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ABSTRACT

This paper concerns the double standard debate in the ethics of Al
literature. This debate revolves around the question of whether we
should subject Al systems to different normative standards than
humans. So far, the debate has centered around transparency. That
is, the debate has focused on whether Al systems must be more
transparent than humans in their decision-making processes in or-
der for it to be morally permissible to use such systems. Some have
argued that the same standards of transparency should be applied
to Al systems and humans. Others have argued that we should
hold AI systems to higher standards than humans in terms of trans-
parency. In this paper, we first highlight that debates concerning
double standards, which have a similar structure to those related
to transparency, exist in relation to other values such as predictive
accuracy. Second, we argue that when we focus on predictive ac-
curacy, there are at least two reasons for holding Al systems to a
lower standard than humans.

KEYWORDS

Double Standard, Predictive Accuracy, Opacity, Cost-effectiveness,
Speed

ACM Reference Format:

Jakob Mainz, Lauritz Aastrup Munch, and Jens Christian Bjerring. 2023.
Two Reasons for Subjecting Medical Al Systems to Lower Standards than
Humans. In 2023 ACM Conference on Fairness, Accountability, and Trans-
parency (FAccT '23), June 12-15, 2023, Chicago, IL, USA. ACM, New York,
NY, USA, 6 pages. https://doi.org/10.1145/3593013.3593975

1 INTRODUCTION

There is an ongoing debate about whether we should hold Al sys-
tems to different standards than humans when it comes to decisional
transparency [8, 12, 24, 27, 33]. Some believe that we should hold Al
systems to the same standard as humans [33]. Others believe that
we should hold Al systems to a higher standard than humans [12].
The crux of the debate is whether Al systems used for decision-
making should exhibit a greater level of transparency—or a lower
degree of opacity—in their decision-making processes compared
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to humans. So far, no apparent consensus has emerged in the lit-
erature. Although the discussion on double standards regarding
algorithmic transparency is well-known, we want to demonstrate
that similar debates on double standards ought to exist in regards
to other important criteria beyond transparency such as predic-
tive accuracy, fairness, and trustworthiness. We believe these other
desiderata deserve the same sort of double standard debate, and
this paper is a first stab at extending the debate to include them.

For current purposes, we focus on the desideratum of predictive
accuracy. For ease of exposition, we shall speak of predictive accu-
racy as the Al system’s ability to make correct binary predictions.
In turn, we can define predictive accuracy as the percentage of
the system’s predictions that are correct. More precisely, we can
calculate the aggregate accuracy score of an Al system by adding
its true positive predictions to its true negative predictions, and
then divide this number by the total number of predictions:

(TruePositivesay + TrueNegativesay)

Accuracyar =
(TruePositivesAI + TrueNegativesAI+)

FalsePositiveso; + FalseNegativesag

Similarly, we can calculate the accuracy score of humans as follows:

(TruePositivesgyuman+TrueNegativesHuman)

TruePositivesgyman + TrueNegativesgyman+

Accuracygyman =
(FalsePositivesHuman + FalseNegativesgyman

So what we will be focusing on is whether our normative stan-
dards require that Accuracy 1 be different from Accuracypyman- We
focus on accuracy for two reasons. First, accuracy is quantifiable and
commensurable across human and artificial decision-makers. This
sets accuracy apart from at least some other desiderata worth caring
about in the context of algorithmic decision-making. For instance,
no equally unambiguous metrics obviously exist for desiderata such
as transparency and trustworthiness. Second, in many domains of
critical decision-making, accuracy is often regarded as one of the
most, if not the most important desideratum. This holds true in
domains such as healthcare, criminal justice, and banking.

