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“Dutch Book” arguments and references to gambling theorems are typical in the debate
between Bayesians and scientists committed to “classical” statistical methods. These ar-
guments have rarely convinced non-Bayesian scientists to abandon certain conventional
practices ðlike fixed-level null hypothesis significance testingÞ, partially because many
scientists feel that gambling theorems have little relevance to their research activities.
In other words, scientists “don’t bet.” This article examines one attempt, by Schervish,
Seidenfeld, and Kadane, to progress beyond such apparent stalemates by connecting
“Dutch Book”–type mathematical results with principles actually endorsed by practicing
experimentalists.

1. Introduction. Bayesianism in philosophy of science is most often asso-
ciated with the “degree of belief ” interpretation of probability or with a par-
ticular normative theory of belief revision. In statistics, “Bayesian methods”
refers to a collection of statistical tools and procedures that stem from a
systematic decision-theoretic foundation for statistical practice. According
to the Bayesian viewpoint, these methods are preferable alternatives to the
ubiquitous “classical” methods popular among experimentalists; Bayesians
think that experimentalists ought to interpret their findings in light of the
proper methods of belief revision and that they ought to use certain proce-
dures ðthe Bayesian ones, not the classical onesÞ in analyzing their data. The
normative justification for using Bayesian methods and eschewing ðsomeÞ
classical methods often takes the form of a so-called Dutch Book argument.
There are many variants of the Dutch Book argument that I will not get into
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here,1 but generally speaking the Dutch Book argument compels rational
agents to conform their degrees of belief over some set of possible events to
the Kolmogorov probability axioms ðnonnegativity, normalization, and finite
additivityÞ. The first clear and explicit examples of such arguments can be
found in thework of Frank Ramsey ð1926/1931Þ andBruno de Finetti ð1937/
1964Þ. De Finetti shows that if an agent’s previsions on some set of pos-
sible events do not conform to the Kolmogorov probability axioms, they are
incoherent, that is, there exists a number of bets, each of which is acceptable
to the agent, the combination of which guarantees a sure loss for the agent
regardless of the state of the world.2 But this is a result about the rational
behavior, or rational degrees of belief, of an idealized gambling agent, which
seems to have little direct connection to decisions made by scientists in
experimental settings—what relevance does it have to statistical practice?
A statistical procedure is incoherent if the statisticians’ implied prior prob-
abilities ði.e., their implied degrees of belief Þ over the hypothesis space are
incoherent. Bayesians sometimes argue that scientists should abandon cer-
tain classical statistical procedures, like fixed-level null hypothesis signifi-
cance testing, on the ground that the procedures are incoherent. In other
words, the procedure implies that the scientist’s degrees of belief over the
possible outcomes of the experiment are incoherent, and rational agents with
incoherent beliefs are liable to be made sure losers by a clever gambler. Thus,
the argument goes, the scientist should not use this procedure. But the ex-
perimentalists studying psychological response theories, or searching for
new fundamental particles, are not entering into any bets, so why should they
care that their procedures are incoherent? Should the mere fact that a pro-
cedure is judged to be incoherent provide sufficient reason for a rational
scientist to abandon the procedure and use a coherent one instead? I am us-
ing the generic terms “scientist” and “experimentalist” here to refer to any
agent who makes decisions about what methods to use in an experimental
setting; this can be a laboratory supervisor, a technician, an evaluator at a
research funding agency, and so on. I assume the scientist is not already a
Bayesian, meaning that scientists are not already convinced that they ought
to act as if their prior probabilities conform to the axioms.

