
forallx (UBC edition)
An Introduction to Formal Logic

this draft compiled November 28, 2017

P.D. Magnus
University at Albany, State University of New York

Jonathan Jenkins Ichikawa
University of British Columbia

source material version: fecundity.com/logic, version 1.30
UBC edition version 0.9 [171128]
This book is offered under a Creative Commons license.
(Attribution-ShareAlike 3.0)

The original author, P.D. Magnus, would like to thank the people who made this
project possible. Notable among these are Cristyn Magnus, who read many early
drafts; Aaron Schiller, who was an early adopter and provided considerable, helpful
feedback; and Bin Kang, Craig Erb, Nathan Carter, Wes McMichael, Selva Samuel,
Dave Krueger, Brandon Lee, Toan Tran, and the students of Introduction to Logic,
who detected various errors in previous versions of the book.

Jonathan Ichikawa, who modified the Magnus edition to create this version, would,
first and foremost, like to thank P.D. Magnus. He is also grateful to Greg Restall,
and his book Logic, which is the first text he taught from and which is the model
for the discussion of trees in this book. He also thanks the many students in his
Introduction to Logic course at UBC in the fall of 2017, who test-drove the first
draft of the book and caught many errors.

c© 2005–2017 by P.D. Magnus and Jonathan Ichikawa. Some rights reserved.

You are free to copy this book, to distribute it, to display it, and to make derivative works,

under the following conditions: (a) Attribution. You must give the original author credit. (b)

Share Alike. If you alter, transform, or build upon this work, you may distribute the resulting

work only under a license identical to this one. — For any reuse or distribution, you must

make clear to others the license terms of this work. Any of these conditions can be waived if

you get permission from the copyright holder. Your fair use and other rights are in no way

affected by the above. — This is a human-readable summary of the full license, which is

available on-line at http://creativecommons.org/licenses/by-sa/3.0/

Typesetting was carried out entirely in LATEX2ε. The style for typesetting nat-
ural deduction proofs is based on fitch.sty (v0.4) by Peter Selinger, University
of Ottawa. Tree proofs typesetting is from prooftrees (v0.6) by Clea F. Rees at
Cardiff University.

This copy of forallx (UBC edition) is current as of November 28, 2017.

http://creativecommons.org/licenses/by-sa/3.0/

Preface to the UBC Edition

This preface outlines my approach to teaching logic, and explains the way this
version differs from Magnus’s original. The preface is intended more for instruc-
tors than for students.

I have been teaching logic at the University of British Columbia for several years;
in 2017 I decided to prepare this textbook, based on and incorporating much of
P. D. Magnus’s forall x, which has been freely available for use and modification
since 2005. Preparing this text had two main advantages: it allowed me to tailor
the text precisely to my teaching preferences and emphasis, and, because it is
available for free, it is saving money for students. (I encourage instructors to
take this latter consideration pretty seriously. If you have a hundred students a
year, requiring them each to buy a $50 textbook takes $5,000 out of students’
pockets each year. If you teach with this or another free book instead, you’ll
save your students $50,000 over ten years. It can be sort of annoying to switch
textbooks if you’re used to something already. But is staying the course worth
$50,000 of your students’ money?)

This text was designed for a one-semester, thirteen-week course with no pre-
requisites, introducing formal logic. At UBC, the course has quite a mix of
students with diverse academic backgrounds. For many it is their first philos-
ophy course. As I teach Introduction to Formal Logic, the course has three
central aims: (1) to help students think more clearly about arguments and ar-
gumentative structure, in a way applicable to informal arguments in philosophy
and elsewhere; (2) to provide some familiarity and comfort with formal proof
systems, including practice setting out formal proofs with each step justified by
a syntactically-defined rule; and (3) to provide the conceptual groundwork for
metatheoretical proofs, introducing the ideas of rigorous informal proofs about
formal systems, preparing students for possible future courses focusing on met-
alogic and computability. I try to give those three elements roughly equal focus
in my course, and in this book.

The book introduces two different kinds of formal proof systems— analytic
tableaux (‘trees’) and Fitch-style natural deduction. Unlike many logic texts,

3

4

it puts its greater emphasis on trees. There are two reasons I have found this
to be useful. One is that the algorithmic nature of tree proofs means that one
can be assured to achieve successful proofs on the basis of patience and careful
diligence, as opposed to requiring a difficult-to-quantify (and difficult-to-teach)
‘flash of insight’. The other is that the soundness and completeness theorems
for tree methods are simpler and more intuitive than they are for natural deduc-
tion systems, and I find it valuable to expose students to proofs of significant
metatheoretical results early in their logical studies. I prove soundness and
completeness for a sentential logic tree system in the fifth week of the semester.

As presented here, the soundness and completeness proofs emphasize contrasting
the systems students learn with hypothetical alternative systems that modify
the rules in various ways. This helps give intuitive substance to these theorems.

The book begins with a systematic engagement with sentential logic in con-
ventional ways: translations, sentential connectives, models, truth tables, and
two different proof systems, including soundness and completeness for the tree
system. Students are thereby able to become familiar with all the central met-
alogical ideas, incorporating relatively simple logical symbolism, before intro-
ducing predicates, quantifiers, and identity. Once we enrich the language, we
go through those previous ideas again, using our more complex vocabulary.

The first book I used for teaching was Greg Restall’s Logic (McGill–Queen’s
University Press, 2006), which I used for several years. My approach to teaching
logic is heavily informed by that book; its influence in this text is particularly
clear in the discussion of trees.

In preparing this text, I began with Magnus’s original and edited freely. There
are sections where Magnus’s prose has been retained entirely, and many of the
exercises I have taken unchanged from the original. But I have also restruc-
tured many things and added quite a bit of new material. Unlike my version,
which focuses on sentential logic before introducing predicates and quantifica-
tion, Magnus’s version integrated the discussion of sentential and quantifica-
tional systems, e.g. covering translation for both before discussing models and
proofs for either. The original also did not include trees or soundness and com-
pleteness proofs. The two chapters on trees (5 and 10) and soundness and
completeness (6 and 11) were written from scratch; my chapter on identity (12)
is also original. The other material in this edition incorporates Magnus’s original
material, some parts more heavily edited than others. I have slightly modified
Magnus’s natural deduction rules.

I consider this version of the text to be in ‘beta’. It is ready to be taught with,
but I know there’s more finessing of the language, and correcting of mistakes,
to do. I also intend to add more practice questions and answers, and to include
a more comprehensive listing of ‘common student errors’. I expect to have a
version that isn’t actively calling out for more work to be done on it by late

5

2018.

Many thanks, first and foremost, to P.D. Magnus for providing this wonderful
resource under a Creative Commons license, which made it freely available and
gave me the right to modify and distribute it under the same licensing agree-
ment. I hope other instructors will also feel free to either teach directly from
this version, or to modify it to develop their own. The typesetting for trees is
via Clea F. Rees’s prooftrees package; thanks to her for making it available.

I’m grateful to the students in my PHIL 220 in the fall semester of 2017 at
UBC, who had an in-progress version of this book as their course textbook.
They patiently and helpfully found and pointed out mistakes as I wrote them
(incentivized, perhaps, by an offer of extra credit); this version has many fewer
errors than it otherwise would have had. If you find more errors, I’d thank you
for sending me a quick email about them.

Jonathan Ichikawa
University of British Columbia

November 2017
ichikawa@gmail.com

Contents

Preface to the UBC Edition 3

1 What is logic? 9
1.1 Arguments . 10
1.2 Sentences . 10
1.3 Two ways that arguments can go wrong 12
1.4 Deductive validity . 13
1.5 Other logical notions . 15
1.6 Formal languages . 17
Practice Exercises . 18

2 Sentential logic 21
2.1 Sentence letters . 21
2.2 Connectives . 23
2.3 Other symbolization . 34
2.4 Sentences of SL . 35
Practice Exercises . 39

3 Truth tables 43
3.1 Truth-functional connectives . 43
3.2 Complete truth tables . 44
3.3 Using truth tables . 47
3.4 Partial truth tables . 49
3.5 Evaluating English Arguments via SL 51
Practice Exercises . 54

4 Entailment and Models for SL 58
4.1 Semantics for SL . 59
4.2 Some odd features of entailment 63
Practice Exercises . 64

5 SL Trees 65
5.1 Satisfiability and entailment . 66
5.2 An example: proving validity 67
5.3 An example: proving invalidity 69

6

CONTENTS 7

5.4 Resolution rules for SL trees . 71
5.5 Branch closure rules . 76
5.6 Branch completion rules . 77
5.7 Resolution order . 78
Practice Exercises . 79

6 Soundness and Completeness for SL Trees 81
6.1 Informal proof . 82
6.2 Soundness . 82
6.3 Recursive proofs . 83
6.4 Proving soundness . 84
6.5 Completeness . 90
6.6 Proving Completeness . 91
Practice Exercises . 95

7 Natural Deduction Proofs in SL 98
7.1 Basic rules for SL . 100
7.2 Derived rules . 109
7.3 Rules of replacement . 111
7.4 Proof strategy . 113
7.5 Proof-theoretic concepts . 114
7.6 Proofs and models . 115
7.7 Soundness and completeness . 116
Practice Exercises . 118

8 Quantified logic 121
8.1 From sentences to predicates 121
8.2 Building blocks of QL . 123
8.3 Quantifiers . 127
8.4 Translating to QL . 130
8.5 Sentences of QL . 140
8.6 Common Student Errors . 143
Practice Exercises . 144

9 A formal semantics for QL 149
9.1 Interpretations in QL . 149
9.2 Working with models . 154
9.3 Truth in QL . 159
Practice Exercises . 164

10 QL Trees 168
10.1 Trees with Fixed Domains . 168
10.2 Generalizing the Tree Method 172
10.3 Existentials . 173
10.4 Universals . 174
10.5 Negated Existentials . 175

8 CONTENTS

10.6 Negated Universals . 176
10.7 Whither Branching? . 176
10.8 The Other Development Rules 177
10.9 Branch Closure Rules . 177
10.10 Tree Completion Rules . 177
10.11 Resolution order . 179
10.12 Infinite Trees . 180
10.13 Common Student Errors . 185
Practice Exercises . 186

11 Soundness and Completeness for QL Trees 188
11.1 Soundness . 189
11.2 Completeness . 194
Practice Exercises . 196

12 Identity 199
12.1 Motivating identity as a logical category 199
12.2 = . 202
12.3 Identity and ‘no one else’ . 203
12.4 Identical objects satisfy identical predicates 204
12.5 Quantity . 205
12.6 Identity and Trees . 208
Practice Exercises . 212

13 Natural Deduction Proofs in QL 216
13.1 Natural Deduction: the basics 216
13.2 Basic quantifier rules . 217
13.3 Identity Introduction . 223
13.4 Identity Elimination . 223
13.5 Example: Translation and Evaluation 224
13.6 Natural deduction strategy . 226
13.7 Soundness and completeness . 226
Practice Exercises . 227

A Other symbolic notation 231

B Solutions to selected exercises 234

C Quick Reference 265

Chapter 1

What is logic?

Logic is the business of evaluating arguments, sorting good ones from bad ones.
In everyday language, we sometimes use the word ‘argument’ to refer to bel-
ligerent shouting matches. If you and a friend have an argument in this sense,
things are not going well between the two of you.

In logic, we are not interested in the teeth-gnashing, hair-pulling kind of ar-
gument. A logical argument is structured to give someone a reason to believe
some conclusion. Here is one such argument:

(1) It is raining heavily.

(2) When it rains, everyone outside without an umbrella gets wet.

.˙. You should take an umbrella.

The three dots on the third line of the argument mean ‘Therefore’ and they
indicate that the final sentence is the conclusion of the argument. The other
sentences are premises of the argument. If you believe the premises, then the
argument provides you with a reason to believe the conclusion.

This chapter discusses some basic logical notions that apply to arguments in a
natural language like English. It is important to begin with a clear understand-
ing of what arguments are and of what it means for an argument to be valid.
Later we will translate arguments from English into a formal language. We
want formal validity, as defined in the formal language, to have at least some of
the important features of natural-language validity.

9

10 forallx (UBC edition)

1.1 Arguments

A crucial part of analyzing an argument is identifying its conclusion. Every ar-
gument has a conclusion— the conclusion is the claim the argument is trying to
establish. Premises are starting-points, used to lend support to the conclusion.
Often, the conclusion will be signified by words like ‘so’ or ‘therefore’. Premises
might be marked by words like ‘because’. These words can give a clue as to just
what the argument is supposed to be.

premise indicators: since, because, given that

conclusion indicators: therefore, hence, thus, then, so

In a natural language like English, sometimes, arguments start with their premises
and end with their conclusions, but not always. For some purposes in this course,
we will be working with idealizations of natural language, where we work as if
some generally applicable rules of thumb held without exception. Let’s define
(a slightly technical notion of) an argument as a series of sentences. The
sentences at the beginning of the series are premises. The final sentence in the
series is the conclusion.

The idea of an argument is that the premises are supposed to give you reason
to accept the conclusion.

Notice that this definition is quite general. Consider this example:

There is coffee in the coffee pot.
There is a dragon playing bassoon on the armoire.

.˙. Salvador Dali was a poker player.

It may seem odd to call this an argument, but that is because it would be
a terrible argument. The two premises have nothing at all to do with the
conclusion. Nevertheless, given our definition, it still counts as an argument—
albeit a bad one. One of our central aims in formal logic is to provide with
rigorous, formal tests for evaluating arguments.

1.2 Sentences

In logic, we are only interested in sentences that can figure as a premise or con-
clusion of an argument. So we will say that, in our technical sense, a sentence
is something that can be true or false.

ch. 1 what is logic? 11

You should not confuse the idea of a sentence that can be true or false with
the difference between fact and opinion. Often, sentences in logic will express
things that would count as facts— such as ‘Kierkegaard was a hunchback’ or
‘Kierkegaard liked almonds.’ They can also express things that you might think
of as matters of opinion— such as, ‘Almonds are yummy’ or ‘the U.S. invasion
of Iraq was unjustified’.

It is also important to keep clear the distinction between something’s being true
and something’s being known. A sentence is the kind of thing that can be true
or false; that doesn’t mean you’ll always be able to tell whether it is true or
false. For example, ‘there are an even number of humans on Earth right now’
is a sentence. It is either true or false, even though it would be impossible to
tell which.

Some things that would count as ‘sentences’ in a linguistics or grammar course
that we will not count as sentences in logic. (If you are familiar with the idea of
a ‘proposition’, a ‘sentence’ in logic is a sentence that expresses a proposition.)

Questions In a grammar class, ‘Are you sleepy yet?’ would count as an
interrogative sentence. Although you might be sleepy or you might be alert, the
question itself is neither true nor false. For this reason, questions will not count
as sentences in logic. Suppose you answer the question: ‘I am not sleepy.’ This
is either true or false, and so it is a sentence in the logical sense. Generally,
questions will not count as sentences, but answers will.

‘What is this course about?’ is not a sentence. ‘No one knows what this course
is about’ is a sentence.

Imperatives Commands are often phrased as imperatives like ‘Wake up!’, ‘Sit
up straight’, and so on. In a grammar class, these would count as imperative
sentences. Although it might be good for you to sit up straight or it might not,
the command is neither true nor false. Note, however, that commands are not
always phrased as imperatives. ‘You will respect my authority’ is either true
or false— either you will or you will not— and so it counts as a sentence in the
logical sense.

Exclamations ‘Ouch!’ is sometimes called an exclamatory sentence, but it
is neither true nor false. We will treat ‘Ouch, I hurt my toe!’ as meaning the
same thing as ‘I hurt my toe.’ The ‘ouch’ does not add anything that could be
true or false.

To recap: sentences, in the technical sense we’re interested in things that can
be true or false. We will call truth or falisity the truth-value of a sentence.

12 forallx (UBC edition)

1.3 Two ways that arguments can go wrong

Consider the argument that you should take an umbrella (on p. 9, above).

(1) It is raining heavily.
(2) When it rains, everyone outside without an umbrella gets wet.
.˙. You should take an umbrella.

If premise (1) is false— if it is sunny outside— then the argument fails. It does
not establish that you should take an umbrella. Or suppose that premise (2) is
false. Maybe not everyone without an umbrella gets wet. (Maybe some people
are able to stay under the awnings.) In this case, too, the argument does not
establish its conclusion. Arguments only succeed when all their premises are
true.

Suppose both premises are true. It really is raining heavily, and we’re talking
about an area where there’s no protection from the rain other than umbrellas,
so that anyone outside without an umbrella will get wet when it rains. Now does
the argument show you that you should take an umbrella? It certainly seems
to lend some support in that direction. But notice that it’s still not conclusive.
There are still possible ways the conclusion might be false. For example, suppose
you like getting wet. Then, even if it is raining heavily, and even if everyone
who goes outside without an umbrella when it rains gets wet, maybe you have
no reason to take the umbrella.

A good argument— or at least, an argument that is good in one particularly
interesting way— compels its conclusion.

So it seems that there are two ways an argument could be weak. First, one or
more of the premises might be false. An argument gives you a reason to believe
its conclusion only if you believe its premises. Second, the premises might fail
to support the conclusion, or fail to support it sufficiently strongly. Even if the
premises were true, the form of the argument might be weak. The example we
just considered is weak in both ways.

Once again, we are working with a particular kind of idealization regarding
arguments and what makes them good. Consider another example:

You are reading this book.
This is a logic book.

.˙. You are a logic student.

In a straightforward and ordinary sense, this is not a terrible argument. The
premises are true. And they do offer some support for the conclusion. Most

ch. 1 what is logic? 13

people who read this book are logic students. Still, it is possible for someone
besides a logic student to read this book. If a team of censors carefully read
this book in order to find out whether I’m criticizing the government, that
wouldn’t make them become logic students. So the premises of this argument,
even though they are true, do not guarantee the truth of the conclusion.

In logic, we are interested in arguments that do not have this fault. We are
interested in arguments whose premises guarantee their conclusions. We call
such arguments ‘deductively valid’ or just ‘valid.’ Even though we might count
the argument above as a good argument in some sense, it is not valid; that is, it
is ‘invalid.’ One important task of logic is to sort valid arguments from invalid
arguments.

1.4 Deductive validity

An argument is deductively valid if and only if it is impossible for the premises
to be true if the conclusion is false.

That’s our official definition of validity. Once again (get used to this pattern),
our formal definition is related to, but not quite the same as, the ordinary
colloquial notion with the same name. In ordinary English, to say something is
‘valid’ means, somewhat vaguely, that it is good. (Think of a ‘valid point’ or a
‘valid perspective’.) In logic, a valid argument is one that has this very specific
feature: it’s impossible for the premises to be true if the conclusion is false.

Notice that validity does not require that the premises be true. Consider this
example:

(1) Oranges are either fruits or musical instruments.

(2) Oranges are not fruits.

.˙. Oranges are musical instruments.

This is a valid argument. It is impossible for the premises to be true if the
conclusion is false. Since it has a false premise— premise (2)— it does not
actually establish its conclusion, but it does have a valid logical form. If both
premises were true, then the conclusion would necessarily be true.

Since this is a valid argument that is, in some important sense, a terrible argu-
ment, this shows that validity isn’t the only feature we care about in arguments.
An argument is sound if and only if it is valid and all of its premises are true.
For reasons that will emerge, logic tends to focus primarily on validity, rather
than soundness.

14 forallx (UBC edition)

We’ve seen that a valid argument does not need to have true premises or a true
conclusion. Conversely, having true premises and a true conclusion is also not
enough to make an argument valid. Consider this example:

Donald Trump is a U.S. citizen.

Justin Trudeau is a Canadian citizen.

.˙. UBC is the largest employer in Vancouver.

The premises and conclusion of this argument are, as a matter of fact, all true.
This is a terrible argument, however, because the premises have nothing to
do with the conclusion. Although the conclusion is true, it is possible for the
premises of this argument to be true if the conclusion is false. It’s possible, for
example, to imagine that Lululemon hired an additional 100,000 employees in
Vancouver, while UBC remained the same size, and without any world leaders
changing their citizenship status. In such a possible scenario, the premises would
be true, while the conclusion is false.

The important thing to remember is that validity is not about the actual truth
or falsity of the sentences in the argument. Instead, it is about the form of
the argument: The truth of the premises is incompatible with the falsity of the
conclusion.

Here are some more valid arguments. Can you see why each is valid?

1. Socrates is a man.

2. All men are carrots.

3. .˙. Socrates is a carrot.

1. Abe Lincoln was either born in Illinois or he was once president.

2. Abe Lincoln was never president.

.˙. Abe Lincoln was born in Illinois.

1. Justin Trudeau is either from France or from Luxemborg.

2. Justin Trudeau is not from Luxemborg.

.˙. Justin Trudeau is from France.

1. If the world were to end today, then I would not need to get up tomorrow
morning.

2. I will need to get up tomorrow morning.

.˙. The world will not end today.

ch. 1 what is logic? 15

1.5 Other logical notions

Here are a few more relevant terms we’ll be working with.

Logical truth

In considering arguments formally, we care about what would be true if the
premises were true. Generally, we are not concerned with the actual truth
value of any particular sentences— whether they are actually true or false. (As
indicated above, we will be more interested in validity than in soundness.) Yet
there are some sentences that must be true, just as a matter of logic.

Compare these sentences:

1. It is raining.

2. Either it is raining, or it is not.

3. It is both raining and not raining.

Sentence 1 could be true or it could be false. (As I’m typing these words on
a sunny Vancouver summer day, it is false.) Sentences that could be true, or
could be false, are called contingent sentences.

Sentence 2 is different. Even though I don’t know what the weather is like
as you’re reading this book, I still know that it’s true. Sentence 2 must be
true. This sentence is logically true; no matter how the weather or anything
else happens to be, this sentence has to be true. We call a sentence like this a
logical truth or a tautology.

You do not need to check the weather to know about sentence 3, either. It must
be false, simply as a matter of logic. It might be raining here and not raining
across town, it might be raining now but stop raining even as you read this, but
it is impossible for it to be both raining and not raining here at this moment.
The third sentence is logically false; it is false regardless of what the world
is like. A logically false sentence is called a contradiction.

To be precise, we can define a contingent sentence as a sentence that is
neither a tautology nor a contradiction.

Logical equivalence

We can also ask about the logical relations between two sentences. For example:

16 forallx (UBC edition)

Sunil went to the store after he washed the dishes.
Sunil washed the dishes before he went to the store.

These two sentences are both contingent. (Do you see why?) Yet they must
have the same truth-value. If either of the sentences is true, then they both
are; if either of the sentences is false, then they both are. When two sentences
necessarily have the same truth value, we say that they are logically equiv-
alent.

Notice that both of these arguments are valid:

Sunil went to the store after he washed the dishes.
.˙. Sunil washed the dishes before he went to the store.

Sunil washed the dishes before he went to the store.
.˙. Sunil went to the store after he washed the dishes.

In general, if two sentences are equivalent, then an argument with either one as
a premise, and the other as the conclusion, will be valid.

Consistency

Consider these two sentences:

B1 My only brother is taller than I am.
B2 My only brother is shorter than I am.

Logic alone cannot tell us which, if either, of these sentences is true. Yet we can
say that if the first sentence (B1) is true, then the second sentence (B2) must
be false. And if B2 is true, then B1 must be false. It cannot be the case that
both of these sentences are true.

If a set of sentences could not all be true at the same time, like B1–B2, they are
said to be inconsistent. Otherwise, they are consistent.

We can ask about the consistency of any number of sentences. For example,
consider the following list of sentences:

G1 There are at least four giraffes at the wild animal park.
G2 There are exactly seven gorillas at the wild animal park.
G3 There are not more than two martians at the wild animal park.

ch. 1 what is logic? 17

G4 Every giraffe at the wild animal park is a martian.

G1 and G4 together imply that there are at least four martian giraffes at the
park. This conflicts with G3, which implies that there are no more than two
martian giraffes there. So the set of sentences G1–G4 is inconsistent. Notice
that the inconsistency has nothing at all to do with G2. G2 just happens to be
part of an inconsistent set.

Sometimes, people will say that an inconsistent set of sentences ‘contains a
contradiction.’ By this, they mean that it would be logically impossible for all
of the sentences to be true at once. A set might be inconsistent even if each of
the sentences in it is either contingent or tautologous. When a single sentence
is a contradiction, then that sentence alone cannot be true.

1.6 Formal languages

So far, we have been working with arguments expressed in English. But there
are some general argumentative structures that transcend English or any other
particular natural language. Consider, for example, the following simple argu-
ment:

Vancouver is in Canada.
Moscow is in Russia.

.˙. Vancouver is in Canada and Moscow is in Russia.

Hopefully by now it is obvious to you that this argument is valid. (Not just
that— it is even sound.) That argument has something important in common
with this one:

Vancouver is on Mars.
Moscow is on Venus.

.˙. Vancouver is on Mars and Moscow is on Venus.

Although this one has false premises, and so can’t be sound, it is also valid.
It is impossible for the premises to be true if the conclusion is false. Not only
that— it seems that the argument is valid in, in a sense to be articulated,
exactly the same way. The validity of the first argument is very similar to that
of the second. Even though they are expressed by different strings of English
sentences, it is useful to develop a language in which they are, in an important
sense, the same kind of argument. Over the course of this textbook, we’ll be
developing and working with such a language. We’ll begin with a simple version

18 forallx (UBC edition)

of our logical language, called SL, for sentential logic. Later on, we’ll develop a
more complicated logical language, QL, for quantified logic. Both languages are
formal in the sense that there are precise and exact rules that govern how we
should evaluate sentences within them.

English is a natural language, not a formal one. Its rules are vague and messy,
and constantly changing. We will spend some time translating between En-
glish and our formal languages, but the translations will not always be precise.
There is a tension between wanting to capture as much of the structure of En-
glish as possible and wanting a simple formal language with tractable rules—
simpler formal languages leave out more. There is no perfect formal language.
Some will do a better job than others in translating particular English-language
arguments.

In this book, we make the assumption that true and false are the only possible
truth-values. Logical languages that make this assumption are called bivalent,
which means two-valued. SL and QL are both bivalent, but some philosophers
have emphasized limits to the power of bivalent logic. Some logics, beyond our
present scope, allow for sentences that are neither true nor false. Others allow
for sentences that are both true and false. But bivalent logics are enough for
this introduction to formal logic.

Summary of logical notions

. An argument is (deductively) valid if it is impossible for the premises to
be true and the conclusion false; it is invalid otherwise.

. A tautology is a sentence that must be true, as a matter of logic.

. A contradiction is a sentence that must be false, as a matter of logic.

. A contingent sentence is neither a tautology nor a contradiction.

. Two sentences are logically equivalent if they necessarily have the
same truth value.

. A set of sentences is consistent if it is logically possible for all the mem-
bers of the set to be true at the same time; it is inconsistent otherwise.

Practice Exercises

At the end of each chapter, you will find a series of practice problems that
review and explore the material covered in the chapter. There is no substitute
for actually working through some problems, because logic is more about a way

ch. 1 what is logic? 19

of thinking than it is about memorizing facts. The answers to some of the
problems are provided at the end of the book in appendix B; the problems that
are solved in the appendix are marked with a ?.

Part A Which of the following are ‘sentences’ in the logical sense?

1. England is smaller than China.
2. Greenland is south of Jerusalem.
3. Is New Jersey east of Wisconsin?
4. The atomic number of helium is 2.
5. The atomic number of helium is π.
6. I hate overcooked noodles.
7. Blech! Overcooked noodles!
8. Overcooked noodles are disgusting.
9. Take your time.

10. This is the last question.

Part B For each of the following: Is it a tautology, a contradiction, or a con-
tingent sentence?

1. Caesar crossed the Rubicon.
2. Someone once crossed the Rubicon.
3. No one has ever crossed the Rubicon.
4. If Caesar crossed the Rubicon, then someone has.
5. Even though Caesar crossed the Rubicon, no one has ever crossed the

Rubicon.
6. If anyone has ever crossed the Rubicon, it was Caesar.

? Part C Look back at the sentences G1–G4 on p. 16, and consider each of the
following sets of sentences. Which are consistent? Which are inconsistent?

1. G2, G3, and G4
2. G1, G3, and G4
3. G1, G2, and G4
4. G1, G2, and G3

? Part D Which of the following is possible? If it is possible, give an example.
If it is not possible, explain why.

1. A valid argument that has one false premise and one true premise
2. A valid argument that has a false conclusion
3. A valid argument, the conclusion of which is a contradiction
4. An invalid argument, the conclusion of which is a tautology

20 forallx (UBC edition)

5. A tautology that is contingent
6. Two logically equivalent sentences, both of which are tautologies
7. Two logically equivalent sentences, one of which is a tautology and one of

which is contingent
8. Two logically equivalent sentences that together are an inconsistent set
9. A consistent set of sentences that contains a contradiction

10. An inconsistent set of sentences that contains a tautology

Chapter 2

Sentential logic

This chapter introduces a logical language called SL. It is a version of sentential
logic, because the basic units of the language will represent entire sentences.

2.1 Sentence letters

In SL, capital Roman letters (A, B, C, etc.) are used to represent basic sen-
tences. Considered only as a symbol of SL, the letter A could mean any sentence.
So when translating from English into SL, it is important to provide a symbol-
ization key. The key provides an English language sentence for each sentence
letter used in the symbolization.

For example, consider this argument:

Today is New Year’s Day.
If today is New Year’s Day, then people are swimming in English Bay.

.˙. People are swimming in English Bay.

This is obviously a valid argument in English. In symbolizing it, we want to
preserve the structure of the argument that makes it valid. What happens if
we replace each sentence with a letter? Our symbolization key would look like
this:

A: Today is New Year’s Day.
B: If today is New Year’s Day, then people are swimming in English Bay.
C: People are swimming in English Bay.

21

22 forallx (UBC edition)

We would then symbolize the argument in this way:

A
B

.˙. C

This is a possible way to symbolize this argument, but it’s not a very interesting
one. There is no necessary connection between some sentence A, which could be
any sentence, and some other sentences B and C, which could be any sentences.

There was something important about the argument above that has been lost
in translation. The original argument was valid, but this translation of the
argument does not reflect that validity. Given a different symbolization key, for
example, the argument form

A
B

.˙. C

could equally well stand in for this invalid argument:

A: Today is Christmas Day.
B: Tiny Tim has difficulty walking without crutches.
C: We’re all going to die tomorrow.

A more interesting translation of the valid New Year’s argument will show how
it is different from the invalid Christmas argument. The relevant thing about
the New Year’s argument is that the second premise is not just any sentence.
Notice that the second premise contains the first premise and the conclusion as
parts. Our symbolization key for the argument only needs to include meanings
for A and C, and we can build the second premise from those pieces. So we
symbolize the argument this way:

A
If A, then C.

.˙. C

This preserves the structure of the argument that makes it valid, but it still
makes use of the English expression ‘If. . . then. . ..’ Although for our formal
language we ultimately want to replace all of the English expressions with logical
notation, this is a good start.

ch. 2 sentential logic 23

The sentences that can be symbolized with sentence letters are called atomic
sentences, because they are the basic building blocks out of which more complex
sentences can be built. Whatever logical structure a sentence might have is lost
when it is translated as an atomic sentence. From the point of view of SL, the
sentence is just a letter. It can be used to build more complex sentences, but it
cannot be taken apart.

There are only twenty-six letters of the Roman alphabet. We don’t want to
impose this artificial limit onto our formal language; it’s better to work with a
language that allows an arbitrary number of atomic sentences. To achieve this,
we allow atomic sentences that have a capital letter with a numerical subscript.
So we could have a symbolization key that looks like this:

A1: The apple is under the armoire.
A2: Arguments in SL always contain atomic sentences.
A3: Adam Ant is taking an airplane from Anchorage to Albany.

...
A294: Alliteration angers otherwise affable astronauts.

Keep in mind that each of these is a different atomic sentence. SL does not
treat the fact that the sentences above each use the letter A as significant. If we
have three atomic sentences, A, B1, and B2, SL doesn’t build in the idea that
the latter two have anything in particular in common.

2.2 Connectives

Logical connectives are used to build complex sentences from atomic compo-
nents. There are five logical connectives in SL. This table summarizes them,
and they are explained below.

symbol what it is called translation
¬ negation ‘It is not the case that. . .’
& conjunction ‘Both. . . and . . .’
∨ disjunction ‘Either. . . or . . .’
⊃ conditional ‘If . . . then . . .’
≡ biconditional ‘. . . if and only if . . .’

Natural languages like English are vague and imprecise, and constantly chang-
ing, and carry many complex subtleties of meaning. Our formal language, SL,
has none of these properties. It is defined by precise rigid rules. Consequently,
the ‘translation’ provided in the table is only an approximate one. We’ll see
some of the differences below.

24 forallx (UBC edition)

Negation

Consider how we might symbolize these sentences:

1. Cats are mammals.
2. Cats are not mammals.
3. Cats are something other than mammals.

In order to symbolize sentence 1, we will need one sentence letter. We can
provide a symbolization key:

C: Cats are mammals

(Note that here we are giving C a different interpretation than we did in the
previous section. The symbolization key only specifies what C means in a
specific context. It is vital that we continue to use this meaning of C so long
as we are talking about cats being mammals. Later, when we are symbolizing
different sentences, we can write a new symbolization key and use C to mean
something else.)

Now, sentence 1 is simply C.

Since sentence 2 is obviously related to the sentence 1, we do not want to
introduce a different sentence letter. To put it partly in English, the sentence
means ‘Not C.’ In order to symbolize this, we need a symbol for logical negation.
We will use ‘¬.’ Now we can translate ‘Not C’ to ¬C.

Sentence 3 is also about whether cats are mammals, but it does not contain the
word ‘not.’ Nevertheless, it seems logically equivalent to sentence 2. They have
the same truth conditions. They both mean something like: it is not the case
that cats are mammals. As such, we can translate both sentence 2 and sentence
3 as ¬C.

When translating from English into SL, the word ‘not’ is usually a pretty good
clue that ‘¬’ will be an appropriate symbol to use, but, as the case of 3 shows,
it’s important to think about the actual meaning of the sentence, and not rely
too much on which words appear in it.

A sentence can be symbolized as ¬Φ if it can be paraphrased in
English as ‘It is not the case that Φ.’

Consider these further examples:

ch. 2 sentential logic 25

4. Rodrigo is mortal.
5. Rodrigo is immortal.
6. Rodrigo is not immortal.

If we let R mean ‘Rodrigo is mortal’, then sentence 4 can be translated as R.

What about sentence 5? Being immortal is pretty much the same as not being
mortal. So it makes sense to treat 5 as the negation of 4, symbolizing it as ¬R.

Sentence 6 can be paraphrased as ‘It is not the case that Rodrigo is immortal.’
Using negation twice, we translate this as ¬¬R. The two negations in a row
each work as negations, so the sentence means ‘It is not the case that. . . it is not
the case that. . . R.’ It is the negation of the negation of R. One can negate any
sentence of SL by putting the ¬symbol in front of it. It’s not only for atomic
sentences.

Here is an example that illustrates some of the complexities of translation.

7. Elliott is happy.
8. Elliott is unhappy.

If we let H mean ‘Elliot is happy’, then we can symbolize sentence 7 as H.

We might be tempted to symbolize sentence 8 as ¬H. But is being unhappy the
same thing as not being happy? This is perhaps debatable. One might think
that it is possible to be neither happy nor unhappy. Maybe Elliot is in this
in-between zone. If so, then we shouldn’t treat 8 as the negation of 7. If we’re
allowing that ‘unhappy’ means something different from ‘not happy’, then we
will need to use a different atomic sentence to translate 8.

What of the truth conditions for negated sentences?

For any sentence Φ: If Φ is true, then ¬Φ is false. If ¬Φ is true, then Φ is false.
Using ‘1’ for true and ‘0’ for false, we can summarize this in a characteristic
truth table for negation:

Φ ¬Φ
1 0
0 1

We will discuss truth tables at greater length in Chapter 3.

Conjunction

Consider these sentences:

26 forallx (UBC edition)

9. Adam is athletic.
10. Barbara is athletic.
11. Adam is athletic, and Barbara is also athletic.

We will need separate sentence letters for 9 and 10, so we define this symbol-
ization key:

A: Adam is athletic.
B: Barbara is athletic.

Sentence 9 can be symbolized as A.

Sentence 10 can be symbolized as B.

Sentence 11 can be paraphrased as ‘A and B.’ In order to fully symbolize this
sentence, we need another symbol. We will use ‘ & .’ We translate ‘A and B’ as
(A&B). The logical connective ‘ & ’ is called conjunction, and A and B are
each called conjuncts.

Notice that we make no attempt to symbolize ‘also’ in sentence 11. Words like
‘both’ and ‘also’ function to draw our attention to the fact that two things are
being conjoined. They are not doing any further logical work, so we do not need
to represent them in SL.

Some more examples:

12. Barbara is athletic and energetic.
13. Barbara and Adam are both athletic.
14. Although Barbara is energetic, she is not athletic.
15. Barbara is athletic, but Adam is more athletic than she is.

Sentence 12 is obviously a conjunction. The sentence says two things about
Barbara, so in English it is permissible to refer to Barbara only once. It might
be tempting to try this when translating the argument: Since B means ‘Barbara
is athletic’, one might paraphrase the sentences as ‘B and energetic.’ This would
be a mistake. Once we translate part of a sentence as B, any further structure is
lost. B is an atomic sentence; it is nothing more than true or false. Conversely,
‘energetic’ is not a sentence; on its own it is neither true nor false. We should
instead paraphrase the sentence as ‘B and Barbara is energetic.’ Now we need
to add a sentence letter to the symbolization key. Let E mean ‘Barbara is
energetic.’ Now the sentence can be translated as B&E.

A sentence can be symbolized as Φ&Ψ if it can be paraphrased
in English as ‘Both Φ, and Ψ .’ Each of the conjuncts must be a
sentence.

ch. 2 sentential logic 27

Sentence 13 says one thing about two different subjects. It says of both Barbara
and Adam that they are athletic, and in English we use the word ‘athletic’ only
once. In translating to SL, it is important to realize that the sentence can be
paraphrased as, ‘Barbara is athletic, and Adam is athletic.’ This translates as
B&A.

Sentence 14 is a bit more complicated. The word ‘although’ implies a kind of
contrast between the first part of the sentence and the second part. Nevertheless,
the sentence says both that Barbara is energetic and that she is not athletic.
In order to make each of the conjuncts an atomic sentence, we need to replace
‘she’ with ‘Barbara.’

So we can paraphrase sentence 14 as, ‘Both Barbara is energetic, and Barbara
is not athletic.’ The second conjunct contains a negation, so we paraphrase fur-
ther: ‘Both Barbara is energetic and it is not the case that Barbara is athletic.’
This translates as E&¬B.

Once again, this is an imperfect translation of the English sentence 14. That
sentence implicated that there was a contrast between these two characteristics
of Barbara. Our translation merely says that she has both of them. Still, it
is a translation that preserves some of the important features of the original.
In particular, it says that Barbara is energetic, and it also says that she’s not
athletic.

Sentence 15 contains a similar contrastive structure. It is irrelevant for the
purpose of translating to SL, so we can paraphrase the sentence as ‘Both Barbara
is athletic, and Adam is more athletic than Barbara.’ (Notice that we once again
replace the pronoun ‘she’ with her name.) How should we translate the second
conjunct? We already have the sentence letter A which is about Adam’s being
athletic and B which is about Barbara’s being athletic, but neither is about one
of them being more athletic than the other. We need a new sentence letter. Let
R mean ‘Adam is more athletic than Barbara.’ Now the sentence translates as
(B&R).

Sentences that can be paraphrased ‘Φ, but Ψ ’ or ‘Although Φ, Ψ ’ are
best symbolized using conjunction: Φ&Ψ

It is important to keep in mind that the sentence letters A, B, and R are atomic
sentences. Considered as symbols of SL, they have no meaning beyond being
true or false. We have used them to symbolize different English language sen-
tences that are all about people being athletic, but this similarity is completely
lost when we translate to SL. No formal language can capture all the structure
of the English language, but as long as this structure is not important to the
argument there is nothing lost by leaving it out.

For any sentences Φ and Ψ , (Φ&Ψ) is true if and only if both Φ and Ψ are true.

28 forallx (UBC edition)

We can summarize this in the characteristic truth table for conjunction:

Φ Ψ (Φ&Ψ)
1 1 1
1 0 0
0 1 0
0 0 0

Conjunction is symmetrical because we can swap the conjuncts without chang-
ing the truth-value of the sentence. Regardless of what Φ and Ψ are, Φ&Ψ is
logically equivalent to Ψ &Φ.

A Note About Notation

In speaking generally about connectives, we’ve used the ‘Φ’ and ‘Ψ ’ symbols
as variables to stand in for sentences of SL. We saw, for instance, that for any
sentence Φ, ¬Φ is the negation of Φ. This means:

. ¬A is the negation of A

. ¬B1 is the negation of B1

. ¬B2 is the negation of B2

. ¬¬C is the negation of ¬C

. ¬(A&B) is the negation of (A&B)

. etc.

Note that Φ and Ψ are not themselves sentences of SL. They are symbols we
use to talk about SL sentences, but they’re not themselves part of our formal
language. We’ll return to this distinction in §2.4, and again when we discuss
proving generalities about SL.

Disjunction

Consider these sentences:

16. Denison will golf with me or he will watch movies.
17. Either Denison or Ellery will golf with me.

ch. 2 sentential logic 29

For these sentences we can use this symbolization key:

D: Denison will golf with me.

E: Ellery will golf with me.

M: Denison will watch movies.

Sentence 16 is ‘Either D or M .’ To fully symbolize this, we introduce a new sym-
bol. The sentence becomes (D∨M). The ‘∨’ connective is called disjunction,
and D and M are called disjuncts.

Sentence 17 is only slightly more complicated. There are two subjects, but the
English sentence only gives the verb once. In translating, we can paraphrase
it as. ‘Either Denison will play golf with me, or Ellery will play golf with me.’
Now it obviously translates as (D ∨ E).

A sentence can be symbolized as (Φ∨Ψ) if it can be paraphrased in
English as ‘Either Φ, or Ψ .’ Each of the disjuncts must be a sentence.

What truth conditions should we offer for ‘∨’ sentences? If I say, ‘Denison
will golf with me or he will watch movies’, under what circumstances will that
sentence be true? When will it be false? Well, suppose he doesn’t do either
activity. Suppose he goes swimming, and doesn’t watch movies, and doesn’t
golf with me. Then my sentence is false.

Suppose Denison skips the movies and golfs with me instead. Then it seems
pretty clear that my disjunctive claim was true. Likewise if he goes to the
movies and leaves me without a golf partner. It’s a little less clear what to
think about the English sentence if both disjuncts end up true. Suppose that
Dennison comes golfing with me, and also stays out surprisingly late to go to the
movies. Then is it true that he golfed with me or went to the movies? This is
not entirely clear. Certainly it would be strange to assert such a sentence if you
know that both elements were true. On the other hand, it doesn’t exactly seem
false that he’ll golf with me or watch movies, if in fact he’ll do both. In a study
of the semantics of English, it would be appropriate to pursue this question
much further. In this introduction to formal logic, we’ll simply stipulate the
features of our formal symbol. ‘∨’ stands for an inclusive or, which means it is
true if and only if at least one disjunct is true.

So (D∨E) is true if D is true, if E is true, or if both D and E are true. It is false
only if both D and E are false. We can summarize this with the characteristic
truth table for disjunction:

30 forallx (UBC edition)

Φ Ψ (Φ∨Ψ)
1 1 1
1 0 1
0 1 1
0 0 0

Like conjunction, disjunction is symmetrical. (Φ∨Ψ) is logically equivalent to
(Ψ∨Φ).

These sentences are somewhat more complicated:

18. Either you will not have soup, or you will not have salad.

19. You will have neither soup nor salad.

20. You get either soup or salad, but not both.

We let S1 mean that you get soup and S2 mean that you get salad.

Sentence 18 can be paraphrased in this way: ‘Either it is not the case that you
get soup, or it is not the case that you get salad.’ Translating this requires both
disjunction and negation. It becomes (¬S1 ∨ ¬S2).

Sentence 19 also requires negation. It can be paraphrased as, ‘It is not the case
that either that you get soup or that you get salad.’ We need some way of
indicating that the negation does not just negate the right or left disjunct, but
rather negates the entire disjunction. In order to do this, we put parentheses
around the disjunction: ‘It is not the case that (S1 ∨S2).’ This becomes simply
¬(S1∨S2). (A second, equivalent, way to translate this sentence is (¬S1 &¬S2).
We’ll see why this is equivalent later on.)

Notice that the parentheses are doing important work here. The sentence (¬S1∨
S2) would mean ‘Either you will not have soup, or you will have salad,’ which
is very different.

Sentence 20 has a more complex structure. We can break it into two parts. The
first part says that you get one or the other. We translate this as (S1 ∨ S2).
The second part says that you do not get both. We can paraphrase this as,
‘It is not the case both that you get soup and that you get salad.’ Using both
negation and conjunction, we translate this as ¬(S1 &S2). Now we just need to
put the two parts together. As we saw above, ‘but’ can usually be translated as
a conjunction. Sentence 20 can thus be translated as ((S1 ∨ S2) &¬(S1 &S2)).

ch. 2 sentential logic 31

Conditional

For the following sentences, let R mean ‘You will cut the red wire’ and B mean
‘The bomb will explode.’

21. If you cut the red wire, then the bomb will explode.
22. The bomb will explode only if you cut the red wire.

Sentence 21 can be translated partially as ‘If R, then B.’ We will use the symbol
‘⊃’ to represent this conditional relationship. The sentence becomes (R ⊃ B).
The connective is called a conditional. The sentence on the left-hand side of
the conditional (R in this example) is called the antecedent. The sentence
on the right-hand side (B) is called the consequent.

Sentence 22 is also a conditional. Since the word ‘if’ appears in the second
half of the sentence, it might be tempting to symbolize this in the same way as
sentence 21. That would be a mistake.

The conditional (R ⊃ B) says that if R were true, then B would also be true.
It does not say that your cutting the red wire is the only way that the bomb
could explode. Someone else might cut the wire, or the bomb might be on a
timer. The sentence (R ⊃ B) does not say anything about what to expect if R
is false. Sentence 22 is different. It says that the only conditions under which
the bomb will explode involve your having cut the red wire; i.e., if the bomb
explodes, then you must have cut the wire. As such, sentence 22 should be
symbolized as (B ⊃ R).

It is important to remember that the connective ‘⊃’ says only that, if the an-
tecedent is true, then the consequent is true. It says nothing about the causal
connection between the two events. Translating sentence 22 as (B ⊃ R) does
not mean that the bomb exploding would somehow have caused your cutting
the wire. Both sentence 21 and 22 suggest that, if you cut the red wire, your
cutting the red wire would be the cause of the bomb exploding. They differ on
the logical connection. If sentence 22 were true, then an explosion would tell
us— those of us safely away from the bomb— that you had cut the red wire.
Without an explosion, sentence 22 tells us nothing.

The paraphrased sentence ‘Φ only if Ψ ’ is logically equivalent to ‘If
Φ, then Ψ .’

‘If Φ then Ψ ’ means that if Φ is true then so is Ψ . So we know that if the
antecedent Φ is true but the consequent Ψ is false, then the conditional ‘If Φ then
Ψ ’ is false. What is the truth value of ‘If Φ then Ψ ’ under other circumstances?

32 forallx (UBC edition)

Suppose, for instance, that the antecedent Φ happened to be false. ‘If Φ then Ψ ’
would then not tell us anything about the actual truth value of the consequent
Ψ , and it is unclear what the truth value of ‘If Φ then Ψ ’ would be.

In English, the truth of conditionals often depends on what would be the case if
the antecedent were true— even if, as a matter of fact, the antecedent is false.
This poses a serious challenge for translating conditionals into SL. Considered
as sentences of SL, R and B in the above examples have nothing intrinsic to
do with each other. In order to consider what the world would be like if R
were true, we would need to analyze what R says about the world. Since R is
an atomic symbol of SL, however, there is no further structure to be analyzed.
When we replace a sentence with a sentence letter, we consider it merely as
some atomic sentence that might be true or false.

In order to translate conditionals into SL, we will not try to capture all the
subtleties of the English language ‘If. . . then. . ..’ Instead, the symbol ‘⊃’ will
be a material conditional. This means that when Φ is false, the conditional
(Φ⊃Ψ) is automatically true, regardless of the truth value of Ψ . If both Φ and
Ψ are true, then the conditional (Φ⊃Ψ) is true.

In short, (Φ⊃Ψ) is false if and only if Φ is true and Ψ is false. We can summarize
this with a characteristic truth table for the conditional.

Φ Ψ Φ⊃Ψ
1 1 1
1 0 0
0 1 1
0 0 1

More than any other connective, the SL translation of the conditional is a rough
approximation. It has some very counterintuitive consequences about the truth-
values of conditionals. You can see from the truth table, for example, that an
SL conditional is true any time the consequent is true, no matter what the
antecedent is. (Look at lines 1 and 3 in the chart.) And it is also true any
time the antecedent is false, no matter what the consequent is. (Look at lines
3 and 4.) This is an odd consequence. In English, some conditionals with true
consequents and/or false antecedents seem clearly to be false. For example:

23. If there are no philosophy courses at UBC, then PHIL 220 is a philosophy
course at UBC.

24. If this book has fewer then thirty pages, then it will win the 2018 Pulitzer
prize for poetry.

Both 23 and 24 seem clearly false. But each of them, translated into SL, would
come out true. (If this isn’t obvious, it’s worth taking a moment to translate

ch. 2 sentential logic 33

them and consider the truth table.) I told you before that English transla-
tions into SL are only approximate! Despite these odd results, the approach to
conditionals offered here actually preserves many of the most important logical
features of conditionals. We’ll see this in more detail once we start working with
proofs. For now, I’ll just ask you to go along with this approach to conditionals,
even though it will seem strange.

Note that the conditional is asymmetrical. You cannot swap the antecedent and
consequent without changing the meaning of the sentence, because (Φ⊃Ψ) and
(Ψ⊃Φ) are not logically equivalent.

Biconditional

Consider these sentences:

25. The figure on the board is a triangle only if it has exactly three sides.
26. The figure on the board is a triangle if it has exactly three sides.
27. The figure on the board is a triangle if and only if it has exactly three

sides.

Let T mean ‘The figure is a triangle’ and S mean ‘The figure has three sides.’

Sentence 25, for reasons discussed above, can be translated as (T ⊃ S).

Sentence 26 is importantly different. It can be paraphrased as, ‘If the figure has
three sides, then it is a triangle.’ So it can be translated as (S ⊃ T).

Sentence 27 says that T is true if and only if S is true; we can infer S from
T , and we can infer T from S. This is called a biconditional, because it
entails the two conditionals S ⊃ T and T ⊃ S. We will use ‘≡’ to represent the
biconditional; sentence 27 can be translated as (S ≡ T).

We could abide without a new symbol for the biconditional. Since sentence 27
means ‘(T ⊃ S) and (S ⊃ T),’ we could translate it as a conjunction of those
two conditionals— as ((T ⊃ S) & (S ⊃ T)). Notice how the parentheses work:
we need to add a new set of parentheses for the conjunction, in addition to the
ones that were already there for the conditionals.

Because we could always write ((Φ ⊃ Ψ) & (Ψ ⊃ Φ)) instead of (Φ ≡ Ψ), we
do not strictly speaking need to introduce a new symbol for the biconditional.
Nevertheless, logical languages usually have such a symbol. SL will have one,
which makes it easier to translate phrases like ‘if and only if.’

(Φ ≡ Ψ) is true if and only if Φ and Ψ have the same truth value: they’re either
both true, or they’re both false. This is the characteristic truth table for the

34 forallx (UBC edition)

biconditional:

Φ Ψ Φ≡Ψ
1 1 1
1 0 0
0 1 0
0 0 1

2.3 Other symbolization

We have now introduced all of the connectives of SL. We can use them together
to translate many kinds of sentences. Consider these examples of sentences that
use the English-language connective ‘unless’:

28. Unless you wear a jacket, you will catch cold.
29. You will catch cold unless you wear a jacket.

Let J mean ‘You will wear a jacket’ and let D mean ‘You will catch a cold.’

We can paraphrase sentence 28 as ‘Unless J , D.’ This means that if you do not
wear a jacket, then you will catch cold; with this in mind, we might translate it
as ¬J ⊃ D. It also means that if you do not catch a cold, then you must have
worn a jacket; with this in mind, we might translate it as ¬D ⊃ J .

Which of these is the correct translation of sentence 28? Both translations are
correct, because the two translations are logically equivalent in SL.

Sentence 29, in English, is logically equivalent to sentence 28. It can be trans-
lated as either ¬J ⊃ D or ¬D ⊃ J .