In this paper, we take a position in the double standard debate
that has so far been vacant. Specifically, we argue that there are
reasons for thinking that it can sometimes be morally permissible—
if not morally obligatory—to hold AI systems to lower standards
than humans. That is, we want to claim that it can sometimes be
morally permissible to rely on an Al system even if Accuracyay
is lower than Accuracypyyman. We offer two reasons in favor of
this conclusion. The first reason is that certain Al systems are—or
supposedly will be—highly cost-effective: they can be expected
to perform their designated tasks with efficiency comparable to
humans but at a lower cost of usage than human labor. When Al
systems are sufficiently cost-effective in this sense, we want to
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argue that we can have reason to rely on them instead of humans,
even if they exhibit slightly less accuracy than humans in their
medical predictive abilities. The second reason is that the predictive
speed of many Al systems is much higher than that of humans:
many Al systems arrive at their predictions significantly faster than
humans do. When we refer to predictive speed, we are not only
referring to the computational speed at which an Al system can
crunch numbers. Instead, we are referring to the time it takes for
an Al system to arrive at a decision in a given decision-making
process. To use an example we will return to later, think of an Al
system that detects deadly diseases. While it is obviously important
that the AI system can crunch numbers fast, there are types of
deadly diseases—as we shall see in detail later—for which it is
even more important that it can detect these diseases earlier in
the process than any human can. Indeed, as we shall argue later,
in medical situations where diagnostic speed and early treatment
is of vital importance, there can be excellent reasons to rely on
Al systems rather than humans even if Accuracyay is lower than
Accuracyyyman- Although we focus on detection time here, it is
worth noting that Al systems could increase speed through other
mechanisms. While a human practitioner can feasibly only tend to
one or a few patients at a time due to cognitive limitations, an Al
system can plausibly diagnose multiple patients simultaneously due
to its increased computational capacities. Insofar as the marginal
cost of algorithmic computational power is lower than the marginal
cost of human reasoning power, a contribution to predictive speed
along these dimensions would also be cost-effective.

Note: we shall not argue that reasons concerning cost-
effectiveness and predictive speed always trump competing rea-
sons for holding AI systems to higher standards than humans
when it comes to accuracy. We only argue that the values of cost-
effectiveness and speed reflect genuine reasons that we ought to
take into consideration when deciding questions about algorithmic
decision aids. But we allow that these reasons might sometimes
be overruled by stronger countervailing reasons. Moreover, con-
siderations pertaining to cost-effectiveness and predictive speed
present us with reasons that have so far gone largely unnoticed
in the double standard debates. But, we argue, they ought to be
considered when we balance reasons in favor of and against the
idea that Accuracya; must match Accuracyyman-

Before proceeding, let us make a few further clarifications regard-
ing the scope of our argument. There are several issues that might
influence what a plausible stance in the double standard debate
should look like. First, there are issues concerning the domain of
operation. So far, the double standard debate has occurred at a fairly
abstract level. However, given the highly domain-specific nature of
the key arguments in the debate, it is helpful to concentrate on a
specific domain of operation. We shall concentrate on the medical
domain. The medical domain is a natural choice because consider-
ations pertaining to algorithmic accuracy, cost-effectiveness, and
predictive speed are particularly salient in the medical domain. But
again, the arguments we give are likely to apply in some form in
other central domains as well.

Second, there are issues concerning the level of autonomous
decision power that we allocate to the relevant Al systems. For
instance, it matters whether Al systems are used as decision support
tools, or whether they are capable of making decisions on their
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own. For using an Al system as a decision support tool is typically
easier to justify than relying on it as a decision-maker on its own.
After all, there is a ‘human in the loop’ in the former but not the
latter case. But if we can demonstrate that our argument holds
true for Al systems that make unilateral decisions, we will also
have shown that it holds true for systems that are merely used for
decision support. As a result, we have chosen to concentrate on Al
systems that make unilateral decisions. Such systems raise other
worries than those that will concern us here, but we refer to other
work for discussion of some of these [19].

Third, there are issues concerning the choice of comparison
class. Which group of human clinicians should we compare the
relevant Al system to? The answer here is far from obvious. Should
we consider the best human clinicians in the field? The worst hu-
man clinicians? The average human clinician? Or the reasonably
available human clinician or group of clinicians? Given that the
accuracy levels of human clinicians vary considerably—and that the
accuracy of a particular individual can also fluctuate over time—the
selection of the comparison class from within the group of human
clinicians carries significant weight in determining whether the
Al system in question is more or less accurate than the human
clinicians to which it is compared. Although little hangs on this
issue for purposes of stating our argument, we shall assume that
the Al system is compared, counterfactually, to the best, reasonably
available human that could have made the decision, had the AI sys-
tem not been in charge of the decision-making process. In practice,
this would mean that we would often be comparing the Al system
to whoever was replaced by the system when it was put in charge
of the decision-making process. We include both ‘best’ and ‘reason-
ably available’ in our comparison class for the following reasons.
First, practical circumstances could mean that the ‘best’ decision-
maker (judged by some standard) that could make the decision is
not ‘reasonably available’ for making a given decision. Suppose for
instance that one human clinician by far exceeds all other clinicians
in their cohort in terms of accuracy for some diagnostic procedure
and in this sense counts as ‘best’. Comparing the accuracy of the
relevant Al system to the accuracy of that individual seems prob-
lematic because it is unfeasible to expect that this individual would
be making all the decisions that must be made; after all, even the
best human clinician needs some time off. Second, we include ‘best’
because some ‘reasonably available’ human clinicians may not be
very good in the sense of not being very accurate. Although situa-
tions may arise where only such suboptimal human clinicians are
reasonably available, this group appears to be a less suitable point
of comparison when considering the value of substituting them
with an Al system.