I consider this question by looking at a paper by Schervish, Seidenfeld,
and Kadane ð2002Þ, in which they relate gambling outcomes to the trade
of risk functions. In that work, they present a Dutch Book–style mathemat-
ical result that could naturally be interpreted as lending normative support

1. In particular, I will not get into the differences between the synchronic and diachronic
Dutch Book arguments.

2. “Previsions” are associated with the agent’s “degrees of belief” over the possible
future states of the world. Previsions are not necessarily probabilities in the sense that
previsions might violate the probability axioms.
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to the Bayesian criticism of experimentalists who engage in fixed-level hy-
pothesis significance testing. A Bayesian statistician might use the result
Schervish et al. present in their paper as the basis of a Dutch Book argument
against the non-Bayesian scientist; I argue that such an argument should
fail to convince a non-Bayesian scientist to change her methods because
certain features of the theorem are uninterpretable in the context of actual
laboratory procedures.3 However, I also note that Schervish et al.’s work on
the connections between risk and incoherence points to a different criticism
of classical statistical practice, one that makes no reference to either gam-
bling or any “nonclassical” statistical concepts. In particular, their workmakes
it clear that fixed-level hypothesis testing violates the classical statistician’s
preference for lower-risk functions, at least when that preference is meant
to apply to combinations ðor averagesÞ of hypothesis tests that might be
done over the course of an experiment. This will be made precise below.

2. Background. A Dutch Book theorem ðof the synchronic de Finetti/
Ramsey typeÞ generally has the following form: “if an agent’s previsions
violate the probability axioms, then there exists a combination of individ-
ually acceptable bets such that entering into those bets guarantees a sure loss
for the agent, regardless of the state of the world.” A Dutch Book argument,
then, which compels an agent to conform to the probability axioms, will
generally include as a premise that the agent would actually accept each
of the individually acceptable bets that make her a sure loser. There are a
number of interesting criticisms of Dutch Book arguments in the literature,
many of which center on this premise ðor something like itÞ and consider to
what extent the idealized gambling model is appropriate for representing
agents in the real world. See Kyburg ð1978Þ, Glymour ð1980, 71–72Þ, and
Hájek ð2005Þ for examples of such criticisms and related discussion. In
contrast with those authors, I am interested in whether the premises of Dutch
Book arguments, which are generally interpreted in terms of gambling or
forecasting scenarios, have plausible analogues in the context of statistical
decisions a scientist might make over the duration of an experiment. If
they do, then Dutch Book arguments may provide compelling reasons for
a scientist to abandon incoherent methods and adopt Bayesian methods
instead. If they do not, then Dutch Book arguments seem to be of little rel-
evance to experimentalists. Of course, in thinking that this is a worthwhile
question to ask I am implicitly taking a controversial stance on the issue
of what can constitute a “compelling reason.” The mere fact that an agent is

3. It should be mentioned that Schervish et al. ð2002Þ do not present such an argument
and never claim that their primary aim is to compel scientists to change their methods.
Rather, Schervish et al.’s aim in that paper relates to quantifying and measuring degrees
of incoherence; this will be explicated in sec. 3.
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incoherent—that is, the fact that there exists a set of gambles with such-and-
such properties—does not by itself compel an agent to revise her beliefs
or change her methods. There are compelling reasons to change methods if
and only if the actual commitments and preferences of the agent, when taken
seriously, cause the agent to engage in self-defeating behavior. There are
some Bayesians who might disagree; for them, the fact that an agent’s be-
liefs are incoherent constitutes a compelling reason to revise them ðe.g.,
Christensen 1996Þ. I think this is a misguided view, but for considerations
of space I will not elaborate on my reasons here.

The following discussion will focus on a particularly controversial but
common statistical practice: fixed-level null hypothesis significance testing.
Most of the Bayesian criticisms leveled at the practice of hypothesis testing
involve consideration of prior probabilities or mixed tests. I eschew dis-
cussion of these concepts here because many practicing scientists who have
been trained in classical methods claim they do not make use of these con-
cepts. What principles do scientists trained in the classical paradigm actually
endorse, then, when it comes to null hypothesis significance testing?