When symbolizing sentences like sentence 28 and sentence 29, it is easy to get
turned around. Since the conditional is not symmetric, it would be wrong to
translate either sentence as J ⊃ ¬D. Fortunately, there are other logically
equivalent expressions. Both sentences mean that you will wear a jacket or—
if you do not wear a jacket— then you will catch a cold. So we can translate
them as J ∨D.

If a sentence can be paraphrased as ‘Unless Φ, Ψ ,’ then it can be
symbolized as (¬Φ ⊃ Ψ), (¬Ψ ⊃ Φ), or (Φ ∨ Ψ).

Symbolization of standard sentence types is summarized on p. 265.

ch. 2 sentential logic 35

2.4 Sentences of SL

The sentence ‘Apples are red, or berries are blue’ is a sentence of English, and
the sentence ‘(A∨B)’ is a sentence of SL. Although we can identify sentences of
English when we encounter them, we do not have a formal definition of ‘sentence
of English’. In SL, it is possible to formally define what counts as a sentence.
This is one respect in which a formal language like SL is more precise than a
natural language like English.

It is important to distinguish between the logical language SL, which we are
developing, and the language that we use to talk about SL. When we talk
about a language, the language that we are talking about is called the object
language. The language that we use to talk about the object language is
called the metalanguage.

The object language in this chapter is SL. The metalanguage is English— not
conversational English, but English supplemented with some logical and mathe-
matical vocabulary (including the ‘Φ’ and ‘Ψ ’ symbols). The sentence ‘(A∨B)’
is a sentence in the object language, because it uses only symbols of SL. The
word ‘sentence’ is not itself part of SL, however, so the sentence ‘This expression
is a sentence of SL’ is not a sentence of SL. It is a sentence in the metalanguage,
a sentence that we use to talk about SL.

In this section, we will give a formal definition for ‘sentence of SL.’ The definition
itself will be given in mathematical English, the metalanguage.

Expressions

There are three kinds of symbols in SL:

sentence letters A,B,C, . . . , Z
with subscripts, as needed A1, B1, Z1, A2, A25, J375, . . .

connectives ¬, & ,∨,⊃,≡
parentheses (,)

We define an expression of sl as any string of symbols of SL. Take any of the
symbols of SL and write them down, in any order, and you have an expression.

Well-formed formulae

Since any sequence of symbols is an expression, many expressions of SL will be
gobbledegook. For example, these expressions don’t mean anything:

36 forallx (UBC edition)

¬¬¬¬
))≡
A4 ∨

None of these are sentences in SL. A meaningful expression is called a well-
formed formula. It is common to use the acronym wff ; the plural is wffs.

Obviously, individual sentence letters like A and G13 will be wffs. We can form
further wffs out of these by using the various connectives. Using negation, we
can get ¬A and ¬G13. Using conjunction, we can get (A&G13), (G13 &A),
(A&A), and (G13 &G13). We could also apply negation repeatedly to get wffs
like ¬¬A or apply negation along with conjunction to get wffs like ¬(A&G13)
and ¬(G13 &¬G13). The possible combinations are endless, even starting with
just these two sentence letters, and there are infinitely many sentence letters.
So there is no point in trying to list all the wffs.

Instead, we will describe the rules that govern how wffs can be constructed.
Consider negation: Given any wff Φ of SL, ¬Φ is a wff of SL. Remember, Φ
is not itself a sentence letter; it is a variable that stands in for any wff at all
(atomic or not). Since the variable Φ is not a symbol of SL, ¬Φ is not an
expression of SL. Instead, it is an expression of the metalanguage that allows us
to talk about infinitely many expressions of SL: all of the expressions that start
with the negation symbol. Because Φ is part of the metalanguage, it is called a
metavariable.

We can say similar things for each of the other connectives. For instance, if
Φ and Ψ are wffs of SL, then (Φ&Ψ) is a wff of SL. Providing clauses like
this for all of the connectives, we arrive at the following formal definition for a
well-formed formula of SL:

1. Every atomic sentence is a wff.

2. If Φ is a wff, then ¬Φ is a wff.

3. If Φ and Ψ are wffs, then (Φ&Ψ) is a wff.

4. If Φ and Ψ are wffs, then (Φ ∨ Ψ) is a wff.

5. If Φ and Ψ are wffs, then (Φ ⊃ Ψ) is a wff.

6. If Φ and Ψ are wffs, then (Φ ≡ Ψ) is a wff.

7. All and only wffs of SL can be generated by applications of these rules.

This is a recursive definition of a wff, illustrating how one can, starting with the
simplest cases (atomic sentences) build up more complicated sentences of SL. If

ch. 2 sentential logic 37

you have a wff, you can stick a ‘¬’ in front of it to make a new wff. If you have
two wffs, you can put a ’(’ in front of the first one, followed by a ‘ & ’, followed
by the second one, then finally a ‘)’, and end up with a new wff. Etc.

Note that these are purely syntactic rules. They tell you how to construct an
admissible (‘grammatical’) sentence in SL. They do not tell you what the sen-
tence will mean. (We’ve touched on that already, in introducing characteristic
truth tables. We’ll return to this topic in much more detail in Ch. 3.

Suppose we want to know whether or not ¬¬¬D is a wff of SL. Looking at the
second clause of the definition, we know that ¬¬¬D is a wff if ¬¬D is a wff. So
now we need to ask whether or not ¬¬D is a wff. Again looking at the second
clause of the definition, ¬¬D is a wff if ¬D is. Again, ¬D is a wff if D is a
wff. Now D is a sentence letter, an atomic sentence of SL, so we know that D
is a wff by the first clause of the definition. So for a compound formula like
¬¬¬D, we must apply the definition repeatedly. Eventually we arrive at the
atomic sentences from which the wff is built up.

The connective that you look to first in decomposing a sentence is called the
main connective (or main logical operator) of that sentence. For example:
The main connective of ¬(E ∨ (F ⊃ G)) is negation, ¬. The main connective
of (¬E ∨ (F ⊃ G)) is disjunction, ∨. Conversely, if you’re building up a wff
from simpler sentences, the connective introduced by the last rule you apply is
the main connective. It is the connective that governs the interpretation of the
entire sentence.

Sentences

Recall that a sentence is a meaningful expression that can be true or false. Since
the meaningful expressions of SL are the wffs and since every wff of SL is either
true or false, the definition for a sentence of SL is the same as the definition for
a wff. Not every formal language will have this nice feature. In the language
QL, which is developed later in the book, there are wffs which are not sentences.

The recursive structure of sentences in SL will be important when we consider
the circumstances under which a particular sentence would be true or false.
The sentence ¬¬¬D is true if and only if the sentence ¬¬D is false, and so on
through the structure of the sentence until we arrive at the atomic components:
¬¬¬D is true if and only if the atomic sentence D is false. We will return to
this point in much more detail in Chapters 3 and 4.

38 forallx (UBC edition)

Notational conventions

A wff like (Q&R) must be surrounded by parentheses, because we might apply
the definition again to use this as part of a more complicated sentence. If we
negate (Q&R), we get ¬(Q&R). If we just had Q&R without the parentheses
and put a negation in front of it, we would have ¬Q&R. It is most natural
to read this as meaning the same thing as (¬Q&R), something very different
than ¬(Q&R). The sentence ¬(Q&R) means that it is not the case that both
Q and R are true; Q might be false or R might be false, but the sentence does
not tell us which. The sentence (¬Q&R) means specifically that Q is false and
that R is true. As such, parentheses are crucial to the meaning of the sentence.

So, strictly speaking, Q&R without parentheses is not a sentence of SL. When
using SL, however, we will sometimes be able to relax the precise definition so
as to make things easier for ourselves. We will do this in several ways.

First, we understand that Q&R means the same thing as (Q&R). As a matter
of convention, we can leave off parentheses that occur around the entire sentence.

Second, it can sometimes be confusing to look at long sentences with many,
nested pairs of parentheses. We adopt the convention of using square brackets
‘[’ and ‘]’ in place of parenthesis. There is no logical difference between (P ∨Q)
and [P ∨Q], for example. The unwieldy sentence

(((H ⊃ I) ∨ (I ⊃ H)) & (J ∨K))

could be written in this way:[
(H ⊃ I) ∨ (I ⊃ H)

]
& (J ∨K)

Third, we will sometimes want to translate the conjunction of three or more
sentences. For the sentence ‘Alice, Bob, and Candice all went to the party’,
suppose we let A mean ‘Alice went’, B mean ‘Bob went’, and C mean ‘Candice
went.’ The definition only allows us to form a conjunction out of two sentences,
so we can translate it as (A&B) &C or as A& (B&C). There is no reason
to distinguish between these, since the two translations are logically equivalent.
There is no logical difference between the first, in which (A&B) is conjoined
with C, and the second, in which A is conjoined with (B&C). So we might
as well just write A&B&C. As a matter of convention, we can leave out
parentheses when we conjoin three or more sentences.

Fourth, a similar situation arises with multiple disjunctions. ‘Either Alice, Bob,
or Candice went to the party’ can be translated as (A∨B)∨C or as A∨(B∨C).
Since these two translations are logically equivalent, we may write A ∨B ∨ C.

These latter two conventions only apply to multiple conjunctions or multiple dis-
junctions. If a series of connectives includes both disjunctions and conjunctions,

ch. 2 sentential logic 39

then the parentheses are essential; as with (A&B) ∨ C and A& (B ∨ C). The
parentheses are also required if there is a series of conditionals or biconditionals;
as with (A ⊃ B) ⊃ C and A ≡ (B ≡ C).

We have adopted these four rules as notational conventions, not as changes to
the definition of a sentence. Strictly speaking, A∨B ∨C is still not a sentence.
Instead, it is a kind of shorthand. We write it for the sake of convenience, but
we really mean the sentence (A ∨ (B ∨ C)).

Unless and until you are very confident about wffs and the use of parentheses,
it is probably good advice to stick to the formal rules. These notational conven-
tions are a way to skip steps when writing things down; if you’re unsure about
whether it’s OK to take the shortcut, the safest thing is to go by the formal
definition.

If we had given a different definition for a wff, then these could count as wffs.
We might have written rule 3 in this way: “If Φ, Ψ , . . . Z are wffs, then
(Φ&Ψ & . . . & Z), is a wff.” This would make it easier to translate some En-
glish sentences, but would have the cost of making our formal language more
complicated. We would have to keep the complex definition in mind when we
develop truth tables and a proof system. We want a logical language that is ex-
pressively simple and allows us to translate easily from English, but we also want
a formally simple language. Adopting notational conventions is a compromise
between these two desires.

Practice Exercises

? Part A Using the symbolization key given, translate each English-language
sentence into SL.

M: Those creatures are men in suits.
C: Those creatures are chimpanzees.
G: Those creatures are gorillas.

1. Those creatures are not men in suits.

2. Those creatures are men in suits, or they are not.

3. Those creatures are either gorillas or chimpanzees.

4. Those creatures are neither gorillas nor chimpanzees.

5. If those creatures are chimpanzees, then they are neither gorillas nor men
in suits.

6. Unless those creatures are men in suits, they are either chimpanzees or
they are gorillas.

40 forallx (UBC edition)

Part B Using the symbolization key given, translate each English-language
sentence into SL.

A: Mister Ace was murdered.
B: The butler did it.
C: The cook did it.
D: The Duchess is lying.
E: Mister Edge was murdered.
F: The murder weapon was a frying pan.

1. Either Mister Ace or Mister Edge was murdered.
2. If Mister Ace was murdered, then the cook did it.
3. If Mister Edge was murdered, then the cook did not do it.
4. Either the butler did it, or the Duchess is lying.
5. The cook did it only if the Duchess is lying.
6. If the murder weapon was a frying pan, then the culprit must have been

the cook.
7. If the murder weapon was not a frying pan, then the culprit was either

the cook or the butler.
8. Mister Ace was murdered if and only if Mister Edge was not murdered.
9. The Duchess is lying, unless it was Mister Edge who was murdered.

10. If Mister Ace was murdered, he was done in with a frying pan.
11. Since the cook did it, the butler did not.
12. Of course the Duchess is lying!

? Part C Using the symbolization key given, translate each English-language
sentence into SL.

E1: Ava is an electrician.
E2: Harrison is an electrician.
F1: Ava is a firefighter.
F2: Harrison is a firefighter.
S1: Ava is satisfied with her career.
S2: Harrison is satisfied with his career.

1. Ava and Harrison are both electricians.
2. If Ava is a firefighter, then she is satisfied with her career.
3. Ava is a firefighter, unless she is an electrician.
4. Harrison is an unsatisfied electrician.
5. Neither Ava nor Harrison is an electrician.
6. Both Ava and Harrison are electricians, but neither of them find it satis-

fying.
7. Harrison is satisfied only if he is a firefighter.

ch. 2 sentential logic 41

8. If Ava is not an electrician, then neither is Harrison, but if she is, then he
is too.

9. Ava is satisfied with her career if and only if Harrison is not satisfied with
his.

10. If Harrison is both an electrician and a firefighter, then he must be satisfied
with his work.

11. It cannot be that Harrison is both an electrician and a firefighter.
12. Harrison and Ava are both firefighters if and only if neither of them is an

electrician.

? Part D Give a symbolization key and symbolize the following sentences in
SL.

1. Alice and Bob are both spies.
2. If either Alice or Bob is a spy, then the code has been broken.
3. If neither Alice nor Bob is a spy, then the code remains unbroken.
4. The German embassy will be in an uproar, unless someone has broken the

code.
5. Either the code has been broken or it has not, but the German embassy

will be in an uproar regardless.
6. Either Alice or Bob is a spy, but not both.

Part E Give a symbolization key and symbolize the following sentences in SL.

1. If Gregor plays first base, then the team will lose.
2. The team will lose unless there is a miracle.
3. The team will either lose or it won’t, but Gregor will play first base re-

gardless.
4. Gregor’s mom will bake cookies if and only if Gregor plays first base.
5. If there is a miracle, then Gregor’s mom will not bake cookies.

Part F For each argument, write a symbolization key and translate the argu-
ment as well as possible into SL.

1. If Dorothy plays the piano in the morning, then Roger wakes up cranky.
Dorothy plays piano in the morning unless she is distracted. So if Roger
does not wake up cranky, then Dorothy must be distracted.

2. It will either rain or snow on Tuesday. If it rains, Neville will be sad. If
it snows, Neville will be cold. Therefore, Neville will either be sad or cold
on Tuesday.

3. If Zoog remembered to do his chores, then things are clean but not neat.
If he forgot, then things are neat but not clean. Therefore, things are
either neat or clean— but not both.

42 forallx (UBC edition)

? Part G For each of the following: (a) Is it, by the strictest formal standards,
a sentence of SL? (b) Is it an acceptable way to write down a sentence of SL,
allowing for our notational conventions?

1. (A)
2. J374 ∨ ¬J374
3. ¬¬¬¬F
4. ¬&S
5. (G&¬G)
6. Φ ⊃ Φ
7. (A ⊃ (A&¬F)) ∨ (D ≡ E)
8. [(Z ≡ S) ⊃W] & [J ∨X]
9. (F ≡ ¬D ⊃ J) ∨ (C &D)

Part H

1. Are there any wffs of SL that contain no sentence letters? Why or why
not?

Chapter 3

Truth tables

This chapter introduces a way of evaluating sentences and arguments of SL.
Although it can be laborious, the truth table method is a purely mechanical
procedure that requires no intuition or special insight. Given the (albeit impre-
cise) translatability between SL and natural languages, this also amounts to a
way of evaluating some natural language arguments.

3.1 Truth-functional connectives

Any non-atomic sentence of SL is composed of atomic sentences with sentential
connectives. In Ch. 2, we offered characteristic truth tables for each connective.
Although we didn’t emphasize it at the time, the fact that it is possible to
give truth tables like this is very significant. It means that our connectives are
truth-functional. That is to say, the only thing that matters for determining
the truth value of a given sentence of SL is the truth values of its constituent
parts. To determine the truth value of a sentence ¬Φ, the only thing that
matters is the truth value of Φ. You don’t have to know what Φ means, or
where it came from, or what evidence there is for it and what that evidence
might depend on. The truth-value of ¬Φ is a function of the truth-value of Φ.
And so likewise for the other connectives.

This is a very interesting feature of SL. It is not inevitable. The syntax of
English, for example, permits one to make a new, more complex English declar-
ative sentence by prefixing the phrase ‘Donald Trump cares whether’ in front
of any declarative English sentence. In this respect this phrase is syntactically
similar to ‘¬’ in SL. But it is impossible to give a truth-functional characteri-
zation of the ‘Donald Trump cares whether’ operator in English. If you want

43

44 forallx (UBC edition)

Φ ¬Φ
1 0
0 1

Φ Ψ Φ&Ψ Φ∨Ψ Φ⊃Ψ Φ≡Ψ
1 1 1 1 1 1
1 0 0 1 0 0
0 1 0 1 1 0
0 0 0 0 1 1

Table 3.1: The characteristic truth tables for the connectives of SL.

to know whether Donald Trump cares whether that the Canadian dollar is get-
ting stronger, it’s not enough to know whether the Canadian dollar is getting
stronger. If it is, he might or might not care; if it isn’t, he might or might
not care. ‘Donald Trump cares whether’ is not truth-functional. But all the
connectives of SL are.

Consequently, we can construct truth tables to determine the logical features of
SL sentences.

3.2 Complete truth tables

The truth-value of sentences which contain only one connective are given by the
characteristic truth table for that connective. In the previous chapter, we wrote
the characteristic truth tables with ‘1’ for true and ‘0’ for false. It is important
to note, however, that this is not about truth in any deep or cosmic sense. Poets
and philosophers can argue at length about the nature and significance of truth,
but the truth functions in SL are just rules which transform input values into
output values. (This is part of the reason why, in this book, we usually write ‘1’
and ‘0’ instead of ‘T’ and ‘F’.) Even though we interpret ‘1’ as meaning ‘true’
and ‘0’ as meaning ‘false’, computers can be programmed to fill out truth tables
in a purely mechanical way. In a machine, ‘1’ might mean that a register is
switched on and ‘0’ that the register is switched off. Mathematically, they are
just the two possible values that a sentence of SL can have. The truth tables
for the connectives of SL, written in terms of 1s and 0s, are given in table 3.1.

The characteristic truth table for conjunction, for example, gives the truth con-
ditions for any sentence of the form (Φ&Ψ). Even if the conjuncts Φ and Ψ are
long, complicated sentences, the conjunction is true if and only if both Φ and
Ψ are true. Consider the sentence (H & I) ⊃ H. We consider all the possible
combinations of true and false for H and I, which gives us four rows. We then
copy the truth-values for the sentence letters and write them underneath the
letters in the sentence.

ch. 3 truth tables 45

H I (H & I)⊃H
1 1 1 1 1
1 0 1 0 1
0 1 0 1 0
0 0 0 0 0

So far all we’ve done is duplicate the first two columns. We’ve written the ‘H’
column twice— once under each ‘H’, and the ‘I’ column once, under the ‘I’.

Now consider the subsentence H & I. This is a conjunction Φ&Ψ with H as Φ
and with I as Ψ . H and I are both true on the first row. Since a conjunction
is true when both conjuncts are true, we write a 1 underneath the conjunction
symbol. We continue for the other three rows and get this:

H I (H & I)⊃H
Φ & Ψ

1 1 1 1 1 1
1 0 1 0 0 1
0 1 0 0 1 0
0 0 0 0 0 0

The entire sentence is a conditional Φ⊃Ψ with (H & I) as Φ and with H as
Ψ . On the second row, for example, (H & I) is false and H is true. Since a
conditional is true when the antecedent is false, we write a 1 in the second row
underneath the conditional symbol. We continue for the other three rows and
get this:

H I (H & I)⊃H
Φ ⊃ Ψ

1 1 1 1 1
1 0 0 1 1
0 1 0 1 0
0 0 0 1 0

The column of 1s underneath the conditional tells us that the sentence (H & I) ⊃ I
is true regardless of the truth-values of H and I. They can be true or false in
any combination, and the compound sentence still comes out true. It is crucial
that we have considered all of the possible combinations. If we only had a two-
line truth table, we could not be sure that the sentence was not false for some
other combination of truth-values.

In this example, we have not repeated all of the entries in every successive table,
so that it’s easier for you to see which parts are new. When actually writing
truth tables on paper, however, it is impractical to erase whole columns or

46 forallx (UBC edition)

rewrite the whole table for every step. Although it is more crowded, the truth
table can be written in this way:

H I (H & I)⊃H
1 1 1 1 1 1 1
1 0 1 0 0 1 1
0 1 0 0 1 1 0
0 0 0 0 0 1 0

Most of the columns underneath the sentence are only there for bookkeeping
purposes. When you become more adept with truth tables, you will probably
no longer need to copy over the columns for each of the sentence letters. In any
case, the truth-value of the sentence on each row is just the column underneath
the main logical operator of the sentence; in this case, the column underneath
the conditional. We’ve marked it in bold.

A complete truth table has a row for all the possible combinations of 1 and
0 for all of the sentence letters. The size of the complete truth table depends on
the number of different sentence letters in the table. A sentence that contains
only one sentence letter requires only two rows, as in the characteristic truth
table for negation. This is true even if the same letter is repeated many times, as
in the sentence [(C ≡ C) ⊃ C] &¬(C ⊃ C). The complete truth table requires
only two lines because there are only two possibilities: C can be true or it can
be false. A single sentence letter can never be marked both 1 and 0 on the same
row. The truth table for this sentence looks like this:

C [(C ≡C)⊃C] & ¬ (C ⊃C)
1 1 1 1 1 1 0 0 1 1 1
0 0 1 0 0 0 0 0 0 1 0

Looking at the column underneath the main connective, we see that the sentence
is false on both rows of the table; i.e., it is false regardless of whether C is true
or false.

A sentence that contains two sentence letters requires four lines for a complete
truth table, as in the characteristic truth tables and the table for (H & I) ⊃ I.

A sentence that contains three sentence letters requires eight lines. For example:

ch. 3 truth tables 47

M N P M & (N ∨ P)
1 1 1 1 1 1 1 1
1 1 0 1 1 1 1 0
1 0 1 1 1 0 1 1
1 0 0 1 0 0 0 0
0 1 1 0 0 1 1 1
0 1 0 0 0 1 1 0
0 0 1 0 0 0 1 1
0 0 0 0 0 0 0 0

From this table, we know that the sentence M & (N ∨P) might be true or false,
depending on the truth-values of M , N , and P .

A complete truth table for a sentence that contains four different sentence letters
requires 16 lines. In general, if a complete truth table has n different sentence
letters, then it must have 2n rows.

In order to fill in the columns of a complete truth table, begin with the right-
most sentence letter and alternate 1s and 0s. In the next column to the left,
write two 1s, write two 0s, and repeat. For the third sentence letter, write four
1s followed by four 0s. This yields an eight line truth table like the one above.
For a 16 line truth table, the next column of sentence letters should have eight
1s followed by eight 0s. For a 32 line table, the next column would have 16 1s
followed by 16 0s. And so on.

3.3 Using truth tables

Tautologies, contradictions, and contingent sentences

Recall from §1.5 that an English sentence is a tautology if it must be true as a
matter of logic. With a complete truth table, we consider all of the ways that
the world might be. If the sentence is true on every line of a complete truth
table, then it is true as a matter of logic, regardless of what the world is like.

So a sentence is a tautology in sl if the column under its main connective is
1 on every row of a complete truth table.

Conversely, a sentence is a contradiction in sl if the column under its main
connective is 0 on every row of a complete truth table.

A sentence is contingent in sl if it is neither a tautology nor a contradiction;
i.e. if it is 1 on at least one row and 0 on at least one row.

From the truth tables in the previous section, we know that (H & I) ⊃ H is

48 forallx (UBC edition)

a tautology, that [(C ≡ C) ⊃ C] &¬(C ⊃ C) is a contradiction, and that
M & (N ∨ P) is contingent.

Logical equivalence

Two sentences are logically equivalent in English if they have the same truth
value as a matter of logic. Once again, truth tables allow us to define an
analogous concept for SL: Two sentences are logically equivalent in sl if
they have the same truth-value on every row of a complete truth table.

Consider the sentences ¬(A ∨ B) and ¬A&¬B. Are they logically equivalent?
To find out, we construct a truth table.

A B ¬ (A∨B) ¬A & ¬B
1 1 0 1 1 1 0 1 0 0 1
1 0 0 1 1 0 0 1 0 1 0
0 1 0 0 1 1 1 0 0 0 1
0 0 1 0 0 0 1 0 1 1 0

Look at the columns for the main connectives; negation for the first sentence,
conjunction for the second. On the first three rows, both are 0. On the final
row, both are 1. Since they match on every row, the two sentences are logically
equivalent.

Consistency

A set of sentences in English is consistent if it is logically possible for them all
to be true at once. A set of sentences is logically consistent in sl if there
is at least one line of a complete truth table on which all of the sentences are
true. It is inconsistent otherwise.

Validity

An argument in English is valid if it is logically impossible for the premises to
be true and for the conclusion to be false at the same time. An argument is
valid in sl if there is no row of a complete truth table on which the premises
are all 1 and the conclusion is 0; an argument is invalid in sl if there is such
a row.

Consider this argument:

ch. 3 truth tables 49

¬L ⊃ (J ∨ L)

¬L
.˙. J

Is it valid? To find out, we construct a truth table.

J L ¬L⊃ (J ∨L) ¬ L J
1 1 0 1 1 1 1 1 0 1 1
1 0 1 0 1 1 1 0 1 0 1
0 1 0 1 1 0 1 1 0 1 0
0 0 1 0 0 0 0 0 1 0 0

To determine whether the argument is valid, check to see whether there are any
rows on which both premises are assigned 1, but where the conclusion is assigned
0. There are no such rows. The only row on which both the premises are 1 is
the second row, and on that row the conclusion is also 1. So the argument form
is valid in SL.

3.4 Partial truth tables

In order to show that a sentence is a tautology, we need to show that it is 1 on
every row. So we need a complete truth table. To show that a sentence is not
a tautology, however, we only need one line: a line on which the sentence is 0.
Therefore, in order to show that something is not a tautology, it is enough to
provide a one-line partial truth table— regardless of how many sentence letters
the sentence might have in it.

Consider, for example, the sentence (U &T) ⊃ (S&W). We want to show that
it is not a tautology by providing a partial truth table. We fill in 0 for the entire
sentence. The main connective of the sentence is a conditional. In order for the
conditional to be false, the antecedent must be true (1) and the consequent must
be false (0). So we fill these in on the table:

S T U W (U & T)⊃ (S & W)
1 0 0

In order for the (U &T) to be true, both U and T must be true.

S T U W (U & T)⊃ (S & W)
1 1 1 1 1 0 0

50 forallx (UBC edition)

Now we just need to make (S&W) false. To do this, we need to make at least
one of S and W false. We can make both S and W false if we want. All
that matters is that the whole sentence turns out false on this line. Making an
arbitrary decision, we finish the table in this way:

S T U W (U & T)⊃ (S & W)
0 1 1 0 1 1 1 0 0 0 0

Showing that something is a contradiction requires a complete truth table.
Showing that something is not a contradiction requires only a one-line partial
truth table, where the sentence is true on that one line.

A sentence is contingent if it is neither a tautology nor a contradiction. So
showing that a sentence is contingent requires a two-line partial truth table:
The sentence must be true on one line and false on the other. For example, we
can show that the sentence above is contingent with this truth table:

S T U W (U & T)⊃ (S & W)
0 1 1 0 1 1 1 0 0 0 0
0 1 0 0 0 0 1 1 0 0 0

Note that there are many combinations of truth values that would have made
the sentence true, so there are many ways we could have written the second
line.

Showing that a sentence is not contingent requires providing a complete truth
table, because it requires showing that the sentence is a tautology or that it is a
contradiction. If you do not know whether a particular sentence is contingent,
then you do not know whether you will need a complete or partial truth table.
You can always start working on a complete truth table. If you complete rows
that show the sentence is contingent, then you can stop. If not, then com-
plete the truth table. Even though two carefully selected rows will show that
a contingent sentence is contingent, there is nothing wrong with filling in more
rows.

Showing that two sentences are logically equivalent requires providing a com-
plete truth table. Showing that two sentences are not logically equivalent re-
quires only a one-line partial truth table: Make the table so that one sentence
is true and the other false.

Showing that a set of sentences is consistent requires providing one row of a truth
table on which all of the sentences are true. The rest of the table is irrelevant,
so a one-line partial truth table will do. Showing that a set of sentences is
inconsistent, on the other hand, requires a complete truth table: You must
show that on every row of the table at least one of the sentences is false.

ch. 3 truth tables 51

YES NO
tautology? complete truth table one-line partial truth table

contradiction? complete truth table one-line partial truth table
contingent? two-line partial truth table complete truth table
equivalent? complete truth table one-line partial truth table
consistent? one-line partial truth table complete truth table

valid? complete truth table one-line partial truth table

Table 3.2: Do you need a complete truth table or a partial truth table? It
depends on what you are trying to show.

Showing that an argument is valid requires a complete truth table. Showing
that an argument is invalid only requires providing a one-line truth table: If
you can produce a line on which the premises are all true and the conclusion is
false, then the argument is invalid.

Table 3.2 summarizes when a complete truth table is required and when a partial
truth table will do. If you are trying to remember whether you need a complete
truth table or not, the general rule is, if you’re looking to establish a claim about
every interpretation, you need a complete table.

3.5 Evaluating English Arguments via SL

Recall from §1.4 that a natural language argument is valid if and only if it is
impossible for the premises to be true while the conclusion is false. This notion
is rather closely related to validity in SL, which obtains if and only if there is
no assignment of truth values to atomic sentences on which the premises are
assigned ‘1’ and the conclusion is assigned ‘0’. This is of course by design. In
many cases, validity in SL is a good indication of validity in English. Consider
for example this English argument:

1. Either the butler is the murderer or the gardener isn’t who he says he is.
2. The gardener is who he says he is.
.˙. The butler is the murderer.

This argument is valid. There’s no way for the conclusion to be false if both
premises are true. Let’s translate this argument into SL, and evaluate the
resulting formal argument for validity with a truth table. We begin with a
symbolization key:

B: The butler is the murderer.

52 forallx (UBC edition)

G: The gardener is who he says he is.

With this key, the argument, rendered in SL, looks like this:

1. (B ∨ ¬G)
2. G
.˙. B

We can evaluate this formal argument for validity using a truth table. We’ll
set up a table with two atomic sentences, and check to see whether there is a
row that assigns ‘1’ to both premises and assigns ‘0’ to the conclusion. The
completed truth table looks like this:

B G (B ∨ ¬G) G B
1 1 1 1 0 1 1 1
1 0 1 1 1 0 0 1
0 1 0 0 0 1 1 0
0 0 0 1 1 0 0 0

If the argument form were invalid, there’d be a line on which the first two bold
values are ‘1’ but the third is ‘0’. There is no such line, so the argument form is
valid. This helps explain why the English version of the argument is also valid:
it is an argument that has a valid form in SL.

There are at least two advantages to evaluating natural language argument for
validity by translating it into SL. For one thing, using truth tables to evaluate
arguments is a formal method that does not require any particular rational
insight or intuition. It is often relatively easy to tell whether the informal
definition of validity is met— most of us have a good sense of what is and isn’t
possible. But it is an advantage to have an operationalized set of rules that a
simple computer could apply. A second advantage, alluded to in Chapter 2, is
that talking about valid SL forms provides a nice way to explain what various
valid English arguments have in common with one another. The validity of the
argument form

1. (B ∨ ¬G)
2. G
.˙. B

helps explain why the butler argument is valid, but the explanation does not
depend on any of the specifics of what the individual letters stand for. It would
be a perfectly good explanation for why any argument of this form would have
to be valid. For example, consider this argument:

ch. 3 truth tables 53

1. Either Barney is a purple dinosaur or I don’t have a really weird-looking
cat.

2. I do have a really weird-looking cat.
.˙. Barney is a purple dinosaur.

That argument can be translated into the same SL argument just evaluated,
using this symbolization key:

B: Barney is a purple dinosaur.
G: I have a really weird-looking cat.

Since it too has a valid form in SL, it too must be a valid argument. Any
argument with this form will be a valid argument.

If you have an argument form that is valid in SL, then any English
argument that is properly translatable into that argument form will
be valid.

Note that this is even true for arguments that have a more complex internal
structure, like this strange argument:

1. Either Canada is a democracy if and only if Poland is neither part of the
European Union nor majority Catholic, or my dog is not not lazy.

2. My dog is not lazy.
.˙. Canada is a democracy if and only if Poland is neither part of the European

Union nor majority Catholic.

One could translate this argument in to a relatively complex argument in SL.
(If you did, the first premise would probably be a disjunction with a complex
biconditional as one disjunct, and a negated negation as the other; the conclu-
sion would probably be a biconditional with an atom on one side, and a negated
disjunction on the other.) In this instance, however, that extra structure isn’t
needed to explain the validity of the argument. For this argument too has the
same valid form as the previous ones, as can be seen via this symbolization key:

B: Canada is a democracy if and only if Poland is neither part of the
European Union nor majority Catholic.
G: My dog is not lazy.

For many purposes, this would be a poor choice of symbolization keys. It ignores
the internal structure of two central sentences. But if, as here, that structure

54 forallx (UBC edition)

is irrelevant, you can save yourself some work by engaging at a higher level of
abstraction.

Note also that it’s as an implication of what we’ve just illustrated that there’s
not just one SL argument that is the argument form for a given argument in
English. One can formalize arguments in various ways. If an argument has a
valid argument form in SL, that’s a guarantee that the argument is valid. But
it is important not to invert this relationship— it does not follow from the fact
that an argument has an invalid form, that the argument is invalid. One reason
this is so is that it is possible for some arguments to have valid forms and invalid
forms.

Practice Exercises

If you want additional practice, you can construct truth tables for any of the
sentences and arguments in the exercises for the previous chapter.

? Part A Determine whether each sentence is a tautology, a contradiction, or a
contingent sentence. Justify your answer with a complete or partial truth table
where appropriate.

1. A ⊃ A
2. ¬B&B

3. C ⊃ ¬C
4. ¬D ∨D
5. (A ≡ B) ≡ ¬(A ≡ ¬B)

6. (A&B) ∨ (B&A)

7. (A ⊃ B) ∨ (B ⊃ A)

8. ¬[A ⊃ (B ⊃ A)]

9. (A&B) ⊃ (B ∨A)

10. A ≡ [A ⊃ (B&¬B)]

11. ¬(A ∨B) ≡ (¬A&¬B)

12. ¬(A&B) ≡ A
13.

[
(A&B) &¬(A&B)

]
&C

14. A ⊃ (B ∨ C)

15. [(A&B) &C] ⊃ B
16. (A&¬A) ⊃ (B ∨ C)

17. ¬
[
(C ∨A) ∨B

]
18. (B&D) ≡ [A ≡ (A ∨ C)]

? Part B Determine whether each pair of sentences is logically equivalent.
Justify your answer with a complete or partial truth table where appropriate.

ch. 3 truth tables 55

1. A, ¬A
2. A, A ∨A
3. A ⊃ A, A ≡ A
4. A ∨ ¬B, A ⊃ B
5. A&¬A, ¬B ≡ B
6. ¬(A&B), ¬A ∨ ¬B
7. ¬(A ⊃ B), ¬A ⊃ ¬B
8. (A ⊃ B), (¬B ⊃ ¬A)
9. [(A ∨B) ∨ C], [A ∨ (B ∨ C)]

10. [(A ∨B) &C], [A ∨ (B&C)]

? Part C Determine whether each set of sentences is consistent or inconsistent.
Justify your answer with a complete or partial truth table where appropriate.

1. A ⊃ A, ¬A ⊃ ¬A, A&A, A ∨A
2. A&B, C ⊃ ¬B, C
3. A ∨B, A ⊃ C, B ⊃ C
4. A ⊃ B, B ⊃ C, A, ¬C
5. B& (C ∨A), A ⊃ B, ¬(B ∨ C)
6. A ∨B, B ∨ C, C ⊃ ¬A
7. A ≡ (B ∨ C), C ⊃ ¬A, A ⊃ ¬B
8. A, B, C, ¬D, ¬E, F

? Part D Determine whether each argument is valid or invalid. Justify your
answer with a complete or partial truth table where appropriate.

1. A ⊃ A, .˙. A
2. A ∨

[
A ⊃ (A ≡ A)

]
, .˙. A

3. A ⊃ (A&¬A), .˙. ¬A
4. A ≡ ¬(B ≡ A), .˙. A
5. A ∨ (B ⊃ A), .˙. ¬A ⊃ ¬B
6. A ⊃ B, B, .˙. A
7. A ∨B, B ∨ C, ¬A, .˙. B&C
8. A ∨B, B ∨ C, ¬B, .˙. A&C
9. (B&A) ⊃ C, (C &A) ⊃ B, .˙. (C &B) ⊃ A

10. A ≡ B, B ≡ C, .˙. A ≡ C

? Part E Answer each of the questions below and justify your answer.

1. Suppose that Φ and Ψ are logically equivalent. What can you say about
Φ ≡ Ψ?

2. Suppose that (Φ&Ψ) ⊃ Ω is contingent. What can you say about the
argument “Φ, Ψ , .˙.Ω”?

56 forallx (UBC edition)

3. Suppose that {Φ, Ψ,Ω} is inconsistent. What can you say about (Φ&Ψ &Ω)?
4. Suppose that Φ is a contradiction. What can you say about the argument

“Φ, Ψ , .˙.Ω”?
5. Suppose that Ω is a tautology. What can you say about the argument “Φ,
Ψ , .˙.Ω”?

6. Suppose that Φ and Ψ are logically equivalent. What can you say about
(Φ ∨ Ψ)?

7. Suppose that Φ and Ψ are not logically equivalent. What can you say
about (Φ ∨ Ψ)?

Part F We could leave the biconditional (≡) out of the language. If we did
that, we could still write ‘A ≡ B’ so as to make sentences easier to read, but
that would be shorthand for (A ⊃ B) & (B ⊃ A). The resulting language would
be formally equivalent to SL, since A ≡ B and (A ⊃ B) & (B ⊃ A) are logically
equivalent in SL. If we valued formal simplicity over expressive richness, we
could replace more of the connectives with notational conventions and still have
a language equivalent to SL.

There are a number of equivalent languages with only two connectives. It would
be enough to have only negation and the material conditional. Show this by
writing sentences that are logically equivalent to each of the following using only
parentheses, sentence letters, negation (¬), and the material conditional (⊃).

1.? A ∨B
2.? A&B
3.? A ≡ B

We could have a language that is equivalent to SL with only negation and
disjunction as connectives. Show this: Using only parentheses, sentence letters,
negation (¬), and disjunction (∨), write sentences that are logically equivalent
to each of the following.

4. A&B
5. A ⊃ B
6. A ≡ B

The Sheffer stroke is a logical connective with the following characteristic truthtable:

Φ Ψ Φ|Ψ
1 1 0
1 0 1
0 1 1
0 0 1

ch. 3 truth tables 57

7. Write a sentence using the connectives of SL that is logically equivalent
to (A|B).

Every sentence written using a connective of SL can be rewritten as a logically
equivalent sentence using one or more Sheffer strokes. Using no connectives
other than the Sheffer stroke, write sentences that are equivalent to each of the
following.

8. ¬A
9. (A&B)

10. (A ∨B)
11. (A ⊃ B)
12. (A ≡ B)

Chapter 4

Entailment and Models for
SL

This chapter offers a formal semantics for SL, allowing us to be more precise
about the notion of truth in SL. We’ll also highlight some important features of
entailment, a key concept in formal logic.

A formal, logical language is built from two kinds of elements: logical symbols
and non-logical symbols. Connectives like ‘ & ’ and ‘⊃’ are logical symbols,
because their meaning is specified within the formal language. When writing
a symbolization key, you are not allowed to change the meaning of the logical
symbols. You cannot say, for instance, that the ‘¬’ symbol will mean ‘not’ in
one argument and ‘perhaps’ in another. The ‘¬’ symbol always means logical
negation. It is used to translate the English language word ‘not’, but it is a
symbol of a formal language and is defined by its truth conditions.

The sentence letters in SL are non-logical symbols, because their meaning is not
defined by the logical structure of SL. When we translate an argument from
English to SL, for example, the sentence letter M does not have its meaning
fixed in advance; instead, we provide a symbolization key that says how M
should be interpreted in that argument.

In translating from English to a formal language, we provided symbolization
keys which were interpretations of all the non-logical symbols we used in the
translation. An interpretation gives a meaning to all the non-logical ele-
ments of the language. We’ll also use the term ‘model’ as another word for an
interpretation. In our simple formal language SL, meaning is simply a matter
of truth and falsity, relative to a given interpretation. These notions too need
to be characterized in a formal way.

58

ch. 4 entailment and models for sl 59

4.1 Semantics for SL

This section provides a rigorous, formal characterization of truth in SL which
builds on what we already know from doing truth tables. We were able to use
truth tables to reliably test whether a sentence was a tautology in SL, whether
two sentences were equivalent, whether an argument was valid, and so on. For
instance: Φ is a tautology in SL if and only if it is T on every line of a complete
truth table.

This worked because each line of a truth table corresponds to a way the world
might be. We considered all the possible combinations of 1 and 0 for the sentence
letters that made a difference to the sentences we cared about. The truth table
allowed us to determine what would happen given these different combinations.
Each of those combinations of truth values is an interpretation in SL.

Once we construct a truth table, the symbols ‘1’ and ‘0’ are divorced from
their metalinguistic meaning of ‘true’ and ‘false’. We interpret ‘1’ as meaning
‘true’, but the formal properties of 1 are defined by the characteristic truth
tables for the various connectives. The symbols in a truth table have a formal
meaning that we can specify entirely in terms of how the connectives operate.
For example, if A is value 1, then ¬A is value 0.

To formally define truth in SL, then, we want a function that assigns, for each
model, a 1 or 0 to each of the sentences of SL. We can interpret this function
as a definition of truth for SL if it assigns 1 to all of the true sentences of SL
and 0 to all of the false sentences of SL. Call this function ‘v’ (for ‘valuation’).
We want v to be a function such that for any sentence Φ, v(Φ) = 1 if Φ is true
and v(Φ) = 0 if Φ is false.

Recall that the recursive definition of a wff for SL had two stages: The first step
said that atomic sentences (solitary sentence letters) are wffs. The second stage
allowed for wffs to be constructed out of more basic wffs. There were clauses
of the definition for all of the sentential connectives. For example, if Φ is a wff,
then ¬Φ is a wff.

Our strategy for defining the truth function, v, will also be in two steps. The
first step will handle truth for atomic sentences; the second step will handle
truth for compound sentences.

Truth in SL

How can we define truth for an atomic sentence of SL? Consider, for example,
the sentence M . Without an interpretation, we cannot say whether M is true
or false. It might mean anything. If we use M to symbolize ‘The moon orbits

60 forallx (UBC edition)

the Earth’, then M is true. If we use M to symbolize ‘The moon is a giant
turnip’, then M is false.

When we give a symbolization key for SL, we provide an interpretation of the
sentence letters that we use. The key gives an English language sentence for each
sentence letter that we use. In this way, the interpretation specifies what each of
the sentence letters means. However, this is not enough to determine whether or
not that sentence is true. The sentences about the moon, for instance, require
that you know some rudimentary astronomy. Imagine a small child who became
convinced that the moon is a giant turnip. She could understand what the
sentence ‘The moon is a giant turnip’ means, but mistakenly think that it was
true.

So an interpretation alone does not determine whether a sentence is true or
false. Truth or falsity depends also on what the world is like. If M meant ‘The
moon is a giant turnip’ and the real moon were a giant turnip, then M would
be true. To put the point in a general way, truth or falsity is determined by an
interpretation plus a way that the world is.

INTERPRETATION + STATE OF THE WORLD =⇒ TRUTH/FALSITY

In providing a logical definition of truth, we will not be able to give an account
of how an atomic sentence is made true or false by the world. Instead, we
will introduce a truth value assignment. Formally, this will be a function that
tells us the truth value of all the atomic sentences. Call this function ‘a’ (for
‘assignment’). We define a for all sentence letters P , such that

a(P) =

{
1 if P is true,
0 otherwise.

This means that a takes any sentence of SL and assigns it either a one or a zero;
one if the sentence is true, zero if the sentence is false.

You can think of a as being like a row of a truth table. Whereas a truth table
row assigns a truth value to a few atomic sentences, the truth value assignment
assigns a value to every atomic sentence of SL. There are infinitely many sentence
letters, and the truth value assignment gives a value to each of them. When
constructing a truth table, we only care about sentence letters that affect the
truth value of sentences that interest us. As such, we ignore the rest. Strictly
speaking, every row of a truth table gives a partial truth value assignment.

It is important to note that the truth value assignment, a, is not part of the
language SL. Rather, it is part of the mathematical machinery that we are using
to describe SL. It encodes which atomic sentences are true and which are false.

We now define the truth function, v, using the same recursive structure that we
used to define a wff of SL.

ch. 4 entailment and models for sl 61

1. If Φ is a sentence letter, then v(Φ) = a(Φ).

2. If Φ is ¬Ψ for some sentence Ψ , then

v(Φ) =

{
1 if v(Ψ) = 0,
0 otherwise.

3. If Φ is (Ψ &Ω) for some sentences Ψ , Ω, then

v(Φ) =

{
1 if v(Ψ) = 1 and v(Ω) = 1,
0 otherwise.

You may be tempted to worry that this definition is circular, because it uses the
word ‘and’ in trying to define ‘and.’ But remember, we are not attempting to
give a definition of the English word ‘and’; we are giving a definition of truth for
sentences of SL containing the logical symbol ‘ & .’ We define truth for object
language sentences containing the symbol ‘ & ’ using the metalanguage word
‘and.’ There is nothing circular about that.

4. If Φ is (Ψ ∨Ω) for some sentences Ψ , Ω, then

v(Φ) =

{
0 if v(Ψ) = 0 and v(Ω) = 0,
1 otherwise.

5. If Φ is (Ψ ⊃ Ω) for some sentences Ψ , Ω, then

v(Φ) =

{
0 if v(Ψ) = 1 and v(Ω) = 0,
1 otherwise.

6. If Φ is (Ψ ≡ Ω) for some sentences Ψ , Ω, then

v(Φ) =

{
1 if v(Ψ) = v(Ω),
0 otherwise.

Since the definition of v has the same structure as the definition of a wff, we
know that v assigns a value to every wff of SL. Since the sentences of SL and
the wffs of SL are the same, this means that v returns the truth value of every
sentence of SL.

Truth in SL is always truth relative to some interpretation, because the definition
of truth for SL does not say whether a given sentence is true or false. Rather,
it says how the truth of that sentence relates to a truth value assignment.

62 forallx (UBC edition)

Other concepts in SL

We are now in a position to give more precise definitions of terms like ‘tautology’,
‘contradiction’, and so on. Truth tables provided a way to check if a sentence
was a tautology in SL, but they did not define what it means to be a tautology
in SL. We will give definitions of these concepts for SL in terms of entailment.

The relation of semantic entailment, ‘Φ entails Ψ ’, means that there is no in-
terpretation for which Φ is true and Ψ is false. In SL, an interpretation is just
an assignment of truth values to atomic sentences; so Φ entails Ψ if and only
if every assignment of truth values to atomic sentences that makes Φ true also
makes Ψ true.

We abbreviate entailment with a symbol called the double turnstile: Φ |= Ψ
means ‘Φ semantically entails Ψ .’

The double turnstile, like ‘Φ’, etc., is part of the metalanguage we use to discuss
SL; it is not part of SL itself.

We can talk about entailment between more than two sentences:

{Φ1, Φ2, Φ3, · · · } |= Ψ

means that there is no truth value assignment for which all of the sentences in
the set {Φ1, Φ2, Φ3, · · · } are true and Ψ is false. It will sometimes be convenient
to use a variable that can stand in for any set of sentences; just as ‘Φ’ can stand
for any sentence of SL, we can let ‘X ’ stand in for any set of sentences in SL.
So in general, we may say that

X |= Ψ

means that there’s no interpretation satisfying every element of X without also
satisfying Ψ .

We can also use the symbol with just one sentence: |= Ω means that Ω is true
for all truth value assignments. This is equivalent to saying that the sentence
is entailed by anything.

The double turnstile symbol allows us to give concise definitions for various
concepts of SL:

A tautology in sl is a sentence Φ such that |= Φ.

A contradiction in sl is a sentence Φ such that |= ¬Φ.

A sentence is contingent in sl if and only if it is neither a tautol-
ogy nor a contradiction.

An argument with premises X and conclusion Φ is valid in sl if
and only if X |= Φ

ch. 4 entailment and models for sl 63

Two sentences Φ and Ψ are logically equivalent in sl if and
only if both Φ |= Ψ and Ψ |= Φ.

Logical consistency can also be defined in terms of semantic entailment, but it’s
a bit complicated to do so. Instead, we will define it in this way:

The set X is consistent in sl if and only if there is at least one
interpretation for which all of the sentences in X are true. The set
is inconsistent in sl if and if only there is no such interpretation.

4.2 Some odd features of entailment

Entailment is a formal notion. It is connected in important ways to the infor-
mal notion of a good argument, but when considering entailment in SL, it is
important to remember to apply the definitions rigorously and precisely, rather
than relying on your sense of whether the argument is a good one. The notions
can come apart in some surprising ways.

Let’s start with a straightforward example. Consider whether this entailment
claim is true: (P &Q) |= (P ∨Q). It is true if and only if every interpretation
that satisfies the left (P &Q), also satisfies (P ∨Q). Hopefully it is obvious to
you why this is. Only an interpretation that assigns 1 to both P and Q will
satisfy the left, and any such interpretation will certainly satisfy the right as
well. (You could draw the truth table to verify this if you want the practice.)
So, as one might naturally expect, (P &Q) |= (P ∨Q).

Here is less intuitive example. What should we make of this claim?

(P &Q) |= (A ≡ ¬¬A)

Notice that the sentence letters on the left-hand-side here are completely dif-
ferent letters from those on the right-hand-side. So there is a straightforward
sense in which the two sides of the turnstile have nothing to do with one an-
other. Nevertheless, this is a true entailment claim. This is because it satisfies
the definition: every interpretation that satisfies the left (i.e., every interpreta-
tion that assigns ‘1’ to both P and Q), also satisfies (A ≡ ¬¬A). This for the
simple reason that every interpretation whatsoever satisfies (A ≡ ¬¬A); it is a
tautology.

From this example we can see that a tautology will be entailed by anything
whatsoever. If the right-hand-side of the entailment claim is a tautology, it
doesn’t matter what’s on the left— you know it’s going to be true.

64 forallx (UBC edition)

A similar result holds for entailment claims with contradictions as premises. A
contradiction is a sentence that is falsified by every interpretation. So if you see
something like this,

(P &¬P) |= ((A1 ∨A2) ⊃ ¬(A3 ≡ (A4 &¬A2)))

you don’t need to worry about the complicated right-hand-side at all. The left-
hand-side is a contradiction, so the entailment claim is true. No matter what’s
going on on the right, there’s obviously going to be no way to satisfy the left
without satisfying the right, because there’s no way to satisfy the left at all.

You can think of an entailment claim as like checking to see whether a rule is
being violated or not. If there’s a rule that says every student with a dog has
to have a leash, you check each student with a dog, and make sure they have a
leash. If you find someone without a dog, it doesn’t matter whether they have a
leash or not. (If you don’t have a dog, you’re not breaking the rule.) Or if you
find someone with a leash, it doesn’t matter whether they have a dog. (Nobody
with a leash can be breaking the rule.) An entailment claim is like a rule that
says every interpretation that satisfies the left-hand-side must also satisfy the
right-hand-side. To verify it, you can ignore any interpretation that falsifies the
left, or that satisfies the right.

Practice Exercises

If you want additional practice, you can construct truth tables for any of the
sentences and arguments in the exercises for the previous chapter.

Chapter 5

SL Trees

So far we have learned one way to evaluate SL arguments for validity: an argu-
ment is valid just in case no interpretation satisfies the premises but falsifies the
conclusion; we can check to see whether an argument is valid by constructing
truth tables, representing all of the possible interpretations, and checking to see
whether any of them do so. This method has two main advantages: one is that
it can be done in a formal and formulaic way— it requires no particular rational
insight, just a straightforward application of the rules of SL. Another is that,
assuming you follow the rules correctly, it will always succeed in identifying
whether the argument is valid or not.

The truth-table method also has a significant disadvantage, however: it rapidly
becomes extremely cumbersome for evaluating arguments using more than two
or three atomic sentence-letters. To evaluate an argument like this one, you’d
need to consider four rows of a truth-table:

P ≡ Q
¬Q
¬Q ∨ (P ⊃ ¬Q)

.˙. ¬P ⊃ Q

But change just two of the atoms to new letters, and the required table will
grow exponentially. For this argument, you’d need sixteen rows.

