAPTER 42. SEMANTICS FOR ML 352

m □A

□

□A R4 m

The idea behind strict subproofs, remember, is that they are
ways to prove things that must be true in all accessible worlds.
So the R4 rule means that whenever □A is true, □A must also
be true in every accessible world. In other words, we must have
□A ⊨S4 □□A.

To see this, just imagine trying to cook up a counter-
interpretation to this claim:

□A ⊨S4 □□A

We would need to construct a world, w1, at which □Awas true,
but □□A was false. Now, if □□A is false at w1, then w1 must
access some world, w2, at which □A is false. Equally, if □A is
false at w2, then w2 must access some world, w3, at which A

is false. We just said that w1 accesses w2, and w2 accesses w3.
So since we are now insisting that the accessibility relation be
transitive, w1 must access w3. And as □A is true at w1, and w3 is
accessible from w1, it follows that Amust be true at w3. So A is
true and false at w3. Contradiction!

42.5 A Semantics for S5

Let’s put one more restriction on the accessibility relation. This
time, let’s insist that it must also be symmetric:

⊲ ∀w1∀w2(Rw1w2 → Rw2w1)

In English: if w1 accesses w2, then w2 accesses w1. Or in terms
of relative possibility: if w2 is possible relative to w1, then w1 is
possible relative to w2. Logicians call a relation that is reflexive,

CHAPTER 42. SEMANTICS FOR ML 353

symmetric, and transitive an equivalence relation. We can now
define a new consequence relation, ⊨S5, as follows:

A1,A2, . . .An ⊨S5 C iff there is no world in any interpre-
tation whose accessibility relation is an equivalence relation, at
which A1,A2, . . .An are all true and C is false

We have attached the S5 subscript to ⊨ because it turns out
that system S5 is sound and complete relative to this new defini-
tion of validity:

⊲ If A1,A2, . . .An ⊢S5 C, then A1,A2, . . .An ⊨S5 C

⊲ If A1,A2, . . .An ⊨S5 C, then A1,A2, . . .An ⊢S5 C

As before, we will not try to prove these soundness and com-
pleteness results here. However, it is relatively easy to see how
insisting that the accessibility relation must be an equivalence
relation will vindicate the R5 rule:

m ¬□A

□

¬□A R5 m

The rule says that if A is not necessary, i.e., false in some ac-
cessible world, it is also not necessary in any accessible prossible
world, i.e., we have ¬□A ⊢S5 □¬□A.

To see this, just imagine trying to cook up a counter-
interpretation to this claim:

¬□A ⊨S5 □¬□A

We would need to construct a world, w1, at which ¬□Awas true,
but □¬□A was false. Now, if ¬□A is true at w1, then w1 must
access some world, w2, at which A is false. Equally, if □¬□A is

CHAPTER 42. SEMANTICS FOR ML 354

false at w1, then w1 must access some world, w3, at which ¬□A
is false. Since we are now insisting that the accessibility relation
is an equivalence relation, and hence symmetric, we can infer
that w3 accesses w1. Thus, w3 accesses w1, and w1 accesses w2.
Again, since we are now insisting that the accessibility relation
is an equivalence relation, and hence transitive, we can infer that
w3 accesses w2. But earlier we said that ¬□A is false at w3, which
implies that A is true at every world which w3 accesses. So A is
true and false at w2. Contradiction!

In the definition of ⊨S5, we stipulated that the accessibility re-
lation must be an equivalence relation. But it turns out that there
is another way of getting a notion of validity fit for S5. Rather
than stipulating that the accessibility relation be an equivalence
relation, we can instead stipulate that it be a universal relation:

⊲ ∀w1∀w2Rw1w2

In English: every world accesses every world. Or in terms of
relative possibility: every world is possible relative to every world.
Using this restriction on the accessibility relation, we could have
defined ⊨S5 like this:

A1,A2, . . .An ⊨S5 C iff there is no world in any interpre-
tation which has a universal accessibility relation, at which
A1,A2, . . .An are all true and C is false.

If we defined ⊨S5 like this, we would still get the same sound-
ness and completeness results for S5. What does this tell us?
Well, it means that if we are dealing with a notion of necessity
according to which every world is possible relative to every world,
then we should use S5. What is more, most philosophers assume
that the notions of necessity that they are most concerned with,
like logical necessity and metaphysical necessity, are of exactly this
kind. So S5 is the modal system that most philosophers use most
of the time.

CHAPTER 42. SEMANTICS FOR ML 355

Practice exercises

A. Present counter-interpretations to the following false claims:

1. ¬P ⊨K ¬◇P
2. □(P ∨Q) ⊨K □P ∨ □Q
3. ⊨K ¬□(A ∧ ¬A)
4. □A ⊨K A

B. Present counter-interpretations to the following false claims:

1. ◇A ⊨S4 □◇A
2. ◇A,□(◇A → B) ⊨S4 □B

C. Present counter-interpretations to the following false claims:

1. □(M → O),◇M ⊨T O
2. □A ⊨T □□A

Further reading

Modal logic is a large subfield of logic. We have only scratched
the surface. If you want to learn more about modal logic, here
are some textbooks you might consult.

⊲ Hughes, G. E., & Cresswell, M. J. (1996). A New Introduction
to Modal Logic, Oxford: Routledge.

⊲ Priest, G. (2008). An Introduction to Non-Classical Logic, 2nd
ed., Cambridge: Cambridge University Press.

⊲ Garson, J. W. (2013). Modal Logic for Philosophers, 2nd ed.,
Cambridge: Cambridge University Press.

None of these authors formulate their modal proof systems
in quite the way we did, but the closest formulation is given by
Garson.

PART IX

Metatheory

356

CHAPTER 43

Normal forms
43.1 Disjunctive normal form

Sometimes it is useful to consider sentences of a particularly sim-
ple form. For instance, we might consider sentences in which
¬ only attaches to atomic sentences, or those which are combi-
nations of atomic sentences and negated atomic sentences us-
ing only ∧. A relatively general but still simple form is that
where a sentence is a disjunction of conjunctions of atomic or
negated atomic sentences. When such a sentence is constructed,
we start with atomic sentences, then (perhaps) attach negations,
then (perhaps) combine using ∧, and finally (perhaps) combine
using ∨.

Let’s say that a sentence is in disjunctive normal form iff
it meets all of the following conditions:

(dnf1) No connectives occur in the sentence other than nega-
tions, conjunctions and disjunctions;

(dnf2) Every occurrence of negation has minimal scope (i.e. any
‘¬’ is immediately followed by an atomic sentence);

(dnf3) No disjunction occurs within the scope of any conjunc-
tion.

357

CHAPTER 43. NORMAL FORMS 358

So, here are are some sentences in disjunctive normal form:

A

(A ∧ ¬B ∧C)
(A ∧ B) ∨ (A ∧ ¬B)
(A ∧ B) ∨ (A ∧ B ∧C ∧ ¬D ∧ ¬E)
A ∨ (C ∧ ¬P234 ∧ P233 ∧Q) ∨ ¬B

Note that we have here broken one of the maxims of this book and
temporarily allowed ourselves to employ the relaxed bracketing-
conventions that allow conjunctions and disjunctions to be of ar-
bitrary length. These conventions make it easier to see when a
sentence is in disjunctive normal form. We will continue to help
ourselves to these relaxed conventions, without further comment.