Suppose the experimentalist is interested in testing a simple null hy-
pothesis H0 against a simple alternative H1. Let the independent and iden-
tically distributed random variables X1, . . . , Xn ∼ Nðv, j2Þ with known j2

and consider H0 : v 5 0 versus H1 : v 5 1. After observing X1, . . . , Xn

the experimentalist either decides to reject the null hypothesis or fails to
reject the null hypothesis.4 The negative consequences of making such a
decision d can be summarized in the loss function Lðv, dÞ:

Lðv; dÞ5
c0 if q5 0 and d5 reject H0,
c1 if q5 1 and d5 fail to reject H0,
0 otherwise,

(
ð1Þ

with c0, c1 > 0. Following Schervish et al. ð2002Þ one can set c1 5 1 and
define the risk function for a sequence of decisions d ðalso called a decision
ruleÞ as the expected loss:

Rðv; dÞ5 E½Lðv; dÞ� c0a if q5 0,
b if q5 1,

�
ð2Þ

where a is the probability of type I error ðor the size of the testÞ and b is the
probability of a type II error ð1 2 b is the power of the testÞ. In general the
experimentalist aims to minimize the risk function by choosing d appro-

4. If we were considering an alternative hypothesis like v ≠ 0 or v > 0 ðor if we left the
alternative “unspecified”Þ, this would bring us into the realm of composite hypothesis
testing, which introduces additional complications. I will not deal with composite
testing in this article.
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priately. In a classical hypothesis-testing scenario it is standard to accept the
following two principles:5

P1. At a given sample size n, if Rðv, d1Þ ≤ Rðv, d2Þ for all v, and the inequality
is strict for some v, prefer d1.

P2. At a given sample size n, prefer the a5 .05 test from among the class of
admissible universally most powerful tests.

P2 is not properly a principle, but rather it is an extension of the Neyman-
Pearson theory of hypothesis testing, and the .05 level is a convention
adopted by a wide range of practitioners. In some situations a is fixed at a
lower conventional level, like .01. For a given sample size, the Neyman-
Pearson theory defines an admissible set of universally most powerful ða, bÞ
pairs, where the risk function of a particular ða, bÞ pair is not dominated by
any other; that is, each test is constructed to be the most powerful ðlowest bÞ
for a given a. Fixing the a value amounts to preferentially controlling the
probability of type I error.
In section 5, I discuss the circumstances under which P1 and P2 might be

mutually unsatisfiable. First, let us examine Schervish et al.’s ð2002Þ analysis.

3. Gambling and Risk Functions. Schervish et al.’s ð2002Þ stated aim is to
provide a way of moving beyond the binary judgment of the coherence or
incoherence of a particular method; coherence can come in degrees, and it is
particularly useful to have a measure of how much bookies stand to lose
when they expose themselves to sure loss in de Finetti’s sense.6 The “rate
of incoherence” then quantifies how badly the bookie is sure to do in the
worst case, the case in which her incoherent previsions are maximally ex-
ploited by some clever gambler ðor market of gamblersÞ. With such a mea-
sure, the bookie can make a more informed decision about how or whether
to become coherent, since becoming coherent is often “expensive” to the
bookie. Bookies are assumed to have finite resources, so one way of as-
sessing their incoherence is by examining the fraction of their resources
they stand to lose ðin the worst caseÞ with their stated previsions. Much of
Schervish et al.’s paper is devoted to working out the technical details of
this normalization.