P ≡ Q
¬A
¬Q ∨ (A ⊃ ¬B)

.˙. ¬P ⊃ B

65

66 forallx (UBC edition)

For this one, you’d need two hundred fifty-six!

A ≡ B
¬B ⊃ (C ∨D)

E ⊃ ¬C
(¬D&F) ∨G
¬A&E

.˙. H ∨G

So it is useful to have alternate ways of proving entailments. In this chapter we
will introduce a proof system for SL. The proofs we will construct in this chapter
are called analytic tableaux. Another name for them is trees, because of
the way they ‘branch’ out to represent possibilities. In Ch. 7 we will examine a
different proof system.

5.1 Satisfiability and entailment

The method of trees is most directly a way to test for satisfiability of a set of
SL sentences. Since validity is definable in terms of satisfiability, it also gives a
way to test for validity.

Recall from §4.1 the definition of entailment in SL: X |= Φ means that there is
no interpretation that satisfies every sentence in X but falsifies Φ. (Remember,
‘X ’ can stand for any set of SL sentences.) This in turn is equivalent to the
claim that there is no interpretation that satisfies {X ,¬Φ}. Unsatisfiability can
be represented with a double-turnstile with nothing on the right-hand side.

In general, X |= Ψ is equivalent to X ,¬Ψ |=.

So if you want to tell whether an argument in SL is valid, check to see whether
the premises, along with the negation of the conclusion, are jointly satisfiable.
If they are, the argument is invalid. If they’re not, the argument is valid. This
is the basic idea of the tree method. We’ll write down the sentences we’re
attempting to satisfy, and then we’ll work through their consequences, in order
to see whether it’s possible to complete the task.

Let’s begin by working through an example that illustrates the general idea,
then come back to give precise rules for the tree method.

ch. 5 sl trees 67

5.2 An example: proving validity

Let’s consider whether this argument is provably valid in SL:

A&B
¬(C ∨D)
(¬B ∨ C) ∨ E

.˙. E

To evaluate this argument, we consider whether it’s possible to satisfy the three
premises along with the negation of the conclusion. We begin by writing down
the sentences we’re going to attempt to satisfy.

1.
2.
3.
4.

A&B
¬(C ∨D)

(¬B ∨ C) ∨ E
¬E

Notice that we’re putting the negation of the conclusion here in line (4), since
we’re looking to see whether it’s possible to satisfy the premises and falsify the
conclusion. The sentences we write down at the beginning of the tree, we call
the root. Trees are designed to show whether the root is satisfiable, and if so,
how.

With proof trees, the idea is to continue writing down that which our previous
lines already commit us to. Consider the first line, A&B. For this conjunction
to be true, both conjuncts must be true. So any interpretation that satisfies the
top four lines must also satisfy both A and B; the truth of those sentences is a
commitment of what we already have. Each follow from what is already written
down. We represent this by continuing the tree with those sentences:

1.
2.
3.
4.

5.
6.

A&B X
¬(C ∨D)

(¬B ∨ C) ∨ E
¬E

A
B

In addition to introducing lines (5) and (6), we also add a check mark on (1), to
indicate that we’ve now considered it and represented its consequences. Think
of the check mark as saying that we’ve extended the tree in a way that encodes
the information from this line.

Now consider line (2). This is a negated disjunction. Disjunctions are true any

68 forallx (UBC edition)

time either disjunct is true, so this negated disjunction can only be true if both
disjuncts are false. So we include new lines for ¬C and ¬D, adding a check
mark on line (2):

1.
2.
3.
4.

5.
6.

7.
8.

A&B X
¬(C ∨D) X

(¬B ∨ C) ∨ E
¬E

A
B

¬C
¬D

Line (3) is a disjunction. Unlike the previous two cases, it doesn’t tell us what
categorically must be the case; it says that one of two possibilities must be met.
We represent this in our tree by branching into two different columns:

1.
2.
3.
4.

5.
6.

7.
8.

9.

A&B X
¬(C ∨D) X

(¬B ∨ C) ∨ E X
¬E

A
B

¬C
¬D

¬B ∨ C E

Now we have two branches to consider. Start by examining the right branch.
It gives an atomic sentence, E. Notice, however, that line (4) was ¬E. So
if we’re looking for a way to satisfy (1)-(4), this right branch isn’t a possi-
ble interpretation. It requires E to be true, and it also requires ¬E to be
true. If a branch contains any sentence and also contains its negation, we know
that branch doesn’t correspond to a possible interpretation. We’ll consider this
branch closed, and mark this with an ‘×’.

The left branch is another disjunction. It too branches out into its two disjuncts:

ch. 5 sl trees 69

1.
2.
3.
4.

5.
6.

7.
8.

9.

10.

A&B X
¬(C ∨D) X

(¬B ∨ C) ∨ E X
¬E

A
B

¬C
¬D

¬B ∨ C

¬B
×

C
×

E
×

Both of these disjuncts also result in closed branches. The left branch at (10)
is the negation of (6), and the right branch is the negation of (7). Now every
branch in this tree is closed. This corresponds to the idea that every possible
way there could be to satisfy (1)-(4) ended up requiring a contradiction. There
is no interpretation that satisfies (1)-(4). In other words, the argument we began
with was valid.

In the previous chapter we used the double turnstile, ‘|=’, to represent entail-
ment. In this chapter we will use a different but related symbol, the single
turnstile, which looks like this: ‘`’. Think of this symbol as representing prov-
ability. So in proving that E follows from the premises above, we’re showing
that {A&B, ¬(C ∨D), (¬B ∨ C) ∨ E} ` E.

Obviously provability and entailment are closely connected; we’ll consider that
connection in more detail in Chapter 6.

5.3 An example: proving invalidity

Let’s work through another example to further illustrate the idea. In §5.4 we’ll
learn the formal rules for trees in SL. Consider this argument form:

(D ∨A) &¬N
N ∨ ¬A

.˙. ¬N &A

As before, we’ll construct a tree that includes the premises and the negation of

70 forallx (UBC edition)

the conclusion at the top, and we’ll attempt to find an interpretation satisfying
those three lines. By convention, we write the claim we’re attempting to prove
at the top of the tree. We begin by processing line (1), which is a conjunction;
its conjuncts are given in (4) and (5). Line (6) processes the disjunction in line
(2), and the left branch closes.

{(D ∨A) &¬N,N ∨ ¬A} ` ¬N &A

1.
2.
3.

4.
5.

6.

(D ∨A) &¬N X
N ∨ ¬A X
¬(¬N &A)

D ∨A
¬N

N
×

¬A

Line (3) is a negated conjunction. A conjunction is true if and only if both
conjuncts are true, so it is false if at least one conjunct is false. So to resolve
(3), line (7) branches into the negation of each conjunct, ¬¬N and ¬A. The
former closes because it’s the negation of line (5). The final sentence requiring
resolution is the disjunction on line (4); it branches, and one branch closes.

{(D ∨A) &¬N,N ∨ ¬A} ` ¬N &A

1.
2.
3.

4.
5.

6.

7.

8.

(D ∨A) &¬N X
N ∨ ¬A X
¬(¬N &A) X

D ∨A X
¬N

N
×

¬A

¬¬N
×

¬A

D
↑

A
×

The ↑ indicates that the open branch ending in D is a completed branch. (We’ll
precisely define ‘completion’ in §5.4.) What this means is that this branch rep-
resents a way to satisfy all three sentences at the root of the tree. In other

ch. 5 sl trees 71

words, this argument form is not valid in SL. Furthermore, examining the open
branch demonstrates an interpretation that satisfies the root. The branch in-
cludes three wffs that are either atoms or negated atoms: ¬A, D, and ¬N . So
it suggests this interpretation:

I =

 A = 0
D = 1
N = 0

You can verify this result by evaluating the premises and the conclusion of the
argument we began with on this interpretation. Since there is an interpretation
that satisfies the premises and falsifies the conclusion, our tree system proves
the argument invalid.

5.4 Resolution rules for SL trees

Hopefully the examples we’ve worked through have given you a decent intuitive
sense of the tree method for SL. Now let’s get more precise about it, by giving
formal rules for trees. You should be able to recognize the following rules as a
generalization of the steps of the proofs given above.

We begin with resolution rules. These rules identify ways that tree branches
can be extended, given sentences that are already in that branch. The rules de-
pend on the main connective of the sentence in question. (If the main connective
is negation, then they also depend on the main connective of the sentence being
negated.)

Conjunction

The rule for conjunction is that if you have a conjunction in a branch, you may
make a linear extension of the branch that includes each conjunct, adding a
check mark next to the conjunction. Using our Greek symbols once again as
variables to stand in for any sentence of SL, any time you have this,

Φ&Ψ

you may extend each open branch of the tree to this:

72 forallx (UBC edition)

Φ&Ψ X

Φ
Ψ

It is important to remember once again that Φ and Ψ here can stand for any
sentences of SL, including complex ones.

If you have extended a tree branch using the conjunction rule, we say that you
have resolved the conjunction. When sentences are resolved, they are marked
with a check. In stating the resolution rules, we’ll typically omit the check mark;
here is the conjunction rule:

Φ&Ψ

Φ
Ψ

Negated conjunction

If you have a negated conjunction, you may resolve it by branching into the
negation of each conjunct. This makes sense because there are two ways for a
negated conjunct to be true— either conjunct can be false.

¬(Φ&Ψ)

¬Φ ¬Ψ

Disjunction

Disjunctions branch into each disjunct.

ch. 5 sl trees 73

Φ ∨ Ψ

Φ Ψ

Negated disjunction

Since disjunctions are true any time either disjunct is true, they are only false
if both disjuncts are false. So negated disjunctions are resolved with a linear
development containing the negation of each disjunct.

¬(Φ ∨ Ψ)

¬Φ
¬Ψ

Conditional

Recall the characteristic truth table for the conditional in SL:

Φ Ψ Φ⊃Ψ
1 1 1
1 0 0
0 1 1
0 0 1

Conditionals are true any time the antecedent is false, and also any time the
consequent is true. We can represent this with a branching tree development,
similar to a disjunction.

Φ ⊃ Ψ

¬Φ Ψ

74 forallx (UBC edition)

Negated conditional

As in the case of disjunction, the negation of a conditional is a relatively strong
claim— the only way for a conditional to be false is for its antecedent to be true
and for its consequent to be false. We represent this with a linear development:

¬(Φ ⊃ Ψ)

Φ
¬Ψ

Biconditional

Biconditionals require a slightly different structure. A biconditional says that
two sentences have the same truth value: either both are true, or both are false.
Since these represent two different ways a biconditional can be true, our tree
rules will develop biconditionals into two new branches. But unlike in the case
of our other rules, each new branch will contain two sentences. One branch will
have both sides of the biconditional; the other will have both sides’ negations:

Φ ≡ Ψ

Φ
Ψ

¬Φ
¬Ψ

Negated biconditional

Negated biconditionals yield the same structure, but instead of new branches
where each subsentence has the same truth value, they yield branches in which
the subsentences have opposite values.

ch. 5 sl trees 75

¬(Φ ≡ Ψ)

Φ
¬Ψ

¬Φ
Ψ

Double negation

There is one more resolution rule, for double-negated sentences. One resolves
a double negation by developing a linear branch where both negations are re-
moved.

¬¬Φ

Φ

Resolution rules summary

These nine resolution rules describe, in purely formal terms, how to resolve
most sentences of SL. The only exceptions are atomic sentences, and atomic
sentences with a single negation sign in front of them. In our formal proof
system, atoms and negated atoms have a special role to play; they are not
resolved. In developing a tree proof, you may apply any of these rules to any
unresolved sentence (other than an atom or negated atom) in the branch. Mark
resolved sentences with a check.

Note that it is not a rule that sentences must be resolved in the order in which
they appear in the tree; one can save sentences for later and come back to them
and resolve them. However, if you are resolving a sentence after the tree has
already done some branching, you must perform the resolution rule under each
open branch that includes that sentence. Here is a tree illustrating the issue.

76 forallx (UBC edition)

1.
2.

3.

4.

5.
6.

(D&¬R) ∨Q X
¬Q ∨R

D&¬R X

¬Q

D
¬R
↑

R

D
¬R
×
4, 6

Q

¬Q
×
3, 4

R
↑

1 ∨

2 ∨

3 &

This tree has two disjunctions in the root, so it will involve branching multiple
times. We could start with either one, but this tree resolved line (1) first,
branching into the two disjuncts at line (3). The ‘1 ∨’ to the right at that line
is the explanation for what is happening there: it indicates that the disjunction
rule was applied to line (1). When the second disjunction is processed at line
(4), it needs to be done on both branches, since both branches include line (2).
That’s why our two branches split into four at line (4). One branch closes at
that point. At line (5), the conjunction at line (3) is processed. This needs to
be done on both branches that include that disjunction, but not the right-most
branch, which does not include it. Resolving a sentence affects everything below
it in the tree in its own descendent branches, but it doesn’t affect branches that
are off to the side.

Besides the tree resolution rules, there are two more rules to our proof system.

5.5 Branch closure rules

In the tree examples above, we closed branches when they contained sentences
along with their negations. Here is our general rule for tree closure:

If any branch contains some formula Φ, and also contains ¬Φ, that
branch is closed. Any branch that is not closed is open. We mark
closed branches with the ‘×’ symbol.
A tree is closed if and only if every branch in that tree is closed.
A tree is open if and only if it is not closed.

If every branch is closed, the method proves that the root is unsatisfiable.

Note that ‘Φ’ stands in for any sentence of SL; it is not part of the closure rule
that one must have an atomic sentence and its negation. Consider for example

ch. 5 sl trees 77

this tree:

1.
2.
3.

4.

(¬¬S&T) ⊃ (¬P ≡ (Q ∨R)) X
¬¬S&T

¬(¬P ≡ (Q ∨R))

¬(¬¬S&T)
×
2, 4

(¬P ≡ (Q ∨R))
×
3, 4

In this tree, we only resolved the first sentence, using the conditional rule, and
the tree immediately closed. The line numbers under the closure symbols spec-
ify exactly why the branches close: the left branch developed into the negation
of (2), and the right branch developed into the negation of (3). Notice that we
could have developed lines (2) and (3), using the conjunction or negated bicon-
ditional rules, respectively, but this would have resulted in a more complicated
tree that ultimately yielded the same result. Similarly, if we hadn’t noticed
that both branches close at line (4), we could have continued processing the
tree, developing the left branch using the negated conjunction rule on (4), and
developing the right branch using the biconditionals rule. But this too would
have involved needless complication for no benefit. (Eventually, the tree would
have closed with simpler sentences too.) You can save yourself a lot of work
by noticing when branches are ready to mark as closed, and by thinking a bit
strategically about which sentences to resolve first.

5.6 Branch completion rules

Here is the final piece of our formal proof system. In our examples above we
have used ‘↑ to indicate that an open branch is complete. We need a formal
characterization of branch completion.

In SL, a resolvable wff is a wff for which we have a resolution rule. That is,
anything other than an atom or a negated atom.

A branch is complete if and only if either it is closed, or every
resolvable sentence in that branch has been resolved.
A tree is complete if and only if every branch in that tree is complete.

If there is at least one open branch in a completed tree, the tree method indicates
that that branch corresponds to an interpretation that satisfies the root.

We use the ‘` ’ symbol to indicate tree closure. ‘X ` ’ means that a tree with
root X closes. We use ‘0 ’ to indicate that a completed tree remains open.

78 forallx (UBC edition)

We will also define our single turnstile symbol so that X ` Φ is equivalent to
X ,¬Φ ` . We’ve been using this implicit definition already, by testing validity
by putting the negation of the conclusion along with the premises in the root.

This completes the introduction of the formal rules for the SL tree proof system.
In the remainder of this chapter, we’ll work through some more examples and
provide some advice for working through trees more efficiently. In Chapter 6
we’ll explain why the tree method works, and prove why it’s a good one.

5.7 Resolution order

The resolution rules do not specify the order in which you should resolve sen-
tences in a tree; you are free to resolve in any order you like. But some ways of
processing trees are more efficient than others. Here is an example to illustrate.
Suppose we want to consider whether {¬(C &A), D ≡ C,A∨B,¬B} ` . So we
put those sentences in the root of a tree. Here’s what happens if we resolve the
sentences in the order in which they’re given:

1.
2.
3.
4.

5.

6.
7.

8.

¬(C &A) X
D ≡ C X
A ∨B X
¬B

¬C

D
C
×

¬D
¬C

A
↑

B
×

¬A

D
C

A
×

B
×

¬D
¬C

A
×

B
×

1 ¬&

2 ≡

3 ∨

Again, the justifications for particular steps are added to the right of the tree for
clarity. For example, ‘1¬& ’ indicates that line (5) was produced by performing
the negated conjunction resolution rule on line (1). This tree remains open,
offering this interpretation that satisfies the root:

I =

A = 1
B = 0
C = 0
D = 0

ch. 5 sl trees 79

This tree reminds us again that if a sentence in a tree has multiple open branches
below it, then resolving that sentence requires that the resolution be performed
in each open branch below. That’s why, for example, resolving line (3) at
line (8) requires three different new branchings. (We do not resolve under the
left-most column, because it is already closed.) So when there are more open
branches, resolving sentences requires more work on the tree. Consequently, it
is sometimes a good idea to think a bit strategically, and close off parts of the
tree earlier, to save yourself some work.

The example above is a perfectly fine instance of a completed tree, and it does
yield the correct answer. However, it’s possible to get there with less work, by
choosing to resolve sentences that will close off branches right away. Here is
another way of developing a tree with the same root as in the previous example.
This version begins by resolving line (3), because doing so will close off one of
its new branches immediately. It then continues to resolve in the most efficient
order:

{¬(C &A), D ≡ C,A ∨B,¬B} `

1.
2.
3.
4.

5.

6.

7.
8.

¬(C &A) X
D ≡ C X
A ∨B X
¬B

A

¬C

D
C
×

¬D
¬C
↑

¬A
×

B
×

3 ∨

1 ¬&

2 ≡

This tree gets us to the same result much more quickly, pointing to the same
interpretation that satisfies the root. As a general rule of thumb, it’s good
advice to look a step ahead, and resolve sentences that won’t lead to new open
branches, before resolving ones that will. For just the same reason, it is usually
more efficient to resolve those sentences that have linear rules before those that
have branching rules.

Practice Exercises

If you want additional practice, you can construct trees for any of the SL argu-
ments in the exercises for the previous chapter.

80 forallx (UBC edition)

? Part A To evaluate each of the following claims with a tree, (a) what would
you put in the root of the tree?, and (b) if the tree closes, does that show that
the claim is true or false?

1. {P, P ⊃ Q,Q ⊃ ¬P} `
2. (P ⊃ Q) ≡ (Q ⊃ P) is a tautology.
3. The following argument is valid:

P &Q
¬R ⊃ ¬Q

.˙. P &R

4. There is no interpretation that satisfies A∨B, B ⊃ C, and A ≡ C without
also satisfying C.

5. A ≡ ¬A is a contradiction.
6. Every interpretation satisfying P , P ⊃ Q, and ¬Q also satisfies A.
7. There is at least one interpretation that satisfies P ⊃ Q, ¬P ∨ ¬Q, and
Q ⊃ P .

Part B Evaluate the argument given on p. 66 by constructing a tree. If it is
invalid, give a model demonstrating it so.

Part C Evaluate each claim from Part A by constructing a tree. If applicable,
give the interpretation that demonstrates the claim true or false.

Part D Recall the discussion of the Sheffer stroke (see page 56.) That connec-
tive, if added to SL, would have this characteristic truth table:

Φ Ψ Φ|Ψ
1 1 0
1 0 1
0 1 1
0 0 1

What would be appropriate tree resolution rules for the Sheffer stroke, or the
negated Sheffer stroke?

Chapter 6

Soundness and
Completeness for SL Trees

In Chapter 5 we introduced a proof system for SL. Trees provide a method
for answering the question of whether a given set of SL sentences is jointly
satisfiable. Our focus last chapter was on using trees to answer those questions;
this chapter we turn to the study of the proof system itself. This chapter engages
in a project of metalogic. In particular, we aim to first precisify, then answer,
this question: is the tree method a good method?

It might not be obvious at first that there is even a genuine question here.
The tree method is a formal method, with precisely defined rules. You might be
tempted to think that, by definition, following the rules makes it a good method.
There is one sense in which that is right— by the lights of the rules laid out
last chapter, one ought to follow the rules laid out last chapter. But there is
also a deeper question to be asked. Notice that the rules were not selected at
random. They were designed to do something in particular: namely, to tell
whether a set of sentences is satisfiable. This isn’t a question about trees. (We
were considering this question back in Chapter 4, before we had even introduced
the idea of trees.) So there is a question to be asked about whether the tree
method actually does what it’s supposed to do.

Recall the distinction between our two turnstiles: we use ‘X |= ’ to mean that
no interpretation satisfies X ; ‘X ` ’ means that a tree with root X closes. We
interpret the latter as our proof system saying that nothing satisfies the root.
Our question now is, can our proof system be trusted? Is it reliable? The main
project of this chapter is to prove in a rigorous way that it can, and is.

81

82 forallx (UBC edition)

6.1 Informal proof

In Chapter 5 we learned a formal proof system. This chapter we will prove
important results about that system. It is important to emphasize, however,
that the formal proof system isn’t the only way to ‘prove’ things. In particular,
the tree method is not an appropriate methodology for the task of this chapter.
When we say we wish to prove that the tree method is good, we don’t mean
that we will put the negation of that claim— i.e., that the tree method is not
good— in the root of a tree. That would get us nowhere.

Instead, we will be engaging in an informal proof about the formal system. An
informal proof needn’t be any less conclusive or compelling than a formal proof
is, but evaluating it makes use of our general ability to recognize what follows
from what, rather than working through a list of syntactically-defined rules.

6.2 Soundness

If a tree with root X closes, we interpret that as the system telling us that
X is unsatisfiable. If our system is a good one, then a tree will never mislead
us in this respect. Tree closure should guarantee unsatisfiability. We call this
property soundness. The soundness of our SL tree system is the first important
metalogical theorem we will prove in this chapter.

soundness: If a tree closes, that guarantees that its root is unsat-
isfiable. In other words:

X ` ⇒ X |=

Here is a way to illustrate that soundness is a substantive result, and to clarify
what it is we’re trying to prove. Recall the resolution rule for disjunction (see
p. 72):

Φ ∨ Ψ

Φ Ψ

Let’s suppose for the purpose of argument that we had a different disjunction
rule instead of this one. Suppose, for example, that our rule for disjunction had
been this:

ch. 6 soundness and completeness for sl trees 83

Φ ∨ Ψ

Φ
Ψ

If this had been our disjunction rule, and all the other rules remained the same,
our tree system would have been unsound. It would have been possible for
satisfiable roots to result in closed trees. That is to say, there would have been
possible sets of sentences X such that X ` , even though X 6|= . Consider for
example these sentences:

P
¬P ∨Q

These sentences are obviously jointly satisfiable, by an interpretation that as-
signs 1 to P and 1 to Q. But if we used the tree system with the alternate
disjunction rule above, the tree would close:

{P,¬P ∨Q} `

1.
2.

3.
4.

P
¬P ∨Q X

¬P
Q
×
1, 3

2 alt.∨

This would be a counterexample to the soundness of the SL tree system. This
explains what’s wrong with the alternate disjunction rule— it would allow trees
to ‘prove’ that a root is unsatisfiable, even if it really is satisfiable. In considering
the soundness of our system, we are investigating whether our actual proof
system is defective in the same way this hypothetical modification of the system
would have been. We will prove that it is not.

6.3 Recursive proofs

Our proof of soundness will be a recursive proof. A recursive proof is a proof
that proceeds stepwise: one first demonstrates that the claim to be proven
holds for some simple case, and then shows that, if it holds for some case,
then it also holds for some other, slightly more complicated case. More ways
of complicating cases may also be discussed, each along with the assurance

84 forallx (UBC edition)

that if the claim holds for a simpler case, then it will also hold for each more
complex one. Finally, if one can demonstrate that the ways of complicating
cases considered are exhaustive— that is, if these represent the only possible
cases— then this has been shown for every possible case. You may be familiar
with recursive proofs already in the form of mathematical induction. Let’s begin
with a silly example.

Suppose that Sir Roderic Murgatroyd has been cursed. The curse is subject to
the following rules:

1. The only way to remove the curse from one person is to transfer it to
someone else.

2. There are only three ways to give the curse to someone else:

(a) One may transfer it to one’s parent

(b) One may transfer it to one’s child

(c) One may transfer it to one’s sibling

Given these rules, it’s not difficult to see that the Murgatroyd curse will never
leave the family. We know that Sir Roderic has the curse. He could transfer it
to a parent, a child, or a sibling, but none of those actions would remove the
curse from the family, since one’s parents, one’s children, and one’s siblings are
all family members. And any of those people, if they had the curse, can only
transfer it to someone else within the family. No curse transfer can get the curse
outside the family. So someone in the family will remain cursed forever.

Slightly more precisely: we’re attempting to prove that the curse will always be
in the family. Roderic is in the family. And, for any person, if they are in the
family, then they cannot transfer the curse outside of the family. The proof is
perfectly general; it applies to Roderic’s great-great-great-grandchildren just as
well as it applies to Sir Roderic himself. This is a simple example of a recursive
proof. The proof of the soundness of the SL tree method is more complex, but
it has the same basic structure.

6.4 Proving soundness

Soundness is the claim that any time a tree closes, the root must be unsatisfiable.
This is equivalent to the claim that any time the root is satisfiable, the tree won’t
close. So to prove soundness, we can assume that the root is satisfiable, and
show that it follows that the tree doesn’t close.

Suppose, then, we have some satisfiable set of sentences X in the root of a
tree. If the root is satisfiable, then there is some interpretation that satisfies

ch. 6 soundness and completeness for sl trees 85

it. (Recall that an interpretation is an assignment of truth values to atomic
sentences.) Call this interpretation I. We will begin by proving that, if our tree
follows the rules given in Chapter 5, then I doesn’t just satisfy the root— it
satisfies every sentence in some branch of the completed tree. Once we establish
that claim, it’s only a short step to demonstrate that this branch doesn’t close.
Branches only close when they contain some formula and its negation. But
no interpretation can satisfy a formula and its negation; so if I satisfies every
formula in the branch, that means that branch must not contain any formula
and its negation. So the tree will remain open.

This is the broad structure of our proof. The key step is in proving that I
has the property mentioned above— that it satisfies every sentence in an open
branch. We will prove this recursively.

Root

Start with the root, X . This is trivial. We are assuming that our tree begins
with a satisfiable root, because we are trying to prove what follows from that
assumption. (Namely, that the tree won’t close.) I is just our name for one of
the interpretations we are assuming must exist. So I satisfies everything in the
root.

We want our proof to be perfectly general, so we don’t want to make any
particular assumptions about what the tree does beyond the root. But, given
the resolution rules outlined in §5.4, there are only nine possible ways the tree
might develop at each step. (Compare the three possible ways the curse might
move in example of the previous section.) We will prove, for each of these
nine resolution rules, the following: if I satisfies all the sentences in the branch
above, then I also satisfies at least one branch of what comes below. In other
words, we’ll prove, for each inference rule, that that rule cannot take you from
a satisfiable branch to a tree with no satisfiable branches.

Conjunction

Suppose that a tree develops via the conjunction rule:

Φ&Ψ

Φ
Ψ

We assume that I satisfies the branch above the development. So in particular,

86 forallx (UBC edition)

I must satisfy Φ&Ψ . We may write this as

I(Φ&Ψ) = 1

We know from the definition of truth in SL that any interpretation that assigns
1 to a conjunction must assign 1 to each conjunct. (See page 61.) So:

I(Φ) = 1

I(Ψ) = 1

What we’ve just shown is that, if I satisfies the branch above this development,
then it also satisfies everything in the new development. The conjunction rule
will never take us from a satisfiable branch to an unsatisfiable one. We need to
prove that every possible way of developing the tree is like that.

Negated conjunction

Negated conjunctions develop in our system with a branching rule:

¬(Φ&Ψ)

¬Φ ¬Ψ

Once again, we are assuming for the purpose of argument that our interpretation
I satisfies everything up until this development. So I(¬(Φ&Ψ)) = 1. Since I
satisfies that negation, I(Φ&Ψ) = 0. Given our definition of truth in SL, any
interpretation that assigns 0 to this conjunction must assign 0 to at least one of
its conjuncts. So either I(Φ) = 0 or I(Ψ) = 0. (It could assign 0 to both.) If
I(Φ) = 0, then I(¬Φ) = 1, and so the new left branch is satisfied. If I(Ψ) = 0,
then I(¬Ψ) = 1, and so the new right branch is satisfied. Since (at least) one
of these must be the case, we know that I satisfies at least one branch of our
extended tree, assuming it satisfied that which came before the extension. So
the negated conjunction rule will never take us from a satisfiable branch to an
unsatisfiable one.

Disjunction

Disjunctions branch according to this rule:

Φ ∨ Ψ

Φ Ψ

ch. 6 soundness and completeness for sl trees 87

Assume I(Φ ∨ Ψ) = 1. Then either I(Φ) = 1 or I(Ψ) = 1. If I(Φ) = 1, then
I satisfies the left branch. If I(Ψ) = 1, then I satisfies the right branch. So,
assuming that I satisfies the sentences above this resolution rule, it must satisfy
at least one branch below it. So the disjunction rule will never take us from a
satisfiable branch to an unsatisfiable one.

Hopefully the pattern is becoming clear by now. We’ve proven, for three of our
nine rules, that they cannot take us from a satisfiable branch to an unsatisfiable
one. Six resolution rules remain to be considered.

Consider again the variant disjunction rule hypothesized above:

Φ ∨ Ψ

Φ
Ψ

If we attempted to go through the same reasoning we’ve been going through,
we’d fail. Assume I(Φ∨Ψ) = 1. By the definition of truth in SL, we know that
I assigns 1 to at least one of Φ and Ψ , but there is no guarantee that it will
satisfy both. So we have no assurance that, if one follows this rule, I will satisfy
the development of the tree, even if we assume it satisfies the sentences above.
We cannot prove that the use of this rule will never lead to an inappropriate
tree closure.

Negated Disjunction

Here is the rule for negated disjunctions:

¬(Φ ∨ Ψ)

¬Φ
¬Ψ

Suppose that I(¬(Φ ∨ Ψ)) = 1. Given the definition of negation, this means
that I(Φ ∨ Ψ) = 0. This in turn means, given the definition of disjunction,
that I must assign 0 to both Φ and Ψ . And so of course, given the definition
of negation again, we know that I assigns 1 to ¬Φ, and also assigns 1 to ¬Ψ .
Therefore, if we began with a satisfiable tree branch, invoking this rule, like
the other good rules we’ve considered, will preserve satisfiability; the negated
disjunction rule will never take one from a satisfiable branch to an unsatisfiable
one.

88 forallx (UBC edition)

Conditional

The conditional rule is:

Φ ⊃ Ψ

¬Φ Ψ

As before, assume that the material above the branch is satisfiable; so some
interpretation I satisfies it. Any interpretation that satisfies a conditional must
assign 0 to the antecedent, or 1 to the consequent (or both). If I assigns 0 to
the antecedent, then it satisfies the left development of the tree. If I assigns 1
to the consequent, then it satisfies the right development of the tree. So, given
that it satisfies the conditional, I is guaranteed to satisfy at least one branch of
the tree as developed by the conditional rule.

Negated Conditional

The rule given in Chapter 5 for negated conditionals was this:

¬(Φ ⊃ Ψ)

Φ
¬Ψ

I hope the procedure is feeling a bit tedious by now. As before, we assume that
the negated conditional is satisfiable, and prove that the tree as developed by
this rule will remain satisfiable. Since we’re assuming that ¬(Φ⊃Ψ) is satisfiable,
it follows that some interpretation I satisfies it. But I(¬(Φ ⊃ Ψ)) only if
I(Φ) = 1 and I(Ψ) = 0. So I will satisfy Φ and ¬Ψ . That is to say, it will
satisfy the continuation of the branch given this rule. The negated conditional
rule can never take one from a satisfiable root to an unsatisfiable tree.

We have three more rules to consider.

Biconditional

Here is the biconditional rule:

ch. 6 soundness and completeness for sl trees 89

Φ ≡ Ψ

Φ
Ψ

¬Φ
¬Ψ

Assuming that I satisfies Φ≡Ψ , it must either assign 1 to both Φ and Ψ , or it
must assign 0 to both Φ and Ψ . If the former, I will satisfy the left branch
of the new development from this rule. If the latter, it will satisfy the right
branch, since any interpretation that assigns 0 to a sentence must assign 1 to
its negation. So this rule too can never take one from a satisfiable root to an
unsatisfiable tree.

Negated biconditional

¬(Φ ≡ Ψ)

Φ
¬Ψ

¬Φ
Ψ

The reasoning is much as before. If our interpretation satisfies the negated
biconditional, then it must assign opposite values to each side; i.e., either I(Φ) =
1 and I(Ψ) = 0, or I(Φ) = 0 and I(Ψ) = 1. If the former, I satisfies the left
branch; if the latter, I satisfies the right branch. So if the negated biconditional
is satisfiable, this rule will never result in an unsatisfiable tree.

Double negation

Here is our final tree resolution rule:

¬¬Φ

Φ

One last time, we assume that we begin with something satisfiable; so we allow
that some interpretation I assigns 1 to ¬¬Φ. If it assigns 1 to this negation,
then it must assign 0 to its negand. So I(¬Φ) = 0. And since it assigns 0 to
this negation, it must assign 1 to its negand: I(Φ) = 1. But this just is the new
branch development. So if we began with something satisfiable, this rule will
result in something satisfiable.

90 forallx (UBC edition)

Taking stock

We’ve now shown, for each of the nine resolution rules in our tree system, that
they each have the following important feature: if you begin with a satisfiable
set of sentences, applying the rule will always result in at least one continuation
of the tree that is also satisfiable. And since these nine rules are the only ways
one can develop a tree, we’ve proven that there is no possible way, consistent
with the tree rules, for a tree with a satisfiable root to develop into a tree with
no satisfiable branches.

Branches can only be closed if they contain a sentence and its negation, which
a satisfiable branch will never have. So, assuming we started with a satisfiable
root, the rules will never result in a tree with all branches closed. Satisfiable
roots will always result in open trees. The tree method will never erroneously
”prove” that a root is unsatisfiable. Equivalently, tree closure guarantees un-
satisfiability of the root. The tree method is sound.

soundness: If a tree closes, that guarantees that its root is unsat-
isfiable. In other words:

X ` ⇒ X |=

6.5 Completeness

Soundness is the first of two important metalogical theorems considered in this
chapter. The second is completeness. One can think of soundness as a guar-
antee against a system proving too much; in proving soundness, we were assuring
ourselves that a tree would close only if the root was unsatisfiable. Complete-
ness, as the name suggests, concerns whether our system proves enough. We
want our system to be sure to close, if the root is unsatisfiable. Remember, we
take open branches in completed trees as an indication that the root is satisfi-
able. Completeness is about ensuring that this is a warranted conclusion.

completeness: If a root is unsatisfiable, that guarantees that the
tree will close. In other words:

X |= ⇒ X `

Consider the unsatisfiable set of sentences, {¬Q,P &Q}. Given our conjunction
rule, a tree with this root will close:

ch. 6 soundness and completeness for sl trees 91

1.
2.

3.
4.

¬Q
P &Q X

P
Q
×
1, 4

2 &

In proving completeness, we wish to demonstrate that this will always be the
case: whenever we begin with an unsatisfiable root, the entire tree will eventu-
ally close. Notice that if we had a different conjunction rule that called for a
branching development instead of a linear one, completeness would fail. Suppose
we had this rule:

Φ&Ψ

Φ Ψ

Using this rule, the tree with root {¬Q,P &Q} would remain open:

1.
2.

3.

¬Q
P &Q X

P
↑

Q
×
1, 3

2 alt. &

The right branch closes, but this tree has a left branch that remains open, even
though the root is unsatisfiable. So if we modified our proof system by using
this rule instead of the linear rule for conjunction, we would have a system that
fails completeness. We wish to prove that, given the actual rules, our system is
complete.

6.6 Proving Completeness

Completeness is the claim that any time a set of sentences is unsatisfiable, a
completed tree with that set as its root will close. This is equivalent to the
claim that if a completed tree has a branch that remains open, then the root
is satisfiable. To prove completeness, we will assume that a completed tree has
a branch that remains open, and prove that, on this assumption, the root is
satisfiable. In fact, we will prove something stronger than that: we will prove
that every formula in a completed open branch is satisfiable, by demonstrating

92 forallx (UBC edition)

a recipe for constructing an interpretation that satisfies it. Since the root is
part of every branch of the tree, this will suffice for proving completeness.

As in the case of our soundness proof, we will be giving an informal proof about
our formal system.

Here is the broad shape of the proof. Suppose that a completed tree has at
least one open branch. Then we can construct an interpretation, I, based
on that branch, as follows: if any atomic sentence Φ is in the branch, then
I(Φ) = 1. If any negated atomic sentence ¬Ψ is in the branch, then I(Ψ) = 0.
Let these assignments exhaust I. We can guarantee that there will be a coherent
interpretation like this. This recipe for constructing interpretations will fail
only if some atomic sentence and its negation are both in the branch. But if
a sentence and a negation are both in the branch, then that branch will close;
by hypothesis, we’re considering a completed branch that remains open. So we
know it contains no explicit contradictions of this kind.

Now we want to prove that I satisfies every formula in the branch (including
the root). We know it satisfies every atomic formula and every negated atomic
formula in the branch, given the way it was constructed. We’ll now show that
it must satisfy every other formula too. We’ll exploit the recursive rules for SL
grammaticality: there are only a certain number of ways that sentences can be
created from simpler sentences. We’ll show, for sentence form, that if I satisfies
a branch downstream of that sentence in a completed branch, then it satisfies
that sentence too.

We begin with conjunction.

Conjunction

Suppose our completed, open branch contains a conjunction of the form Φ&Ψ .
Since it is a completed branch, this means that the conjunction resolution rule
must have been applied to this conjunction. (Remember, a branch isn’t com-
pleted until every complex formula has a check mark next to it.) So, given the
conjunction rule,

Φ&Ψ

Φ
Ψ

we know that the branch must also contain Φ and Ψ . If we assume that I
satisfies both these sentences, then we know from the definition of truth in

ch. 6 soundness and completeness for sl trees 93

SL that I satisfies (Φ&Ψ) too. In other words, there’s no way to satisfy the
simpler sentences that come after this resolution rule, without also satisfying
the conjunction.

Negated conjunction

Suppose a negated conjunction appears in the open branch. Since the branch
is complete, you know that the negated conjunction rule has been applied:

¬(Φ&Ψ)

¬Φ ¬Ψ

We are assuming that the negated conjunction is in an open branch. This is
consistent with either one of the branches below closing, but they cannot both
close. If they did, the negated conjunction would not be in an open branch.
So we know that at least one branch is open. So either I(Φ) = 0 (if the left
branch is our open branch) or I(Ψ) = 0 (if the right branch is the open branch).
Since at least one of these sentences is assigned 0, their conjunction must also be
assigned 0, which means the negated conjunction we’re considering is assigned
1. So once again, if the material in at least one branch below the resolution rule
is satisfied, then the negated conjunction is satisfied too.

Disjunction

Disjunctions are very similar to negated disjunctions. Since the tree is complete,
any disjunction Φ∨Ψ has a branch below it containing Φ, and one containing
Ψ . Whichever of these disjuncts is in the open branch, I satisfies that disjunct,
and so satisfies the disjunction too.

Negated disjunction

Negated disjunctions are similar to conjunctions. If a negated disjunction is
in an open branch, then the negation of each disjunct is also in that branch.
So, suppose that I assigns 0 to each disjunct. Then it also assigns 0 to their
disjunction. So once again, if the material below the negated disjunction is
satisfied, then so is the negated disjunction itself.

94 forallx (UBC edition)

Conditional

If a conditional is in a completed open branch, then it has been resolved by this
branching rule:

Φ ⊃ Ψ

¬Φ Ψ

If the left development is the open branch, then we suppose that I(Φ) = 0,
which means that I(Φ ⊃ Ψ) = 1. If this right development is the open branch,
then we suppose that I(Ψ) = 1, which also means that I(Φ ⊃ Ψ) = 1. So if
the material below in at least one branch is satisfied, then the conditional is
satisfied too.

Negated conditional

If a negated conditional ¬(Φ⊃Ψ) is in the open branch, then so too are Φ and
¬Ψ . So I(Φ) = 1 and I(Ψ) = 0. So I falsifies the conditional, satisfying the
negated conditional.

There are three more kinds of sentences that exist in SL.

Biconditional

Suppose a biconditional is in an open branch. If the branch is completed, then
this rule has been performed:

Φ ≡ Ψ

Φ
Ψ

¬Φ
¬Ψ

One of these developments is the open branch. If it’s the left branch, then,
supposing that I assigns 1 to both Φ and Ψ , I must also assign 1 to the bicon-
ditional Φ≡Ψ . If it’s the right branch, then, supposing that I assigns 0 to both
Φ and Ψ , this also means that I must also assign 1 to the biconditional Φ≡Ψ .
So whichever branch is satisfied by I, the biconditional is also satisfied.

ch. 6 soundness and completeness for sl trees 95

Negated biconditional

Exactly the same reasoning as above applies to negated biconditionals, except
this time, the branches each assign opposite truth values to Φ and Ψ . So for
our interpretation to satisfy either branch, it must falsify the biconditional, thus
satisfying the negated biconditional.

Double negation

Finally, suppose there is a double-negated sentence in our completed open
branch. Then this rule has been performed:

¬¬Φ

Φ

If I(Φ) = 1, then, given the definition of truth in SL, I(¬Φ) = 0, and I(¬¬Φ) =
1. So once again, if our interpretation satisfies what comes below, then it satisfies
the double-negation above.

Summarizing the completeness proof

What we’ve just shown is that, for any sentence of SL, if it has one of the
nine structures just canvassed— if it’s a conjunction, a negated conjunction, a
disjunction, etc.— then, if it is in a completed open branch where the sentences
below it are satisfied by I, then it too is satisfied by I. Given the way that
I was selected, we know that I must satisfy every atomic sentence, and every
negated atomic sentence, in the open branch. And since the nine structures
considered are the only ways to develop more complex sentences, this implies
that every SL sentence in the open branch is satisfied by I. This includes the
root. Since interpretation I satisfies the root, this of course means that the
root is satisfiable. That is to say, if a completed branch remains open, this
guarantees that the root is satisfiable. Equivalently, if the root is unsatisfiable,
a completed tree is guaranteed to close. Completeness is proven.

Practice Exercises

Part A Following are possible modifications to our SL tree system. For each,
imagine a system that is like the system laid out in this chapter, except for the

96 forallx (UBC edition)

indicated change. Would the modified tree system be sound? If so, explain how
the proof given in this chapter would extend to a system with this rule; if not,
give a tree that is a counterexample to the soundness of the modified system.

1. Change the rule for conjunctions to this rule:

Φ&Ψ

Φ Ψ

2. Change the rule for conjunctions to this rule:

Φ&Ψ

Φ

3. Change the rule for conjunctions to this rule:

Φ&Ψ

Φ
¬Ψ

4. Change the rule for disjunctions to this rule:

Φ ∨ Ψ

Φ
Ψ

5. Change the rule for disjunctions to this rule:

Φ ∨ Ψ

Φ Ψ Φ&Ψ

6. Change the rule for conditionals to this rule:

Φ ⊃ Ψ

¬Φ Ψ ∨ Φ

ch. 6 soundness and completeness for sl trees 97

7. Change the rule for conditionals to this rule:

Φ ⊃ Ψ

¬Φ ∨ Ψ

8. Change the rule for biconditionals to this rule:

Φ ≡ Ψ

Φ
Ψ

9. Change the rule for disjunction to this rule:

Φ ∨ Ψ

Φ Ψ Ω

Part B For each of the rule modifications given in Part A, would the modified
tree system be complete? If so, explain how the proof given in this chapter would
extend to a system with this rule; if not, give a tree that is a counterexample
to the completeness of the modified system.

Chapter 7

Natural Deduction Proofs
in SL

This chapter introduces a different proof system in SL, separate from the tree
method. The tree method has advantages and disadvantages. One advantage
of trees is that, for the most part, they can be produced in a purely mechanical
way; another is that, when a tree remains open, the tree method gives us a recipe
for constructing an interpretation that satisfies the root. One disadvantage is
that they do not always emphasize in an intuitive way why a conclusion follows
from a set of premises; they show that something must be the case, on pain of
contradiction, but they don’t always demonstrate, in a way closely connected
to natural reasoning, why some things follow from other things.

The natural deduction system of this chapter will differ from the tree
method in all of these respects. It is intended to model human reasoning in
a closer way, illustrating the connections between various claims; consequently,
working through a natural deduction proof requires a bit more insight and in-
spiration than a tree proof does.

Natural deduction proofs can be used to prove that an argument is valid; if
an argument is invalid, our natural deduction system will not necessarily make
that obvious. (Any valid argument in SL can be shown to be valid via a natural
deduction proof— i.e., this method is complete too (and sound)— but that’s no
guarantee that any individual will be able to come up with the proof.)

Consider two arguments in SL:

98

ch. 7 natural deduction proofs in sl 99

Argument A

P ∨Q
¬P

.˙. Q

Argument B

P ⊃ Q
P

.˙. Q

Clearly, these are valid arguments. You can confirm that they are valid by
constructing four-line truth tables, or by using trees. Argument A makes use
of an inference form that is always valid: Given a disjunction and the negation
of one of the disjuncts, the other disjunct follows as a valid consequence. This
rule is called disjunctive syllogism.

Argument B makes use of a different valid form: Given a conditional and its
antecedent, the consequent follows as a valid consequence. This is called modus
ponens.

When we construct truth tables, we do not need to give names to different infer-
ence forms. There is no reason to distinguish modus ponens from a disjunctive
syllogism. For this same reason, however, the method of truth tables does not
clearly show why an argument is valid. If you were to do a 1024-line truth table
for an argument that contains ten sentence letters, then you could check to see
if there were any lines on which the premises were all true and the conclusion
were false. If you did not see such a line and provided you made no mistakes
in constructing the table, then you would know that the argument was valid.
Yet you would not be able to say anything further about why this particular
argument was a valid argument form.

We aim to show that particular arguments are valid in a way that allows us
to understand the reasoning involved in the argument. We begin with basic
argument forms, like disjunctive syllogism and modus ponens. These forms can
then be combined to make more complicated arguments, like this one:

(1) ¬L ⊃ (J ∨ L)

(2) ¬L
.˙. J

By modus ponens, (1) and (2) entail J ∨L. This is an intermediate conclusion.
It follows logically from the premises, but it is not the conclusion we want. Now
J ∨ L and (2) entail J , by disjunctive syllogism. We do not need a new rule
for this argument. The proof of the argument shows that it is really just a
combination of rules we have already introduced.

Formally, a proof is a sequence of sentences. The first sentences of the sequence
are assumptions; these are the premises of the argument. Every sentence later

100 forallx (UBC edition)

in the sequence follows from earlier sentences by one of the rules of proof. The
final sentence of the sequence is the conclusion of the argument.

7.1 Basic rules for SL

In designing a proof system, we could just start with disjunctive syllogism and
modus ponens. Whenever we discovered a valid argument which could not be
proven with rules we already had, we could introduce new rules. Proceeding in
this way, we would have an unsystematic grab bag of rules. We might accidently
add some strange rules, and we would surely end up with more rules than we
need.

Instead, we will develop what is called a natural deduction system. In a
natural deduction system, there will be two rules for each logical operator: an
introduction rule that allows us to prove a sentence that has it as the main
logical operator and an elimination rule that allows us to prove something
given a sentence that has it as the main logical operator.

In addition to the rules for each logical operator, we will also have a reitera-
tion rule. If you already have shown something in the course of a proof, the
reiteration rule allows you to repeat it on a new line. For instance:

1 Φ

2 Φ R 1

The numbers on the left indicate line numbers; they are used for reference in
justifying later steps in the proof. New lines in a proof must always be justified
by rules and reference to previous lines. The ‘R 1’ to the right on line 2 is the
justification for that line— that line is permitted by the reiteration rule (R),
applied to line 1.

Obviously, the reiteration rule will not allow us to show anything new. For that,
we will need more rules. The remainder of this section will give introduction
and elimination rules for all of the sentential connectives. This will give us a
complete proof system for SL.

All of the rules introduced in this chapter are summarized starting on p. 266.

Conjunction

What would you need to show in order to prove E&F? The natural answer
is, you’d need to prove E, and you’d also need to prove F . In fact this holds

ch. 7 natural deduction proofs in sl 101

much more generally; one can prove any conjunction Φ&Ψ by proving Φ and
also proving Ψ , whether or not these conjuncts are atomic sentences. If you can
prove [(A∨ J) ⊃ V] and [(V ⊃ L) ≡ (F ∨N)], then you have effectively proven

[(A ∨ J) ⊃ V] & [(V ⊃ L) ≡ (F ∨N)].

So this will be our conjunction introduction rule, which we abbreviate ‘ & I’:

m Φ

n Ψ

Φ&Ψ & I m, n

As always, the Φ and Ψ stand in for any arbitrary sentence in SL; the m and
n here stand in for arbitrary line numbers. In an actual proof, the lines are
numbered 1, 2, 3, . . . and rules must be applied to specific line numbers. When
we define the rule, however, we use variables to underscore the point that the
rule may be applied to any two lines that are already in the proof. Note that
it is not a requirement that m and n be consecutive lines, or that they appear
in the order listed here. We require only that each line has been established
somewhere above in the proof. If you have K on line 15 and L on line 8, you
can prove (K &L) at some later point in the proof with the justification ‘ & I
15, 8.’

Now, consider the elimination rule for conjunction. What are you entitled to
conclude from a sentence like E&F? Surely, you are entitled to conclude E; if
E&F were true, then E would be true. Similarly, you are entitled to conclude
F . This will be our conjunction elimination rule, which we abbreviate ‘ & E’:

m Φ&Ψ

Φ & E m

Ψ & E m

When you have a conjunction on some line of a proof, you can use & E to derive
either of the conjuncts. This rule allows either of the two developments listed
here. You may also apply the rule twice, to get both. The & E rule requires
only one sentence, so we write one line number as the justification for applying
it.

Even with just these two rules, we can provide some proofs. Consider this
argument.

[(A ∨B) ⊃ (C ∨D)] & [(E ∨ F) ⊃ (G ∨H)]

.˙. [(E ∨ F) ⊃ (G ∨H)] & [(A ∨B) ⊃ (C ∨D)]

102 forallx (UBC edition)

The main logical operator in both the premise and conclusion is conjunction.
Since conjunction is symmetric, the argument is obviously valid. In order to
provide a proof, we begin by writing down the premise. After the premises, we
draw a horizontal line— everything below this line must be justified by a rule
of proof. So the beginning of the proof looks like this:

1 [(A ∨B) ⊃ (C ∨D)] & [(E ∨ F) ⊃ (G ∨H)]

From the premise, we can get each of the conjuncts by & E. The proof now
looks like this:

1 [(A ∨B) ⊃ (C ∨D)] & [(E ∨ F) ⊃ (G ∨H)]

2 [(A ∨B) ⊃ (C ∨D)] & E 1

3 [(E ∨ F) ⊃ (G ∨H)] & E 1

The rule & I requires that we have each of the conjuncts available somewhere
in the proof. They can be separated from one another, and they can appear in
any order. So by applying the & I rule to lines 3 and 2, we arrive at the desired
conclusion. The finished proof looks like this:

1 [(A ∨B) ⊃ (C ∨D)] & [(E ∨ F) ⊃ (G ∨H)]

2 [(A ∨B) ⊃ (C ∨D)] & E 1

3 [(E ∨ F) ⊃ (G ∨H)] & E 1

4 [(E ∨ F) ⊃ (G ∨H)] & [(A ∨B) ⊃ (C ∨D)] & I 3, 2

This proof is not terribly interesting, but it shows how we can use rules of
proof together to demonstrate the validity of an argument form. Note also that
using a truth table to show that this argument is valid would have required a
staggering 256 lines, since there are eight sentence letters in the argument. A
proof via trees would be less unwieldy than that, but it would be less simple
and elegant than this one. (Constructing such a proof would be a good exercise
for tree review.)