Finally, there are issues concerning the stakes associated with
the relevant decision. Generally, it seems easier to justify replacing
a human decision-maker with an Al system in a low stakes decision
context. As such, one might think, it is also easier to justify the
inclusion of Al systems that are less accurate than humans in low
stakes contexts. To make our life as hard as possible, we shall thus
focus on high stakes decision contexts involving Al systems in use
for detecting and diagnosing deadly diseases.
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2 COST-EFFECTIVENESS

As mentioned, the first reason that counts in favor of holding AI
systems to a lower accuracy standard than humans concerns the
cost-effectiveness of these systems. Replacing human clinicians
with more cost-effective Al systems means that scarce healthcare
resources can be spent elsewhere to produce more overall health or
even save more lives. Cost-effectiveness is of course not the only
thing that matters morally when we make medical decisions. But it
is undeniable that it matters. If the maintenance of high accuracy
levels comes with substantial opportunity costs—implying that
the resources allocated to attain these levels could be utilized more
effectively elsewhere—we should pause and reflect. So not only does
cost-effectiveness matter, it is also uncontroversially considered a
weighty consideration that can only be trumped by very weighty
counter-considerations [22, 28, 29]. And this is all we have in mind
when we say that the cost-effectiveness of a medical Al system
gives us reason to use that system even if Accuracyg is lower than
Accuracyfqyman. We may decide that other considerations trump
cost-effectiveness in specific situations, but since medical resources
are realistically always scarce, cost-effectiveness should always play
some role in moral deliberations concerning the proper accuracy
standards for medical Al systems. To the extent that Al systems
are more cost-effective than humans, then, this fact will count in
favor of using these systems even though Accuracyag is lower than
AccuracyHuman-

As it turns out, many expect Al systems to become very cost-
effective in the future. These systems are expected by many to
become cheap to implement and upkeep, and they are expected by
many to perform at least as well as humans in terms of accuracy
in the future [30]. To illustrate the potential magnitude of cost-
effectiveness that we are dealing with, consider a recent study
about diabetic screenings in Singapore [31]. By replacing human
practitioners with Al systems, the study found that yearly savings
of roughly $15 millions could be achieved by 2050 with respect
to diabetic screening in Singapore alone, and that these financial
reductions could be achieved without reducing the accuracy levels
of the screening process. Similar studies show that novel Al systems
significantly improve the accuracy levels of cardiovascular risk
prediction, and that the systems needed for achieving this feat
will be cheap to upkeep [3, 5, 9, 11]. To be sure, while studies like
these show promising results, it is still too early to paint a general
picture of how cost-effective medical Al systems will eventually
be. Some existing systems tend not to perform very well once
we move beyond the testing stage, and some systems tend to be
very expensive to develop. So we cannot unequivocally say that all
relevant future Al systems will be cost-effective. Luckily, for our
argument to go through, we do not need to establish that most or
all existing Al systems are very cost-effective, nor that they will be
so in the future. We only claim that to the extent that they will be
cost-effective it gives us reason to use them, even if Accuracyay is
lower than Accuracyquman-