To further illustrate the idea of disjunctive normal form, we
will introduce some more notation. We write ‘±A’ to indicate
that A is an atomic sentence which may or may not be prefaced
with an occurrence of negation. Then a sentence in disjunctive
normal form has the following shape:

(±A1∧ . . .∧±Ai) ∨ (±Ai+1∧ . . .∧±Aj) ∨ . . .∨ (±Am+1∧ . . .∧±An)

We now know what it is for a sentence to be in disjunctive normal
form. The result that we are aiming at is:

Disjunctive Normal Form Theorem. For any sentence,
there is a logically equivalent sentence in disjunctive nor-
mal form.

Henceforth, we will abbreviate ‘Disjunctive Normal Form’ by
‘DNF’.

43.2 Proof of DNF theorem via truth tables

Our first proof of the DNF Theorem employs truth tables. We will
first illustrate the technique for finding an equivalent sentence in
DNF, and then turn this illustration into a rigorous proof.

CHAPTER 43. NORMAL FORMS 359

Let’s suppose we have some sentence, S, which contains three
atomic sentences, ‘A’, ‘B ’ and ‘C ’. The very first thing to do is
fill out a complete truth table for S. Maybe we end up with this:

A B C S

T T T T
T T F F
T F T T
T F F F
F T T F
F T F F
F F T T
F F F T

As it happens, S is true on four lines of its truth table, namely
lines 1, 3, 7 and 8. Corresponding to each of those lines, we will
write down four sentences, whose only connectives are negations
and conjunctions, where every negation has minimal scope:

1. ‘A ∧ B ∧C ’ which is true on line 1 (and only then)
2. ‘A ∧ ¬B ∧C ’ which is true on line 3 (and only then)
3. ‘¬A ∧ ¬B ∧C ’ which is true on line 7 (and only then)
4. ‘¬A ∧ ¬B ∧ ¬C ’ which is true on line 8 (and only then)

We now combine all of these conjunctions using ∨, like so:

(A ∧ B ∧C) ∨ (A ∧ ¬B ∧C) ∨ (¬A ∧ ¬B ∧C) ∨ (¬A ∧ ¬B ∧ ¬C)

This gives us a sentence in DNF which is true on exactly those
lines where one of the disjuncts is true, i.e. it is true on (and only
on) lines 1, 3, 7, and 8. So this sentence has exactly the same
truth table as S. So we have a sentence in DNF that is logically
equivalent to S, which is exactly what we wanted!

Now, the strategy that we just adopted did not depend on the
specifics of S; it is perfectly general. Consequently, we can use it
to obtain a simple proof of the DNF Theorem.

Pick any arbitrary sentence, S, and let A1, . . . ,An be the
atomic sentences that occur in S. To obtain a sentence in DNF

CHAPTER 43. NORMAL FORMS 360

that is logically equivalent S, we consider S’s truth table. There
are two cases to consider:

1. S is false on every line of its truth table. Then, S is a con-
tradiction. In that case, the contradiction (A1 ∧ ¬A1) is in
DNF and logically equivalent to S.

2. S is true on at least one line of its truth table. For each line i
of the truth table, let Bi be a conjunction of the form

(±A1 ∧ . . . ∧ ±An)

where the following rules determine whether or not to in-
clude a negation in front of each atomic sentence:

Am is a conjunct of Bi iff Am is true on line i

¬Am is a conjunct of Bi iff Am is false on line i

Given these rules, Bi is true on (and only on) line i of
the truth table which considers all possible valuations of
A1, . . . ,An (i.e. S’s truth table).

Next, let i1, i2, . . . , im be the numbers of the lines of the
truth table where S is true. Now let D be the sentence:

Bi1 ∨ Bi2 ∨ . . . ∨ Bim

Since S is true on at least one line of its truth table, D is
indeed well-defined; and in the limiting case where S is true
on exactly one line of its truth table, D is just Bi1 , for some
i1.

By construction, D is in DNF. Moreover, by construction,
for each line i of the truth table: S is true on line i of the
truth table iff one of D’s disjuncts (namely, Bi) is true on,
and only on, line i . Hence S and D have the same truth
table, and so are logically equivalent.

CHAPTER 43. NORMAL FORMS 361

These two cases are exhaustive and, either way, we have a sen-
tence in DNF that is logically equivalent to S.

So we have proved the DNF Theorem. Before we say any
more, though, we should immediately flag that we are hereby
returning to the austere definition of a (TFL) sentence, according
to which we can assume that any conjunction has exactly two
conjuncts, and any disjunction has exactly two disjuncts.

43.3 Conjunctive normal form

So far in this chapter, we have discussed disjunctive normal form.
It may not come as a surprise to hear that there is also such a
thing as conjunctive normal form (CNF).

The definition of CNF is exactly analogous to the definition
of DNF. So, a sentence is in CNF iff it meets all of the following
conditions:

(cnf1) No connectives occur in the sentence other than nega-
tions, conjunctions and disjunctions;

(cnf2) Every occurrence of negation has minimal scope;
(cnf3) No conjunction occurs within the scope of any disjunc-

tion.

Generally, then, a sentence in CNF looks like this

(±A1∨ . . .∨±Ai) ∧ (±Ai+1∨ . . .∨±Aj) ∧ . . .∧ (±Am+1∨ . . .∨±An)

where each Ak is an atomic sentence.
We can now prove another normal form theorem:

Conjunctive Normal Form Theorem. For any sentence,
there is a logically equivalent sentence in conjunctive nor-
mal form.

Given a TFL sentence, S, we begin by writing down the com-
plete truth table for S.

CHAPTER 43. NORMAL FORMS 362

If S is true on every line of the truth table, then S and (A1 ∨
¬A1) are logically equivalent.

IfSis false on at least one line of the truth table then, for every
line on the truth table where S is false, write down a disjunction
(±A1 ∨ . . . ∨ ±An) which is false on (and only on) that line. Let
C be the conjunction of all of these disjuncts; by construction, C
is in CNF and S and C are logically equivalent.

Practice exercises

A. Consider the following sentences:

1. (A → ¬B)
2. ¬(A ↔ B)
3. (¬A ∨ ¬(A ∧ B))
4. (¬(A → B) ∧ (A → C))
5. (¬(A ∨ B) ↔ ((¬C ∧ ¬A) → ¬B))
6. ((¬(A ∧ ¬B) → C) ∧ ¬(A ∧D))

For each sentence, find a logically equivalent sentence in DNF
and one in CNF.

CHAPTER 44

Functional
completeness
Of our connectives, ¬ attaches to a single sentence, and the others
all combine exactly two sentences. We may also introduce the
idea of an n-place connective. For example, we could consider
a three-place connective, ‘♥’, and stipulate that it is to have the
following characteristic truth table:

A B C ♥(A,B ,C)
T T T F
T T F T
T F T T
T F F F
F T T F
F T F T
F F T F
F F F F

Probably this new connective would not correspond with any nat-
ural English expression (at least not in the way that ‘∧’ corre-
sponds with ‘and’). But a question arises: if we wanted to employ
a connective with this characteristic truth table, must we add a
new connective to TFL? Or can we get by with the connectives

363

CHAPTER 44. FUNCTIONAL COMPLETENESS 364

we already have (as we can for the connective ‘neither. . . nor’ for
instance)?

Let us make this question more precise. Say that some con-
nectives are jointly functionally complete iff, for any possi-
ble truth table, there is a sentence containing only those connec-
tives with that truth table.

The general point is, when we are armed with some jointly
functionally complete connectives, no characteristic truth table
lies beyond our grasp. And in fact, we are in luck.