Disjunction

If M is true, then M ∨ N must also be true. In general, the disjunction in-
troduction rule (∨I) allows us to derive a disjunction if we have one of the two
disjuncts:

ch. 7 natural deduction proofs in sl 103

m Φ

Φ ∨ Ψ ∨I m

Ψ ∨ Φ ∨I m

Notice that Ψ can be any sentence whatsoever. So the following is a legitimate
proof:

1 M

2 M ∨ ([(A ≡ B) ⊃ (C &D)] ≡ [E&F]) ∨I 1

It may seem odd that just by knowing M we can derive a conclusion that
includes sentences like A, B, and the rest— sentences that have nothing to do
with M . Yet the conclusion follows immediately by ∨I. This is as it should be:
The truth conditions for the disjunction mean that, if Φ is true, then Φ ∨ Ψ is
true regardless of what Ψ is. So the conclusion could not be false if the premise
were true; the argument is valid.

Now consider the disjunction elimination rule. What can you conclude from
M ∨ N? You cannot conclude M . It might be M ’s truth that makes M ∨ N
true, as in the example above, but it might not. From M ∨N alone, you cannot
conclude anything about either M or N specifically. If you also knew that N
was false, however, then you would be able to conclude M .

This is just disjunctive syllogism, it will be the disjunction elimination rule
(∨E).

m Φ ∨ Ψ

n ¬Ψ

Φ ∨E m, n

m Φ ∨ Ψ

n ¬Φ

Ψ ∨E m, n

Conditional

Consider this argument:

R ∨ F
.˙. ¬R ⊃ F

The argument seems like it should be valid. (You can confirm this by examining
the truth tables.) What should the conditional introduction rule be, such that
we can draw this conclusion?

104 forallx (UBC edition)

We begin the proof by writing down the premise of the argument and drawing
a horizontal line, like this:

1 R ∨ F

If we had ¬R as a further premise, we could derive F by the ∨E rule. We do not
have ¬R as a premise of this argument, nor can we derive it directly from the
premise we do have— so we cannot simply prove F . What we will do instead is
start a subproof, a proof within the main proof. When we start a subproof, we
draw another vertical line to indicate that we are no longer in the main proof.
Then we write in an assumption for the subproof. This can be anything we
want. Here, it will be helpful to assume ¬R. Our proof now looks like this:

1 R ∨ F

2 ¬R

It is important to notice that we are not claiming to have proven ¬R. We do
not need to write in any justification for the assumption line of a subproof. The
vertical line indicates that an assumption is being made. You can think of the
subproof as posing the question: What could we show if ¬R were true? For
one thing, we can derive F . So we do:

1 R ∨ F

2 ¬R

3 F ∨E 1, 2

This has shown that if we had ¬R as a premise, then we could prove F . In
effect, we have proven ¬R ⊃ F . So the conditional introduction rule (⊃I) will
allow us to close the subproof and derive ¬R ⊃ F in the main proof. Our final
proof looks like this:

1 R ∨ F

2 ¬R

3 F ∨E 1, 2

4 ¬R ⊃ F ⊃I 2–3

The ⊃I lets us discharge the assumption we’d been making, ending that ver-
tical line. During lines (2) and (3), we were assuming that ¬R; by the time we
get to line (4), we are no longer making that assumption.

ch. 7 natural deduction proofs in sl 105

Notice that the justification for applying the ⊃I rule is the entire subproof.
That’s why we justify it by reference to a range of lines, instead of a comma-
separated list. Usually that will be more than just two lines.

It may seem as if the ability to assume anything at all in a subproof would lead
to chaos: Does it allow you to prove any conclusion from any premises? The
answer is no, it does not. Consider this proof:

1 Φ

2 Ψ

3 Ψ R 2

Does this show that one can prove any arbitrary sentence Ψ from any arbitrary
premise Φ? After all, we’ve written Ψ on a line of a proof that began with
Φ, without violating any of the rules of our system. The reason this doesn’t
have that implication is the vertical line that still extends into line 3. That line
indicates that the assumption made at line 2 is still in effect. When the vertical
line for the subproof ends, the subproof is closed. In order to complete a proof,
you must close all of the subproofs. The conclusion to be proved must not be
‘blocked off’ by a vertical line; it should be aligned with the premises.

In this example, there is no way to close the subproof and use the R rule
again on line 4 to derive Ψ in the main proof. Once you close a subproof, you
cannot refer back to individual lines inside it. One can only close a subproof
via particular rules that allow you to do so; ⊃I is one such rule. One can’t
just close a subproof willy-nilly. Closing a subproof is called discharging the
assumptions of that subproof. So we can put the point this way: You cannot
complete a proof until you have discharged all of the assumptions besides the
original premises of the argument.

Of course, it is legitimate to do this:

1 Φ

2 Ψ

3 Ψ R 2

4 Ψ ⊃ Ψ ⊃I 2–3

This should not seem so strange, though. Since Ψ⊃Ψ is a tautology, no particular
premises should be required to validly derive it. (Indeed, as we will see, a
tautology follows from any premises.)

Put in its general form, the ⊃I rule looks like this:

106 forallx (UBC edition)

m Φ (want Ψ)

n Ψ

Φ ⊃ Ψ ⊃I m–n

When we introduce a subproof, we typically write what we want to derive in
the column. This is just so that we do not forget why we started the subproof if
it goes on for five or ten lines. There is no ‘want’ rule. It is a note to ourselves
and not formally part of the proof.

Although it is always permissible to open a subproof with any assumption you
please, there is some strategy involved in picking a useful assumption. Starting
a subproof with an arbitrary, wacky assumption is not a good strategy. It will
just waste lines of the proof. In order to derive a conditional by the ⊃I rule, for
instance, you must assume the antecedent of the conditional in a subproof.

The ⊃I rule also requires that the consequent of the conditional be the last line
of the subproof. It is always permissible to close a subproof and discharge its
assumptions, but it will not be helpful to do so until you get what you want. This
is an illustration of the observation made above, that unlike the tree method,
the natural deduction method requires some strategy and thinking ahead.

Now consider the conditional elimination rule. Nothing follows from M ⊃ N
alone, but if we have both M ⊃ N and M , then we can conclude N . This rule,
modus ponens, will be the conditional elimination rule (⊃E).

m Φ ⊃ Ψ

n Φ

Ψ ⊃E m, n

Now that we have rules for the conditional, consider this argument:

P ⊃ Q

Q ⊃ R

.˙. P ⊃ R

We begin the proof by writing the two premises as assumptions. Since the main
logical operator in the conclusion is a conditional, we can expect to use the
⊃I rule. For that, we need a subproof— so we write in the antecedent of the
conditional as assumption of a subproof:

ch. 7 natural deduction proofs in sl 107

1 P ⊃ Q

2 Q ⊃ R

3 P

We made P available by assuming it in a subproof, allowing us to use ⊃E on
the first premise. This gives us Q, which allows us to use ⊃E on the second
premise. Having derived R, we close the subproof. By assuming P we were able
to prove R, so we apply the ⊃I rule and finish the proof.

1 P ⊃ Q

2 Q ⊃ R

3 P (want R)

4 Q ⊃E 1, 3

5 R ⊃E 2, 4

6 P ⊃ R ⊃I 3–5

Biconditional

Biconditionals indicate that the two sides have the same truth value. One
establishes a biconditional by establishing each direction of it as conditionals.
To derive W ≡ X, for instance, you must establish both W ⊃ X and X ⊃ W .
Those conditionals may occur in either order; they need not be on consecutive
lines. (Compare the shape of the & I rule.) Schematically, the rule works like
this:

m Φ ⊃ Ψ

n Ψ ⊃ Φ

Φ ≡ Ψ ≡I m, n

The biconditional elimination rule (≡E) is a generalized version of modus ponens
(⊃E). If you have the left-hand subsentence of the biconditional, you can derive
the right-hand subsentence. If you have the right-hand subsentence, you can
derive the left-hand subsentence. This is the rule:

m Φ ≡ Ψ

n Φ

Ψ ≡E m, n

108 forallx (UBC edition)

m Φ ≡ Ψ

n Ψ

Φ ≡E m, n

Negation

Here is a simple mathematical argument in English:

Assume there is some greatest natural number. Call it A.
That number plus one is also a natural number.
Obviously, A+ 1 > A.
So there is a natural number greater than A.
This is impossible, since A is assumed to be the greatest natural number.

.˙. There is no greatest natural number.

This argument form is traditionally called a reductio. Its full Latin name is
reductio ad absurdum, which means ‘reduction to absurdity.’ In a reductio,
we assume something for the sake of argument— for example, that there is
a greatest natural number. Then we show that the assumption leads to two
contradictory sentences— for example, that A is the greatest natural number
and that it is not. In this way, we show that the original assumption must have
been false.

The basic rules for negation will allow for arguments like this. If we assume
something and show that it leads to contradictory sentences, then we have
proven the negation of the assumption. This is the negation introduction (¬I)
rule:

m Φ (for reductio)

n Ψ

o ¬Ψ

p ¬Φ ¬I m–n, m–o

The ¬I rule discharges the assumption for reductio, concluding its negation,
when its shown that some sentence and its negation each follow from the as-
sumption. It cites two (overlapping) ranges: a subproof from the assumption to
some sentence Ψ , and a subproof from that same assumption to ¬Ψ . We write
‘for reductio’ to the right of the assumption, as a note to ourselves, a reminder
of why we started the subproof. It is not formally part of the proof, but it is
helpful for thinking clearly about the proof.

ch. 7 natural deduction proofs in sl 109

To see how the rule works, suppose we want to prove an instance of the law
of non-contradiction: ¬(G&¬G). We can prove this without any premises by
immediately starting a subproof. We want to apply ¬I to the subproof, so we
assume (G&¬G). We then get an explicit contradiction by & E. The proof
looks like this:

1 G&¬G for reductio

2 G & E 1

3 ¬G & E 1

4 ¬(G&¬G) ¬I 1–2, 1–3

The ¬E rule will work in much the same way. If we assume ¬Φ and show that
it leads to a sentence and its negation, we have effectively proven Φ. So the rule
looks like this:

m ¬Φ for reductio

n Ψ

o ¬Ψ

p Φ ¬E m–n, m–o

7.2 Derived rules

The rules of the natural deduction system are meant to be systematic. There is
an introduction and an elimination rule for each logical operator, but why these
basic rules rather than some others? Some natural deduction systems have a
disjunction elimination rule that works like this:

m Φ ∨ Ψ

n Φ ⊃ Ω

o Ψ ⊃ Ω

Ω DIL m, n, o

Let’s call this rule Dilemma (DIL) It might seem as if there will be some proofs
that we cannot do with our proof system, because we do not have this as a basic
rule. Yet this is not the case. Any proof that you can do using the Dilemma
rule can be done with basic rules of our natural deduction system. Consider a
proof of this form:

110 forallx (UBC edition)

1 Φ ∨ Ψ

2 Φ ⊃ Ω

3 Ψ ⊃ Ω want Ω

4 ¬Ω for reductio

5 Φ for reductio

6 Ω ⊃E 2, 5

7 ¬Ω R 4

8 ¬Φ ¬I 5–6, 5–7

9 Ψ for reductio

10 Ω ⊃E 3, 9

11 ¬Ω R 4

12 Ψ ∨E 1, 8

13 ¬Ψ ¬I 9–10, 9–11

14 Ω ¬E 4–12, 4–13

Remember once again that Φ, Ψ , and Ω are meta-variables. They are not
symbols of SL, but stand-ins for arbitrary sentences of SL. So this is not, strictly
speaking, a proof in SL. It is more like a recipe. It provides a pattern that can
prove anything that the Dilemma rule can prove, using only the basic rules of
SL. This means that the Dilemma rule is not really necessary. Adding it to the
list of basic rules would not allow us to derive anything that we could not derive
without it.

Nevertheless, the Dilemma rule would be convenient. It would allow us to do in
one line what requires eleven lines and several nested subproofs with the basic
rules. So we will add it to the proof system as a derived rule.

A derived rule is a rule of proof that does not make any new proofs possible.
Anything that can be proven with a derived rule can be proven without it. You
can think of a short proof using a derived rule as shorthand for a longer proof
that uses only the basic rules. Anytime you use the Dilemma rule, you could
always take ten extra lines and prove the same thing without it.

For the sake of convenience, we will add several other derived rules. One is
modus tollens (MT).

ch. 7 natural deduction proofs in sl 111

m Φ ⊃ Ψ

n ¬Ψ

¬Φ MT m, n

We leave the proof of this rule as an exercise. Note that if we had already proven
the MT rule, then the proof of the DIL rule could have been done in only five
lines.

We also add hypothetical syllogism (HS) as a derived rule. We have already
given a proof of it on p. 107.

m Φ ⊃ Ψ

n Ψ ⊃ Ω

Φ ⊃ Ω HS m, n

7.3 Rules of replacement

Consider how you would prove this argument valid: F ⊃ (G&H) .˙. F ⊃ G

Perhaps it is tempting to write down the premise and apply the & E rule to the
conjunction (G&H). This is impermissible, however, because the basic rules of
proof can only be applied to whole sentences. In order to use & E, we need to
get the conjunction (G&H) on a line by itself. Here is a proof:

1 F ⊃ (G&H)

2 F want G

3 G&H ⊃E 1, 2

4 G & E 3

5 F ⊃ G ⊃I 2–4

The rules we have seen so far must apply to wffs that are on a proof line by
themselves. We will now introduce some derived rules that may be applied to
part of a sentence. These are called rules of replacement, because they can
be used to replace part of a sentence with a logically equivalent expression. One
simple rule of replacement is commutivity (abbreviated Comm), which says that
we can swap the order of conjuncts in a conjunction or the order of disjuncts in
a disjunction. We define the rule this way:

112 forallx (UBC edition)

(Φ&Ψ)⇐⇒ (Ψ &Φ)
(Φ ∨ Ψ)⇐⇒ (Ψ ∨ Φ)

(Φ ≡ Ψ)⇐⇒ (Ψ ≡ Φ) Comm

The bold arrow means that you can take a subformula on one side of the arrow
and replace it with the subformula on the other side. The arrow is double-headed
because rules of replacement work in both directions.

Consider this argument: (M ∨ P) ⊃ (P &M), .˙. (P ∨M) ⊃ (M &P)

It is possible to give a proof of this using only the basic rules, but it will be long
and inconvenient. With the Comm rule, we can provide a proof easily:

1 (M ∨ P) ⊃ (P &M)

2 (P ∨M) ⊃ (P &M) Comm 1

3 (P ∨M) ⊃ (M &P) Comm 2

Another rule of replacement is double negation (DN). With the DN rule, you
can remove or insert a pair of negations for any wff in a line, even if it isn’t the
whole line. This is the rule:

¬¬Φ⇐⇒ Φ DN

Two more replacement rules are called De Morgan’s Laws, named for the 19th-
century British logician August De Morgan. (Although De Morgan did discover
these laws, he was not the first to do so.) The rules capture useful relations
between negation, conjunction, and disjunction. Here are the rules, which we
abbreviate DeM:

¬(Φ ∨ Ψ)⇐⇒ (¬Φ&¬Ψ)
¬(Φ&Ψ)⇐⇒ (¬Φ ∨ ¬Ψ) DeM

Because Φ ⊃ Ψ is a material conditional, it is equivalent to ¬Φ ∨ Ψ . A further
replacement rule captures this equivalence. We abbreviate the rule MC, for
‘material conditional.’ It takes two forms:

(Φ ⊃ Ψ)⇐⇒ (¬Φ ∨ Ψ)
(Φ ∨ Ψ)⇐⇒ (¬Φ ⊃ Ψ) MC

Now consider this argument: ¬(P ⊃ Q), .˙. P &¬Q

ch. 7 natural deduction proofs in sl 113

As always, we could prove this argument using only the basic rules. With rules
of replacement, though, the proof is much simpler:

1 ¬(P ⊃ Q)

2 ¬(¬P ∨Q) MC 1

3 ¬¬P &¬Q DeM 2

4 P &¬Q DN 3

A final replacement rule captures the relation between conditionals and bicon-
ditionals. We will call this rule biconditional exchange and abbreviate it ≡ex.

[(Φ ⊃ Ψ) & (Ψ ⊃ Φ)]⇐⇒ (Φ ≡ Ψ) ≡ex

7.4 Proof strategy

There is no simple recipe for proofs, and there is no substitute for practice.
Here, though, are some rules of thumb and strategies to keep in mind.

Work backwards from what you want. The ultimate goal is to derive the
conclusion. Look at the conclusion and ask what the introduction rule is for its
main logical operator. This gives you an idea of what should happen just before
the last line of the proof. Then you can treat this line as if it were your goal.
Ask what you could do to derive this new goal.

For example: If your conclusion is a conditional Φ ⊃ Ψ , plan to use the ⊃I rule.
This requires starting a subproof in which you assume Φ. In the subproof, you
want to derive Ψ .

Work forwards from what you have. When you are starting a proof, look
at the premises; later, look at the sentences that you have derived so far. Think
about the elimination rules for the main operators of these sentences. These
will tell you what your options are.

For example: If you have a conditional Φ⊃Ψ , and you also have Φ, ⊃E is a
pretty natural choice.

For a short proof, you might be able to eliminate the premises and introduce
the conclusion. A long proof is formally just a number of short proofs linked
together, so you can fill the gap by alternately working back from the conclusion
and forward from the premises.

114 forallx (UBC edition)

Change what you are looking at. Replacement rules can often make your
life easier. If a proof seems impossible, try out some different substitutions.

For example: It is often difficult to prove a disjunction using the basic rules. If
you want to show Φ∨Ψ , it is often easier to show ¬Φ ⊃ Ψ and use the MC rule.

Some replacement rules should become second nature. If you see a negated
disjunction, for instance, you should immediately think of DeMorgan’s rule.

Do not forget indirect proof. If you cannot find a way to show something
directly, try assuming its negation.

Remember that most proofs can be done either indirectly or directly. One way
might be easier— or perhaps one sparks your imagination more than the other—
but either one is formally legitimate.

Repeat as necessary. Once you have decided how you might be able to get
to the conclusion, ask what you might be able to do with the premises. Then
consider the target sentences again and ask how you might reach them.

Persist. Try different things. If one approach fails, then try something else.

7.5 Proof-theoretic concepts

As we did in our discussion of trees, we will again use the symbol ‘`’ to indicate
provability. Provability is relative to a proof system, so the meaning ‘`’ symbol
featured in this chapter should be distinguished from one we used for trees.
When necessary, we can specify the single turnstile with reference to the proof
system in question, letting ‘`T ’ stand for provability in the tree system, and
‘`ND’ stand for provability in this natural deduction system. For the most part
in this chapter, though, we’ll be interested in natural deduction, so unless it is
specified otherwise, you can understand ‘`’ to mean ‘`ND’.

The double turnstile symbol ‘|=’, remains unchanged. It stands for semantic
entailment, as described in ch. 4.

When we write {Φ1, Φ2, . . .} `ND Ψ , this means that it is possible to give a
natural deduction proof of Ψ with Φ1,Φ2,. . . as premises. With just one premise,
we leave out the curly braces, so Φ ` Ψ means that there is a proof of Ψ with
Φ as a premise. Naturally, ` Φ means that there is a proof of Φ that has no
premises. For notational completeness, we define Φ ` as equivalent to ` ¬Φ.

ch. 7 natural deduction proofs in sl 115

Logical proofs are sometimes called derivations. So Φ ` Ψ can be read as ‘Ψ is
derivable from Φ.’

A theorem is a sentence that is derivable without any premises; i.e., Φ is a
theorem if and only if ` Φ.

It is not too hard to show that something is a theorem— you just have to give
a proof of it. How could you show that something is not a theorem? If its
negation is a theorem, then you could provide a proof. For example, it is easy
to prove ¬(Pa&¬Pa), which shows that (Pa&¬Pa) cannot be a theorem. For
a sentence that is neither a theorem nor the negation of a theorem, however,
there is no easy way to show this. You would have to demonstrate not just that
certain proof strategies fail, but that no proof is possible. Even if you fail in
trying to prove a sentence in a thousand different ways, perhaps the proof is
just too long and complex for you to make out. As we’ve emphasized already,
this is a difference between our natural deduction system and the tree method.

Two sentences Φ and Ψ are provably equivalent if and only if each can be
derived from the other; i.e., Φ ` Ψ and Ψ ` Φ

It is relatively easy to show that two sentences are provably equivalent— it just
requires a pair of proofs. Showing that sentences are not provably equivalent
would be much harder. It would be just as hard as showing that a sentence
is not a theorem. (In fact, these problems are interchangeable. Can you think
of a sentence that would be a theorem if and only if Φ and Ψ were provably
equivalent?)

The set of sentences {Φ1, Φ2, . . .} is provably inconsistent if and only if a
contradiction is derivable from it; i.e., for some sentence Ψ , {Φ1, Φ2, . . .} ` Ψ
and {Φ1, Φ2, . . .} ` ¬Ψ . This is equivalent to {Φ1, Φ2, . . .} `.

It is easy to show that a set is provably inconsistent: You just need to assume
the sentences in the set and prove a contradiction. Showing that a set is not
provably inconsistent will be much harder. It would require more than just
providing a proof or two; it would require showing that proofs of a certain kind
are impossible.

7.6 Proofs and models

As you might already suspect, there is a connection between theorems and
tautologies.

There is a formal way of showing that a sentence is a theorem: Prove it. For
each line, we can check to see if that line follows by the cited rule. It may be

116 forallx (UBC edition)

hard to produce a twenty line proof, but it is not so hard to check each line
of the proof and confirm that it is legitimate— and if each line of the proof
individually is legitimate, then the whole proof is legitimate. Showing that a
sentence is a tautology, though, requires reasoning in English about all possible
models. There is no formal way of checking to see if the reasoning is sound.
Given a choice between showing that a sentence is a theorem and showing that
it is a tautology, it would be easier to show that it is a theorem.

Contrawise, there is no formal way of showing that a sentence is not a theorem.
We would need to reason in English about all possible proofs. Yet there is a
formal method for showing that a sentence is not a tautology. We need only
construct a model in which the sentence is false. Given a choice between showing
that a sentence is not a theorem and showing that it is not a tautology, it would
be easier to show that it is not a tautology.

Fortunately, a sentence is a theorem if and only if it is a tautology. If we provide
a proof of ` Φ and thus show that it is a theorem, it follows that Φ is a tautology;
i.e., |= Φ. Similarly, if we construct a model in which Φ is false and thus show
that it is not a tautology, it follows that Φ is not a theorem.

In general, Φ ` Ψ if and only if Φ |= Ψ . As such:

. An argument is valid if and only if the conclusion is derivable from the
premises.

. Two sentences are logically equivalent if and only if they are provably
equivalent.

. A set of sentences is consistent if and only if it is not provably inconsistent.

You can pick and choose when to think in terms of proofs and when to think in
terms of models, doing whichever is easier for a given task. Table 7.1 summarizes
when it is best to give proofs and when it is best to give models.

In this way, proofs and models give us a versatile toolkit for working with
arguments. If we can translate an argument into SL, then we can measure its
logical weight in a purely formal way. If it is deductively valid, we can give a
formal proof; if it is invalid, we can provide a formal counterexample.

7.7 Soundness and completeness

Chapter 6 considered the soundness and completeness of the tree method at
length; it proved that this method was both sound (X `T Y only if X |= Y)
and complete (X |= Y only if X `T Y). The natural deduction system of this

ch. 7 natural deduction proofs in sl 117

YES NO

Is Φ a tautology? prove ` Φ give a model in which
Φ is false

Is Φ a contradiction? prove ` ¬Φ give a model in which
Φ is true

Is Φ contingent? give a model in which
Φ is true and another
in which Φ is false

prove ` Φ or ` ¬Φ

Are Φ and Ψ equiva-
lent?

prove Φ ` Ψ and Ψ ` Φ give a model in which
Φ and Ψ have different
truth values

Is the set A consistent? give a model in which
all the sentences in A
are true

taking the sentences in
A, prove Ψ and ¬Ψ

Is the argument
‘Φ, .˙. Ω’ valid?

prove Φ ` Ω give a model in which
Φ is true and Ω is false

Table 7.1: Sometimes it is easier to show something by providing proofs than
it is by providing models. Sometimes it is the other way round. It depends on
what you are trying to show.

chapter is also both sound and complete for SL. In other words, X `ND Y if and
only if X |= Y. Given the soundness and completeness of the tree method, this
also means that our two proof systems are equivalent in the sense that anything
provable in one is also provable in the other (X `T Y) iff (X `ND Y).

How can we know that our natural deduction method is sound? A proof system
is sound if there are no proofs of invalid arguments. Demonstrating that the
proof system is sound would require showing that any possible proof in our
system is the proof of a valid argument. There is a way of approaching this in
a step-wise fashion. If using the & E rule on the last line of a proof could never
change a valid argument into an invalid one, then using the rule many times
could not make an argument invalid. Similarly, if using the & E and ∨E rules
individually on the last line of a proof could never change a valid argument into
an invalid one, then using them in combination could not either.

The strategy is to show for every rule of inference that it alone could not make a
valid argument into an invalid one. It follows that the rules used in combination
would not make a valid argument invalid. Since a proof is just a series of
lines, each justified by a rule of inference, this would show that every provable
argument is valid.

Consider, for example, the & I rule. Suppose we use it to add Φ&Ψ to a valid
argument. In order for the rule to apply, Φ and Ψ must already be available in

118 forallx (UBC edition)

the proof. Since the argument so far is valid, Φ and Ψ are either premises of the
argument or valid consequences of the premises. As such, any model in which
the premises are true must be a model in which Φ and Ψ are true. According
to the definition of truth in sl, this means that Φ&Ψ is also true in such a
model. Therefore, Φ&Ψ validly follows from the premises. This means that
using the & E rule to extend a valid proof produces another valid proof.

In order to show that the proof system is sound, we would need to show this for
the other inference rules. Since the derived rules are consequences of the basic
rules, it would suffice to provide similar arguments for the 16 other basic rules.
The reasoning is extremely similar to that given in the soundness proof for trees
in the previous chapter. We will not go through it in detail here.

Given a proof that the proof system is sound, it follows that every theorem is a
tautology.

What of completeness? Why think that every valid argument is an argument
that can be proven in our natural deduction system? That is, why think that
Φ |= Ψ implies Φ ` Ψ? Our system is also complete, but the completeness proof
for natural deduction is a bit more complex than the completeness proof for
trees. (In the case of trees, we had a mechanical method that was guaranteed
to find proofs if they exist; we have seen no such method here, which makes
proving these general results harder.) This proof is beyond the scope of this
book.

The important point is that, happily, the proof system for SL is both sound and
complete. Consequently, we may freely use this natural deduction method to
draw conclusions about models in SL.

Summary of definitions

. A sentence Φ is a theorem if and only if ` Φ.

. Two sentences Φ and Ψ are provably equivalent if and only if Φ ` Ψ
and Ψ ` Φ.

. {Φ1, Φ2, . . .} is provably inconsistent if and only if, for some sentence
Ψ , {Φ1, Φ2, . . .} ` (Ψ &¬Ψ).

Practice Exercises

? Part A Provide a justification (rule and line numbers) for each line of proof
that requires one.

ch. 7 natural deduction proofs in sl 119

1 W ⊃ ¬B

2 A&W

3 B ∨ (J &K)

4 W

5 ¬B

6 J &K

7 K

1 L ≡ ¬O

2 L ∨ ¬O

3 ¬L

4 ¬O

5 L

6 ¬L

7 L

1 Z ⊃ (C &¬N)

2 ¬Z ⊃ (N &¬C)

3 ¬(N ∨ C)

4 ¬N &¬C

5 Z

6 C &¬N

7 C

8 ¬C

9 ¬Z

10 N &¬C

11 N

12 ¬N

13 N ∨ C

? Part B Give a proof for each argument in SL.

1. K &L, .˙.K ≡ L
2. A ⊃ (B ⊃ C), .˙.(A&B) ⊃ C
3. P & (Q ∨R), P ⊃ ¬R, .˙.Q ∨ E
4. (C &D) ∨ E, .˙.E ∨D
5. ¬F ⊃ G, F ⊃ H, .˙.G ∨H
6. (X &Y) ∨ (X &Z), ¬(X &D), D ∨M .˙.M

Part C Give a proof for each argument in SL.

1. Q ⊃ (Q&¬Q), .˙. ¬Q
2. J ⊃ ¬J , .˙. ¬J
3. E ∨ F , F ∨G, ¬F , .˙. E&G
4. A ≡ B, B ≡ C, .˙. A ≡ C
5. M ∨ (N ⊃M), .˙. ¬M ⊃ ¬N
6. S ≡ T , .˙. S ≡ (T ∨ S)
7. (M ∨N) & (O ∨ P), N ⊃ P , ¬P , .˙. M &O
8. (Z &K) ∨ (K &M), K ⊃ D, .˙. D

120 forallx (UBC edition)

Part D Show that each of the following sentences is a theorem in SL.

1. O ⊃ O
2. N ∨ ¬N
3. ¬(P &¬P)
4. ¬(A ⊃ ¬C) ⊃ (A ⊃ C)
5. J ≡ [J ∨ (L&¬L)]

Part E Show that each of the following pairs of sentences are provably equiva-
lent in SL.

1. ¬¬¬¬G, G
2. T ⊃ S, ¬S ⊃ ¬T
3. R ≡ E, E ≡ R
4. ¬G ≡ H, ¬(G ≡ H)
5. U ⊃ I, ¬(U &¬I)

Part F Provide proofs to show each of the following.

1. M & (¬N ⊃ ¬M) ` (N &M) ∨ ¬M
2. {C ⊃ (E&G), ¬C ⊃ G} ` G
3. {(Z &K) ≡ (Y &M), D& (D ⊃M)} ` Y ⊃ Z
4. {(W ∨X) ∨ (Y ∨ Z), X ⊃ Y , ¬Z} ` W ∨ Y

Part G For the following, provide proofs using only the basic rules. The proofs
will be longer than proofs of the same claims would be using the derived rules.

1. Show that MT is a legitimate derived rule. Using only the basic rules,
prove the following: Φ⊃Ψ , ¬Ψ , .˙. ¬Φ

2. Show that Comm is a legitimate rule for the biconditional. Using only the
basic rules, prove that Φ ≡ Ψ and Ψ ≡ Φ are equivalent.

3. Using only the basic rules, prove the following instance of DeMorgan’s
Laws: (¬A&¬B), .˙. ¬(A ∨B)

4. Show that ≡ex is a legitimate derived rule. Using only the basic rules,
prove that D ≡ E and (D ⊃ E) & (E ⊃ D) are equivalent.

Part H

1. If you know that Φ ` Ψ , what can you say about (Φ&Ω) ` Ψ? Explain
your answer.

2. If you know that Φ ` Ψ , what can you say about (Φ ∨ Ω) ` Ψ? Explain
your answer.

Chapter 8

Quantified logic

This chapter introduces a logical language called QL. It is a version of quantified
logic, because it allows for quantifiers like all and some. Quantified logic is also
sometimes called predicate logic, because the basic units of the language are
predicates and terms.

8.1 From sentences to predicates

Consider the following argument, which is valid in English:

If everyone knows logic, then either no one will be confused or ev-
eryone will. Everyone will be confused only if we try to believe a
contradiction. Everyone knows logic.
.˙. If we don’t try to believe a contradiction, then no one will be
confused.

In order to symbolize this in SL, we will need a symbolization key.

L: Everyone knows logic.
N: No one will be confused.
E: Everyone will be confused.
B: We try to believe a contradiction.

Notice that N and E are both about people being confused, but they are two
separate sentence letters. We could not replace E with ¬N . Why not? ¬N
means ‘It is not the case that no one will be confused.’ This would be the case

121

122 forallx (UBC edition)

if even one person were confused, so it is a long way from saying that everyone
will be confused.

Because we have separate sentence letters for N and E, however, our formaliza-
tion does not encode any connection between the two. They are just two atomic
sentences which might be true or false independently. It is impossible for it to
be the case that both no one and everyone was confused. As sentences of SL,
however, there is a truth-value assignment for which N and E are both true.
This is a limitation of the descriptive power of SL. Some features of English
sentences are not preserved in SL. Our new language, QL, will preserve more of
this structure.

Expressions like ‘no one’, ‘everyone’, and ‘anyone’ are called quantifiers. By
translating N and E as separate atomic sentences, we leave out the quantifier
structure of the sentences. In the example we’ve been discussing, the quantifier
structure is not terribly important. The argument is valid without reference to
it. As such, we can safely ignore it. To see this, we translate the argument to
SL:

L ⊃ (N ∨ E)
E ⊃ B
L

.˙. ¬B ⊃ N

This is a valid argument in SL. (You can do a truth table, a tree, or a natural
deduction proof to confirm this.)

Now consider another argument. This one is also valid in English.

Willard is a logician. All logicians wear funny hats.
.˙. Willard wears a funny hat.

To symbolize it in SL, we define a symbolization key:

L: Willard is a logician.
A: All logicians wear funny hats.
F: Willard wears a funny hat.

Now we symbolize the argument:

L
A

.˙. F

ch. 8 quantified logic 123

This is pretty obviously invalid in SL. Nevertheless, this is clearly a valid ar-
gument in English. It’s impossible for the premises to be true without the
conclusion also being true. But the SL symbolization leaves out all quantifica-
tional structure in virtue of which it is valid. The sentence ‘All logicians wear
funny hats’ says something specific about both logicians and hat-wearing. By
not translating this structure, we lose the connection between Willard’s being
a logician and Willard’s wearing a hat.

Some arguments with quantifier structure can be captured in SL, like the first
example, even though SL ignores the quantifier structure. Other arguments’
validity cannot be captured in SL, like the second example. Notice that the
problem is not that we have made a mistake while symbolizing the second
argument. These are the best symbolizations we can give for these arguments
in SL.

If an English argument is properly translated in to a form that is valid in SL, that
argument is valid, even if it involves quantifiers. But if it does not have a valid
SL form, that doesn’t mean the English argument is invalid; valid arguments
can have invalid forms. It just means that SL doesn’t show that the argument
is valid. This will be the case when the argument’s quantifier structure plays
an important role in its validity.

Similarly, if a sentence with quantifiers comes out as a tautology in SL, then the
English sentence is logically true. If it comes out as contingent in SL, then this
might be because of the structure of the quantifiers that gets removed when we
translate into the formal language.

In order to symbolize arguments that rely on quantifier structure, we need to
develop a different logical language. We will call this language quantified logic,
QL.

8.2 Building blocks of QL

Our first key notion in QL will be predicates. A predicate is analogous to an
English description— an expression like ‘is a dog’ or ‘has black fur’. This is not
a sentence on its own. It is neither true nor false. It is something that applies
to some objects, but not others. In order to be true or false, we need to specify
an object: Who or what is it that is a dog?

The details of this will be explained in the rest of the chapter, but here is
the basic idea: In QL, we will represent predicates with capital letters. For
instance, we might let D stand for ‘ is a dog.’ We will use lower-case
letters as the names of specific things. For instance, we might let b stand for
Bertie. The expression Db will be a sentence in QL. It is a translation of the

124 forallx (UBC edition)

sentence ‘Bertie is a dog.’

In order to represent quantifier structure, we will also have symbols that rep-
resent quantifiers. For instance, ‘∃’ will mean ‘There is some .’ So to say
that there is a dog, we can write ∃xDx; that is: There is some x such that x is
a dog.

That will come later. We start by defining singular terms and predicates.

Singular Terms

In English, a singular term is a word or phrase that refers to a specific person,
place, or thing. The word ‘dog’ is not a singular term, because it is a general
term that could apply to many individual animals. The phrase ‘Jonathan’s dog
Mezzo’ is a singular term, because it refers to a specific little poodle mix. She
is black, and soft, and wonderful.

A proper name is a singular term that picks out an individual directly. The
name ‘Emerson’ is a proper name, and the name alone does not tell you anything
about Emerson. Of course, some names are traditionally given to boys and other
are traditionally given to girls. If ‘Jack Hathaway’ is used as a singular term,
you might guess that it refers to a man. However, the name does not necessarily
mean that the person referred to is a man— or even that the creature referred
to is a person. Jack might be a giraffe for all you could tell just from the name.
There is a great deal of philosophical action surrounding this issue, but the
important point here is that a name is a singular term because it picks out a
single, specific individual.

Other singular terms more obviously convey information about the thing to
which they refer. For instance, you can tell without being told anything further
that ‘Jonathan’s dog Mezzo’ is a singular term that refers to a dog. A definite
description picks out an individual by means of a unique description. In
English, definite descriptions are often phrases of the form ‘the such-and-so.’
They refer to the specific thing that matches the given description. For example,
‘the tallest member of Monty Python’ and ‘the first emperor of China’ are
definite descriptions. A description that does not pick out a specific individual
is not a definite description. ‘A member of Monty Python’ and ‘an emperor of
China’ are not definite descriptions.

In English, the specification of a singular term may depend on context; ‘Willard’
means a specific person and not just someone named Willard; ‘P.D. Magnus’ as
a logical singular term means the original author of this textbook, not the other
person who has the same name. We live with this kind of ambiguity in English,
but it is important to keep in mind that singular terms in QL must refer to just
one specific thing.

ch. 8 quantified logic 125

In QL, we will symbolize singular terms with lower-case letters a through w.
We can add subscripts if we want to use some letter more than once. So
a, b, c, . . . w, a1, f32, j390, and m12 are all terms in QL.

Singular terms are called constants because they pick out specific individuals.
Note that x, y, and z are not constants in QL. They will be variables, letters
which do not stand for any specific thing. We will need them when we introduce
quantifiers.

Predicates

Simple one-place predicates are properties of individuals. They are things you
can say about an object. Here are some one-place predicates:

‘ is a dog’
‘ is a member of Monty Python’
‘ ’s favourite ramen place is in Gastown’
‘An anvil was dropped from a very high height onto ’s head’

Predicates like these are called one-place or monadic, because there is only
one blank to fill in. A one-place predicate and a singular term combine to make
a sentence.

Other predicates are about the relation between two things. For instance:

‘ is bigger than ’
‘ is to the left of ’
‘ owes money to ’

These are two-place or dyadic predicates, because they need to be filled in
with two terms in order to make a sentence.

In general, you can think about predicates as schematic sentences that need to be
filled out with some number of terms. Conversely, you can start with sentences
and make predicates out of them by removing terms. Consider the sentence,
‘Vinnie borrowed the family car from Nunzio.’ By removing a singular term, we
can recognize this sentence as using any of three different monadic predicates:

borrowed the family car from Nunzio.

Vinnie borrowed from Nunzio.

126 forallx (UBC edition)

Vinnie borrowed the family car from .

By removing two singular terms, we can recognize three different dyadic predi-
cates:

Vinnie borrowed from .

borrowed the family car from .

borrowed from Nunzio.

By removing all three singular terms, we can recognize one three-place or
triadic predicate:

borrowed from .

If we are translating this sentence into QL, should we translate it with a one-,
two-, or three-place predicate? It depends on what we want to be able to say.
If the only thing that we will discuss being borrowed is the family car, then
the generality of the three-place predicate is unnecessary. If the only borrowing
we need to symbolize is different people borrowing the family car from Nunzio,
then a one-place predicate will be enough.

In general, we can have predicates with as many places as we need. Predicates
with more than one place are called polyadic. Predicates with n places, for
some number n, are called n-place or n-adic. You can make an n-adic pred-
icate by replacing n names in any sentence with blanks. You can even have a
0-place predicate— this would be the result of replacing 0 names in a sentence
with blanks. In other words, a 0-place predicate is just a sentence.

In QL, we symbolize predicates with capital letters A through Z, with or without
subscripts. When we give a symbolization key for predicates, we will not use
blanks; instead, we will use variables. By convention, constants are listed at the
end of the key. So we might write a key that looks like this:

Ax: x is angry.
Hx: x is happy.

T1xy: x is as tall or taller than y.
T2xy: x is as tough or tougher than y.
Bxyz: y is between x and z.

d: Donald
g: Gregor

m: Marybeth

ch. 8 quantified logic 127

We can symbolize sentences that use any combination of these predicates and
terms. For example:

1. Donald is angry.
2. If Donald is angry, then so are Gregor and Marybeth.
3. Marybeth is at least as tall and as tough as Gregor.
4. Donald is shorter than Gregor.
5. Gregor is between Donald and Marybeth.

Sentence 1 is straightforward: Ad. The ‘x’ in the key entry ‘Ax’ is just a
placeholder; we replace it with other terms when translating.

Sentence 2 can be paraphrased as, ‘If Ad, then Ag and Am.’ QL has all the
truth-functional connectives of SL, so we translate this as Ad ⊃ (Ag&Am).

Sentence 3 can be translated as T1mg&T2mg.

Sentence 4 might seem as if it requires a new predicate. If we only needed
to symbolize this sentence, we could define a predicate like Sxy to mean ‘x
is shorter than y.’ However, this would ignore the logical connection between
‘shorter’ and ‘taller.’ Considered only as symbols of QL, there is no connection
between S and T1. They might mean anything at all. Instead of introducing
a new predicate, we paraphrase sentence 4 using predicates already in our key:
‘It is not the case that Donald is as tall or taller than Gregor.’ We can translate
it as ¬T1dg.

Sentence 5 requires that we pay careful attention to the order of terms in the
key. It becomes Bdgm.

8.3 Quantifiers

We are now ready to introduce quantifiers. Consider these sentences:

6. Everyone is happy.
7. Everyone is at least as tough as Donald.
8. Someone is angry.

It might be tempting to translate sentence 6 as Hd&Hg&Hm. Yet this would
only say that Donald, Gregor, and Marybeth are happy. We want to say that
everyone is happy, even if we have not defined a constant to name them. In
order to do this, we introduce the ‘∀’ symbol. This is called the universal
quantifier.

128 forallx (UBC edition)

A quantifier must always be followed by a variable and a formula that includes
that variable. We can translate sentence 6 as ∀xHx. Paraphrased in English,
this means ‘For all x, x is happy.’ We call ∀x an x-quantifier. The formula that
follows the quantifier is called the scope of the quantifier. We will give a formal
definition of scope later, but intuitively it is the part of the sentence that the
quantifier quantifies over. In ∀xHx, the scope of the universal quantifier is Hx.

Sentence 7 can be paraphrased as, ‘For all x, x is at least as tough as Donald.’
This translates as ∀xT2xd.

In these quantified sentences, the variable x is serving as a kind of placeholder.
The expression ∀x means that you can pick anyone and put them in as x. There
is no special reason to use x rather than some other variable. The sentence ∀xHx
means exactly the same thing as ∀yHy, ∀zHz, and ∀x5Hx5.

To translate sentence 8, we introduce another new symbol: the existential
quantifier, ∃. Like the universal quantifier, the existential quantifier requires
a variable. Sentence 8 can be translated as ∃xAx. This means that there is
some x which is angry. More precisely, it means that there is at least one angry
person. Once again, the variable is a kind of placeholder; we could just as easily
have translated sentence 8 as ∃zAz.

Consider these further sentences:

9. No one is angry.

10. There is someone who is not happy.

11. Not everyone is happy.

Sentence 9 can be paraphrased as, ‘It is not the case that someone is angry.’
This can be translated using negation and an existential quantifier: ¬∃xAx.
Yet sentence 9 could also be paraphrased as, ‘Everyone is not angry.’ With this
in mind, it can be translated using negation and a universal quantifier: ∀x¬Ax.
Both of these are acceptable translations, because they are logically equivalent.
The critical thing is whether the negation comes before or after the quantifier.

In general, ∀xΦ is logically equivalent to ¬∃x¬Φ. This means that any sentence
which can be symbolized with a universal quantifier can be symbolized with an
existential quantifier, and vice versa. One translation might seem more natural
than the other, but there is no logical difference in translating with one quantifier
rather than the other. For some sentences, it will simply be a matter of taste.

Sentence 10 is most naturally paraphrased as, ‘There is some x such that x is
not happy.’ This becomes ∃x¬Hx. Equivalently, we could write ¬∀xHx.

Sentence 11 is most naturally translated as ¬∀xHx. This is logically equivalent
to sentence 10 and so could also be translated as ∃x¬Hx.

ch. 8 quantified logic 129

Universe of Discourse

Given the symbolization key we have been using, ∀xHx means ‘Everyone is
happy.’ Who is included in this everyone? When we use sentences like this in
English, we usually do not mean everyone now alive on the Earth. We certainly
do not mean everyone who was ever alive or who will ever live. We mean
something more modest: everyone in the building, everyone in the class, or
everyone in the room.

In order to eliminate this ambiguity, we will need to specify a universe of
discourse— abbreviated UD. The UD is the set of things that we are talking
about. So if we want to talk about people in Chicago, we define the UD to be
people in Chicago. We write this at the beginning of the symbolization key, like
this:

UD: people in Chicago

The quantifiers range over the universe of discourse. Given this UD, ∀x means
‘Everyone in Chicago’ and ∃x means ‘Someone in Chicago.’ Each constant
names some member of the UD, so we can only use this UD with the symbol-
ization key above if Donald, Gregor, and Marybeth are all in Chicago. If we
want to talk about people in places besides Chicago, then we need to include
those people in the UD.

In QL, the UD must be non-empty ; that is, it must include at least one thing.
It is possible to construct formal languages that allow for empty UDs, but this
introduces complications; such languages are beyond our scope in this book.

Even allowing for a UD with just one member can produce some strange results.
Suppose we have this as a symbolization key:

UD: the Eiffel Tower

Px: x is in Paris.

The sentence ∀xPx might be paraphrased in English as ‘Everything is in Paris.’
Yet that would be misleading. It means that everything in the UD is in Paris.
This UD contains only the Eiffel Tower, so with this symbolization key ∀xPx
just means that the Eiffel Tower is in Paris. We will rarely work with such
bizarre domains as this.

It is a rule in QL that each constant will pick out exactly one member of the
UD. (There is no rule prohibiting multiple different constants from referring to
the same member of the UD.)

130 forallx (UBC edition)

8.4 Translating to QL

We now have the basic pieces of QL. Translating more complicated sentences
will only be a matter of knowing the right way to combine predicates, constants,
quantifiers, variables, and sentential connectives. Consider these sentences:

12. Every coin in my pocket is a quarter.
13. Some coin on the table is a dime.
14. Not all the coins on the table are dimes.
15. None of the coins in my pocket are dimes.

In providing a symbolization key, we need to specify a UD. Since we are talking
about coins in my pocket and on the table, the UD must at least contain all of
those coins. Since we are not talking about anything besides coins, we let the
UD be all coins. Since we are not talking about any specific coins, we do not
need to define any constants. So we define this key:

UD: all coins
Px: x is in my pocket.
Tx: x is on the table.
Qx: x is a quarter.
Dx: x is a dime.

Sentence 12 is most naturally translated with a universal quantifier. The uni-
versal quantifier says something about everything in the UD, not just about the
coins in my pocket. Sentence 12 means that (for any coin) if that coin is in my
pocket, then it is a quarter. So we can translate it as ∀x(Px ⊃ Qx).

Since sentence 12 is about coins that are both in my pocket and that are quar-
ters, it might be tempting to translate it using a conjunction. However, the
sentence ∀x(Px&Qx) would mean that everything in the UD is both in my
pocket and a quarter: All the coins that exist are quarters in my pocket. This
is rather implausible; more to the point, it means something very different than
sentence 12.

Sentence 13 is most naturally translated with an existential quantifier. It says
that there is some coin which is both on the table and which is a dime. So we
can translate it as ∃x(Tx&Dx).

Notice that we needed to use a conditional with the universal quantifier, but we
used a conjunction with the existential quantifier. This is a common pattern.
What would it mean to write ∃x(Tx ⊃ Dx)? Probably not what you think. It
means that there is some member of the UD which would satisfy the subformula;
roughly speaking, there is some name α such that (Tα ⊃ Dα) is true. In SL,

ch. 8 quantified logic 131

Φ ⊃ Ψ is logically equivalent to ¬Φ ∨ Ψ , and this will also hold in QL. So
∃x(Tx ⊃ Dx) is true if there is some α such that (¬Tα ∨Dα); i.e., it is true if
some coin is either not on the table or is a dime. Of course there is a coin that
is not on the table— there are coins in lots of other places. So ∃x(Tx ⊃ Dx)
makes an extremely weak claim. A conditional will usually be the natural
connective to use with a universal quantifier, but a conditional within the scope
of an existential quantifier can do very strange things. It’s a pretty good rule
of thumb that you shouldn’t be putting conditionals in the scope of existential
quantifiers. This is pretty much never a good translation of any natural English
sentence.

Sentence 14 can be paraphrased as, ‘It is not the case that every coin on the
table is a dime.’ So we can translate it as ¬∀x(Tx ⊃ Dx). You might look
at sentence 14 and paraphrase it instead as, ‘Some coin on the table is not a
dime.’ You would then translate it as ∃x(Tx&¬Dx). Although it is probably
not obvious, these two translations are logically equivalent. (This is due to
the logical equivalence between ¬∀xΦ and ∃x¬Φ, along with the equivalence
between ¬(Φ ⊃ Ψ) and Φ&¬Ψ .)

Sentence 15 can be paraphrased as, ‘It is not the case that there is some dime
in my pocket.’ This can be translated as ¬∃x(Px&Dx). It might also be
paraphrased as, ‘Everything in my pocket is a non-dime,’ and then could be
translated as ∀x(Px ⊃ ¬Dx). Again the two translations are logically equiva-
lent. Both are correct translations of sentence 15.

We can now translate the argument from p. 122, the one that motivated the
need for quantifiers:

Willard is a logician. All logicians wear funny hats.
.˙. Willard wears a funny hat.

UD: people
Lx: x is a logician.
Fx: x wears a funny hat.
w: Willard

Translating, we get:

Lw
∀x(Lx ⊃ Fx)

.˙. Fw

This captures the structure that was left out of the SL translation of this argu-
ment, and this is a valid argument in QL.

132 forallx (UBC edition)

Empty predicates

A predicate need not apply to anything in the UD. A predicate that applies to
nothing in the UD is called an empty predicate.

Suppose we want to symbolize these two sentences:

16. Every monkey knows sign language.

17. Some monkey knows sign language.

It is possible to write the symbolization key for these sentences in this way:

UD: animals

Mx: x is a monkey.

Sx: x knows sign language.

Sentence 16 can now be translated as ∀x(Mx ⊃ Sx).

Sentence 17 becomes ∃x(Mx&Sx).

It is tempting to say that sentence 16 entails sentence 17; that is: if every
monkey knows sign language, then it must be that some monkey knows sign
language. However, the entailment does not hold in QL. It is possible for the
sentence ∀x(Mx ⊃ Sx) to be true even though the sentence ∃x(Mx&Sx) is
false.

How can this be? The answer comes from considering whether these sentences
would be true or false if there were no monkeys.

We have defined ∀ and ∃ in such a way that ∀Φ is equivalent to ¬∃¬Φ. As
such, the universal quantifier doesn’t involve the existence of anything— only
non-existence. If sentence 16 is true, then there are no monkeys who don’t know
sign language. If there were no monkeys, then ∀x(Mx ⊃ Sx) would be true and
∃x(Mx&Sx) would be false.

A second reason to allow empty predicates is that we want to be able to say
things like, ‘I do not know if there are any monkeys, but any monkeys that there
are know sign language.’ That is, we want to be able to have predicates that
do not (or might not) refer to anything.

Third, consider: ∀x(Px ⊃ Px). This should be a tautology. But if sentence
16 implied sentence 17, then this would imply ∃x(Px&Px). It would become
a logical truth that for any predicate there is something that satisfies that
predicate.

ch. 8 quantified logic 133

. A UD must have at least one member.

. A predicate may apply to some, all, or no members of the UD.

. A constant must pick out exactly one member of the UD.

A member of the UD may be picked out by one constant, many
constants, or none at all.

What happens if we add an empty predicate R to the interpretation above? For
example, we might define Rx to mean ‘x is a refrigerator.’ Now the sentence
∀x(Rx ⊃ Mx) will be true. This is counterintuitive, since we do not want to
say that there are a whole bunch of refrigerator monkeys. It is important to
remember, though, that ∀x(Rx ⊃Mx) means that any member of the UD which
is a refrigerator is a monkey. Since the UD is animals, there are no refrigerators
in the UD and so the sentence is trivially true.

If you were actually translating the sentence ‘All refrigerators are monkeys’,
then you would want to include appliances in the UD. Then the predicate R
would not be empty and the sentence ∀x(Rx ⊃Mx) would be false.

Picking a Universe of Discourse

The appropriate symbolization of an English language sentence in QL will de-
pend on the symbolization key. In some ways, this is obvious: It matters whether
Dx means ‘x is dainty’ or ‘x is dangerous.’ The meaning of sentences in QL
also depends on the UD.