Following de Finetti, Schervish et al. ð2002Þ consider gambling payoffs
of the form aðX 2 xÞ, where X is a random variable, a is the number of

5. See Lehmann and Romano ð2005, 9–10Þ for a statement similar to P1.

6. In some discussions, it is the “gambler” and not the “bookie” who stands to lose
money. I am following Schervish et al.’s terminology here.
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“units” of the bet up for sale, and x is a prevision for the random variable X.
To be more precise, the bookie can actually announce upper previsions x
for X by indicating that all bets with payoff aðX 2 yÞ, where a < 0, y > x,
are acceptable gambles, or she can announce lower previsions x for X by
indicating that all bets with payoff aðX 2 yÞ, where a > 0, y < x, are
acceptable gambles. The bookie can announce only upper previsions or only
lower previsions or both. The random variable X might be the indicator func-
tion IA on event A, which is 1 when A occurs and 0 when A does not occur.
Schervish et al. ð2002, S250Þ state the following definition of incoherence:

A collection x1, . . . , xn of upper and/or lower previsions for X1, . . . , Xn

respectively is incoherent if there exists ε > 0 and a collection of acceptable
gambles faiðXi 2 yiÞgn

i51 such that

suptεT o
n

i51

aiðXiðtÞ2 yiÞ < 2ε; ½3�

in which case we say that a Dutch Book has been made against the bookie.

The ε in equation ð3Þ is the total guaranteed loss that the bookies face
when they accept the set of gambles, but it is not by itself an adequate
measure of the degree of incoherence because it is dependent on the ai ðthe
number of “units” bought or soldÞ. Schervish et al. ð2002Þ want a measure
that reflects the stated previsions, not the number of gambles undertaken.
To accomplish this, they characterize the bookies’ escrow, that is, the quan-
tity that the bookies can be expected to set aside or commit themselves to
betting with when entering into a gambling contract. They subsequently de-
fine the bookies’ “maximum rate of guaranteed loss” with respect to this
escrow. The mathematical details do not affect the discussion in this essay,
but the reader should consult Schervish et al. ð2002Þ for the full technical
presentation.

Schervish et al. ð2002Þ apply their measure of incoherence to the case of
fixed-level hypothesis testing. They interpret an agent’s preference for a test
d1 over test d2 to mean that the agent would prefer to suffer the loss from d1
rather than the loss from d2, that is, the agent would rather “pay out” Rðv, d1Þ
than Rðv, d2Þ. They call Rðv, d2Þ 2 Rðv, d1Þ an acceptable gamble. Schervish
et al. use adðjÞ and bdðjÞ to denote the size and power of test d conditional
on j ðequivalently, conditional on sample size nÞ. The conventional .05 test
is dCL, with adCLðjÞ5 :05 and bdCL

ðjÞ equal to whatever is the highest power
possible under the Neyman-Pearson theory for that j. Schervish et al. show
that the following gamble is acceptable to the scientist who prefers the .05-
level test:
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Rðv; dÞ2 Rðv; dCLÞ5
ðadðjÞ2 :05Þc0 if v5 0,

bdCL
ðjÞ2 bdðjÞ if v5 1,

�
5 aðIA 2 bÞ;

ð4Þ

where

A5 fv5 0g;
a5 ðadðjÞ2 :05Þc0 1 bdðjÞ2 bdCL

ðjÞ;

b5
bdðjÞ2 bdCL

ðjÞ
ðadðjÞ2 :05Þc0 1 bdðjÞ2 bdCL

ðjÞ :
ð5Þ

So, the preference for test dCL amounts to partaking in a “trade” of risk
functions that has the form of a de Finetti gamble on an indicator function
taking the value 0 when v 5 1 and 1 when v 5 0. The constants a and b
are meant to be uncontroversial combinations of sizes and powers—purely
classical statistical concepts with no explicit dependence on subjective prior
probabilities.