Functional Completeness Theorem. The connectives
of TFL are jointly functionally complete. Indeed, the fol-
lowing pairs of connectives are jointly functionally com-
plete:

1. ‘¬’ and ‘∨’
2. ‘¬’ and ‘∧’
3. ‘¬’ and ‘→’

Given any truth table, we can use the method of proving the
DNF Theorem (or the CNF Theorem) via truth tables from chap-
ter 43, to write down a scheme which has the same truth table.
For example, employing the truth table method for proving the
DNF Theorem, we find that the following scheme has the same
characteristic truth table as ♥(A,B ,C), above:

(A ∧ B ∧ ¬C) ∨ (A ∧ ¬B ∧C) ∨ (¬A ∧ B ∧ ¬C)

It follows that the connectives of TFL are jointly functionally com-
plete. We now prove each of the subsidiary results.

Subsidiary Result 1: functional completeness of ‘¬’ and ‘∨’. Ob-
serve that the scheme that we generate, using the truth table
method of proving the DNF Theorem, will only contain the con-
nectives ‘¬’, ‘∧’ and ‘∨’. So it suffices to show that there is an
equivalent scheme which contains only ‘¬’ and ‘∨’. To show do

CHAPTER 44. FUNCTIONAL COMPLETENESS 365

this, we simply consider that

(A∧ B) and ¬(¬A∨ ¬B)

are logically equivalent.
Subsidiary Result 2: functional completeness of ‘¬’ and ‘∧’. Exactly

as in Subsidiary Result 1, making use of the fact that

(A∨ B) and ¬(¬A∧ ¬B)

are logically equivalent.
Subsidiary Result 3: functional completeness of ‘¬’ and ‘→’. Ex-

actly as in Subsidiary Result 1, making use of these equivalences
instead:

(A∨ B) and (¬A→ B)
(A∧ B) and ¬(A→ ¬B)

Alternatively, we could simply rely upon one of the other two
subsidiary results, and (repeatedly) invoke only one of these two
equivalences.

In short, there is never any need to add new connectives to
TFL. Indeed, there is already some redundancy among the con-
nectives we have: we could have made do with just two connec-
tives, if we had been feeling really austere.

44.1 Individually functionally complete
connectives

In fact, some two-place connectives are individually functionally
complete. These connectives are not standardly included in TFL,
since they are rather cumbersome to use. But their existence
shows that, if we had wanted to, we could have defined a truth-
functional language that was functionally complete, which con-
tained only a single primitive connective.

The first such connective we will consider is ‘↑’, which has the
following characteristic truth table.

CHAPTER 44. FUNCTIONAL COMPLETENESS 366

A B A↑ B

T T F
T F T
F T T
F F T

This is often called ‘the Sheffer stroke’, after Henry Sheffer, who
used it to show how to reduce the number of logical connectives in
Russell and Whitehead’s Principia Mathematica.1 (In fact, Charles
Sanders Peirce had anticipated Sheffer by about 30 years, but
never published his results.)2 It is quite common, as well, to call
it ‘nand’, since its characteristic truth table is the negation of the
truth table for ‘∧’.

‘↑’ is functionally complete all by itself.

The functional completeness Theorem tells us that ‘¬’ and ‘∨’
are jointly functionally complete. So it suffices to show that, given
any scheme which contains only those two connectives, we can
rewrite it as a logically equivalent scheme which contains only ‘↑’.
As in the proof of the subsidiary cases of the functional complete-
ness Theorem, then, we simply apply the following equivalences:

¬A and (A↑ A)
(A∨ B) and ((A↑ A) ↑ (B ↑ B))

to the Subsidiary Result 1.
Similarly, we can consider the connective ‘↓’:
1Sheffer, ‘A Set of Five Independent Postulates for Boolean Algebras, with

application to logical constants,’ (1913, Transactions of the American Mathemati-
cal Society 14.4)

2See Peirce, ‘A Boolian Algebra with One Constant’, which dates to c.1880;
and Peirce’s Collected Papers, 4.264–5.

CHAPTER 44. FUNCTIONAL COMPLETENESS 367

A B A↓ B

T T F
T F F
F T F
F F T

This is sometimes called the ‘Peirce arrow’ (Peirce himself called
it ‘ampheck’). More often, though, it is called ‘nor’, since its
characteristic truth table is the negation of ‘∨’, that is, of ‘neither
. . . nor . . . ’.

‘↓’ is functionally complete all by itself.

As in the previous result for ↑, although invoking the equiva-
lences:

¬A and (A↓ A)
(A∧ B) and ((A↓ A) ↓ (B ↓ B))

and Subsidiary Result 2.

44.2 Failures of functional completeness

In fact, the only two-place connectives which are individually
functionally complete are ‘↑’ and ‘↓’. But how would we show
this? More generally, how can we show that some connectives
are not jointly functionally complete?

The obvious thing to do is to try to find some truth table
which we cannot express, using just the given connectives. But
there is a bit of an art to this.

To make this concrete, let’s consider the question of whether
‘∨’ is functionally complete all by itself. After a little reflection,
it should be clear that it is not. In particular, it should be clear
that any scheme which only contains disjunctions cannot have
the same truth table as negation, i.e.:

CHAPTER 44. FUNCTIONAL COMPLETENESS 368

A ¬A
T F
F T

The intuitive reason, why this should be so, is simple: the top
line of the desired truth table needs to have the value False; but
the top line of any truth table for a scheme which only contains
∨ will always be True. The same is true for ∧, →, and ↔.

‘∨’, ‘∧’, ‘→’, and ‘↔’ are not functionally complete by
themselves.

In fact, the following is true:

The only two-place connectives that are functionally com-
plete by themselves are ‘↑’ and ‘↓’.

This is of course harder to prove than for the primitive con-
nectives. For instance, the “exclusive or” connective does not
have a T in the first line of its characteristic truth table, and so
the method used above no longer suffices to show that it cannot
express all truth tables. It is also harder to show that, e.g., ‘↔’
and ‘¬’ together are not functionally complete.

CHAPTER 45

Soundness
In this chapter we relate TFL’s semantics to its natural deduction
proof system (as defined in Part IV). We will prove that the formal
proof system is safe: you can only prove sentences from premises
from which they actually follow. Intuitively, a formal proof system
is sound iff it does not allow you to prove any invalid arguments.
This is obviously a highly desirable property. It tells us that our
proof system will never lead us astray. Indeed, if our proof system
were not sound, then we would not be able to trust our proofs.
The aim of this chapter is to prove that our proof system is sound.

Let’s make the idea more precise. We’ll abbreviate a list of
sentences using the greek letter Γ (‘gamma’). A formal proof sys-
tem is sound (relative to a given semantics) iff, whenever there
is a formal proof of C from assumptions among Γ, then Γ gen-
uinely entails C (given that semantics). Otherwise put, to prove
that TFL’s proof system is sound, we need to prove the following

Soundness Theorem. For any sentences Γ and C: if Γ ⊢
C, then Γ ⊨ C

To prove this, we will check each of the rules of TFL’s proof
system individually. We want to show that no application of those
rules ever leads us astray. Since a proof just involves repeated
application of those rules, this will show that no proof ever leads

369

CHAPTER 45. SOUNDNESS 370

us astray. Or at least, that is the general idea.
To begin with, we must make the idea of ‘leading us astray’

more precise. Say that a line of a proof is shiny iff the assump-
tions on which that line depends tautologically entail the sentence
on that line.1 To illustrate the idea, consider the following:

1 F → (G ∧H)

2 F

3 G ∧H →E 1, 2

4 G ∧E 3

5 F → G →I 2–4

Line 1 is shiny iff F → (G ∧H) ⊨ F → (G ∧H). You should be
easily convinced that line 1 is, indeed, shiny! Similarly, line 4 is
shiny iff F → (G ∧H),F ⊨ G . Again, it is easy to check that line
4 is shiny. As is every line in this TFL-proof. We want to show
that this is no coincidence. That is, we want to prove:

Shininess Lemma. Every line of every TFL-proof is shiny.