Of course, it matters morally how much lower AccuracyAl is
compared to Accuracyfuman- If Accuracyag is not higher than the
accuracy levels achieved by tossing a coin, then there is not much
point in using the Al system in question—regardless of how much
cheaper it is compared to humans. Moreover, some may believe that
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patients are owed a certain minimal threshold of predictive accuracy
from medical algorithms, arising perhaps from a duty of care in
healthcare or from some professional norm dictating how much a
medical prediction can vary from the profession’s state of the art. If
one were to adopt a strict absolutist stance on the required level of
precision for a diagnostic procedure—insisting that only a specific
level of precision is morally acceptable and any deviation from it is
problematic—this would represent a limiting case. However, such
a position is unlikely to be compelling precisely because it would
conflict with the underlying objective of pursuing cost-effectiveness.
But aside from this, the points we make below are compatible with
the existence of such thresholds imposing certain limits on the
variability of accuracy standards in light of other values such as
cost-effectiveness or speed. Luckily, for our purposes, there is ample
empirical evidence that even existing medical Al systems display
levels of accuracy that come close to those of humans—indeed, there
is evidence that some of them even surpass humans. Even when
existing medical Al systems display levels of accuracy that are lower
than those displayed by humans, the difference is normally only a
few percentages. For instance, a recent systematic review found—
among other things—that many medical Al systems perform very
well in terms of accuracy in the context of musculoskeletal radiology
[10, 14]. Across all performance measures—not only accuracy—the
review found that the AI systems performed better than human
clinicians in 38% of the studies included in the review, worse than
human clinicians in 3.8% of the studies, while no difference was
found in 58% of the studies. Importantly, in the few studies where
the Al system did perform worse than human clinicians, the review
showed that on average the difference was only approximately 5%
[10].

Also, when discussing the relevance of cost-effectiveness, it is
important to keep in mind that not all forms of cost-effectiveness
may permissibly be pursued. As we pointed out above, the value
of cost-effectiveness lies in how it allows for more healthcare re-
sources to be allocated towards other beneficial endeavors. It is
clear, however, that the permissibility of this maneuver is partially
dependent upon what these other beneficial endeavors are. For in-
stance, it may never be morally permissible to trade off even a few
patients’ lives with a slight reduction of headache pains for millions
of other patients. While these considerations do not amount to an
objection to our central argument, they add two important nuances
to our argument.

First, not all increases in cost-effectiveness will warrant accept-
ing lower accuracy thresholds. We should only compromise on
accuracy to achieve cost-effectiveness if the resources saved can be
utilized to create more benefits elsewhere, resulting in a net gain
in overall medical benefit. If the compromise on accuracy results
in a slight increase in lost lives, for instance, we may never end
up with a net gain in overall medical benefit if the benefits gen-
erated elsewhere amount only to headache relieves. As such, we
cannot—at least not in isolation from the broader medical context—
specify a general rule that tells us how much a specific increase in
cost-effectiveness will warrant a specific reduction of predictive
accuracy. Rather, it all depends on the aims that specific levels of ac-
curacy enable us to pursue and on the benefits that we can generate
with the saved costs. A second nuance to consider is that the pur-
suit of cost-effectiveness may sometimes amount to trading welfare
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between people. To make this concrete, suppose we implement an
Al system for diagnosing gastric cancer that is slightly less accurate
than the human alternatives but much more cost-effective. Suppose
the resources liberated are then used to improve the treatment for
people who suffer from a broken ankle. On one way of describing
this situation, resources are shifted from individuals with gastric
cancer, who may experience a slightly higher risk of not receiving
an accurate diagnosis and subsequent treatment, to individuals with
broken ankles who may benefit from better treatment to achieve a
slightly better recovery. Suppose also that a much larger number of
people experience broken ankles than gastric cancer. While it might
seem obvious that this transfer of welfare from cancer patients to
fracture patients is unjust, it is important to remember that different
theories will take different views on the moral status of such trans-
fers of welfare—even if all should recognize the value of providing
the most health given the available resources. Act utilitarians, for
instance, should prefer transfers like the one above provided they
increase total utility. In contrast, many non-consequentialists hold
that these sorts of transfers are morally unacceptable: it is not jus-
tifiable to cause a significantly greater harm to some individuals
(for instance by increasing their risk of having undetected gastric
cancer) to provide only a slight benefit to many others (such as
improving their recovery from broken bones), even if the total sum
of welfare is thereby increased. In making this point we are mak-
ing the simplifying assumption that withholding a more accurate
diagnostic tool from patients amounts to harming them. But the
case is perhaps more accurately described as one of withholding a
benefit. Or, to take a stock case from the relevant literature, if we
have the option to either save one person from certain death or
save a billion people from a slight headache, we should intuitively
prefer saving the one person from certain death; indeed, we should
continue to do so even if the number of slight headaches we could
prevent increase tremendously. Such views are often referred to as
“partially aggregative” because they say that we only sometimes
should prefer to act in ways that maximize aggregate moral value,
see [13]. If you share this intuition, you should want to say that
pursuing slightly less accurate but cost-effective Al systems meant
to mitigate severe harms is not justifiable if the plan is to allocate
the saved resources towards mitigating much lesser harms.