Let Rx mean ‘x is a rose,’ let Tx mean ‘x has a thorn,’ and consider this
sentence:

18. Every rose has a thorn.

It is tempting to say that sentence 18 should be translated as ∀x(Rx ⊃ Tx). If
the UD contains all roses, that would be correct. Yet if the UD is merely things
on my kitchen table, then ∀x(Rx ⊃ Tx) would only mean that every rose on
my kitchen table has a thorn. If there are no roses on my kitchen table, the
sentence would be trivially true.

The universal quantifier only ranges over members of the UD, so we need to
include all roses in the UD in order to translate sentence 18. We have two
options. First, we can restrict the UD to include all roses but only roses. Then
sentence 18 becomes ∀xTx. This means that everything in the UD has a thorn;

134 forallx (UBC edition)

since the UD just is the set of roses, this means that every rose has a thorn.
This option can save us trouble if every sentence that we want to translate using
the symbolization key is about roses.

Second, we can let the UD contain things besides roses: rhododendrons, rats,
rifles, and whatall else. Then sentence 18 must be ∀x(Rx ⊃ Tx).

If we wanted the universal quantifier to mean every thing, without restriction,
then we might try to specify a UD that contains everything. This would lead
to problems. Does ‘everything’ include things that have only been imagined,
like fictional characters? On the one hand, we want to be able to symbolize
arguments about Hamlet or Sherlock Holmes. So we need to have the option of
including fictional characters in the UD. On the other hand, we never need to
talk about every thing that does not exist. That might not even make sense.
There are philosophical issues here that we will not try to address. We can
avoid these difficulties by always specifying the UD. For example, if we mean to
talk about plants, people, and cities, then the UD might be ‘living things and
places.’

Suppose that we want to translate sentence 18 and, with the same symbolization
key, translate these sentences:

19. Esmerelda has a rose in her hair.

20. Everyone is cross with Esmerelda.

We need a UD that includes roses (so that we can symbolize sentence 18) and a
UD that includes people (so we can translate sentence 19–20.) Here is a suitable
key:

UD: people and plants
Px: x is a person.
Rx: x is a rose.
Tx: x has a thorn.

Cxy: x is cross with y.
Hxy: x has y in their hair.

e: Esmerelda

Since we do not have a predicate that means ‘. . . has a rose in her hair’, trans-
lating sentence 19 will require paraphrasing. The sentence says that there is a
rose in Esmerelda’s hair; that is, there is something which is both a rose and is
in Esmerelda’s hair. So we get: ∃x(Rx&Hex).

It is tempting to translate sentence 20 as ∀xCxe. Unfortunately, this would
mean that every member of the UD is cross with Esmerelda— both people and

ch. 8 quantified logic 135

plants. It would mean, for instance, that the rose in Esmerelda’s hair is cross
with her. Of course, sentence 20 does not mean that.

‘Everyone’ means every person, not every member of the UD. So we can para-
phrase sentence 20 as, ‘Every person is cross with Esmerelda.’ We know how to
translate sentences like this: ∀x(Px ⊃ Cxe).

In general, the universal quantifier can be used to mean ‘everyone’ if the UD
contains only people. If there are people and other things in the UD, then
‘everyone’ must be treated as ‘every person’.

Translating pronouns

When translating to QL, it is important to understand the structure of the
sentences you want to translate. What matters is the final translation in QL,
and sometimes you will be able to move from an English language sentence
directly to a sentence of QL. Other times, it helps to paraphrase the sentence
one or more times. Each successive paraphrase should move from the original
sentence closer to something that you can translate directly into QL.

For the next several examples, we will use this symbolization key:

UD: people
Gx: x can play guitar.
Rx: x is a rock star.

c: Chris

Now consider these sentences:

21. If Chris can play guitar, then they are a rock star.
22. If a person can play guitar, then they are a rock star.

Sentence 21 and sentence 22 have the same words in the consequent (‘. . . they
are a rock star’), but they cannot be translated in the same way. It helps to
paraphrase the original sentences, replacing pronouns with explicit references.

Sentence 21 can be paraphrased as, ‘If Chris can play guitar, then Chris is a
rockstar.’ The word ‘they’ in sentence 21 is being used to refer to a specific
individual, Chris. This can obviously be translated as Gc ⊃ Rc.

Sentence 22 must be paraphrased differently: ‘If a person can play guitar, then
that person is a rock star.’ The pronoun ‘they’ here is not about any particular
person, so we need a variable. Translating halfway, we can paraphrase the

136 forallx (UBC edition)

sentence as, ‘For any person x, if x can play guitar, then x is a rock star.’ Now
this can be translated as ∀x(Gx ⊃ Rx). This is the same as, ‘Everyone who can
play guitar is a rock star.’

Consider these further sentences:

23. If anyone can play guitar, then Chris can.
24. If anyone can play guitar, then they are a rock star.

These two sentences have the same antecedent (‘If anyone can play guitar. . .’),
but they have different logical structures.

Sentence 23 can be paraphrased, ‘If someone can play guitar, then Chris can
play guitar.’ The antecedent and consequent are separate sentences, so it can
be symbolized with a conditional as the main logical operator: ∃xGx ⊃ Gc.

Sentence 24 can be paraphrased, ‘For anyone, if that one can play guitar, then
that one is a rock star.’ It would be a mistake to symbolize this with an
existential quantifier, because it is talking about everybody. The sentence is
equivalent to ‘All guitar players are rock stars.’ It is best translated as ∀x(Gx ⊃
Rx).

The English words ‘any’ and ‘anyone’ should typically be translated using quan-
tifiers. As these two examples show, they sometimes call for an existential quan-
tifier (as in sentence 23) and sometimes for a universal quantifier (as in sentence
24). If you have a hard time determining which is required, paraphrase the
sentence with an English language sentence that uses words besides ‘any’ or
‘anyone.’

Quantifiers and scope

In the sentence ∃xGx ⊃ Gc, the scope of the existential quantifier is the expres-
sion Gx. Would it matter if the scope of the quantifier were the whole sentence?
That is, does the sentence ∃x(Gx ⊃ Gc) mean something different?

With the key given above, ∃xGx ⊃ Gl means that if there is some guitarist,
then Lemmy is a guitarist. ∃x(Gx ⊃ Gl) would mean that there is some person
such that if that person were a guitarist, then Lemmy would be a guitarist.
Recall that the conditional here is a material conditional; the conditional is
true any time the antecedent is false. Let the constant p denote the author of
this book, someone who is certainly not a guitarist. The sentence Gp ⊃ Gl is
true because Gp is false. Since someone (namely p) satisfies the sentence, then
∃x(Gx ⊃ Gl) is true. The sentence is true because there is a non-guitarist,
regardless of Lemmy’s skill with the guitar.

ch. 8 quantified logic 137

Something strange happened when we changed the scope of the quantifier, be-
cause the conditional in QL is a material conditional. In order to keep the
meaning the same, we would have to change the quantifier: ∃xGx ⊃ Gl means
the same thing as ∀x(Gx ⊃ Gl), and ∃x(Gx ⊃ Gl) means the same thing as
∀xGx ⊃ Gl.

Ambiguous predicates

Suppose we just want to translate this sentence:

25. Adina is a skilled surgeon.

Let the UD be people, let Kx mean ‘x is a skilled surgeon’, and let a mean
Adina. Sentence 25 is simply Ka.

Suppose instead that we want to translate this argument:

The hospital will only hire a skilled surgeon. All surgeons are greedy.
Billy is a surgeon, but is not skilled. Therefore, Billy is greedy, but
the hospital will not hire him.

We need to distinguish being a skilled surgeon from merely being a surgeon. So
we define this symbolization key:

UD: people
Gx: x is greedy.
Hx: The hospital will hire x.
Rx: x is a surgeon.
Kx: x is skilled.

b: Billy

Now the argument can be translated in this way:

∀x
[
¬(Rx&Kx) ⊃ ¬Hx

]
∀x(Rx ⊃ Gx)
Rb&¬Kb

.˙. Gb&¬Hb

Next suppose that we want to translate this argument:

Carol is a skilled surgeon and a tennis player. Therefore, Carol is a
skilled tennis player.

138 forallx (UBC edition)

If we start with the symbolization key we used for the previous argument, we
could add a predicate (let Tx mean ‘x is a tennis player’) and a constant (let c
mean Carol). Then the argument becomes:

(Rc&Kc) &Tc
.˙. T c&Kc

This translation is a disaster! It takes what in English is a terrible argument and
translates it as a valid argument in QL. The problem is that there is a difference
between being skilled as a surgeon and skilled as a tennis player. Translating
this argument correctly requires two separate predicates, one for each type of
skill. If we let K1x mean ‘x is skilled as a surgeon’ and K2x mean ‘x is skilled
as a tennis player,’ then we can symbolize the argument in this way:

(Rc&K1c) &Tc
.˙. T c&K2c

Like the English language argument it translates, this is invalid.

The moral of these examples is that you need to be careful of symbolizing
predicates in an ambiguous way. Similar problems can arise with predicates like
good, bad, big, and small. Just as skilled surgeons and skilled tennis players have
different skills, big dogs, big mice, and big problems are big in different ways.

Is it enough to have a predicate that means ‘x is a skilled surgeon’, rather than
two predicates ‘x is skilled’ and ‘x is a surgeon’? Sometimes. As sentence 25
shows, sometimes we do not need to distinguish between skilled surgeons and
other surgeons.

Must we always distinguish between different ways of being skilled, good, bad,
or big? No. As the argument about Billy shows, sometimes we only need to talk
about one kind of skill. If you are translating an argument that is just about
dogs, it is fine to define a predicate that means ‘x is big.’ If the UD includes
dogs and mice, however, it is probably best to make the predicate mean ‘x is
big for a dog.’

Multiple quantifiers

Consider this following symbolization key and the sentences that follow it:

UD: People and dogs
Dx: x is a dog.
Fxy: x is a friend of y.

ch. 8 quantified logic 139

Oxy: x owns y.
f: Fifi
g: Gerald

26. Fifi is a dog.
27. Gerald is a dog owner.
28. Someone is a dog owner.
29. All of Gerald’s friends are dog owners.
30. Every dog owner is the friend of a dog owner.

Sentence 26 is easy: Df .

Sentence 27 can be paraphrased as, ‘There is a dog that Gerald owns.’ This can
be translated as ∃x(Dx&Ogx).

Sentence 28 can be paraphrased as, ‘There is some y such that y is a dog
owner.’ The subsentence ‘y is a dog owner’ is just like sentence 27, except that
it is about y rather than being about Gerald. So we can translate sentence 28
as ∃y∃x(Dx&Oyx).

Sentence 29 can be paraphrased as, ‘Every friend of Gerald is a dog owner.’
Translating part of this sentence, we get ∀x(Fxg ⊃ ‘x is a dog owner’). Again,
it is important to recognize that ‘x is a dog owner’ is structurally just like
sentence 27. Since we already have an x-quantifier, we will need a different
variable for the existential quantifier. Any other variable will do. Using z,
sentence 29 can be translated as ∀x

[
Fxg ⊃ ∃z(Dz&Oxz)

]
.

Sentence 30 can be paraphrased as ‘For any x that is a dog owner, there is a
dog owner who is x’s friend.’ Partially translated, this becomes

∀x
[
x is a dog owner ⊃ ∃y(y is a dog owner &Fxy)

]
.

Completing the translation, sentence 30 becomes

∀x
[
∃z(Dz&Oxz) ⊃ ∃y

(
∃z(Dz&Oyz) &Fxy

)]
.

Consider this symbolization key and these sentences:

UD: people
Lxy: x likes y.

i: Imre.
k: Karl.

31. Imre likes everyone that Karl likes.
32. There is someone who likes everyone who likes everyone that he likes.

140 forallx (UBC edition)

Sentence 31 can be partially translated as ∀x(Karl likes x ⊃ Imre likes x). This
becomes ∀x(Lkx ⊃ Lix).

Sentence 32 is complex. There is little hope of writing down the whole transla-
tion immediately, but we can proceed by small steps. An initial, partial trans-
lation might look like this:

∃x everyone who likes everyone that x likes is liked by x

The part that remains in English is a universal sentence, so we translate further:

∃x∀y(y likes everyone that x likes ⊃ x likes y).

The antecedent of the conditional is structurally just like sentence 31, with y
and x in place of Imre and Karl. So sentence 32 can be completely translated
in this way

∃x∀y
[
∀z(Lxz ⊃ Lyz) ⊃ Lxy

]
When symbolizing sentences with multiple quantifiers, it is best to proceed by
small steps. Paraphrase the English sentence so that the logical structure is
readily symbolized in QL. Then translate piecemeal, replacing the daunting
task of translating a long sentence with the simpler task of translating shorter
formulae.

8.5 Sentences of QL

In this section, we provide a formal definition for a well-formed formula (wff)
and sentence of QL.

Expressions

There are six kinds of symbols in QL:

predicates A,B,C, . . . , Z
with subscripts, as needed A1, B1, Z1, A2, A25, J375, . . .

constants a, b, c, . . . , w
with subscripts, as needed a1, w4, h7,m32, . . .

variables x, y, z
with subscripts, as needed x1, y1, z1, x2, . . .

sentential connectives ¬, & ,∨,⊃,≡
parentheses (,)
quantifiers ∀,∃

ch. 8 quantified logic 141

We define an expression of ql as any string of symbols of QL. Take any of the
symbols of QL and write them down, in any order, and you have an expression.

Well-formed formulae

By definition, a term of ql is either a constant or a variable.

An atomic formula of ql is an n-place predicate followed by n terms. n
here can be any non-negative integer, including 0. (A 0-place predicate is a an
atomic formula of QL just on its own. It does not require the addition of a term
for meaningfulness or a truth value. In fact, you could think of atoms in SL as
0-place QL predicates.)

Just as we did for SL, we will give a recursive definition for a wff of QL. In
fact, most of the definition will look like the definition of a wff of SL: Every
atomic formula is a wff, and you can build new wffs by applying the sentential
connectives.

We could just add a rule for each of the quantifiers and be done with it. For
instance: If Φ is a wff, then ∀xΦ and ∃xΦ are wffs. However, this would allow
for some confusing sentences like ∀x∃xDx. What could these possibly mean?
There are possible ways to give interpretations of such sentences, but instead we
will write the definition of a wff so that such abominations do not even count
as well-formed. QL will include the rule that in order for ∀xΦ or ∃xΦ to be a
wff, Φ must not already contain an x-quantifier. So ∀x∃xDx will not count as
a wff because ∃xDx already contains an x-quantifier.

1. Every atomic formula is a wff.

2. If Φ is a wff, then ¬Φ is a wff.

3. If Φ and Ψ are wffs, then (Φ&Ψ), is a wff.

4. If Φ and Ψ are wffs, (Φ ∨ Ψ) is a wff.

5. If Φ and Ψ are wffs, then (Φ ⊃ Ψ) is a wff.

6. If Φ and Ψ are wffs, then (Φ ≡ Ψ) is a wff.

7. If Φ is a wff, x is a variable, and Φ contains no x -quantifiers, then ∀x Φ is
a wff.

8. If Φ is a wff, x is a variable, and Φ contains no x -quantifiers, then ∃x Φ is
a wff.

9. All and only wffs of QL can be generated by applications of these rules.

142 forallx (UBC edition)

Notice that the ‘x ’ that appears in the definition above is not the variable x. It
is a meta-variable that stands in for any variable of QL. So ∀xAx is a wff, but
so are ∀yAy, ∀zAz, ∀x4Ax4, and ∀z9Az9.

We can now give a formal definition for scope: The scope of a quantifier is the
subformula for which the quantifier is the main logical operator.

Sentences

A sentence is something that can be either true or false. In SL, every wff was a
sentence. This will not be the case in QL. Consider the following symbolization
key:

UD: people
Lxy: x loves y

b: Boris

Consider the expression Lzz. It is an atomic forumula: a two-place predicate
followed by two terms. All atomic formula are wffs, so Lzz is a wff. Does it
mean anything? You might think that it means that z loves himself, in the
same way that Lbb means that Boris loves himself. Yet z is a variable; it does
not name some person the way a constant would. The wff Lzz does not tell
us how to interpret z. Does it mean everyone? anyone? someone? If we had
a z-quantifier, it would tell us how to interpret z. For instance, ∃zLzz would
mean that someone loves themselves.

Some formal languages treat a wff like Lzz as implicitly having a universal
quantifier in front. We will not do this for QL. If you mean to say that everyone
loves themself, then you need to write the quantifier: ∀zLzz

In order to make sense of a variable, we need a quantifier to tell us how to
interpret that variable. The scope of an x-quantifier, for instance, is the part of
the formula where the quantifier tells how to interpret x.

In order to be precise about this, we define a bound variable to be an oc-
currence of a variable x that is within the scope of an x -quantifier. A free
variable is an occurance of a variable that is not bound.

For example, consider the wff ∀x(Ex ∨ Dy) ⊃ ∃z(Rzx ⊃ Lzx). The scope of
the universal quantifier ∀x is (Ex∨Dy), so the first x is bound by the universal
quantifier but the second and third xs are free. There is no y-quantifier, so the
y is free. The scope of the existential quantifier ∃z is (Rzx ⊃ Lzx), so both
occurrences of z are bound by it.

We define a sentence of QL as a wff of QL that contains no free variables.

ch. 8 quantified logic 143

Notational conventions

We will adopt the same notational conventions that we did for SL (p. 38).
First, we may leave off the outermost parentheses of a formula. Second, we will
sometimes use square brackets ‘[’ and ‘]’ in place of parentheses to increase the
readability of formulae. Third, we give ourselves permission to leave out paren-
theses between each pair of conjuncts when writing long series of conjunctions.
Fourth, we may similarly leave out parentheses between each pair of disjuncts
when writing long series of disjunctions.

8.6 Common Student Errors

A sentence that says everything with one property also has another property
should be translated as a universal governing a conditional. Using the obvious
interpretation key:

. ‘Every student is working’: ∀x(Sx ⊃Wx)

. ‘Every student has a friend’: ∀x(Sx ⊃ ∃yFxy)

. ‘Only students with friends are working’: ∀x[(Sx&Wx) ⊃ ∃yFxy]

One common error is to translate sentences of this form with a different kind of
shape— for example, as a universal governing a conjunction, or as an existential
governing a conditional. These are very inaccurate translations of these English
sentences:

. ∀x(Sx&Wx)

. ∀x(Sx& ∃yFxy)

. ∀x[(Sx&Wx) &∃yFxy]

These say that every object in the UD is a student with the properties in
question. Everyone is a student that is working; everyone is a student with a
friend; everyone is a working student who has a friend. Any time you have a
universal governing a conjunction, you are making a very strong claim— you’re
not just talking about objects with a particular property, you’re saying that
multiple things are true about every single object in the domain. Be very
careful if you find yourself offering a universal over a conjunction, and make
sure you don’t mean to use a conditional instead.

It is also a serious mistake to use an existential instead of a universal for sen-
tences like these:

144 forallx (UBC edition)

. ∃x(Sx ⊃Wx)

. ∃x(Sx ⊃ ∃yFxy)

. ∃x[(Sx&Wx) ⊃ ∃yFxy]

These are very weak claims. They say that there is some object in the domain
that satisfies a certain conditional. For example, ∃x(Sx ⊃ Wx) says there is
something in the domain such that, if it is a student, it is working. Given the
truth conditions for the material conditional, this will be true if there is even
one object in the domain that is not a student, regardless of who is and isn’t
working; it will also be true if there is even one object in the domain that is
working, regardless of who is and isn’t a student.

If you find yourself offering, as a translation of some English sentence, an exis-
tential governing a conditional, you are almost certainly making a mistake. This
is not a reasonable translation of any ordinary English sentence. You probably
want either a universal over a conditional (everything with one property has
another property) or an existential over a conjunction (there is something with
the following properties).

Practice Exercises

? Part A Using the symbolization key given, translate each English-language
sentence into QL.

UD: all animals
Ax: x is an alligator.
Mx: x is a monkey.
Rx: x is a reptile.
Zx: x lives at the zoo.

Lxy: x loves y.
a: Amos
b: Bouncer
c: Cleo

1. Amos, Bouncer, and Cleo all live at the zoo.
2. Bouncer is a reptile, but not an alligator.
3. If Cleo loves Bouncer, then Bouncer is a monkey.
4. If both Bouncer and Cleo are alligators, then Amos loves them both.
5. Some reptile lives at the zoo.
6. Every alligator is a reptile.
7. Any animal that lives at the zoo is either a monkey or an alligator.

ch. 8 quantified logic 145

8. There are reptiles which are not alligators.
9. Cleo loves a reptile.

10. Bouncer loves all the monkeys that live at the zoo.
11. All the monkeys that Amos loves love him back.
12. If any animal is a reptile, then Amos is.
13. If any animal is an alligator, then it is a reptile.
14. Every monkey that Cleo loves is also loved by Amos.
15. There is a monkey that loves Bouncer, but Bouncer does not reciprocate

this love.

Part B These are syllogistic figures identified by Aristotle and his successors,
along with their medieval names. Translate each argument into QL.

Barbara All Bs are Cs. All As are Bs. .˙. All As are Cs.

Baroco All Cs are Bs. Some A is not B. .˙. Some A is not C.

Bocardo Some B is not C. All As are Bs. .˙. Some A is not C.

Celantes No Bs are Cs. All As are Bs. .˙. No Cs are As.

Celarent No Bs are Cs. All As are Bs. .˙. No As are Cs.

Cemestres No Cs are Bs. No As are Bs. .˙. No As are Cs.

Cesare No Cs are Bs. All As are Bs. .˙. No As are Cs.

Dabitis All Bs are Cs. Some A is B. .˙. Some C is A.

Darii All Bs are Cs. Some A is B. .˙. Some A is C.

Datisi All Bs are Cs. Some A is B. .˙. Some A is C.

Disamis Some B is C. All As are Bs. .˙. Some A is C.

Ferison No Bs are Cs. Some A is B. .˙. Some A is not C.

Ferio No Bs are Cs. Some A is B. .˙. Some A is not C.

Festino No Cs are Bs. Some A is B. .˙. Some A is not C.

Baralipton All Bs are Cs. All As are Bs. .˙. Some C is A.

Frisesomorum Some B is C. No As are Bs. .˙. Some C is not A.

Part C Using the symbolization key given, translate each English-language
sentence into QL.

UD: all animals

146 forallx (UBC edition)

Dx: x is a dog.
Sx: x likes samurai movies.

Lxy: x is larger than y.
b: Bertie
e: Emerson
f: Fergis

1. Bertie is a dog who likes samurai movies.
2. Bertie, Emerson, and Fergis are all dogs.
3. Emerson is larger than Bertie, and Fergis is larger than Emerson.
4. All dogs like samurai movies.
5. Only dogs like samurai movies.
6. There is a dog that is larger than Emerson.
7. If there is a dog larger than Fergis, then there is a dog larger than Emerson.
8. No animal that likes samurai movies is larger than Emerson.
9. No dog is larger than Fergis.

10. Any animal that dislikes samurai movies is larger than Bertie.
11. There is an animal that is between Bertie and Emerson in size.
12. There is no dog that is between Bertie and Emerson in size.
13. No dog is larger than itself.
14. For every dog, there is some dog larger than it.
15. There is an animal that is smaller than every dog.
16. If there is an animal that is larger than any dog, then that animal does

not like samurai movies.

Part D For each argument, write a symbolization key and translate the argu-
ment into QL.

1. Nothing on my desk escapes my attention. There is a computer on my
desk. As such, there is a computer that does not escape my attention.

2. All my dreams are black and white. Old TV shows are in black and white.
Therefore, some of my dreams are old TV shows.

3. Neither Holmes nor Watson has been to Australia. A person could see a
kangaroo only if they had been to Australia or to a zoo. Although Watson
has not seen a kangaroo, Holmes has. Therefore, Holmes has been to a
zoo.

4. No one expects the Spanish Inquisition. No one knows the troubles I’ve
seen. Therefore, anyone who expects the Spanish Inquisition knows the
troubles I’ve seen.

5. An antelope is bigger than a bread box. I am thinking of something that
is no bigger than a bread box, and it is either an antelope or a cantaloupe.
As such, I am thinking of a cantaloupe.

6. All babies are illogical. Nobody who is illogical can manage a crocodile.
Berthold is a baby. Therefore, Berthold is unable to manage a crocodile.

ch. 8 quantified logic 147

? Part E Using the symbolization key given, translate each English-language
sentence into QL.

UD: candies
Cx: x has chocolate in it.
Mx: x has marzipan in it.
Sx: x has sugar in it.
Tx: Boris has tried x.

Bxy: x is better than y.

1. Boris has never tried any candy.
2. Marzipan is always made with sugar.
3. Some candy is sugar-free.
4. The very best candy is chocolate.
5. No candy is better than itself.
6. Boris has never tried sugar-free chocolate.
7. Boris has tried marzipan and chocolate, but never together.
8. Any candy with chocolate is better than any candy without it.
9. Any candy with chocolate and marzipan is better than any candy that

lacks both.

Part F Using the symbolization key given, translate each English-language
sentence into QL.

UD: people and dishes at a potluck
Rx: x has run out.
Tx: x is on the table.
Fx: x is food.
Px: x is a person.

Lxy: x likes y.
e: Eli
f: Francesca
g: the guacamole

1. All the food is on the table.
2. If the guacamole has not run out, then it is on the table.
3. Everyone likes the guacamole.
4. If anyone likes the guacamole, then Eli does.
5. Francesca only likes the dishes that have run out.
6. Francesca likes no one, and no one likes Francesca.
7. Eli likes anyone who likes the guacamole.
8. Eli likes anyone who likes the people that he likes.
9. If there is a person on the table already, then all of the food must have

run out.

148 forallx (UBC edition)

? Part G Using the symbolization key given, translate each English-language
sentence into QL.

UD: people
Dx: x dances ballet.
Fx: x is female.

Mx: x is male.
Cxy: x is a child of y.
Sxy: x is a sibling of y.

e: Elmer
j: Jane
p: Patrick

1. All of Patrick’s children are ballet dancers.
2. Jane is Patrick’s daughter.
3. Patrick has a daughter.
4. Jane is an only child.
5. All of Patrick’s daughters dance ballet.
6. Patrick has no sons.
7. Jane is Elmer’s niece.
8. Patrick is Elmer’s brother.
9. Patrick’s brothers have no children.

10. Jane is an aunt.
11. Everyone who dances ballet has a sister who also dances ballet.
12. Every man who dances ballet is the child of someone who dances ballet.

Part H Identify which variables are bound and which are free.

1. ∃xLxy&∀yLyx
2. ∀xAx&Bx
3. ∀x(Ax&Bx) &∀y(Cx&Dy)
4. ∀x∃y[Rxy ⊃ (Jz&Kx)] ∨Ryx
5. ∀x1(Mx2 ≡ Lx2x1) &∃x2Lx3x2

? Part I

1. Identify which of the following are substitution instances of ∀xRcx: Rac,
Rca, Raa, Rcb, Rbc, Rcc, Rcd, Rcx

2. Identify which of the following are substitution instances of ∃x∀yLxy:
∀yLby, ∀xLbx, Lab, ∃xLxa

Chapter 9

A formal semantics for QL

In this chapter, we describe a formal semantics for QL. This corresponds to the
discussion of interpretations and truth in SL given in Chapter 4. Like truth in
SL, truth in QL is defined relative to a particular interpretation; entailment is
a matter of truth in all interpretations. In SL, models corresponded to assign-
ments of truth values to atomic sentences. For example, here is an SL model:

I =

 P = 0
Q = 1
R = 0

Interpretation I settles the truth value of any SL sentence one can construct
from P , Q, and R. Because QL involves richer notions and a more complex
vocabulary than QL, it requires a correspondingly richer models and interpre-
tations.

9.1 Interpretations in QL

What is an interpretation in QL? Like a symbolization key for QL, an inter-
pretation requires a universe of discourse, a schematic meaning for each of the
predicates, and an object that is picked out by each constant. For example:

UD: Marvel characters
Hx: x is a hero.
Sx: x has spider powers.
m: Miles Morales

149

150 forallx (UBC edition)

p: Peter Parker
r: The Red Skull
s: Susan Storm
u: Ultimate Spider-Man

This interpretation is given in terms of English descriptions. To apply it, you
need to know some details about the characters in question. For example, Sm
is true on this interpretation, because Miles Morales does have spider powers.
But the interpretation itself doesn’t tell us that— to get that information from
this way of setting out the interpretation, you need to know some details about
what happens in the story. You need to know, for example, that Miles Morales,
like his more famous mentor Peter Parker, also has spider powers. If you do
know a bit about Marvel comics, you may know that Miles Morales is actually
the Ultimate Spider-Man. So u and m in this interpretation are two different
names for the same member of the UD. There is no rule against having multiple
names for the same member. (We’ll discuss this issue in much more detail in
Chapter .)

We want our QL models to encode this kind of information too. Like a good
SL model, a QL model doesn’t rely for its application on one’s knowledge of
comic books. One way we could try to do this would be to just give a truth
value assignment, as we did for SL. The truth value assignment would assign
0 or 1 to each atomic wff: Sm = 1, Sp = 1, Sr = 0, and so on. If we were
to do that, however, we might just as well translate the sentences from QL to
SL by replacing Sp and Sm with sentence letters. We could then rely on the
definition of truth for SL, but at the cost of ignoring all the logical structure
of predicates and terms. In writing a symbolization key for QL, we do not give
separate definitions for Sp and Sm. Instead, we give meanings to S, p, and
m. This is essential because we want to be able to use quantifiers. There is no
adequate way to translate ∀xFx into SL.

It is preferable to give formal counterpart to an interpretation for predicates and
constants, not just for sentences. We cannot use a truth value assignment for
this, because a predicate by itself is neither true nor false. In the interpretation
given above, H is true of Peter Parker (i.e., Hp is true), but it makes no sense
at all to ask whether F on its own is true. It would be like asking whether the
English language fragment ‘. . .is a hero’ is true.

What does an interpretation do for a predicate, if it does not make it true or
false? An interpretation helps to pick out the objects to which the predicate
applies. Interpreting Hx to mean ‘x is a hero’ picks out some characters as the
things that are Hs. Formally, this is a set of members of the UD to which the
predicate applies; this set is called the extension of the predicate.

Some predicates have indefinitely large extensions. It would be impractical to
try and write down all of the Marvel characters individually, so instead we use

ch. 9 a formal semantics for ql 151

an English language expression to interpret the predicate. This is somewhat
imprecise, because the interpretation alone does not tell you which members of
the UD are in the extension of the predicate. In order to figure out whether a
particular member of the UD is in the extension of the predicate (to figure out
whether the Red Skull is a hero, for instance), you need to know about comic
books. (The name is a pretty good clue that he’s not.) In general, the extension
of a predicate is the result of an interpretation along with some facts.

Sometimes it is possible to list all of the things that are in the extension of a
predicate. Instead of writing a schematic English sentence, we can write down
the extension as a set of things. Suppose we wanted to add a one-place predicate
F to the key above, meaning ‘x is a founding member of the Fantastic Four’, so
we write the extension as a set of characters:

extension(F) = {Reed Richards, Susan Storm, Johnny Storm, Ben Grimm}

You do not need to know anything about comic books to be able to determine
that, on this interpretation, Fs is true: Susan Storm, whose name is given as s,
is just specified to be one of the things that is F . Similarly, ∃xFx is obviously
true on this interpretation: There is at least one member of the UD that is an
F— in fact, there are four of them.

What about the sentence ∀xFx? The sentence is false, because it is not true
that all members of the UD are F . It requires the barest minimum of knowledge
about comic books to know that there are other characters besides just these
three. Although we specified the extension of F in a formally precise way, we
still specified the UD with an English language description. Formally speaking,
a UD is just a set of members.

The formal significance of a predicate is determined by its extension, but what
should we say about constants like m and s? The meaning of a constant deter-
mines which member of the UD is picked out by the constant. The individual
that the constant picks out is called the referent of the constant. Both m
and u have the same referent, since they both refer to the same comic book
character. You can think of a constant letter as a name and the referent as the
thing named. In English, we can use the different names ‘Miles’ and ‘Ultimate
Spider-Man’ to refer to the same comic book character. In this interpretation,
we can use the different constants ‘m’ and ‘u’ to refer to the same member of
the UD.

Sets

We use curly brackets ‘{’ and ‘}’ to denote sets. The members of the set can be
listed in any order, separated by commas. The fact that sets can be in any order
is important, because it means that {foo, bar} and {bar, foo} are the same set.

152 forallx (UBC edition)

It is possible to have a set with no members in it. This is called the empty
set. The empty set is sometimes written as {}, but usually it is written as the
single symbol ∅.

Models

As we have seen, an interpretation in QL is only formally significant insofar as
it determines a UD, an extension for each predicate, and a referent for each
constant. We call this formal structure a model for QL.

To see how this works, consider this symbolization key:

UD: The first ten natural numbers
Px: x is prime.
n4: 4

Given some basic mathematical knowledge, it is obvious that Pn4 is false. Let’s
consider the model this interpretation suggests, to show why it makes this wff
false. Instead of just giving a description in the UD, we can list the members as
a set. We also define the extension of the predicate P , and the referent of the
constant n4:

UD = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}
extension(P) = {1, 2, 3, 5, 7}
referent(n4) = 4

This is not a full model for this interpretation, but it is a detailed enough
partial model to show that Pn4 is false. You do not need to know anything
about mathematics to see that this sentence is false in this model. The UD
member named by n4 is not in the extension of P . In this way, the model
captures all of the formal significance of the interpretation.

Suppose we enrich this interpretation with more predicates:

UD: The first ten natural numbers
Ex: x is even.
Nx: x is negative.
Lxy: x is less than y.
Txyz: x times y equals z.

What do we need to add to the model for our new predicates?

The extension of E is the subset {2, 4, 6, 8, 10}. There are no negative numbers
in the UD, so N has an empty extension; i.e. extension(N) = ∅.

ch. 9 a formal semantics for ql 153

Sometimes it will be convenient to represent extensions graphically, similar to
the way we did with truth tables. We can represent the extensions just described
for P , E, and N thus:

P E N
1 1 0 0
2 1 1 0
3 1 0 0
4 0 1 0
5 1 0 0
6 0 1 0
7 1 0 0
8 0 1 0
9 0 0 0
10 0 1 0

The members of the UD are listed as rows; the predicates are given as columns.
The 0s and 1s indicate whether each member satisfies each predicate. Notice
that the same information is conveyed in this chart as in the three sets of ordered
pairs described above. Either is an acceptable way of indicating the extension
of the predicates.

The extension of a two-place predicate like L is more complicated. No individ-
ual number falls under the extension of this predicate; it is about the relation
between members. Note also that sets of pairs numbers aren’t suitable for the
extension of L either, because 1 is less than 8, but 8 is not less than 1. And
the set {1,8} is the very same set as the set {8,1}. The solution is to have the
extension of L consist in a set of ordered pairs of numbers. An ordered pair
is like a set with two members, except that the order does matter. We write
ordered pairs with angle brackets ‘<’ and ‘>’. The ordered pair <foo, bar> is
different than the ordered pair <bar, foo>. The extension of L is a collection of
ordered pairs, all of the pairs of numbers in the UD such that the first number
is less than the second. Writing this out completely:

extension(L) = {<1, 2>, <1, 3>, <1, 4>, <1, 5>, <1, 6>, <1, 7>, <1, 8>,
<1, 9>, <1, 10>, <2, 3>, <2, 4>, <2, 5>, <2, 6>, <2, 7>, <2, 8>, <2, 9>,<2, 10>,
<3, 4>, <3, 5>, <3, 6>, <3, 7>, <3, 8>, <3, 9>, <3, 10>, <4, 5>, <4, 6>,
<4, 7>, <4, 8>, <4, 9>,<4, 10>, <5, 6>, <5, 7>, <5, 8>, <5, 9>,<5, 10>,
<6, 7>, <6, 8>, <6, 9>,<6, 10>, <7, 8>, <7, 9>,<7, 10>, <8, 9>, <9, 10>}

Formally, the extension of a two-place predicate is a set of ordered pairs. Some-
times we will find it easier to represent extensions in a chart, with the two
variable positions represented on the two axes. For example, the extension
above could be expressed via a table like the one below. The ‘0’ in the first
cell of the table says that <1, 1> is not in the extension of L; the next cell
in the first row says that <1, 2> is. Etc. Sometimes drawing out a chart like

154 forallx (UBC edition)

this will be the easiest way to represent models for the extensions of two-place
predicates.

Lxy 1 2 3 4 5 6 7 8 9 10
1 0 1 1 1 1 1 1 1 1 1
2 0 0 1 1 1 1 1 1 1 1
3 0 0 0 1 1 1 1 1 1 1
4 0 0 0 0 1 1 1 1 1 1
5 0 0 0 0 0 1 1 1 1 1
6 0 0 0 0 0 0 1 1 1 1
7 0 0 0 0 0 0 0 1 1 1
8 0 0 0 0 0 0 0 0 1 1
9 0 0 0 0 0 0 0 0 0 1
10 0 0 0 0 0 0 0 0 0 0

The extension of a three-place predicates is a set of ordered triples where the
predicate is true of those three things in that order. So the extension of T in this
model will contain ordered triples like <2, 4, 8>, because 2 × 4 = 8. Because
the surface of a sheet of paper is for all intents and purposes two-dimensional,
it is usually not convenient to represent 3-or-more place predicates with tables.

Generally, the extension of an n-place predicate is a set of all ordered n-tuples
〈a1, a2, . . . , an〉 such that a1–an are members of the UD and the predicate is
true of a1–an in that order.

9.2 Working with models

We will use the double turnstile symbol for QL much as we did for SL. ‘Φ |= Ψ ’
means that ‘Φ entails Ψ ’: When Φ and Ψ are two sentences of QL, Φ |= Ψ means
that there is no model in which Φ is true and Ψ is false. |= Φ means that Φ is
true in every model. This allows us to give definitions for various concepts in
QL. In fact, we can use the same definitions offered in Chapter 4.

A tautology in ql is a sentence Φ that is true in every model;
i.e., |= Φ.

A contradiction in ql is a sentence Φ that is false in every model;
i.e., |= ¬Φ.

A sentence is contingent in ql if and only if it is neither a tau-
tology nor a contradiction.

An argument “ P1,P2, · · · , .˙. Ω ” is valid in ql if and only if there
is no model in which all of the premises are true and the conclusion
is false; i.e., {P1,P2, · · · } |= Ω. It is invalid in ql otherwise.

ch. 9 a formal semantics for ql 155

Two sentences Φ and Ψ are logically equivalent in ql if and
only if both Φ |= Ψ and Ψ |= Φ.

The set {Φ1, Φ2, Φ3, · · · } is consistent in ql if and only if there is
at least one model in which all of the sentences are true. The set is
inconsistent in ql if and if only there is no such model.

Constructing models

Suppose we want to show that ∀xAxx ⊃ Bd is not a tautology. This requires
showing that the sentence is not true in every model. If we can provide an
example of a model in which the sentence is false, then we will have shown that
the sentence is not a tautology.

What would such a model look like? In order for ∀xAxx ⊃ Bd to be false, the
antecedent (∀xAxx) must be true, and the consequent (Bd) must be false.

To construct such a model, we start with a UD. It will be easier to specify
extensions for predicates if we have a small UD, so start with a UD that has
just one member. Formally, this single member might be anything. Let’s say it
is Miles Morales.

We want ∀xAxx to be true, so we want all members of the UD to be paired
with themself in the extension of A; this means that the extension of A must
be {<Miles Morales,Miles Morales>}.

We want Bd to be false, so the referent of d must not be in the extension of B.
We give B an empty extension.

Since Miles is the only member of the UD, it must be the referent of d. The
model we have constructed looks like this:

UD = {Miles Morales}
extension(A) = {<Miles Morales, Miles Morales>}
extension(B) = ∅

referent(d) = Miles Morales

Strictly speaking, a model specifies an extension for every predicate of QL and
a referent for every constant. As such, it is generally impossible to write down
a complete model. That would require writing down infinitely many extensions
and infinitely many referents. However, we do not need to consider every pred-
icate in order to show that there are models in which ∀xAxx ⊃ Bd is false.
Predicates like H and constants like f13 make no difference to the truth or
falsity of this sentence. It is enough to specify extensions for A and B and a
referent for d, as we have done. This provides a partial model in which the
sentence is false.

156 forallx (UBC edition)

Perhaps you are wondering: What does the predicate A mean in English? It
doesn’t really matter. For formal purposes, the existence of models like the ones
described above are enough to show that ∀xAxx is not a tautology. But we can
offer an interpretation in English if we like. How about this one?

UD: Miles Morales
Axy: x knows y’s biggest secret.
Bx: x’s powers derive from gamma radiation.
d: Miles Morales

This is one way we can interpret the model above. Add is true, because Miles
does know Miles’s biggest secret. (It’s that he’s the Ultimate Spider-Man. Now
you know it too!) Bx is false: Miles’s powers came from a genetically enhanced
spider bite, not from gamma radiation. But the partial model constructed
above includes none of these interpretative details. All it says is that A is a
predicate which is true of Miles and Miles, and that B is a predicate which
does not apply to Miles. There are indefinitely many predicates in English that
have this extension. Axy might instead translate ‘x is the same size as y’ or
‘x and y live in the same city’; Bx might translate ‘x is a billionaire’ or ‘x’s
uncle was killed by a robber’ or ‘Donald Trump has written a tweet about x’.
In constructing a model and giving extensions for A and B, we do not specify
what English predicates A and B should be used to translate. We are concerned
with whether the ∀xAxx ⊃ Bd comes out true or false, and all that matters for
truth and falsity in QL is the information in the model: the UD, the extensions
of predicates, and the referents of constants.

We can just as easily show that ∀xAxx ⊃ Bd is not a contradiction. We need
only specify a model in which ∀xAxx ⊃ Bd is true; i.e., a model in which either
∀xAxx is false or Bd is true. Here is one such partial model:

UD = {The Red Skull}
extension(A) = {<The Red Skull, The Red Skull>}
extension(B) = {The Red Skull}

referent(d) = The Red Skull

I’ve switched our object from Miles Morales to The Red Skull to emphasize that
it doesn’t matter what object you pick. (Changing the examples all back to Miles
would make no difference.) On this model, ∀xAxx ⊃ Bd is true, because it is
a conditional with a true consequent (as well as a true antecedent). We have
now shown that ∀xAxx ⊃ Bd is neither a tautology nor a contradiction. By the
definition of ‘contingent in QL,’ this means that ∀xAxx ⊃ Bd is contingent. In
general, showing that a sentence is contingent will require two models: one in
which the sentence is true and another in which the sentence is false.

Suppose we want to show that ∀xSx and ∃xSx are not logically equivalent.
We need to construct a model in which the two sentences have different truth

ch. 9 a formal semantics for ql 157

values; we want one of them to be true and the other to be false. We start
by specifying a UD. Again, we make the UD reasonably small so that we can
specify extensions easily. But this time we will need at least two members. If
we only had one member of the domain, we wouldn’t be able to illustrate the
difference between all and some. Let’s let our UD be {The Red Skull, Miles
Morales}.

We can make ∃xSx true by including something in the extension of S, and we
can make ∀xSx false by leaving something out of the extension of S. It does
not matter which one we include and which one we leave out. Making Miles the
only S, we get a partial model that looks like this:

UD = {Miles, The Red Skull}
extension(S) = {The Red Skull}

This partial model shows that the two sentences are not logically equivalent.
∃xSx is assigned 1 on this model, but ∀xSx is assigned 0.

Back on p. 138, we said that this argument would be invalid in QL:

(Rc&K1c) &Tc

.˙. T c&K2c

In order to show that it is invalid, we need to show that there is some model in
which the premises are true and the conclusion is false. We can construct such
a model deliberately. Here is one way to do it:

UD = {Reed Richards}
extension(T) = {Reed Richards}

extension(K1) = {Reed Richards}
extension(K2) = ∅
extension(R) = {Reed Richards}

referent(c) = Reed Richards

Similarly, we can show that a set of sentences is consistent by constructing a
model in which all of the sentences are true.

Reasoning about all models

We can show that a sentence is not a tautology just by providing one carefully
specified model: a model in which the sentence is false. To show that something
is a tautology, on the other hand, it would not be enough to construct ten, one
hundred, or even a thousand models in which the sentence is true. It is only
a tautology if it is true in every model, and there are infinitely many models.

158 forallx (UBC edition)

Table 9.1: It is relatively easy to answer a question if you can do it by construct-
ing a model or two. It is much harder if you need to reason about all possible
models. This table shows when constructing models is enough.

YES NO

Is Φ a tautology? show that Φ must be
true in any model

construct a model in
which Φ is false

Is Φ a contradiction? show that Φ must be
false in any model

construct a model in
which Φ is true

Is Φ contingent? construct two models,
one in which Φ is true
and another in which Φ
is false

either show that Φ is a
tautology or show that
Φ is a contradiction

Are Φ and Ψ equiva-
lent?

show that Φ and Ψ
must have the same
truth value in any
model

construct a model in
which Φ and Ψ have
different truth values

Is the set A consistent? construct a model in
which all the sentences
in A are true

show that the sen-
tences could not all be
true in any model

Is the argument
‘P , .˙. Ω’ valid?

show that any model in
which P is true must
be a model in which Ω
is true

construct a model in
which P is true and Ω
is false

This cannot be avoided just by constructing partial models, because there are
infinitely many partial models.

Consider, for example, the sentence Raa ≡ Raa. There are two logically distinct
partial models of this sentence that have a 1-member UD. There are 32 distinct
partial models that have a 2-member UD. There are 1526 distinct partial models
that have a 3-member UD. There are 262,144 distinct partial models that have
a 4-member UD. And so on to infinity. In order to show that this sentence is
a tautology, we need to show something about all of these models. There is no
hope of doing so by dealing with them one at a time.

Nevertheless, Raa ≡ Raa is obviously a tautology. We can prove it with a
simple argument:

There are two kinds of models: those in which 〈referent(a), referent(a)〉
is in the extension of R and those in which it is not. In the first
kind of model, Raa is true; by the truth table for the biconditional,
Raa ≡ Raa is also true. In the second kind of model, Raa is false;

ch. 9 a formal semantics for ql 159

this makes Raa ≡ Raa true. Since the sentence is true in both kinds
of model, and since every model is one of the two kinds, Raa ≡ Raa
is true in every model. Therefore, it is a tautology.

This argument is valid, of course, and its conclusion is true. However, it is not
an argument in QL. Rather, it is an argument in English about QL; it is an
argument in the metalanguage. There is no formal procedure for evaluating
or constructing natural language arguments like this one. The imprecision of
natural language is the very reason we began thinking about formal languages.

There are further difficulties with this approach.

Consider the sentence ∀x(Rxx ⊃ Rxx), another obvious tautology. It might
be tempting to reason in this way: ‘Rxx ⊃ Rxx is true in every model, so
∀x(Rxx ⊃ Rxx) must be true.’ The problem is that Rxx ⊃ Rxx is not true in
every model. It is not a sentence, and so it is neither true nor false. We do not
yet have the vocabulary to say what we want to say about Rxx ⊃ Rxx. In the
next section, we introduce the concept of satisfaction; after doing so, we will be
better able to provide an argument that ∀x(Rxx ⊃ Rxx) is a tautology.

It is necessary to reason about an infinity of models to show that a sentence
is a tautology. Similarly, it is necessary to reason about an infinity of models
to show that a sentence is a contradition, that two sentences are equivalent,
that a set of sentences is inconsistent, or that an argument is valid. There are
other things we can show by carefully constructing a model or two. Table 9.1
summarizes which things are which.

9.3 Truth in QL

For SL, we split the definition of truth into two parts: a truth value assignment
(a) for sentence letters and a truth function (v) for all sentences. The truth
function covered the way that complex sentences could be built out of sentence
letters and connectives.

In the same way that truth for SL is always truth given a truth value assignment,
truth for QL is truth in a model. The atomic sentences, again, are n-place
predicates followed by n constants, like Pj. It is true in a model M if and only
if the referent of j is in the extension of P in M.

We could go on in this way to define truth for all atomic sentences that contain
only predicates and constants: Consider any sentence of the form Ra1 . . . an

where R is an n-place predicate and the as are constants. It is true in M if and
only if 〈referent(a1), . . . , referent(an)〉 is in extension(R) in M.

160 forallx (UBC edition)

We could then define truth for sentences built up with sentential connectives in
the same way we did for SL. For example, the sentence (Pj ⊃ Mda) is true in
M if either Pj is false in M or Mda is true in M.

Unfortunately, this approach will fail when we consider sentences containing
quantifiers. Consider ∀xPx. When is it true in a model M? The answer cannot
depend on whether Px is true or false in M, because the x in Px is a free
variable. Px is not a sentence. It is neither true nor false.

We were able to give a recursive definition of truth for SL because every well-
formed formula of SL has a truth value. This is not true in QL, so we cannot
define truth by starting with the truth of atomic sentences and building up. We
also need to consider the atomic formulae which are not sentences. In order
to do this we will define satisfaction; every well-formed formula of QL will be
satisfied or not satisfied, even if it does not have a truth value. We will then be
able to define truth for sentences of QL in terms of satisfaction.

Satisfaction

The formula Px says, roughly, that x is one of the P s. This cannot be quite
right, however, because x is a variable and not a constant. It does not name any
particular member of the UD. Instead, its meaning in a sentence is determined
by the quantifier that binds it. The variable x must stand-in for every member
of the UD in the sentence ∀xPx, but it only needs to stand-in for one member
in ∃xPx. Since we want the definition of satisfaction to cover Px without any
quantifier whatsoever, we will start by saying how to interpret a free variable
like the x in Px.

We do this by introducing a variable assignment. Formally, this is a function
that matches up each variable with a member of the UD. Call this function
‘a.’ (The ‘a’ is for ‘assignment’, but this is not the same as the truth value
assignment that we used in defining truth for SL.)

The formula Px is satisfied in a model M by a variable assignment a if and only
if a(x), the object that a assigns to x, is in the the extension of P in M.

When is ∀xPx satisfied? It is not enough if Px is satisfied in M by a, because
that just means that a(x) is in extension(P). ∀xPx requires that every other
member of the UD be in extension(P) as well.

So we need another bit of technical notation: For any member π of the UD
and any variable x , let a[π|x] be the variable assignment that assigns π to x
but agrees with a in all other respects. We have used π, the Greek letter pi,
to underscore the fact that it is some member of the UD and not some symbol
of QL. Suppose, for example, that the UD is presidents of the United States.

ch. 9 a formal semantics for ql 161

The function a[Grover Cleveland|x] assigns Grover Cleveland to the variable x,
regardless of what a assigns to x; for any other variable, a[Grover Cleveland|x]
agrees with a.

We can now say concisely that ∀xPx is satisfied in a model M by a variable
assignment a if and only if, for every object π in the UD of M, Px is satisfied
in M by a[π|x].

The intuitive thought here is that wff satisfaction is relative to a variable as-
signment. A variable assignment is a way of treating each variable as if it were
a name for some object or other; a wff is satisfied by a in a given model iff, in
that model, treating the variables the way a suggests would yield a true wff.

You may worry that our statement of satisfaction by a variable assignment in
a model is circular, because it gives the satisfaction conditions for the sentence
∀xPx using the phrase ‘for every object.’ However, it is important to remember
the difference between a logical symbol like ‘∀’ and an English language word
like ‘every.’ The word is part of the metalanguage that we use in defining
satisfaction conditions for object language sentences that contain the symbol.

We can now give a general definition of satisfaction, extending from the cases
we have already discussed. We define a function s (for ‘satisfaction’) in a model
M such that for any wff Φ and variable assignment a, s(Φ, a) = 1 if Φ is satisfied
in M by a; otherwise s(Φ, a) = 0.

1. If Φ is an atomic wff of the form Pt1 . . . tn and πi is the object picked out
by ti, then

s(Φ, a) =

{
1 if 〈π1 . . . πn〉 is in extension(P) in M,
0 otherwise.

For each term ti: If ti is a constant, then πi = referent(ti). If ti is a
variable, then πi = a(ti).

2. If Φ is ¬Ψ for some wff Ψ , then

s(Φ, a) =

{
1 if s(Ψ, a) = 0,
0 otherwise.

3. If Φ is (Ψ &Ω) for some wffs Φ, Ψ , then

s(Φ, a) =

{
1 if s(Ψ, a) = 1 and s(Ω, a) = 1,
0 otherwise.

4. If Φ is (Ψ ∨Ω) for some wffs Φ, Ψ , then

s(Φ, a) =

{
0 if s(Ψ, a) = 0 and s(Ω, a) = 0,
1 otherwise.

162 forallx (UBC edition)

5. If Φ is (Ψ ⊃ Ω) for some wffsΦ, Ψ , then

s(Φ, a) =

{
0 if s(Ψ, a) = 1 and s(Ω, a) = 0,
1 otherwise.