Then we will know that we have never gone astray, on any line
of a proof. Indeed, given the Shininess Lemma, it will be easy to
prove the Soundness Theorem:

Proof. Suppose Γ ⊢ C. Then there is a TFL-proof, with C

appearing on its last line, whose only undischarged assumptions
are among Γ. The Shininess Lemma tells us that every line on
every TFL-proof is shiny. So this last line is shiny, i.e. Γ ⊨ C.
QED

It remains to prove the Shininess Lemma.
To do this, we observe that every line of any TFL-proof is

obtained by applying some rule. So what we want to show is that
no application of a rule of TFL’s proof system will lead us astray.

1The word ‘shiny’ is not standard among logicians.

CHAPTER 45. SOUNDNESS 371

More precisely, say that a rule of inference is rule-sound iff for
all TFL-proofs, if we obtain a line on a TFL-proof by applying
that rule, and every earlier line in the TFL-proof is shiny, then
our new line is also shiny. What we need to show is that every
rule in TFL’s proof system is rule-sound.

We will do this in the next section. But having demonstrated
the rule-soundness of every rule, the Shininess Lemma will follow
immediately:

Proof. Fix any line, line n, on any TFL-proof. The sentence
written on line n must be obtained using a formal inference rule
which is rule-sound. This is to say that, if every earlier line is
shiny, then line n itself is shiny. Hence, by strong induction on
the length of TFL-proofs, every line of every TFL-proof is shiny.
QED

Note that this proof appeals to a principle of strong induction
on the length of TFL-proofs. This is the first time we have seen
that principle, and you should pause to confirm that it is, indeed,
justified.

It remains to show that every rule is rule-sound. This is not
difficult, but it is time-consuming, since we need to check each
rule individually, and TFL’s proof system has plenty of rules!
To speed up the process marginally, we will introduce a conve-
nient abbreviation: ‘Δi ’ (‘delta’) will abbreviate the assumptions
(if any) on which line i depends in our TFL-proof (context will
indicate which TFL-proof we have in mind).

Introducing an assumption is rule-sound.

IfAis introduced as an assumption on line n, thenAis among
Δn , and so Δn ⊨ A.

∧I is rule-sound.

Proof. Consider any application of ∧I in any TFL-proof, i.e.,
something like:

CHAPTER 45. SOUNDNESS 372

i A

j B

n A∧ B ∧I i , j

To show that ∧I is rule-sound, we assume that every line before
line n is shiny; and we aim to show that line n is shiny, i.e. that
Δn ⊨ A∧ B.

So, let v be any valuation that makes all of Δn true.
We first show that v makes A true. To prove this, note that

all of Δi are among Δn . By hypothesis, line i is shiny. So any
valuation that makes all of Δi true makes A true. Since v makes
all of Δi true, it makes A true too.

We can similarly see that v makes B true.
So v makes A true and v makes B true. Consequently, v

makesA∧B true. So any valuation that makes all of the sentences
among Δn true also makes A∧ B true. That is: line n is shiny.
QED

All of the remaining lemmas establishing rule-soundness will
have, essentially, the same structure as this one did.

∧E is rule-sound.

Proof. Assume that every line before line n on some TFL-proof
is shiny, and that ∧E is used on line n. So the situation is:

i A∧ B

n A ∧E i

(or perhaps with B on line n instead; but similar reasoning will
apply in that case). Let v be any valuation that makes all of Δn
true. Note that all of Δi are among Δn . By hypothesis, line i is
shiny. So any valuation that makes all of Δi true makes A∧ B

true. So v makes A∧B true, and hence makes A true. So Δn ⊨ A.
QED

CHAPTER 45. SOUNDNESS 373

∨I is rule-sound.

We leave this as an exercise.

∨E is rule-sound.

Proof. Assume that every line before line n on some TFL-proof
is shiny, and that ∧E is used on line n. So the situation is:

m A∨ B

i A

j C

k B

l C

n C ∨E m, i– j , k–l

Let v be any valuation that makes all of Δn true. Note that all of
Δm are among Δn . By hypothesis, linem is shiny. So any valuation
that makes Δn true makes A∨ B true. So in particular, v makes
A∨B true, and hence either v makes A true, or v makes B true.
We now reason through these two cases:

Case 1: v makes A true. All of Δi are among Δn , with the possible
exception ofA. Since v makes all of Δn true, and also makes
A true, v makes all of Δi true. Now, by assumption, line
j is shiny; so Δ j ⊨ C. But the sentences Δi are just the
sentences Δ j , so Δi ⊨ C. So, any valuation that makes all
of Δi true makes C true. But v is just such a valuation. So
v makes C true.

Case 2: v makes B true. Reasoning in exactly the same way, con-
sidering lines k and l , v makes C true.

Either way, v makes C true. So Δn ⊨ C. QED

CHAPTER 45. SOUNDNESS 374

¬E is rule-sound.

Proof. Assume that every line before line n on some TFL-proof
is shiny, and that ¬E is used on line n. So the situation is:

i A

j ¬A

n ⊥ ¬E i , j

Note that all of Δi and all of Δ j are among Δn . By hypothesis,
lines i and j are shiny. So any valuation which makes all of Δn
true would have to make both A and ¬A true. But no valuation
can do that. So no valuation makes all of Δn true. So Δn ⊨ ⊥,
vacuously. QED

X is rule-sound.

We leave this as an exercise.

¬I is rule-sound.

Proof. Assume that every line before line n on some TFL-proof
is shiny, and that ¬I is used on line n. So the situation is:

i A

j ⊥

n ¬A ¬I i– j

Let v be any valuation that makes all of Δn true. Note that all
of Δn are among Δi , with the possible exception of A itself. By
hypothesis, line j is shiny. But no valuation can make ‘⊥’ true,
so no valuation can make all of Δ j true. Since the sentences Δi
are just the sentences Δ j , no valuation can make all of Δi true.

CHAPTER 45. SOUNDNESS 375

Since v makes all of Δn true, it must therefore make A false, and
so make ¬A true. So Δn ⊨ ¬A. QED

IP, →I, →E, ↔I, and ↔E are all rule-sound.

We leave these as exercises.
This establishes that all the basic rules of our proof system

are rule-sound. Finally, we show:

All of the derived rules of our proof system are rule-sound.

Proof. Suppose that we used a derived rule to obtain some
sentence, A, on line n of some TFL-proof, and that every earlier
line is shiny. Every use of a derived rule can be replaced (at the
cost of long-windedness) with multiple uses of basic rules. That
is to say, we could have used basic rules to write A on some line
n +k , without introducing any further assumptions. So, applying
our individual results that all basic rules are rule-sound several
times (k + 1 times, in fact), we can see that line n + k is shiny.
Hence the derived rule is rule-sound. QED

And that’s that! We have shown that every rule—basic or
otherwise—is rule-sound, which is all that we required to establish
the Shininess Lemma, and hence the Soundness Theorem.

But it might help to round off this chapter if we repeat my
informal explanation of what we have done. A formal proof is
just a sequence—of arbitrary length—of applications of rules. We
have shown that any application of any rule will not lead you
astray. It follows (by induction)that no formal proof will lead you
astray. That is: our proof system is sound.