We need not take a stand on these issues. Even if we adopt the
view that some forms of trading welfare between people are morally
impermissible—such as the trade between gastric cancer patients
and broken ankle patients above—our argument remains relevant
for many implementations of Al systems. Specifically, our argument
will apply whenever we are contemplating lowering the accuracy
of detecting or treating less severe diseases in order to enhance the
detection or treatment of more severe ones.

So, as we have seen, while it remains hard in full generality
to compare cost-effectiveness levels between medical Al systems
and humans, it is clear enough from the literature that some Al
systems are already more cost-effective than humans, and that we
can reasonably speculate that we will see more of these Al systems
in the future. At any rate, we have motivated the thought that to
the extent that Al systems will be more cost-effective than humans,
then we have a reason to use them instead of humans, even if
Accuracyy is lower than Accuracypyman and not too low on its
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own. And this, in conjunction with the nuances just mentioned, is
all we need going forward.

3 PREDICTIVE SPEED

The second reason that counts in favor of holding medical Al sys-
tems to a lower accuracy standard than humans has to do with the
predictive speed that some of them display. Elsewhere, we have
argued that predictive speed is sometimes more important than
predictive accuracy. Below we rehearse this argument but expand
upon its significance to the double standards debate. In Mainz et al.
(2022), we argue that predictive speed can be more important than
predictive accuracy when the following two criteria are satisfied
[18]:

(1) the opportunity costs of a slow decision-making process are
severe, and

(2) the consequences of unnecessary treatment are acceptable
compared to a late or even absent treatment.

Criteria (1) and (2) are often satisfied when we deal with Al
systems that can detect and diagnose deadly diseases. Consider
an example involving the Al system called Sepsis Watch. Sepsis
Watch is a machine learning model that “. . . can predict onset sepsis
a median 5 hours before clinical presentation, and it generally
performs very well both in terms of triaging and monitoring of
patients” [18] A median 5-hour earlier detection time might not
seem like a big advancement, but it is. Detecting sepsis just a few
hours earlier can make the difference between life and death. Sepsis
is an extreme reaction to an infection, and it is one of the most
common causes of death globally [15]. The global mortality rate of
sepsis is roughly 30%, and every hour of treatment delay increases
the risk of death by roughly 8% [32]. So, even if Sepsis Watch
can ‘only’ detect sepsis a few hours earlier than humans, it can
potentially mean that thousands, if not millions of people who
would otherwise die from sepsis will survive.

The timely detection of sepsis is thus crucial, and as such, the
speed by which a sepsis detection model can reach its verdict is
an extremely important feature of the Al system. But how can it
be more important than the overall accuracy level of the system?
The answer lies in the low risks associated with treating individu-
als for sepsis. The primary treatment options are antibiotics and
intravenous fluids. At a population level, an excessive use of an-
tibiotics can of course lead to antibiotics resistance, but when we
focus on individual patients, treatments involving antibiotics and
intravenous fluids are very safe and have no significant side effects.
In other words, even if the sepsis detection model incorrectly diag-
noses some patients as having sepsis when they actually do not, the
consequences of such mistakes are not very critical for individual
patients. Accordingly, even if the false positive rate increases in sit-
uations where Accuracyaj is lower than Accuracypyyman, the speed
of the Al system can still result in a net increase in the amount of
lives saved. Interestingly, the same holds true even if the Al model—
where Accuracyag is lower than Accuracypyman—has a higher rate
of false negatives compared to human clinicians. This is because
the speed at which the AI system can detect sepsis can still lead
to saving more patients’ lives, despite the increased likelihood of
missing some patients who actually have sepsis. Following Mainz
et al., we can illustrate the point with the following figure [18]:
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Al Diagnosis Human Diagnosis