6. If Φ is (Ψ ≡ Ω) for some sentences Φ, Ψ , then

s(Φ, a) =

{
1 if s(Ψ, a) = s(Ω, a),
0 otherwise.

7. If Φ is ∀x Ψ for some wff Ψ and some variable x , then

s(Φ, a) =

{
1 if s(Ψ, a[π|x]) = 1 for every member π of the UD,
0 otherwise.

8. If Φ is ∃x Ψ for some wff Ψ and some variable x , then

s(Φ, a) =

{
1 if s(Ψ, a[π|x]) = 1 for at least one member π of the UD,
0 otherwise.

This definition follows the same structure as the definition of a wff for QL, so
we know that every wff of QL will be covered by this definition. For a model M
and a variable assignment a, any wff will either be satisfied or not. No wffs are
left out or assigned conflicting values.

Truth

Consider a simple sentence like ∀xPx. By part 7 in the definition of satisfaction,
this sentence is satisfied if a[π|x] satisfies Px in M for every π in the UD. In
other words, assign that x to any object in the UD you like, and the resultant
wff will come out true. By part 1 of the definition, this will be the case if
every π is in the extension of P . Whether ∀xPx is satisfied does not depend
on the particular variable assignment a. If this sentence is satisfied, then it is
true. This is a formalization of what we have said all along: ∀xPx is true if
everything in the UD is in the extension of P .

The same thing holds for any sentence of QL. Because all of the variables are
bound, a sentence is satisfied or not regardless of the details of the variable
assignment. So we can define truth in this way: A sentence Φ is true in M if
and only if some variable assignment satisfies Φ in M ; Φ is false inM otherwise.

Truth in QL is truth in a model. Sentences of QL are not flat-footedly true
or false as mere symbols, but only relative to a model. A model provides the
meaning of the symbols, insofar as it makes any difference to truth and falsity.

ch. 9 a formal semantics for ql 163

Reasoning about all models (reprise)

At the end of section 9.2, we were stymied when we tried to show that ∀x(Rxx ⊃
Rxx) is a tautology. Having defined satisfaction, we can now reason in this way:

Consider some arbitrary model M. Now consider an arbitrary mem-
ber of the UD; for the sake of convenience, call it π. It must be the
case either that 〈π, π〉 is in the extension of R or that it is not. If
〈π, π〉 is in the extension of R, then Rxx is satisfied by a variable
assignment that assigns π to x (by part 1 of the definition of satisfac-
tion); since the consequent of Rxx ⊃ Rxx is satisfied, the conditional
is satisfied (by part 5). If 〈π, π〉 is not in the extension of R, then
Rxx is not satisfied by a variable assignment that assigns π to x (by
part 1); since antecedent of Rxx ⊃ Rxx is not satisfied, the condi-
tional is satisfied (by part 5). In either case, Rxx ⊃ Rxx is satisfied.
This is true for any member of the UD, so ∀x(Rxx ⊃ Rxx) is satis-
fied by any truth value assignment (by part 7). So ∀x(Rxx ⊃ Rxx)
is true in M (by the definition of truth). This argument holds re-
gardless of the exact UD and regardless of the exact extension of R,
so ∀x(Rxx ⊃ Rxx) is true in any model. Therefore, it is a tautology.

Giving arguments about all possible models typically requires clever combina-
tion of two strategies:

1. Divide cases between two possible kinds, such that every case must be one
kind or the other. In the argument on p. 158, for example, we distinguished
two kinds of models based on whether or not a specific ordered pair was in
extension(R). In the argument above, we distinguished cases in which an or-
dered pair was in extension(R) and cases in which it was not.

2. Consider an arbitrary object as a way of showing something more general.
In the argument above, it was crucial that π was just some arbitrary member
of the UD. We did not assume anything special about it. As such, whatever we
could show to hold of π must hold of every member of the UD— if we could
show it for π, we could show it for anything. In the same way, we did not assume
anything special about M, and so whatever we could show about M must hold
for all models.

Consider one more example. The argument ∀x(Hx& Jx) .˙.∀xHx is obviously
valid. We can only show that the argument is valid by considering what must
be true in every model in which the premise is true.

Consider an arbitrary model M in which the premise ∀x(Hx& Jx)
is true. The conjunction Hx& Jx is satisfied regardless of what is
assigned to x, so Hx must be also (by part 3 of the definition of

164 forallx (UBC edition)

satisfaction). As such, (∀x)Hx is satisfied by any variable assign-
ment (by part 7 of the definition of satisfaction) and true in M (by
the definition of truth). Since we did not assume anything about M
besides ∀x(Hx& Jx) being true, (∀x)Hx must be true in any model
in which ∀x(Hx& Jx) is true. So ∀x(Hx& Jx) |= ∀xHx.

Even for a simple argument like this one, the reasoning is somewhat complicated.
For longer arguments, the reasoning can be insufferable. The problem arises
because talking about an infinity of models requires reasoning things out in
English. What are we to do? The answer won’t surprise readers of the first half
of the book: we’ll make use of some formal proof systems. We have seen two
kinds of proof systems for SL: the tree method, and natural deduction proofs.
In the coming chapters, we’ll extend both kinds of systems to QL as well.

Practice Exercises

? Part A Determine whether each sentence is true or false in the model given.

UD = {Corwin, Benedict}
extension(A) = {Corwin, Benedict}
extension(B) = {Benedict}
extension(N) = ∅

referent(c) = Corwin

1. Bc
2. Ac ≡ ¬Nc
3. Nc ⊃ (Ac ∨Bc)
4. ∀xAx
5. ∀x¬Bx
6. ∃x(Ax&Bx)
7. ∃x(Ax ⊃ Nx)
8. ∀x(Nx ∨ ¬Nx)
9. ∃xBx ⊃ ∀xAx

? Part B Determine whether each sentence is true or false in the model given.

UD = {Waylan, Willy, Johnny}
extension(H) = {Waylan, Willy, Johnny}
extension(W) = {Waylan, Willy}
extension(R) = {<Waylan, Willy>,<Willy, Johnny>,<Johnny, Waylan>}

referent(m) = Johnny

1. ∃x(Rxm&Rmx)

ch. 9 a formal semantics for ql 165

2. ∀x(Rxm ∨Rmx)
3. ∀x(Hx ≡Wx)
4. ∀x(Rxm ⊃Wx)
5. ∀x

[
Wx ⊃ (Hx&Wx)

]
6. ∃xRxx
7. ∃x∃yRxy
8. ∀x∀yRxy
9. ∀x∀y(Rxy ∨Ryx)

10. ∀x∀y∀z
[
(Rxy&Ryz) ⊃ Rxz

]
Part C Determine whether each sentence is true or false in the model given.

UD = {Lemmy, Courtney, Eddy}
extension(G) = {Lemmy, Courtney, Eddy}
extension(H) = {Courtney}
extension(M) = {Lemmy, Eddy}

referent(c) = Courtney
referent(e) = Eddy

1. Hc
2. He
3. Mc ∨Me
4. Gc ∨ ¬Gc
5. Mc ⊃ Gc
6. ∃xHx
7. ∀xHx
8. ∃x¬Mx
9. ∃x(Hx&Gx)

10. ∃x(Mx&Gx)
11. ∀x(Hx ∨Mx)
12. ∃xHx&∃xMx
13. ∀x(Hx ≡ ¬Mx)
14. ∃xGx&∃x¬Gx
15. ∀x∃y(Gx&Hy)

? Part D Write out the model that corresponds to the interpretation given.

UD: natural numbers from 10 to 13
Ox: x is odd.
Sx: x is less than 7.
Tx: x is a two-digit number.
Ux: x is thought to be unlucky.
Nxy: x is the next number after y.

166 forallx (UBC edition)

Part E Show that each of the following is contingent.

1.? Da&Db
2.? ∃xTxh
3.? Pm&¬∀xPx
4. ∀zJz ≡ ∃yJy
5. ∀x(Wxmn ∨ ∃yLxy)
6. ∃x(Gx ⊃ ∀yMy)

? Part F Show that the following pairs of sentences are not logically equivalent.

1. Ja, Ka
2. ∃xJx, Jm
3. ∀xRxx, ∃xRxx
4. ∃xPx ⊃ Qc, ∃x(Px ⊃ Qc)
5. ∀x(Px ⊃ ¬Qx), ∃x(Px&¬Qx)
6. ∃x(Px&Qx), ∃x(Px ⊃ Qx)
7. ∀x(Px ⊃ Qx), ∀x(Px&Qx)
8. ∀x∃yRxy, ∃x∀yRxy
9. ∀x∃yRxy, ∀x∃yRyx

Part G Show that the following sets of sentences are consistent.

1. {Ma, ¬Na, Pa, ¬Qa}
2. {Lee, Lef , ¬Lfe, ¬Lff}
3. {¬(Ma& ∃xAx), Ma ∨ Fa, ∀x(Fx ⊃ Ax)}
4. {Ma ∨Mb, Ma ⊃ ∀x¬Mx}
5. {∀yGy, ∀x(Gx ⊃ Hx), ∃y¬Iy}
6. {∃x(Bx ∨Ax), ∀x¬Cx, ∀x

[
(Ax&Bx) ⊃ Cx

]
}

7. {∃xXx, ∃xY x, ∀x(Xx ≡ ¬Y x)}
8. {∀x(Px ∨Qx), ∃x¬(Qx&Px)}
9. {∃z(Nz&Ozz), ∀x∀y(Oxy ⊃ Oyx)}

10. {¬∃x∀yRxy, ∀x∃yRxy}

Part H Construct models to show that the following arguments are invalid.

1. ∀x(Ax ⊃ Bx), .˙. ∃xBx
2. ∀x(Rx ⊃ Dx), ∀x(Rx ⊃ Fx), .˙. ∃x(Dx&Fx)
3. ∃x(Px ⊃ Qx), .˙.∃xPx
4. Na&Nb&Nc, .˙. ∀xNx
5. Rde, ∃xRxd, .˙. Red
6. ∃x(Ex&Fx), ∃xFx ⊃ ∃xGx, .˙. ∃x(Ex&Gx)
7. ∀xOxc, ∀xOcx, .˙. ∀xOxx

ch. 9 a formal semantics for ql 167

8. ∃x(Jx&Kx), ∃x¬Kx, ∃x¬Jx, .˙. ∃x(¬Jx&¬Kx)
9. Lab ⊃ ∀xLxb, ∃xLxb, .˙. Lbb

Part I

1. Many logic books define consistency and inconsistency in this way: “ A set
{Φ1, Φ2, Φ3, · · · } is inconsistent if and only if {Φ1, Φ2, Φ3, · · · } |= (Ψ &¬Ψ)
for some sentence Ψ . A set is consistent if it is not inconsistent.”

Does this definition lead to any different sets being consistent than the
definition on p. 63? Explain your answer.

2.? Our definition of truth says that a sentence Φ is true in M if and only if
some variable assignment satisfies Φ in M . Would it make any difference if
we said instead that Φ is true inM if and only if every variable assignment
satisfies Φ in M? Explain your answer.

Chapter 10

QL Trees

In Chapter 9 we saw that the more structured models of QL make reasoning
about all possible models rather complex. In SL, where a model was just an
assignment of truth values to atomic sentences, reasoning about all models was
relatively straightforward: we could simply survey them via truth tables. In QL
there isn’t really as simple a method for considering claims about validity or
satisfiability as the truth table method. So we must rely more heavily on proof
systems.

This chapter considers a tree method for QL. Like the tree method for SL
discussed in Chapter 5, the QL tree method is a method that attempts to
generate an interpretation satisfying a given set of sentences. When it succeeds,
it shows a way to satisfy them; when it fails, it shows that they are unsatisfiable.
As we did in the initial presentation of trees in Chapter 5, we’ll begin by working
through a couple of examples at an intuitive level, before laying out the formal
tree rules.

10.1 Trees with Fixed Domains

Let’s begin with a simplifying assumption. Let’s suppose that we’re only in-
terested in models with particular fixed domain sizes. (By the time we get
to the formal tree rules later in this chapter, we’ll dispense with this assump-
tion, but it’s helpful for introducing the general idea.) Let’s confine our at-
tention to models that have two members in the UD. Consider whether there
are there any such models that satisfy the following QL sentences: {∀x(Fx ⊃
Gx),¬∃xGx,∃x(Fx ∨Gx)}. To evaluate this question, we put those sentences
in the root of a tree.

168

ch. 10 ql trees 169

{∀x(Fx ⊃ Gx),¬∃xGx,∃x(Fx ∨Gx)} `

1.
2.
3.

∀x(Fx ⊃ Gx)
¬∃xGx

∃x(Fx ∨Gx)

Let’s start by considering the universal claim on line 1. A universal says that
each of its instances are true. Since at the moment we are assuming that there
are two objects in our UD, let’s also assume we have just two names, a and b,
corresponding to our two objects. So we can just write down the two instances
as a linear development. We also put a check at line 1 to indicate that we’ve
resolved that sentence.

{∀x(Fx ⊃ Gx),¬∃xGx,∃x(Fx ∨Gx)} `

1.
2.
3.

4.
5.

∀x(Fx ⊃ Gx) X
¬∃xGx

∃x(Fx ∨Gx)

Fa ⊃ Ga
Fb ⊃ Gb

Next let’s consider the negated existential at line 2. It says that each instance
is false. So it develops into the negation of both instances, and we add a check
mark at line 2.

{∀x(Fx ⊃ Gx),¬∃xGx,∃x(Fx ∨Gx)} `

1.
2.
3.

4.
5.

6.
7.

∀x(Fx ⊃ Gx) X
¬∃xGx X
∃x(Fx ∨Gx)

Fa ⊃ Ga
Fb ⊃ Gb

¬Ga
¬Gb

There is one more quantified sentence to resolve, on line 3, but before we do
that, let’s handle the conditionals on lines 4 and 5. We do these exactly the same
way we handled conditionals in SL trees. They each branch into the negation
of the antecedent and the consequent; the latter branch closes each time.

170 forallx (UBC edition)

{∀x(Fx ⊃ Gx),¬∃xGx,∃x(Fx ∨Gx)} `

1.
2.
3.

4.
5.

6.
7.

8.

9.

∀x(Fx ⊃ Gx) X
¬∃xGx X
∃x(Fx ∨Gx)

Fa ⊃ Ga X
Fb ⊃ Gb X

¬Ga
¬Gb

¬Fa

¬Fb Gb
×
7, 9

Ga
×
6, 8

Now let’s look at line 3. It is an existential claim, so it says that at least one of
its instances are true. Again, we’re assuming for now that there are only two
instances. So we branch into them those two disjunctions at line 10. After that,
we apply the approach to disjunctions from SL trees, and the tree closes.

{∀x(Fx ⊃ Gx),¬∃xGx,∃x(Fx ∨Gx)} `

1.
2.
3.

4.
5.

6.
7.

8.

9.

10.

11.

∀x(Fx ⊃ Gx) X
¬∃xGx X
∃x(Fx ∨Gx)

Fa ⊃ Ga X
Fb ⊃ Gb X

¬Ga
¬Gb

¬Fa

¬Fb

Fa ∨Ga

Fa
×

8, 11

Ga
×

6, 11

Fb ∨Gb

Fb
×

9, 11

Gb
×

7, 11

Gb
×
7, 9

Ga
×
6, 8

ch. 10 ql trees 171

The closed tree indicates that our attempt to find a model satisfying the root
has failed. We’re not quite in a position to say that we’ve proven the root
entirely unsatisfiable, because we’ve been assuming for simplicity that we’re
only interested in models that have two members of the UD. But we’ve shown
at least that it’s impossible to satisfy the root with any model with a two-object
domain. We’ll consider a more generalized procedure soon.

Before moving on to the official tree rules, let’s look at one more example that
assumes a two-object domain.

Is there any model with a two-object UD that satisfies {∀xFxa,∀y(Gy ⊃ ¬Fya)}?
To find out, we put both sentences in the root of a tree, and continue as before.
We start by taking both instances of each universal claim, then process the two
conditionals. This tree remains open.

1.
2.

3.
4.

5.
6.

7.

8.

∀xFxa X
∀y(Gy ⊃ ¬Fya) X

Faa
Fba

Ga ⊃ ¬Faa X
Gb ⊃ ¬Fba X

¬Ga

¬Gb ¬Fba
×
4, 8

¬Faa
×
3, 7

As in SL trees, a completed QL tree with an open branch describes a way of
satisfying the root. We’re assuming a two-object UD; for simplicity, let’s let our
objects be the letters ‘a’ and ‘b’, and have ‘a’ be the referent of the QL name
a, and ‘b’ be the referent of the QL name b. We look to the two QL atoms and
two negated QL atoms in the branch; they indicate what needs to be included
in the extension of each predicate in our model. Since Faa is in the branch, we
need to include <a, a> in the extension of F . Since ¬Ga is in the branch, we
need for a not to be in the extension of G.

Here is a partial model that suffices to satisfy the root of the above tree:

172 forallx (UBC edition)

UD = {a, b}

extension(G) =
G

a 0
b 0

extension(F) =
Fxy a b
a 1 -
b 1 -

Notice that we’ve put blanks for two of the cells in the extension of Fxy. That is
to indicate that it doesn’t matter whether or not <a, b> or <b, b> are included
in the extension of Fxy. (This is also why neither Fab, Fbb, ¬Fab, nor ¬Fbb
appeared in the open branch.) So the tree method for QL is similar to that for
SL in this respect as well. An open branch in a completed tree describes a way
to satisfy the root.

10.2 Generalizing the Tree Method

Trees are supposed to show something about all possible models, not only those
with two-object UDs. So we don’t want our official tree rules to build in the idea
that there are just two objects. For a three-object UD, we’d want our universal
statements to develop into all three instances, and we’d want our existentials
to branch into the three instances. For a ten-object UD like the one described
on page 152, we’d need to give ten instances. For an infinite UD like the set of
all natural numbers, we’d need an infinite number of developments. Obviously
such rules would be impractical, to say the least. Worse than that, we often
won’t know at the start of the process what size domain we should be thinking
of. So we need a version of the tree rules that is flexible as to domain size.

In order to state our rule formally, we need one new bit of formalism. For any
QL wff Φ, a constant c, and variable x , define Φ x ⇒ c to mean the wff that
we get by replacing every occurrence of x in Φ with c. So for example,

Fx x⇒ a = Fa

For any quantified QL sentence ∀x Φ or ∃x Φ, we call Φ x ⇒ c a substitution
instance of ∀xΦ and ∃xΦ, and c is called the instantiating constant.

This, more formally, is the same notion we were working with in our discussion
of trees for models with two-object UDs. For example:

. Aa ⊃ Ba, Af ⊃ Bf , and Ak ⊃ Bk are all substitution instances of
∀x(Ax ⊃ Bx); the instantiating constants are a, f , and k, respectively.

ch. 10 ql trees 173

. Raj, Rdj, and Rjj are substitution instances of ∃zRzj; the instantiating
constants are a, d, and j, respectively.

With this terminology in hand, we can begin with our official tree rules.

10.3 Existentials

This will be our official tree rule for existentials:

∃x Φ Xa

Φ x ⇒ a where a is new

Just as Φ stands in for any sentence of QL, the x is meant to stand in for any
variable, and a stands in for any name. The requirement that the name be new
means that the name chosen for the substitution instance must be a name that
has not appeared anywhere in the tree so far.

What is the rationale for this restriction? The existential claim says that some
substitution instance is true, but it doesn’t say which one it is. If we knew how
many objects we were looking at in the UD, we could make a new branch for
each object— that’s what we did in the examples above— but here we see a
different way to model this kind of flexibility. Remember, there is no prohibition
in QL of two different names referring to the very same object. So by using an
instance involving a new name, we are remaining open-minded about whether
it is also a name for some object we’ve already been discussing.

For example, consider this tree:

{Fa,∃x¬Fx} `

1.
2.

3.

Fa
∃x¬Fx Xb

¬Fb 2 ∃

The appropriate substitution instance of the existential on line 2 is Fb, not Fa,
because a is a name that is already in use. We want to say that something
is F , not necessarily that a is. Had we taken the a instance, the tree would

174 forallx (UBC edition)

have closed, even though the root is satisfiable. Note also that in marking the
existential as having been processed, we also make a note of the instantiating
constant. That’s why there is a b next to the check mark in line 2.

10.4 Universals

Here is the tree rule for universals.

∀x Φ \a

Φ x ⇒ a for any a

The universal rule, like the existential rule, invites you to take an instance. But
unlike the existential rule, we don’t limit ourselves to instances with new names.
The other major difference is that one can use this rule multiple times. That
makes this rule different from all the over tree rules we’ve seen so far. You’re not
necessarily finished processing a universal sentence after you’ve performed the
rule once. We mark this by indicating a \ instead of a Xnext to the universal
sentence.

Here is an example illustrating the importance of taking multiple instances.
Here is a partially completed tree.

1.
2.

3.

4.
5.

6.

∀x(Fx&Gx) \a
¬Fa ∨ ¬Gb

Fa&Ga X

Fa
Ga

¬Fa
×

¬Gb

1 ∀

3 &

2 ∨

The root of this tree is pretty obviously unsatisfiable, but so far, the tree hasn’t
closed. On line 3 we take the a instance of the universal at line 1, but the tree
won’t close until we take the b instance as well. We can do so at any time. In

ch. 10 ql trees 175

this way of developing the tree, we take that instance at line 7, and then the
tree will close:

1.
2.

3.

4.
5.

6.

7.

8.
9.

∀x(Fx&Gx) \a, b
¬Fa ∨ ¬Gb

Fa&Ga X

Fa
Ga

¬Fa
×

¬Gb

Fb&Gb X

Fb
Gb
×

1 ∀

3 &

2 ∨

1 ∀

7 &

Of course, we could also have taken the b instance at the same time as we took
the a instance on line 3, and the tree would have worked just as well. But taking
things in this order illustrates that sometimes we can go back to universal claims
that have already been considered, to take an additional instance. (Later on,
we will see some examples of trees that require this kind of backtracking.)

10.5 Negated Existentials

Negated existential claims are quite similar to universals. They say that no
instance is true, which is another way of saying that every instance is false. So
like the universal rule, the negated existential rule will allow us to take as many
instances as we like; this time, we take the instances of the negation of the wff
in the scope of the quantifier.

¬∃x Φ \a

¬Φ x ⇒ a for any a

For example, if ¬∃xFx is in the tree, one can use the negated existential rule

176 forallx (UBC edition)

to develop a tree branch with ¬Fa, ¬Fb, etc.

10.6 Negated Universals

Conversely, a negated universal is similar to an existential. It says that not
all instances are true, so at least one instance is false. So like the existential
rule, we only perform it once (marking it with a check), and ensuring that we
use a new name, so as not to assume anything in particular about the instance
chosen.

¬∀x Φ Xa

¬Φ x ⇒ a where a is new

10.7 Whither Branching?

When we learned the tree rules for sentential connectives, there was an impor-
tant distinction between linear rules and branching rules. We retained this when
we assumed two-object domains in §10.1, where universal quantfiers had linear
rules, and existentials had branching rules. Our new quantifier rules, however,
all have the same linear shape. Nothing branches. Why not?

In SL, and for QL models where finite domains were specified in advance, we
used branching to represent the particular possible ways one could satisfy the
formula above. For some interpretation I to satisfy P ∨Q, either I (P) = 1 or
I (Q) = 1. If we assume there are only two objects, a and b, then in order for
I to satisfy ∃xFx, I must either have a in the extension of F or have b in the
extension of F . So we can branch the tree to represent those two possibilities.

But if we do not assume anything in particular about the UD, we can’t just
list all the possible ways to satisfy an existential (or a negated universal). We’d
need as many branches as there are objects in the UD. So instead we just take
one instance, but give it a new name, which may or may not be co-referential
with another name we’ve already considered. The novelty of the name is playing
the functional role of branching.

ch. 10 ql trees 177

10.8 The Other Development Rules

So far this chapter we’ve introduced four tree development rules for QL: we
have rules for universals, existentials, negated universals, and negated existen-
tials. There are nine more resolution rules, but they are all familiar: they
are the same nine resolution rules given in Chapter 5. We’ll use all the same
resolution rules for conjunction, negated conjunction, disjunction, negated dis-
junction, conditional, negated conditional, biconditional, negated biconditional,
and double negation as we did before. They were introduced on pp. 71–75.

10.9 Branch Closure Rules

Our branch closure rules also remain unchanged. A branch closes if and only if
it contains some sentence Φ along with its negation, ¬Φ. mark closed branches
with an ‘×’.

10.10 Tree Completion Rules

The completion rules, however, require a modification. The SL tree completion
rule, given in §5.6, said that a branch was complete if every sentence, other than
atoms and negated atoms, has been resolved. In the QL tree system we need
for our tree completion rules to take account of the fact that some sentences
need to be acted on multiple times. The universal rule, for example, lets one
take whatever instance one likes; we need our completion rules to ensure that
we’ve taken enough instances.

For example, this should not count as a completed tree:

1.
2.
3.

4.

5.

∀x(Fx ⊃ Ga) \a
¬Ga
Fb

Fa ⊃ Ga X

¬Fa Ga
×

Our universal rule can be processed multiple times. This tree has only taken
the a instance of (Fx ⊃ Ga); if it also took the b instance, the tree would close:

178 forallx (UBC edition)

1.
2.
3.

4.

5.

6.

7.

∀x(Fx ⊃ Ga) \a, b
¬Ga
Fb

Fa ⊃ Ga X

¬Fa

Fb ⊃ Ga

¬Fb
×

Ga
×

Ga
×

We don’t want this tree to count as complete until it’s taken both the a and
the b instance. The universal says that every instance must be true; we don’t
ensure that this is satisfied if only some instances have been taken.

If we knew how many names our model used, we could simply require that every
instance be taken. But we don’t know in advance how many names our models
are going to use. QL trees construct their interpretations as they go. (Remem-
ber that resolving existentials and negated universals involves introducing new
names.) Here is the requirement we want: we require that we’ve taken the in-
stance corresponding to every name in the branch. If, after taking an instance
or two, we go on to introduce a new name within the same branch, that branch
isn’t complete until we’ve taken that instance as well. Once again, this is why
we use the \ instead of a X. We can’t be sure that we’re finished with that line
until we’ve done the rest of the tree.

A wff is resolvable if it is the kind of wff that gets a check mark upon pro-
cessing it. (That’s everything except for atoms, negated atoms, universals, and
negated existentials.) A wff is general if it is a universal or a negated existen-
tial. Here is our new tree completion rule:

A branch is complete if and only if either (i) it is closed, or (ii) every
resolvable sentence in the branch has been resolved, and for every
general sentence and every name a in the branch, the a instance of
that general sentence has been taken.
A tree is complete if and only if every branch in that tree is complete.

ch. 10 ql trees 179

10.11 Resolution order

As in the our SL tree system, the rules do not indicate any particular resolution
order. But— also as in the SL system— some strategies are going to be more
efficient than others. In fact, given the increased complexity of our rules and the
fact that some resolutions introduce new names, it is even more important, from
an efficiency perspective, than it used to be to employ sensible strategies. It is
still a good idea to do linear rules before branching rules, and when possible, to
perform a branching rule when you can see that one branch will close right away.
Now, we can use similar strategies to take instances from general sentences in a
strategic way. If you’re not sure which instance to take first, look a step ahead
and see if one of the instances will close a branch.

Here is a simple tree illustrating the point. Let’s consider whether Gb ⊃ ∀x¬Fx
and ∃xFx entail ¬Gb. We begin by putting the first two sentences and the
negation of the third in the root of a tree:

{Gb ⊃ ∀x¬Fx,∃xFx} ` ¬Gb

1.
2.
3.

Gb ⊃ ∀x¬Fx
∃xFx
¬¬Gb

Ordinarily, it is efficient not to branch too early. But in this case, if we look
ahead a step, we can see that resolving the conditional on line 1 will close one
branch immediately. So that’s a good place to start.

{Gb ⊃ ∀x¬Fx,∃xFx} ` ¬Gb

1.
2.
3.

4.

Gb ⊃ ∀x¬Fx X
∃xFx
¬¬Gb

¬Gb
×
3, 4

∀x¬Fx 1 ⊃

From here we have three choices to consider: lines 2, 3, and 4. Line 3 pretty
obviously won’t get us anywhere interesting, so let’s consider either the existen-
tial at line 2 or the universal at line 4. It’s usually a good rule of thumb to do
the new instances first— that way we’ll have more information when we make
decisions about which instances to take for the general rules. So let’s take the
a instance of line 2.

180 forallx (UBC edition)

{Gb ⊃ ∀x¬Fx,∃xFx} ` ¬Gb

1.
2.
3.

4.

5.

Gb ⊃ ∀x¬Fx X
∃xFx Xa
¬¬Gb

¬Gb
×
3, 4

∀x¬Fx

Fa

1 ⊃

2 ∃

Now we turn our attention to the universal at line 4. We can take whatever
instance we want. Let’s be intelligent about it. The b instance wouldn’t do
anything interesting; Fb won’t interact with that ¬¬Gb in any helpful way. But
the a instance will close the tree. So we take that one.

{Gb ⊃ ∀x¬Fx,∃xFx} ` ¬Gb

1.
2.
3.

4.

5.

6.

Gb ⊃ ∀x¬Fx X
∃xFx Xa
¬¬Gb

¬Gb
×
3, 4

∀x¬Fx \a

Fa

¬Fa
×
5, 6

1 ⊃

2 ∃

4 ∀

Planning ahead can help make your trees more efficient. The general principle
you should keep in mind is, if you have a choice for what resolvable sentence to
resolve, or what instance of a general sentence to take, make a choice that will
allow you to close branches more quickly.

10.12 Infinite Trees

In the SL tree system, every development of the tree took us closer to a com-
pleted tree, because we checked sentences above as resolved, and wrote simpler
sentences in one or two branches below. SL trees are guaranteed to be com-
pleted in a finite number of steps— they will either close, or they will reach a
point where everything resolvable has been resolved.

Because of the way our QL system works, it is possible for trees to continue
indefinitely without closing. General sentences require that instances be taken

ch. 10 ql trees 181

for all names in the branch; but the rules for existentials and negated universals
require that new names be introduced. Often, we can introduce the new names
before dealing with the general instances, as in this completed tree:

1.
2.

3.

4.

∃xFx Xa
∀xGx \a

Fa

Ga

1 ∃

2 ∀

In this tree, we introduce the name a for the existential, then take the instance
for the one and only name in the branch for the universal, and the tree is
complete. But things won’t always be so simple. Consider a tree with this
single sentence in its root: ∀x∃yRxy. In this case, we must begin by performing
the universal rule, as our one and only sentence is a universal. This rule allows
us to take an instance with any name. Ordinarily, we use the names that already
exist in the branch, but since there are no names, we’ll just take the a instance
from the start, putting that instance— an existential— on line 2.

To resolve that existential, we must use a new name. So on line 3, we take the
b instance from line 2.

1.

2.

3.

∀x∃yRxy \a

∃yRay Xb

Rab

1 ∀

2 ∃

This tree has not closed, but note that it is not complete. We haven’t taken
the b instance of the universal on line 1. When we do so, we will find ourselves
with another existential on line 4; it in turn requires an instance involving a
new name, and the process will continue indefinitely.

182 forallx (UBC edition)

1.

2.

3.

4.

5.

6.

7.

8.

∀x∃yRxy \a, b, c

∃yRay Xb

Rab

∃yRby Xc

Rbc

∃yRcy Xd

Rcd

...

1 ∀

2 ∃

1 ∀

4 ∃

1 ∀

5 ∃

As the pattern makes clear, this tree will never close, but it will also never be
complete. It will just keep taking instances of an existential with new names,
then taking those instances of the universal, which in turn require a new exis-
tential, and so on. (Eventually we will run out of letters, but we have subscripts
available too, so we’ll never run out of names.) Because the tree will never close,
its open branch is describing a model that satisfies the root, but the model sug-
gested is an infinite one. Line 3 tells us that <a, b> should be in the extension
of R; line 5 says that <b, c> should too. There is a clear pattern that tells us
what R’s extension must be like:

extension(R) = {<a, b>,<b, c>,<c, d>,<d, e>, . . .}

Or we can represent it graphically, thus:

extension(R) =

Rxy a b c d . . .
a - 1 - - -
b - - 1 - -
c - - - 1 -
d - - - - 1
... - - - - -

The blanks indicate that it doesn’t matter whether those pairs fall under the
extension of R or not.

What this suggests is that if one had a UD comprising an infinite list of objects,
with each object related via R to the next item in the list, this model would
satisfy the root of the tree. For example, suppose that our UD were the set

ch. 10 ql trees 183

of all natural numbers, and that we interpreted Rxy as x + 1 = y. For every
number x, there is a number y that is equal to x+ 1.

Note, however, that this is only one of many possible ways to construct a model
meeting the constraint described. In fact, we don’t necessarily require that our
UD be infinite. Our tree ended up using an infinite number of names, but there’s
no rule requiring that each name be assigned to a unique object.

The extension of R requires that certain pairs be included. Note that it doesn’t
require that any pairs be excluded. There are no 0s in the chart above. The
blanks mean it doesn’t matter whether you include them. A model that included
every ordered pair in the extension of R would be an example of the kind of
model indicated:

Rxy a b c d . . .
a 1 1 1 1 1
b 1 1 1 1 1
c 1 1 1 1 1
d 1 1 1 1 1
... 1 1 1 1 1

Once we put it this way, we can see that the R predicate needn’t draw any
distinctions between the various objects in the domain. Each object could be
the same, as far as R is concerned. So we could even offer a simpler model, with
a UD comprising a simple object that is R-related to itself.

UD = {a}
extension(R) = {<a, a>}

When a tree continues indefinitely, the root is satisfiable; you can describe a
model for it using an infinite domain, taking advantage of the pattern indicated
by the infinite branch; or you can often find a way to simplify it into a model
with a finite UD.

Let’s consider another example of an infinite tree. This time, we’ll use names
with subscripts. Everything is straightforward up until line 6; at line 7, we need
to go back and take a second instance of line 2, and the infinite cycle begins.

184 forallx (UBC edition)

1.

2.

3.

4.

5.
6.

7.

8.

9.
10.

11.

12.

13.
14.

15.

∃x∀y∃z(¬Rxy&Rzx) Xa1

∀y∃z(¬Ra1y&Rza1) \a1, a2, a3

∃z(¬Ra1a1 &Rza1) Xa2

¬Ra1a1 &Ra2a1 X

¬Ra1a1
Ra2a1

∃z(¬Ra1a2 &Rza1) Xa3

¬Ra1a2 &Ra3a1 X

¬Ra1a2
Ra3a1

∃z(¬Ra1a3 &Rza1) Xa4

¬Ra1a3 &Ra4a1 X

¬Ra1a3
Ra4a1

...

1 ∃

2 ∀

3 ∃

4 &

2 ∀

8 ∃

9 &

2 ∀

11 ∃

9 &

If we continued drawing the tree, we’d take the a4 instance of the universal at
line 2 on line 15, then introduce a new name by resolving that universal. The
tree will continue forever, again with a clear pattern. Lines 5, 9, 13, etc. tell
us that for every integer i, Ra1ai=0. Lines 6, 10, 14, etc. tell us that for every
i > 1, Raia1=1. Or in chart form:

Rxy a1 a2 a3 a4 . . .
a1 0 0 0 0 0
a2 1 - - - -
a3 1 - - - -
a4 1 - - - -
... 1 - - - -

This chart describes the extension of R that, as part of a model with the infinite

ch. 10 ql trees 185

UD {a1, a2, a3, . . . }, would satisfy ∃x∀y∃z(¬Rxy&Rzx). As in the previous
example, we do not need an infinite model to satisfy this sentence; the extension
of R here can be collapsed into a finite one. In the previous example, our
extension required no distinctions between any of the objects; here, we do have
some required differences. Ra1a1 = 0, but Ra1a2 = 1. So our model is treating
a1 and a2 differently. But it requires no further distinctions than that. Every
object after a2 can be the same as a2, as far as this model is concerned. So a
two-object model would also suffice to satisfy this sentence. Here is a graphical
representation of the denotation for R:

Rxy a1 a2
a1 0 0
a2 1 -

Or, describing the model in question with sets and n-tuples:

UD = {a1, a2}
extension(R) = {<a1, a2>}

The reasoning involved in collapsing models with infinite domains into finite
ones centrally involves reasoning about what distinctions are required: do we
need to suppose that the objects named are different objects, or can we treat it
as a case of multiple names for the same thing. In Chapter 12, we’ll foreground
this kind of question in more detail, and introduce a way to talk about it in QL.

Note that, for purposes of answering questions about entailment, you needn’t
go through the reasoning that allows you to move from infinite models to finite
ones that would serve just as well. The tree method, most fundamentally, is
a question about whether there is any possible model of the root. If a tree
continues infinitely, then it is answering that question: yes, there is an infinite
model for it. It’s not necessary, for the question of whether there is any model
satisfying the root, to determine whether there is a finite model that does so.

10.13 Common Student Errors

Using old names

The most frequent errors for trees in QL involve ignoring the restrictions on
names involved in taking instances. Particular sentences (existentials and negated
universals) require a new name— if the name appears anywhere in the branch
at the time the existential is taken (including below it), it is not suitable for
substitution via these rules.

For example, this tree is a mistake:

186 forallx (UBC edition)

1.
2.

3.

4.

∀x∃y¬Rxy \a
Rab

∃y¬Ray Xb

¬Rab
×
2, 4

1 ∀

3 ∃

Line 3 here is fine; but at line 4, this tree takes the b instance of the existential
on line 3, even though b appeared in line 2. The existential rule requires a
new name. The correct version of this tree will remain open. (It will extend
infinitely.)

Main Connectives

Always work on the main connectives. If you have a sentence like

∀x∃y¬Ryx& (Fa ⊃ Fb)

don’t use the universal rule. This sentence is a conjunction, so you must perform
the conjunction rule on it. That will give you a universal, at which point you
can take an instance.

Practice Exercises

Part A ? Use a tree to test whether the following sentences are tautologies. If
they are not tautologies, describe a model on which they are false.

1. ∀x∀y(Gxy ⊃ ∃zGxz)
2. ∀xFx ∨ ∀x(Fx ⊃ Gx)
3. ∀x(Fx ⊃ (¬Fx ⊃ ∀yGy))
4. ∃x(Fx ∨ ¬Fx)
5. ∃xJx ≡ ¬∀x¬Jx
6. ∀x(Fx ∨Gx) ⊃ (∀yFy ∨ ∃xGx)

Part B ? Use a tree to test whether the following arguments are valid. If they
are not, give a model as a counterexample.

1. Fa, Ga, .˙. ∀x(Fx ⊃ Gx)
2. Fa, Ga, .˙. ∃x(Fx&Gx)

ch. 10 ql trees 187

3. ∀x∃yLxy, .˙. ∃x∀yLxy
4. ∃x(Fx&Gx), Fb ≡ Fa, Fc ⊃ Fa, .˙. Fa
5. ∀x∃yGyx, .˙. ∀x∃y(Gxy ∨Gyx)

Part C Translate each argument into QL, specifying a UD, then use a tree to
evaluate for validity. If they are invalid, give a model as a counterexample.

1. Every logic student is studying. Deborah is not studying. Therefore,
Deborah is not a logic student.

2. Every door can be opened by some key. Therefore, some door can open
every key.

3. Kirk is a white male Captain. Therefore, some Captains are white.
4. The Red Sox are going to win the game. Every team who wins the game

will be celebrated. Therefore, the Red Sox will be celebrated.
5. The Red Sox are going to win the game. Therefore, the Yankees are not

going to win the game.
6. All cats make Frank sneeze, unless they are hairless. Some hairless cats

are cuddly. Therefore, some cuddly things make Frank sneeze.

Chapter 11

Soundness and
Completeness for QL Trees

In Chapter 6 we proved that our SL tree method works the way it is supposed
to: any tree that closed was guaranteed to have a root that was unsatisfiable
in SL, and any completed tree that remained open was guaranteed to describe
an SL model that satisfies the root. These two theorems together are called
soundness and completeness.

soundness: If a tree closes, that guarantees that its root is unsat-
isfiable. In other words:

X ` ⇒ X |=

completeness: If a root is unsatisfiable, that guarantees that the
tree will close. In other words:

X |= ⇒ X `

These definitions were first given on pp. 82 and 90. They are equally applicable
to our extended tree system for QL. The system introduced in Chapter 10 is
also sound and complete. The rules are designed in a way so as to guarantee
that if the tree closes, there is no model for the root (sound), and to guarantee
that an open branch describes a model for the root (complete). The proofs for
these two theorems are structurally very similar to the proofs given in Chapter
6.

188

ch. 11 soundness and completeness for ql trees 189

11.1 Soundness

If our tree method is sound, then there is no possible set of QL sentences X that
are satisfiable, where a tree with root X closes. Not every possible tree method
is sound. For example, suppose we dropped the requirement, for a negated
universal, that one take an instance with a new name.

In other words, suppose we replaced this rule (introduced on p. 176)

¬∀x Φ Xa

¬Φ x ⇒ a where a is new

with this alternate one:

¬∀x Φ Xa

¬Φ x ⇒ a for any a

If we had this rule, there would be counterexamples to soundness— trees with
satisfiable roots, which nevertheless closed. Here is an example:

1.
2.

3.

Fa
¬∀xFx

¬Fa
×
1, 3

2 alt˙¬∀

This tree is a counterexample to the soundness of the alternate tree system just
described. To prove that our system is sound is to prove that our actual rules
do not allow for this kind of tree. To prove this, we’ll begin by assuming that X
is satisfiable, and demonstrate from that assumption that at least one branch of
any tree that develops according to our rules will remain open. As in the case of
the parallel discussion in Chapter 6, our proof will be a recursive one. We will
demonstrate that, if the tree starts with a set of satisfiable sentences, then, for
each legal way the tree may develop, at least one branch will continue to have
a set of satisfiable sentences. This is effectively to show that such a branch will
never close, since branches only close when they contain some sentences Φ and
¬Φ, which are of course never jointly satisfiable.

190 forallx (UBC edition)

Suppose, then, we have some satisfiable set of sentences X in the root of a tree.
If the root is satisfiable, then there is some model that satisfies it. Call this
interpretation I. We prove that, if our tree follows the rules given in Chapter
10, then I doesn’t just satisfy the root— it satisfies every sentence in any
completed branch. We will prove this recursively.

Root

We assume that the tree begins with a satisfiable root. Given this assumption,
I is just our name for one of the interpretations we are assuming must exist.
So I trivially satisfies everything in the root.

Now we must prove, for each possible way of developing the tree, that if it the
sentences in the branch we begin with are satisfiable, then the sentences we have
after applying the rule are satisfiable too. There are thirteen possible ways a
tree can develop, corresponding to the thirteen kinds of non-atomic sentences
in QL, each of which has a particular processing rule. The thirteen kinds of
sentences are:

. double negation

. conjunction

. negated conjunction

. disjunction

. negated disjunction

. conditional

. negated conditional

. biconditional

. negated biconditional

. existential

. negated existential

. universal

. negated universal

Fortunately, we’ve already proven what we need to prove for the first nine items
on the list. Our QL tree method uses all the same rules as the SL method did

ch. 11 soundness and completeness for ql trees 191

for the sentential connectives; we proved in §6.4, for each of those rules, that it
has the key property: if some interpretation I satisfies what comes above the
rule, then the development below it is also satisfiable. (Indeed, we proved there
that the very same interpretation, I, satisfied it.)

So to extend our soundness proof to our QL system, we need only prove the
same thing for the four rules for quantifiers. This is the project of the next four
subsections.

Existentials

Suppose some satisfiable set of QL sentences X is developed according to the
existential rule:

∃x Φ Xa

Φ x ⇒ a where a is new

We assume that I models X , which includes some existential ∃x Φ. We want to
prove that there is a model for the expanded branch which comprises both X
and Φ x ⇒ a , i.e., X∪Φ x ⇒ a . Unlike in the parallel discussion proof for the
sentential rules, we cannot assume that I itself satisfies our new development,
because our new development introduces a new name; we cannot assume that
I included any assignment for the new name a. But we can be assured that
I can be expanded into a new, similar interpretation, I*, which does include
a. Moreover, since we know that I satisfied the existential ∃x Φ, we know that
there was some object in I’s domain that satisfied Φ. So it will be possible
to construct our new interpretation I* so that it includes the new name, and
assigns it to that object. This will ensure that I*(Φ x ⇒ a) = 1. And since
I* is just like I with respect to everything other than a— and since we are
assured that a was not in X (the rule requires that it be new)— I* will satisfy
X in just the same way that I did.

In other words, assuming that I satisfies every sentence in a branch before the
existential rule is performed, there is guaranteed to be a new interpretation, I*,
which is an extension of I that includes a new name attached to an object in
the UD satisfying the existential, which satisfies everything in the branch up to
the point after the existential rule is performed. That is to say, like the nine
sentential rules considered in Chapter 6, the existential rule can never take you
from a satisfiable branch to an unsatisfiable one.

192 forallx (UBC edition)

Universals

Suppose a branch of a tree uses the rule for universals:

∀x Φ \a

Φ x ⇒ a for any a

Assume that the set of of QL sentences X above this development is satisfiable.
Then some model I makes it true. The universal rule allows an instance to be
developed using any name, so, as before, we cannot guarantee that I makes
the development true, because I may or may not interpret the name a; but
as before, we can be assured if it doesn’t, we can extend the interpretation to
include it. So consider a new model I*, which includes the name a. If a wasn’t
interpreted by I, then it can be assigned to any element of the UD. Since the
rest of I is unchanged, and since I(∀x Φ) = 1, we know that our new extended

interpretation will satisfy Φ x ⇒ a too.

That is to say, once again, if we assume that I satisfies every sentence in a branch
before the universal rule is performed, there is guaranteed to be a model— either
the very same one, I, or a modification of it, I*, which assigns a new name to
any object in the UD, which satisfies everything in the branch up to the point
after the universal rule is performed. In other words, the universal rule can
never take you from a satisfiable branch to an unsatisfiable one.

Note that the fact that we can perform this rule multiple times does not interfere
with the soundness proof. We have proven that each time you perform it, you
are guaranteed not to switch from a satisfiable branch to an unsatisfiable one.
So no matter how many times you take an instance of a universal, you won’t be
able to go from a satisfiable set of sentences to an unsatisfiable one.

Negated Existential

The reasoning behind soundness for the negated existential rule is exactly par-
allel to that for the universal rule. We begin by assuming that some negated
universal ¬∃x Φ, is satisfied by I. Here is the rule for negated existentials:

¬∃x Φ \a

¬Φ x ⇒ a for any a

ch. 11 soundness and completeness for ql trees 193

We want to prove that the result of this rule is also satisfied, either by I itself (if a
was interpreted in I), or by an extension of it I*, that preserves the satisfaction
of everything above (if a was a new name). Since I satisfies ¬∃x Φ, it makes
every substitution instance for x of Φ false. If a was interpreted by I already,

then I(Φ x ⇒ a) = 0. If it wasn’t, the new model I* will assign the new
name to some object in the UD of the original model; since no object in that
model satisfied Φ, I*(Φ x ⇒ a) = 0. Either way, our interpretation falsifies

Φ x ⇒ a , and so satisfies that sentence’s negation, which is the continuation
of the branch.

So this rule too can never take us from a satisfiable set of QL sentences to an
unsatisfiable one.

Negated Universal

Negated universals are similar to existentials. Assume that a negated universal
is part of a set of sentences satisfied by I, and that this rule is then applied:

¬∀x Φ Xa

¬Φ x ⇒ a where a is new

Construct a new interpretation I*, which differs from I only in that it includes
an interpretation of the new name a, and assigns that name to some object that
falsifies Φ. We know there is at least one such object because we are assuming
that I satisfies the negated universal. Then our new interpretation I* satisfies
the new development of the branch. It also satisfies everything above the branch,
just like I did, because nothing above the branch included the name a.

That last bit of reasoning relied centrally on the requirement that we’re taking a
new name. We saw in the introduction to this chapter that if we do not include
that requirement, soundness would be violated.

Summarizing the soundness proof

We have now shown, for our four quantifier rules, that each of them has the
following property: you can never start with a branch that is satisfiable, and
use that rule to extend that branch into one that is unsatisfiable. Since we’ve
also shown that the nine sentential rules also have this property, we’ve effectively
shown that there is no possible way to start with a satisfiable set of sentences

194 forallx (UBC edition)

and develop the branch into one that is not satisfiable. This in turn means that
if the branch starts with a satisfiable set of sentences, the branch will never
close. But that’s just what soundness says: if the root is satisfiable, the tree is
guaranteed to remain open. Soundness is proven.

11.2 Completeness

Completeness says that if a branch of a completed tree remains open, then the
root is satisfiable. We prove this by assuming that we have an open completed
branch, and use it to construct an interpretation that satisfies every sentence
in that branch, which includes the root. The proof for completeness of our QL
tree system is structurally just like the one given in Chapter 6.

Given a completed open branch, we construct a model I, based on that branch,
as follows: for any predicate F , if some QL atom Fa1, . . . , an is in the branch—
i.e., if P or Fa or Rab is in the branch— then I makes that atom true, by
putting <a1, . . . , an> in the extension of F . And if ¬Fa1, . . . , an is in the
branch, I excludes <a1, . . . , an> from the extension of F , thus making the
negation of the atom true. This is of course just the way that we construct
interpretations from open branches of completed trees.

Now we will prove, for every sentence in QL, that if it is in the open branch, it
is made true by I. The QL atoms trivially meet this criterion— I was designed
precisely to satisfy them. We will prove by induction that every possible QL
sentence also meets this criterion. In §6.6 we showed, for each propositional
connective, if you construct a more SL complex sentence out of simpler SL
sentences that have this criterion, the more complex one will too. That proof
carries on unchanged here. So it remains only to show that the same is true of
our four quantifier rules.

Existential

Consider an existential— a QL sentence of the form ∃x Φ. We need to prove
that if it is in the open, completed branch, I satisfies it. Since the branch is
complete, we know that the existential rule has been performed to resolve this
sentence. So the branch includes a substitution instance of Φ that used a new
name. For our present purposes, it doesn’t actually matter whether the name
was new— the fact that there is some instance of Φ in the branch already is
enough to prove what we need to prove. Since there is an instance of Φ in the
branch, if it is satisfied by I, the existential ∃x Φ must be satisfied by I too.

So, just as we showed for the nine sentential rules, the existential rule has

ch. 11 soundness and completeness for ql trees 195

this important property: in a completed tree, any interpretation that satisfies
the simpler sentences below the existential development, must also satisfy the
existential above it.

Universal

Suppose a universal sentence ∀x Φ appears in a completed open branch. Since
the branch is complete, that means that, for every name a in the branch,
Φ x ⇒ a is also in the branch. We therefore assume that I satisfies each

Φ x ⇒ a ; so I must also satisfy ∀x Φ. Because the UD for I includes only
those names that occur in the branch, every instance of Φ is included, so the
universal is true.

Once again, any interpretation that satisfies everything below the universal
development, must also satisfy the universal above it.

Negated Existential

Negated existentials work just like universals. If ¬∃x Φ is in a completed open

branch, then for every name a in I, ¬Φ x ⇒ a is below it in the branch. And
if I satisfies each of these negations, it will also satisfy the negated existential.

Negated Universal

Negated universals work just like existentials. If ¬∀x Φ is in the branch, then
some instance of the negation ¬Φ is in the branch below. If I satisfies some
instance of ¬Φ, then, given the definition of truth for negation and universals
in QL, it will also satisfy ¬∀x Φ.

Summarizing the completeness proof

The sentence shapes just considered, combined with the nine shapes considered
in §6.6, correspond to all the possible QL sentences. So we have proven that, for
any possible QL sentence Φ, if an interpretation satisfies the simpler sentences
below it in the branch, that interpretation also satisfies Φ itself. Since we also
have a recipe for constructing an interpretation I that is guaranteed to satisfy
the atoms, we can prove by induction that it can satisfy everything in the
branch, including the root. A completed open branch guarantees a satisfiable
root. Completeness is proven.

196 forallx (UBC edition)

Practice Exercises

? Part A Following are possible modifications to our QL tree system. For each,
imagine a system that is like the system laid out in this chapter, except for the
indicated change. Would the modified tree system be sound? If so, explain how
the proof given in this chapter would extend to a system with this rule; if not,
give a tree that is a counterexample to the soundness of the modified system.