Practice exercises

A. Complete the Lemmas left as exercises in this chapter. That
is, show that the following are rule-sound:

1. ∨I. (Hint: this is similar to the case of ∧E.)

CHAPTER 45. SOUNDNESS 376

2. X. (Hint: this is similar to the case of ¬E.)
3. →I. (Hint: this is similar to ∨E.)
4. →E.
5. IP. (Hint: this is similar to the case of ¬I.)

Appendices

377

APPENDIX A

Symbolic
notation
1.1 Alternative nomenclature

Truth-functional logic. TFL goes by other names. Sometimes
it is called sentential logic, because it deals fundamentally with
sentences. Sometimes it is called propositional logic, on the idea
that it deals fundamentally with propositions. We have stuck with
truth-functional logic, to emphasize the fact that it deals only with
assignments of truth and falsity to sentences, and that its connec-
tives are all truth-functional.

First-order logic. FOL goes by other names. Sometimes it is
called predicate logic, because it allows us to apply predicates to
objects. Sometimes it is called quantified logic, because it makes
use of quantifiers.

Formulas. Some texts call formulas well-formed formulas. Since
‘well-formed formula’ is such a long and cumbersome phrase,
they then abbreviate this as wff. This is both barbarous and un-
necessary (such texts do not countenance ‘ill-formed formulas’).
We have stuck with ‘formula’.

378

APPENDIX A. SYMBOLIC NOTATION 379

In §6, we defined sentences of TFL. These are also sometimes
called ‘formulas’ (or ‘well-formed formulas’) since in TFL, unlike
FOL, there is no distinction between a formula and a sentence.

Valuations. Some texts call valuations truth-assignments, or
truth-value assignments.

n-place predicates. We have chosen to call predicates ‘one-
place’, ‘two-place’, ‘three-place’, etc. Other texts respectively call
them ‘monadic’, ‘dyadic’, ‘triadic’, etc. Still other texts call them
‘unary’, ‘binary’, ‘ternary’, etc.

Names. In FOL, we have used ‘a’, ‘b ’, ‘c ’, for names. Some texts
call these ‘constants’. Other texts do not mark any difference
between names and variables in the syntax. Those texts focus
simply on whether the symbol occurs bound or unbound.

Domains. Some texts describe a domain as a ‘domain of dis-
course’, or a ‘universe of discourse’.

1.2 Alternative symbols

In the history of formal logic, different symbols have been used
at different times and by different authors. Often, authors were
forced to use notation that their printers could typeset. This ap-
pendix presents some common symbols, so that you can recog-
nize them if you encounter them in an article or in another book.

Negation. Two commonly used symbols are the hoe, ‘¬’, and
the swung dash or tilda, ‘∼.’ In some more advanced formal sys-
tems it is necessary to distinguish between two kinds of negation;
the distinction is sometimes represented by using both ‘¬’ and
‘∼’. Older texts sometimes indicate negation by a line over the
formula being negated, e.g., A ∧ B . Some texts use ‘x ≠ y ’ to
abbreviate ‘¬x = y ’.

APPENDIX A. SYMBOLIC NOTATION 380

Disjunction. The symbol ‘∨’ is typically used to symbolize in-
clusive disjunction. One etymology is from the Latin word ‘vel’,
meaning ‘or’.

Conjunction. Conjunction is often symbolized with the amper-
sand, ‘&’. The ampersand is a decorative form of the Latin word
‘et’, which means ‘and’. (Its etymology still lingers in certain
fonts, particularly in italic fonts; thus an italic ampersand might
appear as ‘& ’.) This symbol is commonly used in natural English
writing (e.g. ‘Smith & Sons’), and so even though it is a natural
choice, many logicians use a different symbol to avoid confusion
between the object and metalanguage: as a symbol in a formal
system, the ampersand is not the English word ‘&’. The most
common choice now is ‘∧’, which is a counterpart to the symbol
used for disjunction. Sometimes a single dot, ‘•’, is used. In some
older texts, there is no symbol for conjunction at all; ‘A and B ’ is
simply written ‘AB ’.

Material Conditional. There are two common symbols for the
material conditional: the arrow, ‘→’, and the horseshoe, ‘⊃’.

Material Biconditional. The double-headed arrow, ‘↔’, is used
in systems that use the arrow to represent the material condi-
tional. Systems that use the horseshoe for the conditional typi-
cally use the triple bar, ‘≡’, for the biconditional.

Quantifiers. The universal quantifier is typically symbolized
as a rotated ‘A’, and the existential quantifier as a rotated, ‘E’. In
some texts, there is no separate symbol for the universal quanti-
fier. Instead, the variable is just written in parentheses in front of
the formula that it binds. For example, they might write ‘(x)P (x)’
where we would write ‘∀x P (x)’.

These alternative typographies are summarised below:

APPENDIX A. SYMBOLIC NOTATION 381

negation ¬, ∼
conjunction ∧, &, •
disjunction ∨
conditional →, ⊃

biconditional ↔, ≡
universal quantifier ∀x , (x)

Polish notation

This section briefly discusses sentential logic in Polish notation,
a system of notation introduced in the late 1920s by the Polish
logician Jan Łukasiewicz.

Lower case letters are used as sentence letters. The capital
letter N is used for negation. A is used for disjunction, K for
conjunction, C for the conditional, E for the biconditional. (‘A’
is for alternation, another name for logical disjunction. ‘E’ is for
equivalence.)

In Polish notation, a binary connective is written before the
two sentences that it connects. For example, the sentence A ∧ B
of TFL would be written Kab in Polish notation.

The sentences ¬A → B and ¬(A → B) are very different;
the main logical operator of the first is the conditional, but the
main connective of the second is negation. In TFL, we show this
by putting parentheses around the conditional in the second sen-
tence. In Polish notation, parentheses are never required. The
left-most connective is always the main connective. The first sen-
tence would simply be written CN ab and the second NCab .

This feature of Polish notation means that it is possible to
evaluate sentences simply by working through the symbols from
right to left. If you were constructing a truth table for NKab ,
for example, you would first consider the truth-values assigned
to b and a, then consider their conjunction, and then negate the
result. The general rule for what to evaluate next in TFL is not
nearly so simple. In TFL, the truth table for ¬(A ∧ B) requires
looking at A and B , then looking in the middle of the sentence at
the conjunction, and then at the beginning of the sentence at the

APPENDIX A. SYMBOLIC NOTATION 382

negation. Because the order of operations can be specified more
mechanically in Polish notation, variants of Polish notation are
used as the internal structure for many computer programming
languages.

APPENDIX B

Alternative
proof systems
In formulating our natural deduction system, we treated certain
rules of natural deduction as basic, and others as derived. How-
ever, we could equally well have taken various different rules as
basic or derived. We will illustrate this point by considering some
alternative treatments of disjunction, negation, and the quanti-
fiers. We will also explain why we have made the choices that we
have.

2.1 Alternative disjunction elimination

Some systems take DS as their basic rule for disjunction elimina-
tion. Such systems can then treat the ∨E rule as a derived rule.
For they might offer the following proof scheme:

383

APPENDIX B. ALTERNATIVE PROOF SYSTEMS 384

m A∨ B

i A

j C

k B

l C

n A→ C →I i– j

n + 1 B→ C →I k–l

n + 2 ¬C

n + 3 A

n + 4 C →E n + 3, n

n + 5 ⊥ ¬E n + 2, n + 4

n + 6 ¬A ¬I n + 3–n + 5

n + 7 B DS m, n + 6

n + 8 C →E n + 7, n + 1

n + 9 ⊥ ¬E n + 2, n + 8

n + 10 C IP n + 2–n + 9

So why did we choose to take ∨E as basic, rather than DS?1 Our
reasoning is that DS involves the use of ‘¬’ in the statement of the
rule. It is in some sense ‘cleaner’ for our disjunction elimination
rule to avoid mentioning other connectives.