Correct classifications (Accuracy): 80100 Correct classifications (Accuracy): 90/100
True positives: 40/100 (0 die of sepsis) True positives: 45/100 (10 die of sepsis)
True negatives: 40/100 (0 die of sepsis) True negatives: 45/100 (0 die of sepsis)

False negatives: 10/100 (10 die of sepsis) False negatives: 5/100 (5 die of sepsis)

False positives: 10/100 (0 die of sepsis) False positives: 5/100 (0 die of sepsis) el
Total deaths: 10/100 Total deaths: 15/100 Sepsis
4 4 $
T T, Ts

| 1 | Time

Figure 1: Comparison between an AI diagnosing 100 patients
at time T1, and a human doctor diagnosing 100 patients later
at T2, Even though the AI performs worse in terms of both
accuracy, false negative rates, and false positive rates, the
total number of deaths caused by sepsis are still lower for the
Al because some of the human doctor’s true positives end up
dying of sepsis at T3 due to delayed diagnosis and treatment.

The figure should be interpreted as follows. Suppose that 100 pa-
tients develop sepsis while they are hospitalized. Normally, human
clinicians detect 90 out of 100 cases of sepsis, so AccuracyHuman =
0.9. But because the clinicians can only detect sepsis at time Ty, 15
patients end up dying from sepsis at Ts. 10 of these 15 are among
the clinicians’ true positives. That is, they do not die because sepsis
was not detected, but because it was detected too late. Suppose now
that instead of human clinicians, an Al system like Sepsis Watch is
introduced to detect sepsis. The Al system is less accurate than the
human clinicians: it only detects 80 out of 100 cases of sepsis, so
Accuracyag = 0.8. The algorithm makes 10 false positive predictions
as well as 10 false negative predictions. This is twice as many for
each error type compared to the human clinicians. But because the
algorithm can detect sepsis already at Ty, the overall survival rate
is higher for patients diagnosed by the algorithm than for patients
diagnosed by humans. While 10 of the human clinicians’ true posi-
tives died from sepsis at T3 because they were diagnosed too late,
none of the Al system’s true positives end up dying simply because
they receive their diagnosis in time.

When we focus on the health of individual patients, the case
above shows that algorithmic predictive speed can be more impor-
tant than algorithmic predictive accuracy. And, of course, this is
not only true for sepsis detection models, but in most cases where
conditions 1) and 2) are satisfied. In such cases, it will often be
justified to hold Al systems to a lower standard of predictive ac-
curacy than humans simply because their ability to deliver faster
diagnoses means that more patients will live. Again, it may be that
other considerations occasionally trump these considerations of
predictive speed, but it remains true that algorithmic predictive
speed is one important reason that counts in favor of relying on
Al systems for purposes of crucial decision-making even when
Accuracyag is lower than Accuracyuman-

4 CONCLUDING REMARKS

So far, the double standard debate has centered around the issue
of transparency. In this paper, we have highlighted that there are
other desiderata besides transparency that are subject to similar
debates. We have focused on predictive accuracy. In the double
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standard debate on transparency, some have argued that we should
hold Al systems to the same standard as humans, while others have
argued that we should hold Al systems to higher standards. When
we focus on predictive accuracy in a medical context, we have
argued that there are at least two reasons for holding Al systems to
lower standards than humans. The first reason is that Al systems
can be more cost-effective than humans, and the second reason is
that the predictive speed of Al systems can be much higher than
that of humans. If we primarily care about producing as much
overall health as possible, and saving as many lives as possible,
then we have at least two reasons for using Al systems for medical
decision-making—even when they are less accurate than human
clinicians.

This conclusion is significant for two reasons. First, we claim, it
opens a much needed double standard debate about the desidera-
tum of algorithmic predictive accuracy. Second, it takes a new and
surprising position in the double standard debate that has so far
been vacant: namely that there can be reasons for holding Al sys-
tems to lower standards than humans in decision-making. Future
research on double standards could with benefit explore further
reasons for holding Al systems to lower standards than humans.
But it should also explore potential double standards in relation to
other desiderata such as fairness and trustworthiness. While we
have not said much about these other desiderata in this paper, we
suspect that the considerations of cost-effectiveness and predictive
speed also count in favor of holding Al systems to lower standards
than humans in light of these other desiderata. However, we leave
it to another occasion to explore these issues further.
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