1. Change the rule for existentials to this rule:

∃x Φ Xa

Φ x ⇒ a for any a

2. Change the rule for existentials to this rule:

∃x Φ Xd

Φ x ⇒ d (whether or not d is new)

3. Change the rule for existentials to this rule:

∃x Φ X

Φ x ⇒ a

Φ x ⇒ b

Φ x ⇒ c

for 3 different names, old or new

4. Change the rule for universals to this rule:

∀x Φ X

Φ x ⇒ a

Φ x ⇒ b

Φ x ⇒ c

for 3 different names, old or new

ch. 11 soundness and completeness for ql trees 197

5. Change the rule for existentials to this rule:

∃x Φ X

Φ x ⇒ a

Φ x ⇒ b

Φ x ⇒ c

for 3 new names

6. Change the rule for universals to this rule:

∀x Φ Xa

Φ x ⇒ a where a is new

7. Change the rule for conjunction to this rule:

Φ&Ψ X

∃x Φ
Ψ

where x does not occur in Φ

8. Change this requirement (given on page 178)...

A branch is complete if and only if either (i) it is closed, or
(ii) every resolvable sentence in every branch has been resolved,
and for every general sentence and every name a in the branch,
the a instance of that general sentence has been taken.

...to this one:

A branch is complete if and only if either (i) it is closed, or (ii)
every resolvable sentence in every branch has been resolved, and
for every general sentence, at least one instance of that general
sentence has been taken.

9. Change the branch completion requirement to:

. . . and for every general sentence and every name a that is above
that general sentence in the branch, the a instance of that gen-
eral sentence has been taken.

10. Change the branch completion requirement to:

198 forallx (UBC edition)

. . . and for every general sentence and every name a in the
branch, the a instance of that general sentence has been taken,
and at least one additional new instance of that general sentence
has also been taken.

? Part B For each of the rule modifications given in Part A, would the modified
tree system be complete? If so, explain how the proof given in this chapter would
extend to a system with this rule; if not, give a tree that is a counterexample
to the completeness of the modified system.

Chapter 12

Identity

This chapter extends QL by adding logical resources for discussion of identity. In
the logical sense, identity is about which object something is. Two things aren’t
‘identical’ in our sense just because they look exactly alike. (Identical twins
aren’t logically identical.) Neither does identity, in our logical sense, have to do
with the way an individual conceives of oneself. (We’re not getting into whether
one identifies as a woman, etc.) Instead, we will develop logical vocabulary to
talk about whether, e.g., the person who robbed the bank is the same person
as the person who shot Uncle Ben.

It is already possible to talk about identity in QL, by assigning identity and
related concepts to predicates in interpretation keys. (In this sense, it’s possible
to talk about pretty much anything in QL.) However, there are a few reasons
why we may wish to have a more robust logical notion of identity than that.
We begin by examining some of these motivations. Identity will strengthen QL,
increasing its expressive power in many ways.

12.1 Motivating identity as a logical category

Consider this sentence:

1. Only you can prevent forest fires.

How should we translate it into QL? Here is one simple option. We could use
this symbolization key:

199

200 forallx (UBC edition)

UD: people
Px: only x can prevent forest fires

u: you

And then we could translate sentence 1 straightforwardly as Pu. This might be
adequate for some purposes, but this translation misses out on a key fact about
sentence 1. Notice that sentence 1 is inconsistent with sentence 2:

2. Only your mother can prevent forest fires.

If we add a name for your mother to the symbolization key above,

m: your mother

we can translate sentence 2 as Pm. The problem is that Pu and Pm are
obviously consistent in QL, as this simple model demonstrates:

UD = {u, m}
extension(P) = {u, m}

The ‘only’ in each sentence has just been made a part of the predicate, in a
way that ignores its logical force. (Compare the analogous discussion in the
Introduction to Chapter 8 that motivated extending SL with predicates and
quantifiers.) If only you can prevent forest fires, that means that no one else—
i.e., no one who is not you— can prevent forest fires. We don’t yet have the
logical vocabulary to express these thoughts in a strong enough way.

These sentences give rise to a related issue:

3. Peter Parker lives in Queens.
4. Peter Parker is Spider-Man.
5. Spider-Man lives in Queens.

Here is a natural interpretation key for these sentences, given the resources we’ve
seen so far.

UD: people and places
Lxy: x lives in y
Ixy: x is y

p: Peter Parker
s: Spider-Man
q: Queens

ch. 12 identity 201

Then sentences 9–11 can be translated thus:

9. Lpq

10. Ips

11. Lsq

But the argument from the English 9 and 10 to 11 seems valid, whereas the
corresponding argument form is obviously invalid in QL. This model satisfies
the premises and falsifies the conclusion:

UD = {p, s, q}

extension(L) =

Lxy p s q
p - - 1
s - - 0
q - - -

extension(I) =

Ixy p s q
p - - -
s - 1 -
q - - -

Given the interpretation key above, this is a model where Peter is Spider-Man,
but where Peter and Spider-Man do not live in the same place. This does
not correspond to a genuine possibility; if Peter and Spider-Man are the same
person, then they must live in the same place. This is an important and logical
fact about identity. But in the formalism given, I is just another predicate like
L, susceptible to many different interpretations and extensions.

Here is a third example.

6. Mozart composed Le Nozze di Figaro.

7. Mozart composed Don Giovanni.

8. Mozart composed at least two things.

We introduce the obvious interpretation key:

UD: people and operas
Cxy: x composed y

m: Mozart
n: Le Nozze di Figaro
g: Don Giovanni

Then we might translate the argument thus:

202 forallx (UBC edition)

Cmn

Cmg

.˙. ∃xCmx&∃yCmy

This is a valid argument. But the problem is that ∃xCmx& ∃yCmy is a very
bad translation of ‘Mozart composed at least two things’. Notice that it is the
conjunction of two existentials, each of which says that Mozart composed at
least one thing. Suppose he composed only one thing; then each conjunct is
true, so the conjunction is true. To say that he composed at least two things,
it’s not enough to say that he composed at least one thing, and then to say
again that he composed at least one thing— we need some way to ensure that
the x and y are not the same thing.

What all three of these cases— the forest fire case, the Spider-Man case, and
the Mozart case— show us is that if we want to reflect the logical relationships
having to do with identity, we need special logical vocabulary to do so. Just as
we introduced the ‘∀’ and ‘∃’ formalisms to reflect logical facts about quantifiers,
so to do we want a special symbol for identity. That symbol will be ‘=’. Like
our other logical symbols— ‘⊃’, ‘¬’, ‘∀’, etc.— its meaning will be fixed as part
of our language. Interpretation keys tell us what predicates like Fx mean; they
don’t get to specify the meaning of the logical terms.

When we introduced quantifiers and predicates, we described the shift as switch-
ing to a new language, from SL to QL. In fact, however, QL isn’t so much a
change away from SL as it is an addition to it. (All SL sentences are QL sen-
tences, and all SL entailments are also QL entailments.) Here we will make one
more addition, corresponding to identity. We won’t introduce a whole new name
for our extended version of QL; it can be specified descriptively as ‘quantified
logic with identity’. (The choice about whether to introduce a new language
name is a purely conventional one; we’re here just following ordinary practice.)

12.2 =

We revise the definitions of grammaticality and truth in QL to add the following
stipulation:

For any two names a and b , ‘a = b ’ is an atomic sentence in QL. It is true in
a model just in case, in that model, the referent of a is the same object as the
referent of b ; i.e., the model assigns a and b to the same object. For example,
here is a model:

ch. 12 identity 203

UD = {Peter Parker, Aunt May}
referent(p) = Peter Parker
referent(s) = Peter Parker

referent(m) = Aunt May

In this model, p=s is true, and p=m and s=m are false. We’ll introduce a
familiar shorthand for negating identity claims; s6=m is our preferred abbrevi-
ation for ¬s=m. (Remember that ‘s=m’ is an atomic sentence, so ‘¬s=m’ is
the negation of that sentence. It is tempting, when one looks at that sentence,
to attach the negation only to s, so that the sentence says that the ‘negation of
s’ is identical to m. But this interpretation ultimately makes no sense; names
do not have negations in QL. Only sentences do. This is part of the reason we
will usually prefer to write s6=m, rather than the potentially confusing ¬s=m.
But if you do see or write the latter, remember that the negation applies to the
whole identity claim.)

A logical notion of identity is just what is needed to overcome the shortcomings
of the translations in the introduction to this chapter.

12.3 Identity and ‘no one else’

Consider again sentence 1:

1. Only you can prevent forest fires.

In the introduction we tried translating this into QL with a predicate ‘only
can prevent forest fires’; now we can reflect its logical structure more

fully. So we’ll let our predicate just indicate the ability to prevent forest fires:

UD: people
Px: x can prevent forest fires

u: you

If only you can prevent forest fires, that means that you can prevent forest fires,
and, moreover, no one else— no one who is not you— can prevent forest fires.
The first part is simple. You can prevent forest fires: Pu. Now we must say that
no one else can prevent forest fires. Another way to say that is this: it is not
the case that there is someone who is not you who can prevent forest fires. So
you can think of that as a negated existential: ¬∃x(x 6=u&Px). Putting these
two pieces together as a conjunction, we can translate sentence 1 as:

1. Pu&¬∃x(x 6=u&Px)

204 forallx (UBC edition)

A second way of characterizing the ‘no one else’ clause would translate it as a
universal claim, saying, of everything, if it is not identical to you, then it cannot
prevent forest fires: ∀x[(x 6=u) ⊃ ¬Px]. This is equivalent to ¬∃x(x6=u&Px);
either is an acceptable translation. (By the end of this chapter we’ll be able to
prove this equivalence.)

Using similar reasoning, one can translate other kinds of sentences that talk
about objects other than ones just mentioned. For example, suppose we want
to say that Rebecca only thinks about herself. She thinks about herself, and
there is no one else that she thinks about. Using r for Rebecca and Txy for ‘x
thinks about y’, we could say:

Trr&¬∃x[(x 6=r) &Trx]

There are more examples of similar kinds of translation exercises in the practice
problems at the end of this chapter.

12.4 Identical objects satisfy identical predicates

In §12.1, we saw that treating identity as a simple predicate prevented the
validity of intuitively valid arguments like

9. Peter Parker lives in Queens.
10. Peter Parker is Spider-Man.
11. Spider-Man lives in Queens.

The problem was that if the extension of the identity predicate can simply be
presented in a model, without regard for the other features of the model, there
was no guarantee that p and s— the names for Peter Parker and Spider-Man—
were related in any particular way, just because <Peter Parker, Spider-Man>
happened to be assigned in the extension of the I predicate.

But if we translate the identity predicate with the QL identity claim p=s, this
requires that the names s and p be assigned to the very same object in the
model. Consequently, for any sentence Φ involving the name p, Φ p⇒ s — the
sentence that results from replacing each p with an s— will have the same truth
value as Φ. If Fp is true, then the object named by p is in the extension of F .
And if p=s, then the object named by p is the very same object as the object
named by s. So of course the object named by s (that same object) must also
be in the extension of F . In general, identical objects have identical properties.

(The converse is not true in general. There is no rule in QL that says that if all
the same wffs are true of two different names, they must be two names for the
same object.)

ch. 12 identity 205

If Peter is Spider-Man, then everything true of Peter is also true of Spider-Man.
So this argument form, unlike the first translation we attempted, is valid in QL:

Lpq
p=s

.˙. Lsq

In §12.6 below we’ll extend our tree method to claims with identity, which will
give us a formal means for proving the validity of arguments like this one. (The
natural deduction system for QL given in Chapter 13 will give us another.)

12.5 Quantity

Identity also lets us talk about quantity in a way that wasn’t available before.
In §12.1 we observed some challenges with translating claims about the number
of objects that satisfy a particular description. For example, we struggled with
sentences like ‘Mozart composed more than one opera’. But identity makes such
claims straightforward.

UD: people and operas
Cxy: x composed y
Ox: x is an opera
m: Mozart
n: Le Nozze di Figaro
g: Don Giovanni

We want to say that there are two things, that have the following features: they
are different from each other, they are both operas, and they are both composed
by Mozart. A double-existential sentence, listing those conjuncts, will suffice:

∃x∃y(x 6=y&Ox&Oy&Cmx&Cmy)

Strictly speaking, QL conjunctions only have two conjuncts, so to write this
sentence scrupulously, we’d need to include brackets to signify that we’re talking
about conjunctions of conjunctions:

∃x∃y(x 6=y& [(Ox&Oy) & (Cmx&Cmy)])

In sentences like these— and the longer ones listing more conditions that will
feature soon— it is usually preferable for readability to leave these internal
brackets out. We will write as if our system allows arbitrary numbers of con-
juncts, with the understanding that, should the need arise, we could always put
them back in explicitly. (We’ll rarely have occasion to do so.)

206 forallx (UBC edition)

This sentence says that Mozart wrote at least two operas. To say that he wrote
at least three operas would require another quantifier with a new variable z,
and the specification that z be an opera, written by Mozart, and non-identical
to both of the ones previously mentioned:

∃x∃y∃z(x 6=y&x 6=z& y 6=z&Ox&Oy&Oz&Cmx&Cmy&Cmz)

As you can see, these sentences get long and complicated rather quickly.

Suppose we wanted to say that Mozart composed exactly two operas— no more,
and no fewer. There are two reasonably natural choices for how to say that.
One is to conjoin the first QL sentence of this section— Mozart composed at
least two operas— with the negation of the second— Mozart did not compose
at least three operas. The result is:

∃x∃y(x 6=y&Ox&Oy&Cmx&Cmy) &

¬∃x∃y∃z(x 6=y&x 6=z& y 6=z&Ox&Oy&Oz&Cmx&Cmy&Cmz)

A slightly more efficient way of saying the same thing, rather than conjoining a
new negated triple existential, would be to add, within the scope of the first three
quantifiers, a conjunct to the effect that every opera composed by Mozart is one
of the two mentioned in that first conjunction. To say that any opera composed
by Mozart is either x or y is to say that, for any z, if z is an opera composed by
Mozart, then it is either x or y. In other words: ∀z[(Oz&Cmz) ⊃ (z=x∨z=y)].
So another way to say that Mozart composed exactly two operas is:

∃x∃y∃z(x 6=y&x 6=z& y 6=z&Ox&Oy&Oz&Cmx&Cmy&Cmz) &

∀z[(Oz&Cmz) ⊃ (z = x ∨ z = y)])

So identity gives us a way to talk about quantities, albeit not a particularly
efficient one.

Definite descriptions

In 1905, Bertrand Russell famously characterized definite descriptions in terms
of identity. A definite description is a description that implies that only one
object satisfies it. Paradigmatically, definite descriptions are ones that use the

ch. 12 identity 207

definite article ‘the’. If I say ‘the baby is hungry’, I’m saying that the one and
only baby we might be talking about is hungry. Russell was motivated in part
by the apparent fact that one can use this sort of language in a meaningful
way even if one is wrong about whether there’s any baby around. If there is
no baby— the crying I’m hearing is a recording— my statement is false, but
it’s still meaningful. For this reason, Russell was reluctant to suppose that we
should understand ‘the baby’ as a name. Remember, in QL, all names have
to refer to objects in the UD. Instead, my sentence can be understood as an
existentially quantified claim about a unique baby. If I say ‘the baby is hungry’,
according to Russell, I’m in effect saying three things: there is a baby, there’s
no other baby than that one, and that baby is hungry. That second element,
the uniqueness claim, can be expressed in QL with identity.

UD: People in this house
Bx: x is a baby.
Hx: x is hungry.

j: Jonathan

A sentence like ‘Jonathan is hungry’ is straightforwardly translated as Hj. Ac-
cording to Russell’s theory of definite descriptions, ‘the baby is hungry’ has a
much more complex logical form: there is a baby x, there is no baby other than
x, and x is hungry.

∃x[Bx&¬∃y(By& y 6=x) &Hx]

One of the interesting features of Russell’s theory is that ‘the baby is not hungry’
is not the negation of ‘the baby is hungry’. Instead, the negation applies only
to the hunger predication in the last conjunct:

∃x[Bx&¬∃y(By& y 6=x) &¬Hx]

The reason Russell designed his theory this way was that he thought that both
of these sentences equally implied that there is a baby. If there is no baby,
then you’d be mistaken in saying either ‘the baby is hungry’ or ‘the baby is not
hungry’. Consequently, one can’t be the negation of the other. As a treatment
of the truth conditions of English sentences, Russell’s theory is controversial.
Some philosophers of language think that sentences that seem to presuppose
the existence of something that isn’t there aren’t straightforwardly false, but
are rather defective in some other way— perhaps they fail to be meaningful at
all, or perhaps they take on some truth value other than true or false. These
matters are beyond our present scope. We will remain neutral on whether
Russell’s theory is an accurate treatment of English; it is relevant for us because

208 forallx (UBC edition)

it provides an interesting and useful case for translation of sentences into QL
with identity.

The general statement of Russell’s theory of definite descriptions is, if you have
a sentence applying a predicate P to the referent of a definite description D,
translate it thus: there is something x that is D, there is nothing other than x
that is D, and x is P.

12.6 Identity and Trees

Because we have extended QL to include claims of identity, we also need to
modify our tree system. Notice that if we do not do so, the system will not be
complete. For example, the rules offered in Chapter 11 do not provide a way to
demonstrate that Fa,¬Fb, a=b |=, even though those sentences are obviously
inconsistent. Since each of those sentences are atoms or negated atoms in QL,
there is nothing to resolve, and there is no contradiction to close the tree. We
need to add new rules to deal with identity.

Here is an obvious one:

If a branch contains an identity claim a=b and some sentence Φ,

then you may add Φ a ⇒ b or Φ b ⇒ a to the branch.

Recall that ‘Φ a ⇒ b ’ just means the sentence you get by taking replacing
every ‘a’ in Φ with ‘b ’. With this rule, we can easily demonstrate that the set
of sentences mentioned above closes:

{Fa,¬Fb, a=b} `

1.
2.
3.

4.

Fa
¬Fb
a=b

Fb
×
2, 4

1, 3 =

We will add this rule to our tree system. Notice that it is not a resolution rule—
we do not put a check mark next to either sentence referenced. They may be
used again.

Since our tree system is supposed to be complete, we need to ensure that the
tree will close; it’s not enough that we have a rule that allows that it might.

ch. 12 identity 209

So, as in the case of the general rules discussed in Chapter 10, we will also
add an additional requirement governing branch completion. An open branch
is complete only if, for any identity claim a=b in the branch, for any atomic

sentence or negated atomic sentence Φ containing a in the branch, Φ a ⇒ b
is in the branch, and for any atomic sentence or negated atomic sentence Φ

containing b in the branch, Φ b ⇒ a is in the branch. In other words, the rule
above has been performed on every atomic sentence or negated atomic sentence
in the branch.

So, adding this requirement to the definition of branch completion given on page
178, we get:

A branch is complete if and only if either (i) it is closed, or (ii) all
of the following conditions are met:

1. Every resolvable sentence in the branch has been resolved

2. For every general quantified sentence Φ and every name a in
the branch, the a instance of Φ has been taken

3. For every identity claim a=b in the branch:

(a) for every atomic sentence or negated atomic sentence Φ

containing a in the branch, Φ a ⇒ b is in the branch, and

(b) for every atomic sentence or negated atomic sentence Φ

containing b in the branch, Φ b ⇒ a is in the branch.

We must also add one more rule to our tree system. Previously we said that
branches only close when they contain some sentence along with its negation.
We add one more condition that suffices for branch closure. If any branch
contains a sentence a 6=a, then that branch closes. In no model can something
be non-identical with itself.

Adding this to the rule given on page 177:

A branch closes if and only either (i) it contains some sentence Φ
along with its negation, ¬Φ, or (ii) it contains, for some name a, the
sentence a 6=a.

We need this rule, for example, to prove with a tree that ∀x a=x is inconsistent
with ∃x x 6=a:

210 forallx (UBC edition)

{∀x a=x, ∃x x 6=a} `

1.
2.

3.

4.

5.

∀x a=x \b
∃x x 6=a Xb

b6=a

a=b

b 6=b
×
4

2 ∃

1 ∀

3, 4 =

We must also take care, when constructing models from completed open branches,
to respect identity claims. If for example the sentence b=c appears in an open
branch, we will not construct a model with two different objects, b and c—
instead, we’ll just pick one of them as the object indicated, and assign both
names to it. For example, consider this tree:

1.
2.

3.

4.
5.
6.

7.

8.

9.

10.

11.

12.

∀x(Rax ⊃ x=b) \a, b, c
∃xRax Xc

Rac

Raa ⊃ a=b X
Rab ⊃ b=b X
Rac ⊃ c=b X

¬Rac
×
3, 7

c=b

Rab

¬Rab
×
8, 9

b=b

¬Raa a=b

Rbb

Rbc

2 ∃

1 ∀
1 ∀
1 ∀

6 ⊃

3, 7 =

5 ⊃

4 ⊃

8, 9 =

3, 10 =

We end up with two open branches. We only need one to demonstrate that the
root is satisfiable, but it is useful practice to consider both. Let’s begin with
the shorter open branch to the left, that completes at line 10. Examining that

ch. 12 identity 211

branch, we see three names, a, b, and c, and three atomic sentences concerning
the extension of R: Rac, Rab, and ¬Raa. Using our previous method for
constructing models, we would have posited a three-object UD and related those
objects via R in the appropriate way. Now, however, we also have identity claims
to consider. There are two identity claims in the branch. b=b doesn’t tell us
anything interesting— of course that object is identical with itself— but the
presence of c=b indicates that our model will not include separate objects b
and c. We’ll only posit one object in the UD for those two names, and another
object for a. We can pick either letter for the object; let’s call it b. (Remember,
it doesn’t matter what kinds of objects we pick for the UD; it could be Reed
Richards for all it matters. We typically pick letters because they are easy to
keep track of.)

So the model suggested by the first open branch here is

UD = {a, b}
referent(a) = a
referent(b) = b
referent(c) = b

extension(R) =
Rxy a b
a 0 1
b - -

The longer open branch includes additional identity claims. It includes a=b
and c=b, which of course implies that all three of these names are names for the
same object. So the UD for the model corresponding to the right branch will
have only one object, which all three names denote.

UD = {a}
referent(a) = a
referent(b) = a
referent(c) = a

extension(R) =
Rxy a
a 1

It it sometimes helpful, for an intuitive grip on what is going on in these trees,
to think about an English translation alongside the formalisms. For example,
suppose that Rxy is interpreted as ‘x loves y’. Line 1 of the tree says that
person a loves at most one person; line 2 says that a loves at least one person.
The tree works out two ways that might be: the one and only person a loves
could be a, or it could be someone else.

212 forallx (UBC edition)

Practice Exercises

Part A Using the symbolization key given, translate each English-language
sentence into QL with identity. For sentences containing definite descriptions,
assume Russell’s theory.

UD: people
Kx: x knows the combination to the safe.
Sx: x is a spy.
Vx: x is a vegetarian.

Txy: x trusts y.
h: Hofthor
i: Ingmar

1. Hofthor is a spy, but no vegetarian is a spy.
2. No one knows the combination to the safe unless Ingmar does.
3. No spy knows the combination to the safe.
4. Neither Hofthor nor Ingmar is a vegetarian.
5. Hofthor trusts a vegetarian.
6. Everyone who trusts Ingmar trusts a vegetarian.
7. Everyone who trusts Ingmar trusts someone who trusts a vegetarian.
8. Only Ingmar knows the combination to the safe.
9. Ingmar trusts Hofthor, but no one else.

10. The person who knows the combination to the safe is a vegetarian.
11. The person who knows the combination to the safe is not a spy.

? Part B Using the symbolization key given, translate each English-language
sentence into QL with identity. For sentences containing definite descriptions,
assume Russell’s theory.

UD: cards in a standard deck
Bx: x is black.
Cx: x is a club.
Dx: x is a deuce.
Jx: x is a jack.

Mx: x is a man with an axe.
Ox: x is one-eyed.

Wx: x is wild.

1. All clubs are black cards.
2. There are no wild cards.
3. There are at least two clubs.
4. There is more than one one-eyed jack.
5. There are at most two one-eyed jacks.

ch. 12 identity 213

6. There are exactly two black jacks.
7. There are exactly four deuces.
8. The deuce of clubs is a black card.
9. One-eyed jacks and the man with the axe are wild.

10. If the deuce of clubs is wild, then there is exactly one wild card.
11. The man with the axe is not a jack.
12. The deuce of clubs is not the man with the axe.

? Part C Using the symbolization key given, translate each English-language
sentence into QL with identity.

UD: people, generations, and monsters
Gx: x is a generation.
Hx: x is human.
Sx: x is a slayer.
Vx: x is a vampire.
Dx: x is a demon.
Wx: x is a werewolf.
Fx: x is a force of darkness.

Axy: x will stand against y.
Bxy: x is born in generation y.
Kxy: x will kick y.

b: Buffy
f: Faith

w: Willow

1. Buffy and Willow were born unto the same generation.
2. There is no more than one slayer born in each generation.
3. A slayer other than Buffy is one of the forces of darkness.
4. Willow will stand against any force of darkness other than a werewolf.
5. Faith will kick everyone except herself.
6. Buffy will kick anyone who stands against a slayer, unless they are also

kicking vampires or demons.
7. In every generation a slayer is born.
8. In every generation a slayer is born. She will stand against the vampires,

demons, and forces of darkness.
9. In every generation a slayer is born. She alone will stand against the

vampires, demons, and forces of darkness.

Part D Using the symbolization key given, translate each English-language
sentence into QL with identity. For sentences containing definite descriptions,
assume Russell’s theory.

UD: animals in the world

214 forallx (UBC edition)

Bx: x is in Farmer Brown’s field.
Hx: x is a horse.
Px: x is a Pegasus.

Wx: x has wings.

1. There are at least three horses in the world.
2. There are at least three animals in the world.
3. There is more than one horse in Farmer Brown’s field.
4. There are three horses in Farmer Brown’s field.
5. There is a single winged creature in Farmer Brown’s field; any other crea-

tures in the field must be wingless.
6. The Pegasus is a winged horse.
7. The animal in Farmer Brown’s field is not a horse.
8. The horse in Farmer Brown’s field does not have wings.

Part E Construct a model to demonstrate each of the following. If you wish,
you can draw a tree to help you answer these questions; however, it is good
conceptual practice to tackle some of these questions directly by thinking about
just what you’d need to put in your model.

1.? Show that {¬Raa,∀x(x = a ∨Rxa)} is consistent.
2.? Show that {∀x∀y∀z(x=y ∨ y=z ∨ x=z),∃x∃y x 6=y} is consistent.
3.? Show that {∀x∀y x=y,∃x x 6=a} is inconsistent.
4. Show that ∃x(x=h&x=i) is contingent.
5. Show that {∃x∃y(Zx&Zy&x=y), ¬Zd, d=s} is consistent.
6. Show that ‘∀x(Dx ⊃ ∃yTyx) .˙. ∃y∃z y 6=z’ is invalid.

? Part F Construct a tree to test the following entailment claims. If they are
false, provide a model that demonstrates this.

1. |= ∀x∀y(x=y ⊃ y=x)
2. |= ∀x∃y x=y
3. |= ∃x∀y x=y
4. ∃x∀y x=y |= ∀x∀y(Rxy ≡ Ryx)
5. ¬∀x∀y∀z[(Axy&Azx& y=z) ⊃ Axx] |=
6. ∀x∀y x=y |= ∃xFx ≡ ∀xFx
7. ∀x(x=a ∨ x=b), Ga ≡ ¬Gb |= ¬∃x∃y∃z(Gx&Gy&¬Gz)
8. ∀x(Fx ⊃ x=f),∃x(Fx ∨ ∀y y=x) |= Ff
9. ∃x∃yDxy |= ∀x1∀x2∀x3∀x4[(Dx1x2 &Dx3x4 ⊃ (x2 6=x3 ∨Dx1x4)]

Part G In §12.5 we looked at two different translations of ‘Mozart wrote exactly
two operas’. Use trees to prove that they are equivalent.

Part H Translate these arguments into QL with identity, and evaluate them for
validity with a tree. (Don’t be surprised or discouraged if some of these trees
end up very complex.)

ch. 12 identity 215

1. Dudley will threaten anyone who threatens anyone. Therefore, Dudley
will threaten himself.

2. The exam is easy. Therefore every exam Sheila took was easy. (Use
Russell’s theory of definite descriptions.)

3. Three wise men visited Jesus. Every wise man who visited Jesus gave
Jesus a gift. Therefore, Jesus received more than one gift.

4. Worf is the only Klingon in Starfleet. Everyone in Starfleet is brave. All
brave Klingons are warriors. Therefore, there is at least one brave warrior
in Starfleet.

5. Worf is the only Klingon in Starfleet. Everyone in Starfleet is brave. All
brave Klingons are warriors. Therefore, there is exactly one brave warrior
in Starfleet.

6. Every person likes every kind of sandwich that is tasty. Jack is a person.
Jack likes exactly one kind of sandwich. Therefore, no more than one kind
of sandwich is tasty.

Chapter 13

Natural Deduction Proofs
in QL

Trees employ a kind of ‘brute force’ strategy for proving entailment claims.
When the logical structure of the relevant sentences are rather simple, as they
are in SL and in some QL cases, it can be an effective strategy, but in some
cases, especially when demonstrating that an an entailment claim does not hold,
they can become very tedious and complex. It is useful to have a proof system
that allows one to reason in a more targeted way— especially if you already
have an intuitive understanding of why a given argument should be expected to
turn out valid. As we did in Chapter 7 for SL, in this chapter we will consider
a natural deduction system for quantified logic. As in the case of trees, our QL
natural deduction system is an extension of the one we learned previously for
SL.

Like our SL natural deduction system, our system can only be used to demon-
strate that an argument is valid. We do not have a formal method, as part of
our natural deduction system, for demonstrating an argument invalid. In this
respect natural deduction differs from trees. We won’t go through the proof in
this book, but the natural deduction is both sound and complete. That means
that there is a natural deduction proof corresponding to all and only the valid
arguments in QL.

13.1 Natural Deduction: the basics

In a natural deduction system, one begins by writing down the assumptions one
begins with— these correspond to the premises of an argument— then adds

216

ch. 13 natural deduction proofs in ql 217

a series of additional sentences, justified via a series of particular rules by the
sentences above. Additional assumptions may be made and discharged along
the way. If one succeeds in writing down the conclusion of the argument on
a new line, with no additional undischarged assumptions, consistent with the
natural deduction rules, one has proven that the conclusion follows from those
premises. If you need a refresher on how that works, review Chapter 7.

Our QL system will use all the same sentential rules that our SL system did.
All the introduction and elimination rules for the sentential connectives, as well
as the derived and replacement rules, will be part of this system too. (These are
summarized, along with our new rules, on page 266.) We’ll add introduction and
elimination rules for the existential and universal quantifiers, and some other
derived rules as well.

13.2 Basic quantifier rules

Recall the relationship between quantified sentences and their instances. The
sentence Pa is a particular instance of the general claim ∀xPx. For any wff Φ,
constant c, and variable x , we define Φ x ⇒ c to mean the wff that we get by

replacing every occurrence of x in Φ with c. Φ x ⇒ c is called a substitution
instance of ∀xΦ and ∃xΦ, and c is called the instantiating constant. This
should be familiar from our discussion of our tree rules for quantifiers in Chapter
10. We will use this notation to describe our quantifier rules.

Universal elimination

If you have ∀xAx, it is legitimate to infer that anything is an A. You can infer
Aa, Ab, Az, Ad3. This is, you can infer any substitution instance – in short,
you can infer Ac for any constant c. This is the general form of the universal
elimination rule (∀E):

m ∀x Φ

Φ x⇒ c ∀E m

Remember that the box mark for a substitution instance is not a symbol of QL,
so you cannot write it directly in a proof. Instead, you write the substituted
sentence with the constant c replacing all occurrences of the variable x in Φ.

218 forallx (UBC edition)

1 ∀x(Mx ⊃ Rxd)

2 Ma ⊃ Rad ∀E 1

3 Md ⊃ Rdd ∀E 1

This rule is very similar to the tree rule for universals, which, in our tree system,
allowed one to develop a branch containing a universal with any instance of it
one likes. Here you are permitted to write down any instance you like on a new
line.

Existential introduction

When is it legitimate to infer ∃xAx? If you know that something is an A— for
instance, if you have Aa available in the proof.

This is the existential introduction rule (∃I):

m Φ

∃x Φ x⇒ c ∃I m

It is important to notice that Φ x⇒ c is not necessarily a substitution in-

stance. We write it with double boxes to show that the variable x does not need
to replace all occurrences of the constant c. You can decide which occurrences
to replace and which to leave in place. For example, each of lines 2–6 can be
justifed by ∃I:

1 Ma ⊃ Rad

2 ∃x(Ma ⊃ Rax) ∃I 1

3 ∃x(Mx ⊃ Rxd) ∃I 1

4 ∃x(Mx ⊃ Rad) ∃I 1

5 ∃y∃x(Mx ⊃ Ryd) ∃I 4

6 ∃z∃y∃x(Mx ⊃ Ryz) ∃I 5

Universal introduction

A universal claim like ∀xPx would be proven if every substitution instance of it
had been proven, if every sentence Pa, Pb, . . . were available in a proof. Alas,

ch. 13 natural deduction proofs in ql 219

there is no hope of proving every substitution instance. That would require
proving Pa, Pb, . . ., Pj2, . . ., Ps7, . . ., and so on to infinity. There are infinitely
many constants in QL, and so this process would never come to an end.

Consider a simple argument: ∀xMx, .˙. ∀yMy

It makes no difference to the meaning of the sentence whether we use the variable
x or the variable y, so this argument is obviously valid. Suppose we begin in
this way:

1 ∀xMx want ∀yMy

2 Ma ∀E 1

We have derived Ma. Nothing stops us from using the same justification to
derive Mb, . . ., Mj2, . . ., Ms7, . . ., and so on until we run out of space or
patience. We have effectively shown the way to prove Mc for any constant c.
From this, ∀yMy follows.

1 ∀xMx

2 Ma ∀E 1

3 ∀yMy ∀I 2

It is important here that a was just some arbitrary constant. We had not made
any special assumptions about it. If a had already been mentioned, say as a
premise in the argument, then this would not show anything about all y. For
example:

1 ∀xRxa

2 Raa ∀E 1

3 ∀yRyy not allowed!

This is the schematic form of the universal introduction rule (∀I):

m Φ

∀x Φ c∗ ⇒ x ∀I m

∗ The constant c must not occur in any undischarged assumption.

Note that we can do this for any constant that does not occur in an undischarged
assumption and for any variable.

Note also that the constant may not occur in any undischarged assumption, but

220 forallx (UBC edition)

it may occur as the assumption of a subproof that we have already closed. For
example, here is a valid proof of ∀z(Dz ⊃ Dz) that does not use any premises.

1 Df want Df

2 Df R 1

3 Df ⊃ Df ⊃I 1–2

4 ∀z(Dz ⊃ Dz) ∀I 3

Existential elimination

A sentence with an existential quantifier tells us that there is some member
of the UD that satisfies a formula. For example, ∃xSx tells us (roughly) that
there is at least one S. It does not tell us which member of the UD satisfies S,
however. We cannot immediately conclude Sa, Sf23, or any other substitution
instance of the sentence. What can we do?

Suppose that we knew both ∃xSx and ∀x(Sx ⊃ Tx). We could reason in this
way:

Since ∃xSx, there is something that is an S. We do not know which
constants refer to this thing, if any do, so call this thing ‘Ishmael’.
From ∀x(Sx ⊃ Tx), it follows that if Ishmael an S, then it is a T .
Therefore, Ishmael is a T . Because Ishmael is a T , we know that
∃xTx.

In this paragraph, we introduced a name for the thing that is an S. We gave
it an arbitrary name (‘Ishmael’) so that we could reason about it and derive
some consequences from there being an S. Since ‘Ishmael’ is just a bogus name
introduced for the purpose of the proof and not a genuine constant, we could
not mention it in the conclusion. Yet we could derive a sentence that does
not mention Ishmael; namely, ∃xTx. This sentence does follow from the two
premises.

We want the existential elimination rule to work in a similar way. Yet since
English language worlds like ‘Ishmael’ are not symbols of QL, we cannot use
them in formal proofs. Instead, just as we did in the analogous rule within
our tree system, we will use names that are new— names which do not appear
anywhere else in the proof. (This includes the conclusion you are aiming for.)

A constant that is used to stand in for whatever it is that satisfies an existential
claim is called a proxy. Reasoning with the proxy must all occur inside a

ch. 13 natural deduction proofs in ql 221

subproof, and the proxy cannot be a constant that is doing work elsewhere in
the proof.

This is the schematic form of the existential elimination rule (∃E):

m ∃x Φ

n Φ c∗ ⇒ x for ∃E

p Ψ

Ψ ∃E m, n–p

∗ The constant c must not appear outside the subproof.

Remember that the proxy constant cannot appear in Ψ , the sentence you prove
using ∃E. (It would actually be enough just to require that the proxy constant
not appear in ∃x Φ, in Ψ , or in any undischarged assumption. In recognition of
the fact that it is just a place holder that we use inside the subproof, though,
we require an entirely new constant which does not appear anywhere else in the
proof.)

The existential elimination rule, like the rules for conditional introduction and
negation introduction and elimination, is a rule that involves discharging an
assumption. Assume a proxy instance, and see what would follow from that
instance; if you have the existential, then, you can stop making the assumption
about the proxy, and help yourself to what would have followed from it. As with
those other assumption-involving rules, instead of a justification, one includes
a note— in this case, ‘for ∃E’— about the role of the assumption in the proof.
Remember that assumptions must be discharged before your proof is complete,
so you should only make an assumption that goes beyond your premises when
you have a plan for discharging it.

With this rule, we can give a formal proof that ∃xSx and ∀x(Sx ⊃ Tx) together
entail ∃xTx.

1 ∃xSx

2 ∀x(Sx ⊃ Tx) want ∃xTx

3 Sa for ∃E

4 Sa ⊃ Ta ∀E 2

5 Ta ⊃E 3, 4

6 ∃xTx ∃I 5

7 ∃xTx ∃E 1, 3–6

222 forallx (UBC edition)

Quantifier negation

¬∃x ¬Φ is logically equivalent to ∀x Φ. The first says that nothing falsifies Φ; the
second says everything satisfies Φ. In QL, they are provably equivalent. Here
is a proof schema for half of that equivalence via a natural deduction reductio.
For any wff Φ, variable x , and name new name a:

1 ∀x Φ want ¬∃x ¬Φ

2 ∃x ¬Φ for reductio

3 ¬Φ x ⇒ a∗ for ∃E

4 ∀x Φ for reductio

5 Φ x ⇒ a∗ ∀E 1

6 ¬Φ x ⇒ a∗ R 3

7 ¬∀x Φ ¬I 4–6

8 ∀x Φ R 1

9 ¬∀x Φ ∃E 3–7

10 ¬∃x ¬Φ ¬I 2–8, 2–9

∗ Where name a does not appear outside the subproof.

This is a proof schema— it is not itself a proof in QL, as its lines are not
QL sentences. But it describes how to a proof of this form can be given. For
example, here is one instance of the above schema:

1 ∀yAy want ¬∃x¬Ay

2 ∃y¬Ay for reductio

3 ¬Ac for ∃E

4 ∀yAy for reductio

5 Ac ∀E 1

6 ¬Ac R 3

7 ¬∀yAy ¬I 4–6

8 ∀yAy R 1

9 ¬∀yAy ∃E 3–7

10 ¬∃y¬Ay ¬I 2–8, 2–9

ch. 13 natural deduction proofs in ql 223

(Note that this proof encodes the same form of reasoning one would employ to
demonstrate via a tree that ∀yAy |= ¬∃y¬Ay. As an excersise: draw out the
tree to compare it.)

In order to fully demonstrate that ¬∃x ¬Φ is logically equivalent to ∀x Φ, we
would also need a second proof that assumes ¬∃x ¬Φ and derives ∀x Φ. We
leave that proof as an exercise for the reader.

It will often be useful to translate between quantifiers by adding or subtracting
negations in this way, so we add two derived rules for this purpose. These rules
are called quantifier negation (QN):

¬∀x Φ⇐⇒ ∃x ¬Φ
¬∃x Φ⇐⇒ ∀x ¬Φ QN

QN is a replacement rule. Like our SL replacement rules (DeMorgan, Double
Negation, etc.), it can be used on whole sentences or on subformulae.

13.3 Identity Introduction

The introduction rule for identity is very simple. Everything is identical to
itself; so, for any name a, one may write— regardless of what one has on the
previous lines of the proof— that a=a:

a = a =I

The =I rule is unlike our other rules in that it does not require referring to any
prior lines of the proof. We need only cite the rule itself; it does not reference
any previous line numbers.

13.4 Identity Elimination

If you have shown that a=b, then anything that is true of a must also be true of
b. For any sentence with a in it, you can replace some or all of the occurrences of
a with b and produce an equivalent sentence. For example, if you already know

Raa, then you are justified in concluding Rab, Rba, Rbb. Recall that Φ a⇒ b

is the sentence produced by replacing a in Φ with b. This is not the same as a
substitution instance, because b may replace some or all occurrences of a. The
identity elimination rule (=E) justifies replacing terms with other terms that
are identical to it:

224 forallx (UBC edition)

m Φ=Ψ

n Φ

Φ a⇒ b =E m, n

Φ b⇒ a =E m, n

Here is a simple proof of an instance of the transitivity of identity. Let’s prove
that if a=b and b=c, then a=c:

1 a=b& b=c want a=c

2 a=b & E 1

3 b=c & E 1

4 a=c =E 2, 3

5 (a=b& b=c) ⊃ a=c ⊃I 1–4

At line 4, we took advantage of the identity claim b=c on line 3, and replaced
the b in line 2 with a c. Then we used the familiar ⊃I rule to discharge the
assumption of line 1, proving the conditional we were aiming for.

13.5 Example: Translation and Evaluation

Consider this argument: There is only one button in my pocket. There is a blue
button in my pocket. So there is no non-blue button in my pocket.

We begin by defining a symbolization key:

UD: buttons in my pocket
Bx: x is blue.

Because we have no need to discuss anything other than buttons in my pocket,
we’ve restricted the UD accordingly. If we included other things (buttons else-
where and/or things other than buttons), we’d need predicates corresponding
to being a button and things’ locations. The simple version here is adequate for
our present needs. The argument is translated as:

1. ∀x∀yx=y

2. ∃xBx
3. .˙. ¬∃x¬Bx

ch. 13 natural deduction proofs in ql 225

So the set-up for a natural deduction proof will be:

1 ∀x∀y x=y

2 ∃xBx want ¬∃x¬Bx

3

There are various strategies one might employ. Here are two clues that point
toward one promising strategy. Note again that we have an existential on line
2— this suggests existential elimination as a possible strategy. Note also that
we are aiming for ¬∃x¬Bx, which equivalent to ¬¬∀xBx by QN. This in turn
is equivalent, by DN, to ∀XBx, which suggests that universal introduction is
going to be an important step. If we introduce an assumption with a proxy
instance of ∃xBx, we’ll be able to work toward a generic instance of Bx. In this
example, we’ll take e as our proxy, and show that Bf follows from ∃xBx:

1 ∀x∀y x=y

2 ∃xBx want ¬∃x¬Bx

3 Be for ∃E

4 ∀y e=y ∀E 1

5 e=f ∀E 4

6 Bf =E 5, 3

7 Bf ∃E 2, 3–6

By line 7, we have discharged the assumption about the proxy— we won’t use the
name e any more— we have established that Bf follows from the two premises.
Since f is an arbitrary name— one that does not appear in any undischarged
assumption— we can perform universal introduction on that instance. This in
turn lets us complete the proof via the two substitution rules mentioned above:

226 forallx (UBC edition)

1 ∀x∀y x=y

2 ∃xBx want ¬∃x¬Bx

3 Be for ∃E

4 ∀y e=y ∀E 1

5 e=f ∀E 4

6 Bf =E 5, 3

7 Bf ∃E 2, 3–6

8 ∀xBx ∀I 7

9 ¬¬∀xBx DN 8

10 ¬∃x¬Bx QN 9

13.6 Natural deduction strategy

All the strategy advice given in §7.4 is equally applicable to natural deduction
proofs in QL. Review the suggestions there for general advice for natural de-
duction proofs. Applied to our new QL rules, if you have a universal, you can
think about taking any instances that look useful. (Taking random instances
is unlikely to be useful.) If you have an existential, consider using the existen-
tial elimination rule, which begins by assuming an instance with a proxy, then
deriving a conclusion hat does not contain that proxy name.

Showing ¬∃xΦ can also be hard, and it is often easier to show ∀x¬Φ and use
the QN rule.

13.7 Soundness and completeness

The proofs for soundness and completeness of our natural deduction system are
beyond the scope of this textbook. But if you are interested in thinking through
how those proofs would go, here are a few hints to get you started. Soundness
in a natural deduction system amounts to the claim that if any sentence Φ is
derivable from a set of sentences X , then X |= Φ. To prove this, you would need
to demonstrate that any possible natural deduction proof meets this constraint.
This is trivial for ‘proofs’ that only contain premises; you’d next have to show,
for every possible way of extending the proof (i.e., everything permitted by any
one of our rules), that any newly added lines with no undischarged assumptions
are entailed by the premises.

ch. 13 natural deduction proofs in ql 227

Undischarged assumptions would require special treatment. You can think of
an assumption as being similar to a ‘temporary premise’— what you really want
to prove is that, for every possible line in a proof, that line is entailed by the
premises in addition to any undischarged assumptions.

The completeness proof is more complex. We need some way to guarantee that
there is a proof corresponding to every QL entailment. The way to do this is
to find an algorithmic procedure that is guaranteed to find a proof if one exists,
and to prove that this is so. One good way to do this is to take advantage of the
proven completeness of our tree system for QL, presented in Chapter 11, and
find a way to demonstrate that any tree proof can be converted to a natural
deduction proof. Here is a hint if you’d like to undertake that project: the tree
method encodes the same kind of reasoning that reductio proofs do.

Practice Exercises

? Part A Provide a justification (rule and line numbers) for each line of proof
that requires one.

1 ∀x∃y(Rxy ∨Ryx)

2 ∀x¬Rmx

3 ∃y(Rmy ∨Rym)

4 Rma ∨Ram

5 ¬Rma

6 Ram

7 ∃xRxm

8 ∃xRxm

1 ∀x(∃yLxy ⊃ ∀zLzx)

2 Lab

3 ∃yLay ⊃ ∀zLza

4 ∃yLay

5 ∀zLza

6 Lca

7 ∃yLcy ⊃ ∀zLzc

8 ∃yLcy

9 ∀zLzc

10 Lcc

11 ∀xLxx

228 forallx (UBC edition)

1 ∀x(Jx ⊃ Kx)

2 ∃x∀yLxy

3 ∀xJx

4 ∀yLay

5 Ja

6 Ja ⊃ Ka

7 Ka

8 Laa

9 Ka&Laa

10 ∃x(Kx&Lxx)

11 ∃x(Kx&Lxx)

1 ¬(∃xMx ∨ ∀x¬Mx)

2 ¬∃xMx&¬∀x¬Mx

3 ¬∃xMx

4 ∀x¬Mx

5 ¬∀x¬Mx

6 ∃xMx ∨ ∀x¬Mx

? Part B Provide a proof of each claim.

1. ` ∀xFx ∨ ¬∀xFx
2. {∀x(Mx ≡ Nx),Ma&∃xRxa} ` ∃xNx
3. {∀x(¬Mx ∨ Ljx),∀x(Bx ⊃ Ljx),∀x(Mx ∨Bx)} ` ∀xLjx
4. ∀x(Cx&Dt) ` ∀xCx&Dt

5. ∃x(Cx ∨Dt) ` ∃xCx ∨Dt

Part C Provide a proof of the argument about Billy on p. 137.

Part D Look back at Part B on p. 145. Provide proofs to show that each of
the argument forms is valid in QL.

Part E Provide a proof of each claim.

1. ∀x∀yGxy ` ∃xGxx
2. ∀x∀y(Gxy ⊃ Gyx) ` ∀x∀y(Gxy ≡ Gyx)

3. {∀x(Ax ⊃ Bx),∃xAx} ` ∃xBx
4. {Na ⊃ ∀x(Mx ≡Ma),Ma,¬Mb} ` ¬Na
5. ` ∀z(Pz ∨ ¬Pz)
6. ` ∀xRxx ⊃ ∃x∃yRxy
7. ` ∀y∃x(Qy ⊃ Qx)

Part F Show that each pair of sentences is provably equivalent.

ch. 13 natural deduction proofs in ql 229

1. ∀x(Ax ⊃ ¬Bx), ¬∃x(Ax&Bx)
2. ∀x(¬Ax ⊃ Bd), ∀xAx ∨Bd
3. ∃xPx ⊃ Qc, ∀x(Px ⊃ Qc)

Part G Show that each of the following is provably inconsistent.

1. {Sa ⊃ Tm, Tm ⊃ Sa, Tm&¬Sa}
2. {¬∃xRxa, ∀x∀yRyx}
3. {¬∃x∃yLxy, Laa}
4. {∀x(Px ⊃ Qx), ∀z(Pz ⊃ Rz), ∀yPy, ¬Qa&¬Rb}

? Part H Write a symbolization key for the following argument, translate it,
and prove it:

There is someone who likes everyone who likes everyone that he likes.
Therefore, there is someone who likes himself.

Part I Provide a proof of each claim.

1. {Pa ∨Qb,Qb ⊃ b=c,¬Pa} ` Qc
2. {m=n ∨ n=o,An} ` Am ∨Ao
3. {∀xx=m,Rma} ` ∃xRxx
4. ¬∃xx 6= m ` ∀x∀y(Px ⊃ Py)
5. ∀x∀y(Rxy ⊃ x=y) ` Rab ⊃ Rba
6. {∃xJx, ∃x¬Jx} ` ∃x∃y x 6= y
7. {∀x(x=n ≡Mx),∀x(Ox ∨ ¬Mx)} ` On
8. {∃xDx,∀x(x=p ≡ Dx)} ` Dp
9. {∃x

[
Kx&∀y(Ky ⊃ x=y) &Bx

]
,Kd} ` Bd

10. ` Pa ⊃ ∀x(Px ∨ x 6= a)

? Part J For each of the following pairs of sentences: If they are logically
equivalent in QL, give proofs to show this. If they are not, construct a model
to show this.

1. ∀xPx ⊃ Qc, ∀x(Px ⊃ Qc)
2. ∀xPx&Qc, ∀x(Px&Qc)
3. Qc ∨ ∃xQx, ∃x(Qc ∨Qx)
4. ∀x∀y∀zBxyz, ∀xBxxx
5. ∀x∀yDxy, ∀y∀xDxy
6. ∃x∀yDxy, ∀y∃xDxy

? Part K For each of the following arguments: If it is valid in QL, give a proof.
If it is invalid, construct a model to show that it is invalid.

230 forallx (UBC edition)

1. ∀x∃yRxy, .˙. ∃y∀xRxy
2. ∃y∀xRxy, .˙. ∀x∃yRxy
3. ∃x(Px&¬Qx), .˙. ∀x(Px ⊃ ¬Qx)
4. ∀x(Sx ⊃ Ta), Sd, .˙. Ta
5. ∀x(Ax ⊃ Bx), ∀x(Bx ⊃ Cx), .˙. ∀x(Ax ⊃ Cx)
6. ∃x(Dx ∨ Ex), ∀x(Dx ⊃ Fx), .˙. ∃x(Dx&Fx)
7. ∀x∀y(Rxy ∨Ryx), .˙. Rjj
8. ∃x∃y(Rxy ∨Ryx), .˙. Rjj
9. ∀xPx ⊃ ∀xQx, ∃x¬Px, .˙. ∃x¬Qx

10. ∃xMx ⊃ ∃xNx, ¬∃xNx, .˙. ∀x¬Mx

Part L Look at the arguments given in Chapter 10, Problem Part C (page 187).
For those arguments whose QL translations are valid, prove their validity via
natural deduction.

Part M Look at the entailment claims given in Chapter 12, Problem Part F
(page 214). For those entailment claims that are true, prove them via natural
deduction.

Part N Look at the arguments given in Chapter 12, Problem Part H (page
214). For those arguments whose QL translations are valid, prove their validity
via natural deduction.

Appendix A

Symbolic notation

In the history of formal logic, different symbols have been used at different times
and by different authors. Often, authors were forced to use notation that their
printers could typeset.

In one sense, the choice of symbols used for various logical constants is arbitrary.
There is nothing written in heaven that says that ‘¬’ must be the symbol for
truth-functional negation. We might have specified a different symbol to play
that part. Once we have given definitions for well-formed formulae (wff) and
for truth in our logic languages, however, using ‘¬’ is no longer arbitrary. That
is the symbol for negation in this textbook, and so it is the symbol for negation
when writing sentences in our languages SL or QL.