2.2 Alternative negation rules

Some systems take the following rule as their basic negation in-
troduction rule:

1P.D. Magnus’s original version of this book went the other way.

APPENDIX B. ALTERNATIVE PROOF SYSTEMS 385

m A

n − 1 B

n ¬B

¬A ¬I* m–n

and a corresponding version of the rule we called IP as their basic
negation elimination rule:

m ¬A

n − 1 B

n ¬B

A ¬E* m–n

Using these two rules, we could we could have avoided all use of
the symbol ‘⊥’ altogether.2 The resulting system would have had
fewer rules than ours.

Another way to deal with negation is to use either LEM or
DNE as a basic rule and introduce IP as a derived rule. Typically,
in such a system the rules are given different names, too. E.g.,
sometimes what we call ¬E is called ⊥I, and what we call X is
called ⊥E.3

So why did we chose our rules for negation and contradiction?
Our first reason is that adding the symbol ‘⊥’ to our natural

deduction system makes proofs considerably easier to work with.
For instance, in our system it’s always clear what the conclusion
of a subproof is: the sentence on the last line, e.g. ⊥ in IP or
¬I. In ¬I* and ¬E*, subproofs have two conclusions, so you can’t
check at one glance if an application of them is correct.

2Again, P.D. Magnus’s original version of this book went the other way.
3The version of this book due to Tim Button goes this route and replaces

IP with LEM, which he calls TND, for “tertium non datur.”

APPENDIX B. ALTERNATIVE PROOF SYSTEMS 386

Our second reason is that a lot of fascinating philosophical
discussion has focussed on the acceptability or otherwise of indi-
rect proof IP (equivalently, excluded middle, i.e. LEM, or double
negation elimination DNE) and explosion (i.e. X). By treating
these as separate rules in the proof system, you will be in a better
position to engage with that philosophical discussion. In particu-
lar: having invoked these rules explicitly, it would be much easier
for us to know what a system which lacked these rules would look
like.

This discussion, and in fact the vast majority of mathematical
study on applications of natural deduction proofs beyond intro-
ductory courses, makes reference to a different version of natural
deduction. This version was invented by Gerhard Gentzen in
1935 as refined by Dag Prawitz in 1965. Our set of basic rules
coincides with theirs. In other words, the rules we use are those
that are standard in philosophical and mathematical discussion
of natural deduction proofs outside of introductory courses.

2.3 Alternative quantification rules

An alternative approach to the quantifiers is to take as basic the
rules for ∀I and ∀E from §34, and also two CQ rule which allow
us to move from ∀x¬A to ¬∃xA and vice versa.4

Taking only these rules as basic, we could have derived the ∃I
and ∃E rules provided in §34. To derive the ∃I rule is fairly sim-
ple. Suppose A contains the name c, and contains no instances
of the variable x, and that we want to do the following:

m A(. . . c . . . c . . .)

k ∃xA(. . .x . . . c . . .)

This is not yet permitted, since in this new system, we do not
have the ∃I rule. We can, however, offer the following:

4Warren Goldfarb follows this line in Deductive Logic, 2003, Hackett Pub-
lishing Co.

APPENDIX B. ALTERNATIVE PROOF SYSTEMS 387

m A(. . . c . . . c . . .)

m + 1 ¬∃xA(. . .x . . . c . . .)

m + 2 ∀x¬A(. . .x . . . c . . .) CQ m + 1

m + 3 ¬A(. . . c . . . c . . .) ∀E m + 2

m + 4 ⊥ ¬E m + 3, m

m + 5 ∃xA(. . .x . . . c . . .) IP m + 1–m + 4

To derive the ∃E rule is rather more subtle. This is because the
∃E rule has an important constraint (as, indeed, does the ∀I rule),
and we need to make sure that we are respecting it. So, suppose
we are in a situation where we want to do the following:

m ∃xA(. . .x . . .x . . .)

i A(. . . c . . . c . . .)

j B

k B

where c does not occur in any undischarged assumptions, or in
B, or in ∃xA(. . .x . . .x . . .). Ordinarily, we would be allowed
to use the ∃E rule; but we are not here assuming that we have
access to this rule as a basic rule. Nevertheless, we could offer
the following, more complicated derivation:

APPENDIX B. ALTERNATIVE PROOF SYSTEMS 388

m ∃xA(. . .x . . .x . . .)

i A(. . . c . . . c . . .)

j B

k A(. . . c . . . c . . .) → B →I i– j

k + 1 ¬B

k + 2 ¬A(. . . c . . . c . . .) MT k , k + 1

k + 3 ∀x¬A(. . .x . . .x . . .) ∀I k + 2

k + 4 ¬∃xA(. . .x . . .x . . .) CQ k + 3

k + 5 ⊥ ¬E k + 4, m

k + 6 B IP k + 1–k + 5

We are permitted to use ∀I on line k +3 because c does not occur
in any undischarged assumptions or in B. The entries on lines
k + 4 and k + 1 contradict each other, because c does not occur
in ∃xA(. . .x . . .x . . .).

Armed with these derived rules, we could now go on to derive
the two remaining CQ rules, exactly as in §38.

So, why did we start with all of the quantifier rules as basic,
and then derive the CQ rules?

Our first reason is that it seems more intuitive to treat the
quantifiers as on a par with one another, giving them their own
basic rules for introduction and elimination.

Our second reason relates to the discussion of alternative
negation rules. In the derivations of the rules of ∃I and ∃E that
we have offered in this section, we invoked IP. But, as we men-
tioned earlier, IP is a contentious rule. So, if we want to move
to a system which abandons IP, but which still allows us to use
existential quantifiers, we will want to take the introduction and
elimination rules for the quantifiers as basic, and take the CQ
rules as derived. (Indeed, in a system without IP, LEM, and

APPENDIX B. ALTERNATIVE PROOF SYSTEMS 389

DNE, we will be unable to derive the CQ rule which moves from
¬∀xA to ∃x¬A.)

APPENDIX C

Quick
reference
3.1 Characteristic truth tables

A ¬A
T F
F T

A B A∧ B A∨ B A→ B A↔ B

T T T T T T
T F F T F F
F T F T T F
F F F F T T

390

APPENDIX C. QUICK REFERENCE 391

3.2 Symbolization

Sentential Connectives

It is not the case that P ¬P
Either P or Q (P ∨Q)

Neither P nor Q ¬(P ∨Q) or (¬P ∧ ¬Q)
Both P and Q (P ∧Q)

If P then Q (P → Q)
P only if Q (P → Q)

P if and only if Q (P ↔ Q)
P unless Q (P ∨Q)

Predicates

All F s are G s ∀x (F (x) → G (x))
Some F s are G s ∃x (F (x) ∧G (x))

Not all F s are G s ¬∀x (F (x) → G (x)) or
∃x (F (x) ∧ ¬G (x))

No F s are G s ∀x (F (x) → ¬G (x)) or
¬∃x (F (x) ∧G (x))

Identity

Only c is G ∀x (G (x) ↔ x = c)
Everything besides c is G ∀x (¬x = c → G (x))

The F is G ∃x (F (x) ∧ ∀y (F (y) → x = y) ∧G (x))
It is not the case that

the F is G ¬∃x (F (x) ∧ ∀y (F (y) → x = y) ∧G (x))
The F is non-G ∃x (F (x) ∧ ∀y (F (y) → x = y) ∧ ¬G (x))

APPENDIX C. QUICK REFERENCE 392

3.3 Using identity to symbolize quantities

There are at least F s.

one ∃x F (x)
two ∃x1∃x2(F (x1) ∧ F (x2) ∧ ¬x1 = x2)

three ∃x1∃x2∃x3(F (x1) ∧ F (x2) ∧ F (x3) ∧
¬x1 = x2 ∧ ¬x1 = x3 ∧ ¬x2 = x3)

four ∃x1∃x2∃x3∃x4(F (x1) ∧ F (x2) ∧ F (x3) ∧ F (x4) ∧
¬x1 = x2 ∧ ¬x1 = x3 ∧ ¬x1 = x4 ∧
¬x2 = x3 ∧ ¬x2 = x4 ∧ ¬x3 = x4)

n ∃x1 . . . ∃xn (F (x1) ∧ . . . ∧ F (xn) ∧
¬x1 = x2 ∧ . . . ∧ ¬xn−1 = xn)

There are at most F s.

One way to say ‘there are at most n F s’ is to put a
negation sign in front of the symbolization for ‘there
are at least n + 1 F s’. Equivalently, we can offer:

one ∀x1∀x2
[︁
(F (x1) ∧ F (x2)) → x1 = x2

]︁
two ∀x1∀x2∀x3

[︁
(F (x1) ∧ F (x2) ∧ F (x3)) →

(x1 = x2 ∨ x1 = x3 ∨ x2 = x3)
]︁

three ∀x1∀x2∀x3∀x4
[︁
(F (x1) ∧ F (x2) ∧ F (x3) ∧ F (x4)) →

(x1 = x2 ∨ x1 = x3 ∨ x1 = x4 ∨
x2 = x3 ∨ x2 = x4 ∨ x3 = x4)

]︁
n ∀x1 . . .∀xn+1

[︁
(F (x1) ∧ . . . ∧ F (xn+1)) →

(x1 = x2 ∨ . . . ∨ xn = xn+1)
]︁

There are exactly F s.

One way to say ‘there are exactly n F s’ is to conjoin two of the
symbolizations above and say ‘there are at least n F s and there
are at most n F s.’ The following equivalent formulas are shorter:

APPENDIX C. QUICK REFERENCE 393

zero ∀x ¬F (x)
one ∃x

[︁
F (x) ∧ ∀y (F (y) → x = y)

]︁
two ∃x1∃x2

[︁
F (x1) ∧ F (x2) ∧

¬x1 = x2 ∧ ∀y
(︁
F (y) → (y = x1 ∨ y = x2)

)︁]︁
three ∃x1∃x2∃x3

[︁
F (x1) ∧ F (x2) ∧ F (x3) ∧

¬x1 = x2 ∧ ¬x1 = x3 ∧ ¬x2 = x3 ∧
∀y

(︁
F (y) → (y = x1 ∨ y = x2 ∨ y = x3)

)︁]︁
n ∃x1 . . . ∃xn

[︁
F (x1) ∧ . . . ∧ F (xn) ∧

¬x1 = x2 ∧ . . . ∧ ¬xn−1 = xn ∧
∀y

(︁
F (y) → (y = x1 ∨ . . . ∨ y = xn)

)︁]︁

APPENDIX C. QUICK REFERENCE 394

3.4 Basic deduction rules for TFL

Reiteration

m A

A R m

Conjunction

m A

n B

A∧ B ∧I m, n

m A∧ B

A ∧E m

m A∧ B

B ∧E m

Conditional

i A

j B

A→ B →I i– j

m A→ B

n A

B →E m, n

Negation

i A

j ⊥

¬A ¬I i– j

m ¬A

n A

⊥ ¬E m, n

Indirect proof

i ¬A

j ⊥

A IP i– j

Explosion

m ⊥

A X m

APPENDIX C. QUICK REFERENCE 395

Disjunction

m A

A∨ B ∨I m

m A

B∨ A ∨I m

m A∨ B

i A

j C

k B

l C

C ∨E m, i– j , k–l

Biconditional

i A

j B

k B

l A

A↔ B ↔I i– j , k–l

m A↔ B

n A

B ↔E m, n

m A↔ B

n B

A ↔E m, n

APPENDIX C. QUICK REFERENCE 396

3.5 Derived rules for TFL

Disjunctive syllogism

m A∨ B

n ¬A

B DS m, n

m A∨ B

n ¬B

A DS m, n

Modus Tollens

m A→ B

n ¬B

¬A MT m, n

Double-negation
elimination

m ¬¬A

A DNE m

Excluded middle

i A

j B

k ¬A

l B

B LEM i– j , k–l

De Morgan Rules

m ¬(A∨ B)

¬A∧ ¬B DeM m

m ¬A∧ ¬B

¬(A∨ B) DeM m

m ¬(A∧ B)

¬A∨ ¬B DeM m

m ¬A∨ ¬B

¬(A∧ B) DeM m

APPENDIX C. QUICK REFERENCE 397

3.6 Basic deduction rules for FOL

Universal elimination

m ∀xA(. . .x . . .x . . .)

A(. . . c . . . c . . .) ∀E m

Universal introduction

m A(. . . c . . . c . . .)

∀xA(. . .x . . .x . . .) ∀I m

cmust not occur in any
undischarged assumption

xmust not occur in
A(. . . c . . . c . . .)

Existential introduction

m A(. . . c . . . c . . .)

∃xA(. . .x . . . c . . .) ∃I m

xmust not occur in
A(. . . c . . . c . . .)

Existential elimination

m ∃xA(. . .x . . .x . . .)

i A(. . . c . . . c . . .)

j B

B ∃E m, i– j

c must not occur in any
undischarged assumption, in
∃xA(. . .x . . .x . . .), or in B

Identity introduction

c = c =I

Identity elimination

m a = b

n A(. . .a . . .a . . .)

A(. . . b . . .a . . .) =E m, n

m a = b

n A(. . . b . . . b . . .)

A(. . .a . . . b . . .) =E m, n

APPENDIX C. QUICK REFERENCE 398

3.7 Derived rules for FOL

m ∀x¬A

¬∃xA CQ m

m ¬∃xA

∀x¬A CQ m

m ∃x¬A

¬∀xA CQ m

m ¬∀xA

∃x¬A CQ m

APPENDIX C. QUICK REFERENCE 399

Glossary
antecedent The sentence on the left side of a conditional.
argumentA connected series of sentences, divided into premises

and conclusion.
atomic sentence An expression used to represent a basic sen-

tence; a sentence letter in TFL, or a predicate symbol
followed by names in FOL.

biconditional The symbol ↔, used to represent words and
phrases that function like the English phrase “if and only
if”; or a sentence formed using this connective.

bound variableAn occurrence of a variable in a formula which is
in the scope of a quantifier followed by the same variable.

complete truth table A table that gives all the possible truth
values for a sentence (of TFL) or sentences in TFL, with
a line for every possible valuation of all sentence letters.

completeness A property held by logical systems if and only if
⊨ implies ⊢.

conclusion The last sentence in an argument.
conclusion indicator A word or phrase such as “therefore” used

to indicate that what follows is the conclusion of an ar-
gument.

conditional The symbol→, used to represent words and phrases
that function like the English phrase “if . . . then . . . ”; a
sentence formed by using this symbol.