This appendix presents some common symbols, so that you can recognize them
if you encounter them in an article or in another book.

summary of symbols
negation ¬, ∼

conjunction &, ∧, •

disjunction ∨
conditional →, ⊃

biconditional ↔, ≡
Negation Two commonly used symbols are the hoe, ‘¬’, and the swung dash,
‘∼.’ In some more advanced formal systems it is necessary to distinguish be-
tween two kinds of negation; the distinction is sometimes represented by using
both ‘¬’ and ‘∼.’

Disjunction The symbol ‘∨’ is typically used to symbolize inclusive disjunc-
tion.

Conjunction Conjunction is often symbolized with the ampersand, ‘&.’ The
ampersand is actually a decorative form of the Latin word ‘et’ which means
‘and’; it is commonly used in English writing. As a symbol in a formal sys-

231

232 forallx (UBC edition)

tem, the ampersand is not the word ‘and’; its meaning is given by the formal
semantics for the language. Perhaps to avoid this confusion, some systems use
a different symbol for conjunction. For example, ‘∧’ is a counterpart to the
symbol used for disjunction. Sometimes a single dot, ‘•’, is used. In some older
texts, there is no symbol for conjunction at all; ‘A and B’ is simply written
‘AB.’

Material Conditional There are two common symbols for the material con-
ditional: the arrow, ‘→’, and the hook, ‘⊃.’

Material Biconditional The double-headed arrow, ‘↔’, is used in systems
that use the arrow to represent the material conditional. Systems that use the
hook for the conditional typically use the triple bar, ‘≡’, for the biconditional.

Quantifiers The universal quantifier is typically symbolized as an upside-
down A, ‘∀’, and the existential quantifier as a backwards E, ‘∃.’ Quantifiers
are given in some systems in parentheses, as in ‘(∀x)(∃x)Fxy’, and in some
systems without, as in ‘∀x∃xFxy’.

In some texts, there is no separate symbol for the universal quantifier. Instead,
the variable is just written in parentheses in front of the formula that it binds.
For example, ‘all x are P ’ is written (x)Px.

In some systems, the quantifiers are symbolized with larger versions of the sym-
bols used for conjunction and disjunction. Although quantified expressions can-
not be translated into expressions without quantifiers, there is a conceptual
connection between the universal quantifier and conjunction and between the
existential quantifier and disjunction. Consider the sentence ∃xPx, for example.
It means that either the first member of the UD is a P , or the second one is,
or the third one is, Such a system uses the symbol ‘

∨
’ instead of ‘∃.’

Polish notation

This section briefly discusses sentential logic in Polish notation, a system of
notation introduced in the late 1920s by the Polish logician Jan Lukasiewicz.

Lower case letters are used as sentence letters. The capital letter N is used
for negation. A is used for disjunction, K for conjunction, C for the condi-
tional, E for the biconditional. (‘A’ is for alternation, another name for logical
disjunction. ‘E’ is for equivalence.)

notation Polish
of SL notation
¬ N
& K
∨ A
⊃ C
≡ E

appendix: symbolic notation 233

In Polish notation, a binary connective is written before the two sentences that
it connects. For example, the sentence A&B of SL would be written Kab in
Polish notation.

The sentences ¬A ⊃ B and ¬(A ⊃ B) are very different; the main logical
operator of the first is the conditional, but the main connective of the second
is negation. In SL, we show this by putting parentheses around the conditional
in the second sentence. In Polish notation, parentheses are never required. The
left-most connective is always the main connective. The first sentence would
simply be written CNab and the second NCab.

This feature of Polish notation means that it is possible to evaluate sentences
simply by working through the symbols from right to left. If you were con-
structing a truth table for NKab, for example, you would first consider the
truth-values assigned to b and a, then consider their conjunction, and then
negate the result. The general rule for what to evaluate next in SL is not nearly
so simple. In SL, the truth table for ¬(A&B) requires looking at A and B,
then looking in the middle of the sentence at the conjunction, and then at the
beginning of the sentence at the negation. Because the order of operations can
be specified more mechanically in Polish notation, variants of Polish notation
are used as the internal structure for many computer programming languages.

Appendix B

Solutions to selected
exercises

Many of the exercises may be answered correctly in different ways. Where that
is the case, the solution here represents one possible correct answer.

Chapter 1 Part C

1. consistent
2. inconsistent
3. consistent
4. consistent

Chapter 1 Part D 1, 2, 3, 6, 8, and 10 are possible.

Chapter 2 Part A

1. ¬M
2. M ∨ ¬M
3. G ∨ C
4. ¬C &¬G
5. C ⊃ (¬G&¬M)
6. M ∨ (C ∨G)

Chapter 2 Part C

1. E1 &E2

234

solutions for ch. 2 235

2. F1 ⊃ S1

3. F1 ∨ E1

4. E2 &¬S2

5. ¬E1 &¬E2

6. E1 &E2 &¬(S1 ∨ S2)
7. S2 ⊃ F2

8. (¬E1 ⊃ ¬E2) & (E1 ⊃ E2)
9. S1 ≡ ¬S2

10. (E2 &F2) ⊃ S2

11. ¬(E2 &F2)
12. (F1 &F2) ≡ (¬E1 &¬E2)

Chapter 2 Part D

A: Alice is a spy.
B: Bob is a spy.
C: The code has been broken.
G: The German embassy will be in an uproar.

1. A&B
2. (A ∨B) ⊃ C
3. ¬(A ∨B) ⊃ ¬C
4. G ∨ C
5. (C ∨ ¬C) &G
6. (A ∨B) &¬(A&B)

Chapter 2 Part G

1. (a) no (b) no
2. (a) no (b) yes
3. (a) yes (b) yes
4. (a) no (b) no
5. (a) yes (b) yes
6. (a) no (b) no
7. (a) no (b) yes
8. (a) no (b) yes
9. (a) no (b) no

Chapter 3 Part A

1. tautology
2. contradiction
3. contingent

236 forallx (UBC edition)

4. tautology
5. tautology
6. contingent
7. tautology
8. contradiction
9. tautology

10. contradiction
11. tautology
12. contingent
13. contradiction
14. contingent
15. tautology
16. tautology
17. contingent
18. contingent

Chapter 3 Part B 2, 3, 5, 6, 8, and 9 are logically equivalent.

Chapter 3 Part C 1, 3, 6, 7, and 8 are consistent.

Chapter 3 Part D 3, 5, 8, and 10 are valid.

Chapter 3 Part E

1. Φ and Ψ have the same truth value on every line of a complete truth table,
so Φ ≡ Ψ is true on every line. It is a tautology.

2. The sentence is false on some line of a complete truth table. On that line,
Φ and Ψ are true and Ω is false. So the argument is invalid.

3. Since there is no line of a complete truth table on which all three sentences
are true, the conjunction is false on every line. So it is a contradiction.

4. Since Φ is false on every line of a complete truth table, there is no line on
which Φ and Ψ are true and Ω is false. So the argument is valid.

5. Since Ω is true on every line of a complete truth table, there is no line on
which Φ and Ψ are true and Ω is false. So the argument is valid.

6. Not much. (Φ∨Ψ) is a tautology if Φ and Ψ are tautologies; it is a contra-
diction if they are contradictions; it is contingent if they are contingent.

7. Φ and Ψ have different truth values on at least one line of a complete truth
table, and (Φ ∨ Ψ) will be true on that line. On other lines, it might be
true or false. So (Φ ∨ Ψ) is either a tautology or it is contingent; it is not
a contradiction.

Chapter 3 Part F

1. ¬A ⊃ B
2. ¬(A ⊃ ¬B)

solutions for ch. 5 237

3. ¬[(A ⊃ B) ⊃ ¬(B ⊃ A)]

Chapter 5 Part A

1. (a) {P, P ⊃ Q,Q ⊃ ¬P}, (b) true
2. (a) ¬((P ⊃ Q) ≡ (Q ⊃ P)), (b) true
3. (a) {P &Q,¬R ⊃ ¬Q,¬(P &R)}, (b) true
4. (a) {A ∨B,B ⊃ C,A ≡ C,¬C}, (b) true
5. (a) A ≡ ¬A, (b) true
6. (a) {P, P ⊃ Q,¬Q,¬A}, true
7. (a) {P ⊃ Q,¬P ∨ ¬Q,Q ⊃ P}, (b) false.

Chapter 5 Part C

1. True.

{P, P ⊃ Q,Q ⊃ ¬P} `

1.

2.

3.

4.

5.

P

P ⊃ Q X

Q ⊃ ¬P X

¬P
×

Q

¬Q
×

¬P
×

2. False.

¬((P ⊃ Q) ≡ (P ⊃ Q)) `

1.

2.
3.

4.
5.

6.
7.

8.

¬((P ⊃ Q) ≡ (P ⊃ Q)) X

P ⊃ Q X
¬(Q ⊃ P) X

Q
¬P

¬P
↑

Q
↑

¬(P ⊃ Q) X
Q ⊃ P X

P
¬Q

¬Q
↑

P
↑

1 ¬≡

3 ¬⊃

2 ¬⊃
2 ⊃

3 ⊃

238 forallx (UBC edition)

{P = 0, Q = 1} and {P = 1, Q = 0} each falsify ((P ⊃ Q) ≡ (P ⊃ Q)), so
it is not a tautology.

3. True.

1.
2.
3.

4.
5.

6.

7.

P &Q X
¬R ⊃ ¬Q X
¬(P &R) X

P
Q

¬P
×

¬R

¬¬R
×

¬Q
×

1 &

3 ¬&

2 ⊃

4. True.

1.
2.
3.
4.

5.

6.

7.
8.

A ∨B X
B ⊃ C X
A ≡ C X
¬C

¬B

A

A
C
×

¬A
¬C
×

B
×

C
×

2 ⊃

1 ∨

3 ≡

Chapter 7 Part A

1 W ⊃ ¬B

2 A&W

3 B ∨ (J &K)

4 W & E 2

5 ¬B ⊃E 1, 4

6 J &K ∨E 3, 5

7 K & E 6

1 L ≡ ¬O

2 L ∨ ¬O

3 ¬L

4 ¬O ∨E 2, 3

5 L ≡E 1, 4

6 ¬L R 3

7 L ¬E 3–5, 3–6

solutions for ch. 7 239

1 Z ⊃ (C &¬N)

2 ¬Z ⊃ (N &¬C)

3 ¬(N ∨ C)

4 ¬N &¬C DeM 3

5 Z

6 C &¬N ⊃E 1, 5

7 C & E 6

8 ¬C & E 4

9 ¬Z ¬I 5–8

10 N &¬C ⊃E 2, 9

11 N & E 10

12 ¬N & E 4

13 N ∨ C ¬E 3–11, 3–12

Chapter 7 Part B

1.

1 K &L want K ≡ L

2 K want L

3 L & E 1

4 K ⊃ L ⊃I 2–3

5 L want K

6 K & E 1

7 L ⊃ K ⊃I 5–6

8 K ≡ L ≡I 4, 7

240 forallx (UBC edition)

2.

1 A ⊃ (B ⊃ C) want (A&B) ⊃ C

2 A&B want C

3 A & E 2

4 B ⊃ C ⊃E 1, 3

5 B & E 2

6 C ⊃E 4, 5

7 (A&B) ⊃ C ⊃I 2–6

3.

1 P & (Q ∨R)

2 P ⊃ ¬R want Q ∨ E

3 P & E 1

4 ¬R ⊃E 2, 3

5 Q ∨R & E 1

6 Q ∨E 5, 4

7 Q ∨ E ∨I 6

4.

1 (C &D) ∨ E want E ∨D

2 ¬E want D

3 C &D ∨E 1, 2

4 D & E 3

5 ¬E ⊃ D ⊃I 2–4

6 E ∨D MC 5

5.

1 ¬F ⊃ G

2 F ⊃ H want G ∨H

3 ¬G want H

4 ¬¬F MT 1, 3

5 F DN 4

6 H ⊃E 2, 5

7 ¬G ⊃ H ⊃I 3–6

8 G ∨H MC 7

solutions for ch. 8 241

6.

1 (X &Y) ∨ (X &Z)

2 ¬(X &D)

3 D ∨M want M

4 ¬X for reductio

5 ¬X ∨ ¬Y ∨I 4

6 ¬(X &Y) DeM 5

7 X &Z ∨E 1, 6

8 X & E 7

9 ¬X R 4

10 X ¬E 4–9

11 ¬M for reductio

12 D ∨E 3, 11

13 X &D & I 10, 12

14 ¬(X &D) R 2

15 M ¬E 11–13, 11–14

Chapter 8 Part A

1. Za&Zb&Zc
2. Rb&¬Ab
3. Lcb ⊃Mb
4. (Ab&Ac) ⊃ (Lab&Lac)
5. ∃x(Rx&Zx)
6. ∀x(Ax ⊃ Rx)
7. ∀x

[
Zx ⊃ (Mx ∨Ax)

]
8. ∃x(Rx&¬Ax)
9. ∃x(Rx&Lcx)

10. ∀x
[
(Mx&Zx) ⊃ Lbx

]
11. ∀x

[
(Mx&Lax) ⊃ Lxa

]
12. ∃xRx ⊃ Ra
13. ∀x(Ax ⊃ Rx)
14. ∀x

[
(Mx&Lcx) ⊃ Lax

]
15. ∃x(Mx&Lxb&¬Lbx)

Chapter 8 Part E

242 forallx (UBC edition)

1. ¬∃xTx
2. ∀x(Mx ⊃ Sx)
3. ∃x¬Sx
4. ∃x[Cx&¬∃yByx]
5. ¬∃xBxx
6. ¬∃x(Cx&¬Sx&Tx)
7. ∃x(Cx&Tx) &∃x(Mx&Tx) &¬∃x(Cx&Mx&Tx)
8. ∀x[Cx ⊃ ∀y(¬Cy ⊃ Bxy)]
9. ∀x

(
(Cx&Mx) ⊃ ∀y[(¬Cy&¬My) ⊃ Bxy]

)
Chapter 8 Part G

1. ∀x(Cxp ⊃ Dx)
2. Cjp&Fj
3. ∃x(Cxp&Fx)
4. ¬∃xSxj
5. ∀x

[
(Cxp&Fx) ⊃ Dx

]
6. ¬∃x(Cxp&Mx)
7. ∃x(Cjx&Sxe&Fj)
8. Spe&Mp
9. ∀x

[
(Sxp&Mx) ⊃ ¬∃yCyx

]
10. ∃x(Sxj&∃yCyx&Fj)
11. ∀x

[
Dx ⊃ ∃y(Sxy&Fy&Dy)

]
12. ∀x

[
(Mx&Dx) ⊃ ∃y(Cxy&Dy)

]
Chapter 8 Part I

1. Rca, Rcb, Rcc, and Rcd are substitution instances of ∀xRcx.
2. Of the expressions listed, only ∀yLby is a substitution instance of ∃x∀yLxy.

Chapter 9 Part A 2, 3, 4, 6, 8, and 9 are true in the model.

Chapter 9 Part B 4, 5, and 7 are true in the model.

Chapter 9 Part D

UD = {10,11,12,13}
extension(O) = {11,13}
extension(S) = ∅
extension(T) = {10,11,12,13}
extension(U) = {13}
extension(N) = {<11,10>,<12,11>,<13,12>}

Chapter 9 Part E

solutions for ch. 9 243

1. The sentence is true in this model:

UD = {Stan}
extension(D) = {Stan}

referent(a) = Stan
referent(b) = Stan

And it is false in this model:

UD = {Stan}
extension(D) = ∅

referent(a) = Stan
referent(b) = Stan

2. The sentence is true in this model:

UD = {Stan}
extension(T) = {<Stan, Stan>}

referent(h) = Stan

And it is false in this model:

UD = {Stan}
extension(T) = ∅

referent(h) = Stan

3. The sentence is true in this model:

UD = {Stan, Ollie}
extension(P) = {Stan}

referent(m) = Stan

And it is false in this model:

UD = {Stan}
extension(P) = ∅

referent(m) = Stan

Chapter 9 Part F There are many possible correct answers. Here are some:

1. Making the first sentence true and the second false:

UD = {alpha}
extension(J) = {alpha}
extension(K) = ∅

referent(a) = alpha

2. Making the first sentence true and the second false:

UD = {alpha, omega}
extension(J) = {alpha}
referent(m) = omega

3. Making the first sentence false and the second true:

UD = {alpha, omega}
extension(R) = {<alpha,alpha>}

244 forallx (UBC edition)

4. Making the first sentence false and the second true:

UD = {alpha, omega}
extension(P) = {alpha}
extension(Q) = ∅

referent(c) = alpha

5. Making the first sentence true and the second false:

UD = {iota}
extension(P) = ∅
extension(Q) = ∅

6. Making the first sentence false and the second true:

UD = {iota}
extension(P) = ∅
extension(Q) = {iota}

7. Making the first sentence true and the second false:

UD = {iota}
extension(P) = ∅
extension(Q) = {iota}

8. Making the first sentence true and the second false:

UD = {alpha, omega}
extension(R) = {<alpha, omega>, <omega, alpha>}

9. Making the first sentence false and the second true:

UD = {alpha, omega}
extension(R) = {<alpha, alpha>, <alpha, omega>}

Chapter 9 Part I

2. No, it would not make any difference. The satisfaction of a formula with
one or more free variables depends on what the variable assignment does
for those variables. Because a sentence has no free variables, however, its
satisfaction does not depend on the variable assignment. So a sentence
that is satisfied by some variable assignment is satisfied by every other
variable assignment as well.

Chapter 10 Part A

1. ∀x∀y(Gxy ⊃ ∃zGxz) is a tautology.

solutions for ch. 10 245

1.

2.
3.

4.
5.

6.

¬∀x∀y(Gxy ⊃ ∃zGxz) Xa

¬∀y(Gay ⊃ ∃zGaz) Xb
¬(Gab ⊃ ∃zGaz) X

Gab
¬∃zGaz \b

¬Gab
×
4, 6

1 ¬∀
2 ¬∀

3 ¬⊃

2. ∀xFx ∨ ∀x(Fx ⊃ Gx) is not a tautology.

1.

2.
3.

4.
5.

6.
7.

¬(∀xFx ∨ ∀x(Fx ⊃ Gx)) X

¬∀xFx Xa
¬∀x(Fx ⊃ Gx) Xb

¬Fa
¬(Fb ⊃ Gb)

Fb
¬Gb
↑

1 ¬∨

2 ¬∀
3 ¬∀

5 ¬⊃

UD={a, b}, extension(F)={b}, extension(G)=∅

3. ∀x(Fx ⊃ (¬Fx ⊃ ∀yGy)) is a tautology.

1.

2.

3.
4.

5.
6.

¬∀x(Fx ⊃ (¬Fx ⊃ ∀yGy)) Xa

¬(Fa ⊃ (¬Fa ⊃ ∀yGy))

Fa
¬(¬Fa ⊃ ∀yGy)

¬Fa
¬∀yGy
×
3, 5

1 ¬∀

2 ¬⊃

4 ¬⊃

4. ∃x(Fx ∨ ¬Fx) is a tautology.

246 forallx (UBC edition)

1.

2.

3.
4.

¬∃x(Fx ∨ ¬Fx) \a

¬(Fa ∨ ¬Fa)

¬Fa
¬¬Fa
×
3, 4

1 ¬∃

2 ¬∨

5. ∃xJx ≡ ¬∀x¬Jx is a tautology.

1.

2.
3.

4.

5.

6.

7.

8.

¬(∃xJx ≡ ¬∀x¬Jx) X

∃xJx Xa
¬¬∀x¬Jx X

Ja

∀x¬Jx \a

¬Ja
×
5, 8

¬∃xJx
¬∀x¬Jx Xa

¬¬Ja

¬Ja
×
4, 6

1 ≡

3 ¬∀

2 ∃

2 ¬∃

3 ¬¬

7 ∀

6. ∀x(Fx ∨Gx) ⊃ (∀yFy ∨ ∃xGx) is a tautology.

solutions for ch. 10 247

1.

2.
3.

4.
5.

6.

7.

8.

9.

¬(∀x(Fx ∨Gx) ⊃ (∀yFy ∨ ∃xGx)) X

∀x(Fx ∨Gx) \a
¬(∀yFy ∨ ∃xGx)

¬∀yFy Xa
¬∃xGx \a

¬Fa

¬Ga

Fa ∨Ga

Fa
×

Ga
×

1 ¬⊃

3 ¬∨

4 ¬∀

5 ¬∃

2 ∀

8 ⊃

Chapter 10 Part B

1. Fa, Ga, .˙. ∀x(Fx ⊃ Gx) is invalid.

1.
2.
3.

4.

5.
6.

Fa
Ga

¬∀x(Fx ⊃ Gx) Xb

¬(Fb ⊃ Gb) X

Fb
¬Gb
↑

3 ¬∀

4 ¬⊃

UD={a, b}, extension(F)={a, b}, extension(G)={a}
2. Fa, Ga, .˙. ∃x(Fx&Gx) is valid.

1.
2.
3.

4.

5.

Fa
Ga

¬∃x(Fx&Gx) \a

¬(Fa&Ga)

¬Fa
×

¬Ga
×

3 ¬∃

4 ¬&

248 forallx (UBC edition)

3. ∀x∃yLxy, .˙. ∃x∀yLxy is invalid. 1.

2.

3.
4.

5.
6.

7.
8.

9.
10.

11.
12.

13.
14.

15.

∀x∃yLxy \a, b, c, ...

¬∃x∀yLxy \a, b, c, ...

∃yLay Xb
Lab

¬∀yLay Xc
¬Lac

∃yLby Xd
Lbd

¬∀yLby Xe
¬Lbe

∃yLcy Xf
Lcf

¬∀yLcy Xg
¬Lcg

...

1 ∀
3 ∃

2 ¬∃
5 ¬∀

1 ∀
7 ∃

2 ¬∃
9 ¬∀

1 ∀
11 ∃

2 ¬∃
13 ¬∀

This tree continues in an infinite way; each new name requires additional
instances at line 1 and line 2, which in turn require two more new names.
We can represent a model with an infinite UD, giving the extension of L
as either a chart or an infinite set of ordered pairs. It is also possible to
collapse this interpretation into a finite one; examining the chart, we can
see that there is no reason the names couldn’t be repeating names for the
same two objects; we could let d and e be additional names for b and c,
respectively, and so on for f and g, etc. So a two-object model will also
suffice to satisfy the premises and falsify the conclusion, with UD={b,
c} and extension(L)={<b, b>, <c, b>}. This is also shown in a second
chart.

Lxy a b c d e f g . . .
a - 1 0
b 1 0
c 1 0
d 1 0
...

solutions for ch. 11 249

Lxy b c
b 1 0
c 1 0

4. ∃x(Fx&Gx), Fb ≡ Fa, Fc ⊃ Fa, .˙. Fa is invalid.

1.
2.
3.
4.

5.

6.
7.

8.
9.

10.

∃x(Fx&Gx) Xd
Fb ≡ Fa X
Fc ⊃ Fa X
¬Fa

Fd&Gd X

Fd
Gd

Fb
Fa
×
4, 9

¬Fb
¬Fa

¬Fc
↑

Fa
×

9, 10

1 ∃

5 &

2 ≡

3 ⊃

UD={a, b, c, d}, extension(F)={d}, extension(G)={d}
5. ∀x∃yGyx, .˙. ∀x∃y(Gxy ∨Gyx) is valid.

1.
2.

3.

4.

5.

6.

7.
8.

∀x∃yGyx \a
¬∀x∃y(Gxy ∨Gyx) Xa

¬∃y(Gay ∨Gya) \b

∃yGya Xb

Gba

¬(Gab ∨Gba) X

¬Gab
¬Gba
×
5, 8

2 ¬∀

1 ∀

4 ∃

3 ¬∃

6 ¬∨

Chapter 11 Part A

250 forallx (UBC edition)

1. This system would not be sound. The satisfiability of an existential does
not imply the satisfiability of any arbitrary instance. Here is a counterex-
ample. This tree has a satisfiable root, but can close, given the proposed
rule.

∃xFx
¬Fa

Fa
×

2. This system would not be sound. Satisfying the existential doesn’t guar-
antee satisfying its d instance. Here is a counterexample:

∃xFx
¬Fd

Fd
×

3. This system would not be sound. The satisfiability of an existential does
not imply the satisfiability of any three arbitrary instances. Here is a
counterexample. This tree has a satisfiable root, but can close, given the
proposed rule.

∃xFx
¬Fa

Fa
Fb
Fc
×

4. This system would still be sound; the proof extends. If we assume ∀x Φ
is satisfiable, then some interpretation I satisfies it. This interpretation
either satisfies all three instances (if the names were interpreted by I), or
it can easily be extended into a new interpretation I* that satisfies them,
by adding any new names and assigning them to any objects in I’s UD,
all of which we know satisfy Φ. So this rule will never take us from a
satisfiable branch to an unsatisfiable one.

5. This system would still be sound; the proof extends. If we assume ∃x Φ
is satisfiable, then some interpretation I satisfies it. Create a new inter-
pretation I*, which includes the three names, and assign them each to
an object in I’s UD that satisfies Φ. We know there is at least one such
object, since I(∃x Φ) = 1. (Remember there is no prohibition on assign-
ing multiple names to the same object.) I* is guaranteed to satisfy the
extension of the branch along with that which came above. So this rule
will never take us from a satisfiable branch to an unsatisfiable one.

solutions for ch. 11 251

6. This system would still be sound; the proof extends. If we assume ∀x Φ is
satisfiable, then some interpretation I satisfies it. Extend the interpreta-
tion to include the new name, and assign it to any object in the UD, which
we know will satisfy Φ; the new interpretation satisfies the extension and
what came before. So this rule will never take us from a satisfiable branch
to an unsatisfiable one.

7. This system would still be sound; the proof extends. If x does not occur
in Φ, then ∃x Φ is logically equivalent to Φ. (Every substitution instance
for x of Φ will trivially just be Φ— since there is no x in that sentence,
replacing ‘every’ instance of that variable with any name results in no
change at all.) So this rule is equivalent to the original conjunction rule,
which is sound.

8. This system would still be sound. The soundness proof does not rely on
the branch completion rules, so changing those rules will never interfere
with the soundness proof.

9. This system would still be sound. The soundness proof does not rely on
the branch completion rules, so changing those rules will never interfere
with the soundness proof.

10. This system would remain sound. Adding an additional requirement for
completion will never make it easier to close branches.

This system would remain complete. The addition is simply the new re-
quirement that at least one new name be introduced via this rule; the rea-
soning that applied for completeness of the original system is unchanged.
Satisfying every instance corresponding to a name in the branch will guar-
antee satisfying the general claims (the universals or negated existentials),
since the UDs are constructed based on the names in the branch.

Chapter 11 Part B

1. This system would remain complete. If an existential is in a completed
open branch, and this rule has been performed, then some instance of that
existential is also in that branch. Any interpretation that satisfies that
instance will also satisfy the existential.

2. This system would still be complete. If an existential is in a completed
open branch, and this rule has been performed, then the d instance of that
existential is also in that branch. Any interpretation that satisfies that
instance will also satisfy the existential.

3. This system would still be complete. If an existential is in a completed
open branch, and this rule has been performed, then three instances of
that existential are also in that branch. Any interpretation that satisfies
them will also satisfy the existential.

4. This system would not be complete. Satisfying three substitution in-
stances for x of Φ doesn’t guarantee satisfying ∀x Φ. Here is a counterex-
ample to completeness— a tree with an unsatisfiable root that remains
open.

252 forallx (UBC edition)

∀xFx X
¬Fa

Fb
Fc
Fd

5. This system would still be complete; the proof extends. Satisfying sub-
stitution instances for x of Φ— whether new or not, and no matter how
many times— guarantees satisfying ∃x Φ.

6. This system would not be complete. Satisfying an instance of a universal
(whether or not the name is new) is no guarantee that the universal will
be satisfied. Here is a counterexample:

∀xFx X
¬Fa

Fb

7. This system would still be complete; the proof extends. If x does not
occur in Φ, then ∃x Φ is logically equivalent to Φ. (Every substitution
instance for x of Φ will trivially just be Φ— since there is no x in that
sentence, replacing ‘every’ instance of that variable with any name results
in no change at all.) So this rule is equivalent to the original conjunction
rule, which is complete.

8. This system would not be complete. Taking one instance isn’t enough to
ensure that the universal is satisfied. Here is a counterexample:

∀xFx X
¬Fa

Fb

9. This system would not be complete. If a name is introduced later on in
the tree and that instance of the universal hasn’t been taken, satisfying
the instances corresponding to the old names is not enough to guarantee
satisfying the universal. Here is a counterexample to completeness:

1.
2.
3.

4.
5.

6.

7.

Fa
∀x∀y¬Rxy \a
∀x∃yRxy \a

∀y¬Ray \a
∃yRay Xb

¬Raa

Rab

1 ∀
2 ∀

3 ¬∀

4 ∃

solutions for ch. 12 253

10. This system would remain complete. The addition is simply the new re-
quirement that at least one new name be introduced via this rule; the rea-
soning that applied for completeness of the original system is unchanged.
Satisfying every instance corresponding to a name in the branch will guar-
antee satisfying the general claims (the universals or negated existentials),
since the UDs are constructed based on the names in the branch.

Chapter 12 Part B

1. ∀x(Cx ⊃ Bx)
2. ¬∃xWx
3. ∃x∃y(Cx&Cy&x 6=y)
4. ∃x∃y(Jx&Ox& Jy&Oy&x 6=y)
5. ∀x∀y∀z

[
(Jx&Ox& Jy&Oy& Jz&Oz) ⊃ (x=y ∨ x=z ∨ y=z)

]
6. ∃x∃y

(
Jx&Bx& Jy&By&x 6= y&∀z[(Jz&Bz) ⊃ (x=z ∨ y=z)]

)
7. ∃x1∃x2∃x3∃x4

[
Dx1 &Dx2 &Dx3 &Dx4 &x1 6= x2 &x1 6= x3 &x1 6= x4 &x2 6=

x3 &x2 6= x4 &x3 6= x4 &¬∃y(Dy& y 6= x1 & y 6= x2 & y 6= x3 & y 6= x4)
]

8. ∃x
(
Dx&Cx&∀y[(Dy&Cy) ⊃ x=y] &Bx

)
9. ∀x

[
(Ox& Jx) ⊃Wx

]
&∃x

[
Mx&∀y(My ⊃ x=y) &Wx

]
10. ∃x

(
Dx&Cx&∀y[(Dy&Cy) ⊃ x=y] &Wx

)
⊃ ∃x∀y(Wx ≡ x=y)

11. ∃x
[
Mx&∀y(My ⊃ x=y) &¬Jx

]
12. ∃x∃z

(
Dx&Cx&Mz&∀y[(Dy&Cy) ⊃ x=y] &∀y[(My ⊃ z=y) &x 6=

z]
)

Chapter 12 Part C

1. ∃x(Bbx&Bwx)
2. ∀x∀y[(∃z(Gz&Sx&Sy&Bxz&Byz)) ⊃ x=y]
3. ∃x(Sx&x 6=b&Dx)
4. ∀x[(Dx&¬Wx) ⊃ Awx]
5. ∀x(x 6=f ⊃ Kfx)
6. ∀x(∃y(Sy&Axy&¬∃z((V z ∨Dz) &Kxz)) ⊃ Kbx)
7. ∀x(Gx ⊃ ∃y(Sy&Byx))
8. ∀x(Gx ⊃ ∃y(Sy&Byx& ∀z[(V z ∨Dz ∨ Fz) ⊃ Ayz]))
9. ∀x(Gx ⊃ ∃y(Sy&Byx&
∀z[(V z ∨Dz ∨ Fz) ⊃ Ayz] &
∀y2(∀z[(V z ∨Dz ∨ Fz) ⊃ Ay2z] ⊃ y2=y)))

Chapter 12 Part E

1. There are many possible answers. Here is one:

UD = {Harry, Sally}
extension(R) = {<Sally, Harry>}

referent(a) = Harry

254 forallx (UBC edition)

2. There are no predicates or constants, so we only need to give a UD. Any
UD with 2 members will do.

3. We need to show that it is impossible to construct a model in which these
are both true. Suppose ∃x x6=a is true in a model. There is something in
the universe of discourse that is not the referent of a. So there are at least
two things in the universe of discourse: referent(a) and this other thing.
Call this other thing β— we know a6=β. But if a6=β, then ∀x∀y x=y is
false. So the first sentence must be false if the second sentence is true. As
such, there is no model in which they are both true. Therefore, they are
inconsistent.

Chapter 12 Part F

1. |= ∀x∀y(x=y ⊃ y=x) is true. 1.

2.
3.

4.
5.

6.

¬∀x∀y(x=y ⊃ y=x) Xa

¬∀y(a=y ⊃ y=a) Xb
¬(a=b ⊃ b=a) X

a=b
b 6=a

b6=b
×
6

1 ¬∀
2 ¬∀

3 ¬⊃

4, 5 =

2. |= ∀x∃y x=y is true. 1.

2.

3.

¬∀x∃y x=y Xa

¬∃y y=a \a

a6=a
×
3

1 ¬∀

2 ¬∃

3. |= ∃x∀y x=y is false.

1.

2.

3.

¬∃x∀y x=y \a

¬∀y y=a Xb

b 6=a
↑

1 ¬∃

2 ¬∀

UD = {a, b}

4.

solutions for ch. 12 255

∃x∀y x=y |= ∀x∀y(Rxy ≡ Ryx) is
true.

1.
2.

3.

4.
5.

6.
7.

8.
9.

10.
11.

∃x∀y x=y Xa
¬∀x∀y(Rxy ≡ Ryx) Xb

∀y a=y \b, c

¬∀y(Rby ≡ Ryb) Xc
¬(Rbc ≡ Rcb) X

a=b
a=c

¬(Rac ≡ Rca)
¬(Raa ≡ Raa)

Raa
¬Raa
×

10, 11

Raa
¬Raa
×

10, 11

1 ∀

2 ¬∀
4 ¬∀

3 ∀
3 ∀

5, 6 =
5, 7 =

9 ¬≡

5. ¬∀x∀y∀z[(Axy&Azx& y=z) ⊃ Axx] |= is false.

1.

2.
3.
4.
5.

6.

7.

¬¬∀x∀y∀z((Axy&Azx& y=z) ⊃ Axx) X

∀x∀y∀z((Axy&Azx& y=z) ⊃ Axx) \a
∀y∀z((Aay&Aza& y=z) ⊃ Aaa) \a
∀z((Aaa&Aza& a=z) ⊃ Aaa) \a

(Aaa&Aaa& a=a) ⊃ Aaa X

¬(Aaa&Aaa& a=a) X

¬Aaa
↑

¬Aaa
↑

a6=a
×
7

Aaa
↑

1 ¬¬
2 ∀
3 ∀
4 ∀

5 ⊃

6 ¬&

This tree is complete. Three open branches describe these two models:

UD = {a}
extension(A) = ∅

UD = {a}
extension(A) = {<a, a>}

6. ∀x∀y x=y |= ∃xFx ≡ ∀xFx is true.

256 forallx (UBC edition)

1.
2.

3.
4.

5.
6.

7.
8.

9.
10.

11.

∀x∀y x=y \a
¬(∃xFx ≡ ∀xFx) X

∃xFx Xa
¬∀xFx Xb

Fa
¬Fb

∀y a=y \b
a=b

¬Fa
×

3, 10

¬∃xFx
∀xFx

¬Fa
Fa
×

2 ≡

3 ¬∃
4 ∀

3 ∃
4 ¬∀

1 ∀
9 ∀

10, 8 =

7. ∀x(x=a ∨ x=b), Ga ≡ ¬Gb |= ¬∃x∃y∃z(Gx&Gy&¬Gz) is false.

solutions for ch. 12 257

1.
2.
3.

4.
5.
6.
7.

8.
9.
10.

11.

12.

13.

14.
15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

∀x(x=a ∨ x=b) \c, d, e, a, b
Ga ≡ ¬Gb X

¬¬∃x∃y∃z(Gx&Gy&¬Gz) X

∃x∃y∃z(Gx&Gy&¬Gz) Xc
∃y∃z(Gx&Gy&¬Gz) Xd
∃z(Gx&Gy&¬Gz) Xe
Gc&Gd&¬Ge X

Gc
Gd
¬Ge

c=a ∨ c=b X

c=a

Ga

Ga
¬Gb

d=a ∨ d=b X

d=a

e=a ∨ e=b X

e=a

¬Ga
×

13, 20

e=b

a=a ∨ a=b X

a=a

b=a ∨ b=b X

b=a

Gb
×

15, 24

b=b
↑

a=b

d=b

¬Ga
Gb
×

13, 14

c=b

3 ¬¬
4 ∃
5 ∃

7 &

11 ∨

8, 12 =

2 ≡

1 ∀

16 ∨

1 ∀

18 ∨

1 ∀

20 ∨

1 ∀

22 ∨

258 forallx (UBC edition)

This tree will end up with multiple open branches; since one open branch is
enough to falsify the entailment claim, this version focuses on the left-most
open branch at every point, leaving the other open branches incomplete.
It describes this model:

UD = {a, b}
referent(a) = a
referent(b) = b
referent(c) = a
referent(d) = a
referent(e) = b

extension(G) = {a}

8. ∀x(Fx ⊃ x=f),∃x(Fx ∨ ∀y y=x) |= Ff is false.

1.
2.
3.

4.

5.

6.

7.

8.
9.

10.

11.

12.

∀x(Fx ⊃ x=f) \a, f
∃x(Fx ∨ ∀y y=a) Xa

¬Ff

Fa ∨ ∀y y=a X

Fa ⊃ a=f

¬Fa

Fa
×

∀y y=a \f, a

f=a
a=a

Ff ⊃ f=f X

¬Ff

¬Fa

f=f
↑

a=f

2 ∃

1 ∀

4 ∨

5 ⊃

7 ∀
7 ∀

1 ∀

8, 11 =

We have one completed open branch. (Another open branch has not been
completed.) It gives this model:

UD = {a}
referent(a) = a
referent(f) = a

extension(F) = ∅

9. ∃x∃yDxy |= ∀x1∀x2∀x3∀x4[(Dx1x2 &Dx3x4) ⊃ (x2 6=x3∨Dx1x4)] is false.

solutions for ch. 13 259

1.
2.

3.
4.

5.
6.
7.
8.

9.
10.

11.
12.

13.
14.

15.

16.
17.

∃x∃yDxy Xa
¬∀x1∀x2∀x3∀x4((Dx1x2 &Dx3x4) ⊃ (x2 6=x3 ∨Dx1x4)) Xc

∃yDay Xb
Dab

¬∀x2∀x3∀x4((Dcx2 &Dx3x4) ⊃ (x2 6=x3 ∨Dcx4)) Xd
¬∀x3∀x4((Dcd&Dx3x4) ⊃ (d6=x3 ∨Dcx4)) Xe
¬∀x4((Dcd&Dex4 ⊃ (d6=e ∨Dcx4)) Xf
¬((Dcd&Def) ⊃ (d 6=e ∨Dcf)) X

Dcd&Def X
¬(d 6=e ∨Rcf) X

Dcd
Def

¬d6=e
¬Dcf

d=e

Ddf
Dce
↑

1 ∃
3 ∃

2 ¬∀
5 ¬∀
6 ¬∀
7 ¬∀

8 ¬⊃

9 &

10 ¬⊃

13 ¬¬

12, 15 =
11, 15 =

UD = {a, b, c, d, f}
referent(a) = a
referent(b) = b
referent(c) = c
referent(d) = d
referent(e) = d
referent(f) = f

extension(D) =

Dxy a b c d f
a - 1 - - -
b - - - - -
c - - - 1 0
d - - - - 1
f - - - - -

Chapter 13 Part A

260 forallx (UBC edition)

1 ∀x∃y(Rxy ∨Ryx)

2 ∀x¬Rmx

3 ∃y(Rmy ∨Rym) ∀E 1

4 Rma ∨Ram for ∃E

5 ¬Rma ∀E 2

6 Ram ∨E 4, 5

7 ∃xRxm ∃I 6

8 ∃xRxm ∃E 3, 4–7

1 ∀x(∃yLxy ⊃ ∀zLzx)

2 Lab

3 ∃yLay ⊃ ∀zLza ∀E 1

4 ∃yLay ∃I 2

5 ∀zLza ⊃E 3, 4

6 Lca ∀E 5

7 ∃yLcy ⊃ ∀zLzc ∀E 1

8 ∃yLcy ∃I 6

9 ∀zLzc ⊃E 7, 8

10 Lcc ∀E 9

11 ∀xLxx ∀I 10

solutions for ch. 13 261

1 ∀x(Jx ⊃ Kx)

2 ∃x∀yLxy

3 ∀xJx

4 ∀yLay for ∃E

5 Ja ∀E 3

6 Ja ⊃ Ka ∀E 1

7 Ka ⊃E 6, 5

8 Laa ∀E 4

9 Ka&Laa & I 7, 8

10 ∃x(Kx&Lxx) ∃I 9

11 ∃x(Kx&Lxx) ∃E 2, 4–10

1 ¬(∃xMx ∨ ∀x¬Mx) for reductio

2 ¬∃xMx&¬∀x¬Mx DeM 1

3 ¬∃xMx & E 2

4 ∀x¬Mx QN 3

5 ¬∀x¬Mx & E 2

6 ∃xMx ∨ ∀x¬Mx ¬E 1–5

Chapter 13 Part B

1.

1 ¬(∀xFx ∨ ¬∀xFx) for reductio

2 ¬∀xFx&¬¬∀xFx DeM 1

3 ¬∀xFx & E 2

4 ¬¬∀xFx & E 2

5 ∀xFx ∨ ¬∀xFx ¬E 1–4

262 forallx (UBC edition)

2.

1 ∀x(Mx ≡ Nx)

2 Ma&∃xRxa want ∃xNx

3 Ma ≡ Na ∀E 1

4 Ma & E 2

5 Na ≡E 3, 4

6 ∃xNx ∃I 5

3.

1 ∀x(¬Mx ∨ Ljx)

2 ∀x(Bx ⊃ Ljx)

3 ∀x(Mx ∨Bx) want ∀xLjx

4 ¬Ma ∨ Lja ∀E 1

5 Ma ⊃ Lja MC 4

6 Ba ⊃ Lja ∀E 2

7 Ma ∨Ba ∀E 3

8 Lja DIL 7, 5, 6

9 ∀xLjx ∀I 8

4.

1 ∀x(Cx&Dt) want ∀xCx&Dt

2 Ca&Dt ∀E 1

3 Ca & E 2

4 ∀xCx ∀I 3

5 Dt & E 2

6 ∀xCx&Dt & I 4, 5

solutions for ch. 13 263

5.

1 ∃x(Cx ∨Dt) want ∃xCx ∨Dt

2 Ca ∨Dt for ∃E

3 ¬(∃xCx ∨Dt) for reductio

4 ¬∃xCx&¬Dt DeM 3

5 ¬Dt & E 4

6 Ca ∨E 2, 5

7 ∃xCx ∃I 6

8 ¬∃xCx & E 4

9 ∃xCx ∨Dt ¬E 3–8

10 ∃xCx ∨Dt ∃E 1, 2–9

Chapter 13 Part H Regarding the translation of this argument, see p. 139.

1 ∃x∀y[∀z(Lxz ⊃ Lyz) ⊃ Lxy]

2 ∀y[∀z(Laz ⊃ Lyz) ⊃ Lay] for ∃E

3 ∀z(Laz ⊃ Laz) ⊃ Laa ∀E 2

4 ¬∃xLxx for reductio

5 ∀x¬Lxx QN 4

6 ¬Laa ∀E 5

7 ¬∀z(Laz ⊃ Laz) MT 5, 6

8 Lab want Lab

9 Lab R 8

10 Lab ⊃ Lab ⊃I 8–3–9

11 ∀z(Laz ⊃ Laz) ∀I 10

12 ¬∀z(Laz ⊃ Laz) R 7

13 ∃xLxx ¬E 4–3–12

14 ∃xLxx ∃E 1, 2–3–13

Chapter 13 Part J 2, 3, and 5 are logically equivalent.

Chapter 13 Part K 2, 4, 5, 7, and 10 are valid. Here are complete answers

264 forallx (UBC edition)

for some of them:

1.
UD = {mocha, freddo}

extension(R) = {<mocha, freddo>, <freddo, mocha>}

2.

1 ∃y∀xRxy want ∀x∃yRxy

2 ∀xRxa for ∃E

3 Rba ∀E 2

4 ∃yRby ∃I 3

5 ∀x∃yRxy ∀I 4

6 ∀x∃yRxy ∃E 1, 2–5

Quick Reference

Φ ¬Φ
T F
F T

Φ Ψ Φ&Ψ Φ∨Ψ Φ⊃Ψ Φ≡Ψ
T T T T T T
T F F T F F
F T F T T F
F F F F T T

Φ ¬Φ
1 0
0 1

Φ Ψ Φ&Ψ Φ∨Ψ Φ⊃Ψ Φ≡Ψ
1 1 1 1 1 1
1 0 0 1 0 0
0 1 0 1 1 0
0 0 0 0 1 1

Symbolization

Sentential Connectives (chapter 2)

It is not the case that P . ¬P
Either P , or Q. (P ∨Q)

Neither P , nor Q. ¬(P ∨Q) or (¬P &¬Q)
Both P , and Q. (P &Q)

If P , then Q. (P ⊃ Q)
P only if Q. (P ⊃ Q)

P if and only if Q. (P ≡ Q)
Unless P , Q. P unless Q. (P ∨Q)

Predicates (chapter 8)

All F s are Gs. ∀x(Fx ⊃ Gx)
Some F s are Gs. ∃x(Fx&Gx)

Not all F s are Gs. ¬∀x(Fx ⊃ Gx) or ∃x(Fx&¬Gx)
No F s are Gs. ∀x(Fx ⊃ ¬Gx) or ¬∃x(Fx&Gx)

Identity (section ??)

Only j is G. ∀x(Gx ≡ x = j)
Everything besides j is G. ∀x(x 6= j ⊃ Gx)

The F is G. ∃x(Fx&∀y(Fy ⊃ x = y) &Gx)
‘The F is not G’ can be translated two ways:
It is not the case that the F is G. (wide) ¬∃x(Fx&∀y(Fy ⊃ x = y) &Gx)

The F is non-G. (narrow) ∃x(Fx&∀y(Fy ⊃ x = y) &¬Gx)

265

Basic Rules of Proof

Reiteration

m Φ

Φ R m

Conjunction Introduction

m Φ

n Ψ

Φ&Ψ & I m, n

Conjunction Elimination

m Φ&Ψ

Φ & E m

Ψ & E m

Disjunction Introduction

m Φ

Φ ∨ Ψ ∨I m

Ψ ∨ Φ ∨I m

Disjunction Elimination

m Φ ∨ Ψ

n ¬Ψ

Φ ∨E m, n

m Φ ∨ Ψ

n ¬Φ

Ψ ∨E m, n

Conditional Introduction

m Φ want Ψ

n Ψ

Φ ⊃ Ψ ⊃I m–n

Conditional Elimination

m Φ ⊃ Ψ

n Φ

Ψ ⊃E m, n

Biconditional Introduction

m Φ ⊃ Ψ

n Ψ ⊃ Φ

Φ ≡ Ψ ≡I m, n

Biconditional Elimination

m Φ ≡ Ψ

n Ψ

Φ ≡E m, n

m Φ ≡ Ψ

n Φ

Ψ ≡E m, n

Negation Introduction

m Φ (for reductio)

n Ψ

o ¬Ψ

p ¬Φ ¬I m–n, m–o

Negation Elimination

m ¬Φ for reductio

n Ψ

o ¬Ψ

p Φ ¬E m–n, m–o

Quantifier Rules

Existential Introduction

m Φ

∃x Φ c∗ ⇒ x ∃I m

∗ x may replace some or all occurrences of c.

Existential Elimination

m ∃x Φ

n Φ x ⇒ c∗

p Ψ

Ψ ∃E m, n–p

∗ c must not appear outside the subproof.

Universal Introduction

m Φ

∀x Φ c ⇒ x ∀I m

c must not occur in any undischarged assump-
tions.

Universal Elimination

m ∀x Φ

Φ x ⇒ c ∀E m

Identity Rules

c=c =I

m c=d

n Φ

Φ c⇒ d =E m, n

Φ d⇒ c =E m, n

One constant may replace some or all occurrences
of the other.

Derived Rules

Dilemma

m Φ ∨ Ψ

n Φ ⊃ Ω

p Ψ ⊃ Ω

Ω DIL m, n, p

Modus Tollens

m Φ ⊃ Ψ

n ¬Ψ

¬Φ MT m, n

Hypothetical Syllogism

m Φ ⊃ Ψ

n Ψ ⊃ Ω

Φ ⊃ Ω HS m, n

Replacement Rules

Commutivity (Comm)
(Φ&Ψ)⇐⇒ (Ψ &Φ)
(Φ ∨ Ψ)⇐⇒ (Ψ ∨ Φ)
(Φ ≡ Ψ)⇐⇒ (Ψ ≡ Φ)

DeMorgan (DeM)
¬(Φ ∨ Ψ)⇐⇒ (¬Φ&¬Ψ)
¬(Φ&Ψ)⇐⇒ (¬Φ ∨ ¬Ψ)

Double Negation (DN)
¬¬Φ⇐⇒ Φ

Material Conditional (MC)
(Φ ⊃ Ψ)⇐⇒ (¬Φ ∨ Ψ)
(Φ ∨ Ψ)⇐⇒ (¬Φ ⊃ Ψ)

Biconditional Exchange (≡ex)
[(Φ ⊃ Ψ) & (Ψ ⊃ Φ)]⇐⇒ (Φ ≡ Ψ)

Quantifier Negation (QN)
¬∀x Φ⇐⇒ ∃x ¬Φ
¬∃x Φ⇐⇒ ∀x ¬Φ

In the Introduction to his volume Symbolic Logic,
Charles Lutwidge Dodson advised: “When you
come to any passage you don’t understand, read
it again: if you still don’t understand it, read it
again: if you fail, even after three readings, very
likely your brain is getting a little tired. In that
case, put the book away, and take to other occu-
pations, and next day, when you come to it fresh,
you will very likely find that it is quite easy.”

The same might be said for this volume, although
readers are forgiven if they take a break for snacks
after two readings.

about the authors:
P.D. Magnus is an associate professor of philoso-
phy in Albany, New York. His primary research
is in the philosophy of science.

Jonathan Ichikawa is an associate professor
of philosophy in Vancouver, British Columbia.
His primary research is in epistemology.

	Preface to the UBC Edition
	What is logic?
	Arguments
	Sentences
	Two ways that arguments can go wrong
	Deductive validity
	Other logical notions
	Formal languages
	Practice Exercises

	Sentential logic
	Sentence letters
	Connectives
	Other symbolization
	Sentences of SL
	Practice Exercises

	Truth tables
	Truth-functional connectives
	Complete truth tables
	Using truth tables
	Partial truth tables
	Evaluating English Arguments via SL
	Practice Exercises

	Entailment and Models for SL
	Semantics for SL
	Some odd features of entailment
	Practice Exercises

	SL Trees
	Satisfiability and entailment
	An example: proving validity
	An example: proving invalidity
	Resolution rules for SL trees
	Branch closure rules
	Branch completion rules
	Resolution order
	Practice Exercises

	Soundness and Completeness for SL Trees
	Informal proof
	Soundness
	Recursive proofs
	Proving soundness
	Completeness
	Proving Completeness
	Practice Exercises

	Natural Deduction Proofs in SL
	Basic rules for SL
	Derived rules
	Rules of replacement
	Proof strategy
	Proof-theoretic concepts
	Proofs and models
	Soundness and completeness
	Practice Exercises

	Quantified logic
	From sentences to predicates
	Building blocks of QL
	Quantifiers
	Translating to QL
	Sentences of QL
	Common Student Errors
	Practice Exercises

	A formal semantics for QL
	Interpretations in QL
	Working with models
	Truth in QL
	Practice Exercises

	QL Trees
	Trees with Fixed Domains
	Generalizing the Tree Method
	Existentials
	Universals
	Negated Existentials
	Negated Universals
	Whither Branching?
	The Other Development Rules
	Branch Closure Rules
	Tree Completion Rules
	Resolution order
	Infinite Trees
	Common Student Errors
	Practice Exercises

	Soundness and Completeness for QL Trees
	Soundness
	Completeness
	Practice Exercises

	Identity
	Motivating identity as a logical category
	=
	Identity and `no one else'
	Identical objects satisfy identical predicates
	Quantity
	Identity and Trees
	Practice Exercises

	Natural Deduction Proofs in QL
	Natural Deduction: the basics
	Basic quantifier rules
	Identity Introduction
	Identity Elimination
	Example: Translation and Evaluation
	Natural deduction strategy
	Soundness and completeness
	Practice Exercises

	Other symbolic notation
	Solutions to selected exercises
	C Quick Reference