400

GLOSSARY 401

conjunct A sentence joined to another by a conjunction.
conjunction The symbol ∧, used to represent words and phrases

that function like the English word “and”; or a sentence
formed using that symbol.

conjunctive normal form (DNF) A sentence which is a con-
junction of disjunctions of atomic sentences or negated
atomic sentences.

connective A logical operator in TFL used to combine sentence
letters into larger sentences.

consequent The sentence on the right side of a conditional.
contingent sentenceA sentence that is neither a necessary truth

nor a necessary falsehood; a sentence that in some case
is true and in some other case, false.

contradiction (of FOL) A sentence of FOL that is false in every
interpretation.

contradiction (of TFL) A sentence that has only Fs in the col-
umn under the main logical operator of its complete
truth table; a sentence that is false on every valuation.

disjunct A sentence joined to another by a disjunction.
disjunction The connective ∨, used to represent words and

phrases that function like the English word “or” in its
inclusive sense; or a sentence formed by using this con-
nective.

disjunctive normal form (DNF) A sentence which is a dis-
junction of conjunctions of atomic sentences or negated
atomic sentences.

domain The collection of objects assumed for a symbolization
in FOL, or that gives the range of the quantifiers in an
interpretation.

empty predicate A predicate that applies to no object in the
domain.

equivalence (in FOL) A property held by pairs of sentence of
FOLs if and only if the sentences have the same truth
value in every interpretation.

GLOSSARY 402

equivalence (in TFL) A property held by pairs of sentences if
and only if the complete truth table for those sentences
has identical columns under the two main logical oper-
ators, i.e., if the sentences have the same truth value on
every valuation.

existential quantifier The symbol ∃ of FOL used to symbolize
existence; ∃x F (x) is true iff at least one member of the
domain is F .

formula An expression of FOL built according to the inductive
rules in §26.2.

free variable An occurrence of a variable in a formula which is
not a bound variable.

functional completeness Property of a collection of connectives
which holds iff every possible truth table is the truth ta-
ble of a sentence involving only those connectives.

interpretation A specification of a domain together with the ob-
jects the names pick out and which objects the predicates
are true of.

invalid A property of arguments that holds when the conclusion
is not a conseqeucne of the premises; the opposite of
valid.

joint possibility A property possessed by some sentences when
they are all true in a single case.

main connective The last connective that you add when you
assemble a sentence using the inductive definition.

metalanguage The language logicians use to talk about the ob-
ject language. In this textbook, the metalanguage is En-
glish, supplemented by certain symbols like metavari-
ables and technical terms like “valid”.

metavariablesA variable in the metalanguage that can represent
any sentence in the object language.

name A symbol of FOL used to pick out an object of the domain.

GLOSSARY 403

necessary equivalence A property held by a pair of sentences
that, in every case, are either both true or both false.

necessary falsehood A sentence that is false in every case.
necessary truth A sentence that is true in every case.
negation The symbol ¬, used to represent words and phrases

that function like the English word “not”.

object language A language that is constructed and studied by
logicians. In this textbook, the object languages are TFL
and FOL.

predicate A symbol of FOL used to symbolize a property or
relation.

premise A sentence in an argument other than the conclusion.
premise indicator A word or phrase such as “because” used to

indicate that what follows is the premise of an argument.
provable equivalence A property held by pairs of statements if

and only if there is a derivation which takes you from
each one to the other one.

provable inconsistency Sentences are provably inconsistent iff
a contradiction can be derived from them.

satisfiability (in FOL) A property held by sentence of FOLs if
and only if some interpretation makes all the sentences
true.

satisfiability (in TFL) A property held by sentences if and only
if the complete truth table for those sentences contains
one line on which all the sentences are true, i.e., if some
valuation makes all the sentences true.

scope The subformula of a sentence (of TFL) or a formula of
FOL for which the main connective is the operator.

sentence (of FOL) A formula of FOL which has no bound vari-
ables.

sentence (of TFL) A string of symbols in TFL that can be built
up according to the inductive rules given on p. 51.

sentence letter An letter used to represent a basic sentence in
TFL.

GLOSSARY 404

sound A property of arguments that holds if the argument is
valid and has all true premises.

soundness A property held by logical systems if and only if ⊢
implies ⊨.

substitution instance The result of replacing every free occur-
rence of a variable in a formula with a name.

symbolization key A list that shows which English sentences are
represented by which sentence letters in TFL.

tautology A sentence that has only Ts in the column under the
main logical operator of its complete truth table; a sen-
tence that is true on every valuation.

term Either a name or a variable.
theorem A sentence that can be proved without any premises.
truth value One of the two logical values sentences can have:

True and False.
truth-functional connective An operator that builds larger sen-

tences out of smaller ones and fixes the truth value of
the resulting sentence based only on the truth value of
the component sentences.

universal quantifier The symbol ∀ of FOL used to symbolize
generality; ∀x F (x) is true iff every member of the do-
main is F .

valid A property of arguments where there conclusion is a con-
sequence of the premises.

validity A sentence of FOL that is true in every interpretation.
validity of arguments (in FOL) A property held by arguments;

an argument is valid if and only if no interpretation
makes all premises true and the conclusion false.

validity of arguments (in TFL) A property held by arguments
if and only if the complete truth table for the argument
contains no rows where the premises are all true and the
conclusion false, i.e., if no valuation makes all premises
true and the conclusion false.

GLOSSARY 405

valuation An assignment of truth values to particular sentence
letters.

variable A symbol of FOL used following quantifiers and as
placeholders in atomic formulas; lowercase letters be-
tween s and z .

In the Introduction to his volume Symbolic
Logic, Charles Lutwidge Dodson advised:
“When you come to any passage you don’t un-
derstand, read it again: if you still don’t under-
stand it, read it again: if you fail, even after three
readings, very likely your brain is getting a lit-
tle tired. In that case, put the book away, and
take to other occupations, and next day, when
you come to it fresh, you will very likely find
that it is quite easy.”

The same might be said for this volume, al-
though readers are forgiven if they take a break
for snacks after two readings.

	Table of Contents
	Preface
	I Key notions of logic
	1 Arguments
	2 The scope of logic
	3 Other logical notions

	II Truth-functional logic
	4 First steps to symbolization
	5 Connectives
	6 Sentences of TFL
	7 Ambiguity
	8 Use and mention

	III Truth tables
	9 Characteristic truth tables
	10 Truth-functional connectives
	11 Complete truth tables
	12 Semantic concepts
	13 Truth table shortcuts
	14 Partial truth tables

	IV Natural deduction for TFL
	15 The very idea of natural deduction
	16 Basic rules for TFL
	17 Constructing proofs
	18 Additional rules for TFL
	19 Proof-theoretic concepts
	20 Derived rules
	21 Soundness and completeness

	V First-order logic
	22 Building blocks of FOL
	23 Sentences with one quantifier
	24 Multiple generality
	25 Identity
	26 Sentences of FOL
	27 Definite descriptions
	28 Ambiguity

	VI Interpretations
	29 Extensionality
	30 Truth in FOL
	31 Semantic concepts
	32 Using interpretations
	33 Reasoning about interpretations

	VII Natural deduction for FOL
	34 Basic rules for FOL
	35 Proofs with quantifiers
	36 Conversion of quantifiers
	37 Rules for identity
	38 Derived rules
	39 Proofs and semantics

	VIII Modal logic
	40 Introducing modal logic
	41 Natural deduction for ML
	42 Semantics for ML

	IX Metatheory
	43 Normal forms
	44 Functional completeness
	45 Soundness

	Appendices
	A Symbolic notation
	B Alternative proof systems
	C Quick reference
	Glossary