Schervish et al. ð2002Þ prove a theorem ðtheir theorem 2Þ that applies to
arbitrary decision rules. Rather than introduce the notation required to ex-
press this more general result, I will state the analogous result for the special
case we have been considering: if d0 and d1 are not Bayes rules with respect
to a common prior,7 then there exist real numbers d0 and d1 and alternative
decision rules d*0 and d*1 such that the two gambles d0a0ðd*0ÞðIA 2 b0ðd*0ÞÞ and
d1a1ðd*1ÞðIA 2 b1ðd*1ÞÞ are both acceptable, but

d0a0ðd*0ÞðIA 2 b0ðd*0ÞÞ1 d1a1ðd*1ÞðIA 2 b1ðd*1ÞÞ < 0; ð6Þ
where a0ðd*0Þ, b0ðd*0Þ, a1ðd*1Þ, b1ðd*1Þ are the generalized versions of constants
a and b above ðwith respect to the alternative decision rules d*0 , d*1Þ. This
demonstrates a kind of incoherence, because a combination of acceptable
gambles yield a ðsureÞ negative payoff for the bookie. And, since the con-
ventional .05-level testing procedure is not a Bayes rule, that means that
using such a rule is equivalent to announcing previsions that expose the
scientist to a sure loss. In the next section we ask the question of how this
result should be properly interpreted in an experimental setting.

4. The Dutch Book Result. Let us take a closer look at the mathematics,
starting with the acceptable gamble Rðv; dÞ2 Rðv; dCLÞ5 aðIA 2 bÞ in equa-

7. A Bayes rule is a decision rule that minimizes a quantity called the Bayes risk. For
current purposes, the formal definition is not crucial. What matters is that an incoherent
decision rule ðsuch as the one under discussion, i.e., testing at a 5 .05 regardless of
sample sizeÞ is not a Bayes rule.
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tion ð4Þ. In the context of gambling, the constants a and b have unproblematic
standard interpretations: b is the prevision on random variable IA and a is the
number of “units” of the gamble bought or sold ðin this case, the gamble is
presumed to be one-sided, so the sign of a can be fixed appropriatelyÞ. In the
context of statistical decision making, the constants a and b have unproblematic
interpretations in terms of combinations of type I and type II error probabilities,
as in equation ð5Þ. But in the theorem stated by Schervish et al. ð2002Þ, the
acceptable gambles are d0a0ðd*0ÞðIA 2 b0ðd*0ÞÞ and d1a1ðd*1ÞðIA 2 b1ðd*1ÞÞ. In the
gambling context, the real numbers d0 and d1 are again unproblematic: it is
presumed that if a bookie is willing to accept gambles on IA with prevision b,
gambles of the form wðIA 2 bÞ are acceptable for any real-valued w, so long as
the total number of “units” does not exceed the bookie’s available resources. In
this case, the entire product d0a0ðd*0Þ acts as the number of “units” bought or
sold ðof that betting contractÞ. But what is the intended interpretation of the
real-valued coefficients d0 and d1 in the context of scientific decision making?
Maybe looking at equation ð6Þ can provide a hint.

Equation ð6Þ can be rewritten in terms of risk functions:8

d0 Rðv; d*0Þ2 Rðv; dCLÞð Þ1 d1 Rðv; d*1Þ2 Rðv; dCLÞð Þ < 0; ð7Þ
and can be rearranged to take the form

d0Rðv; d*0Þ1 d1Rðv; d*1Þ2 ðd0 1 d1ÞRðv; dCLÞ < 0: ð8Þ
Again, the theorem states that so long as dCL is a non-Bayes rule ðwhich it
isÞ, there exist real numbers d0, d1 and rules d*0 , d*1 such that the inequality in
ð8Þ holds. Is this a compelling reason for a practitioner to abandon the
method that uses dCL? This depends on whether the mathematical statement
is interpretable in terms relevant to laboratory practice. A few interpreta-
tions seem ostensibly plausible.

One might think, in analogy with taking a real number multiple of
“units” of a bet, that the coefficients d0 and d1 represent performing the
respective tests d0 or d1 many times. But this cannot be the case, because the
scientist is interested in performing the test one time for each sample size;
assuming she takes “accept or reject” decisions seriously, she has nothing to
gain by repeating the same test on the same data. Furthermore, it is not clear
what it would mean to perform a test a non–whole number of times. Alter-
natively, the coefficients could represent the probability of performing the
associated test, if d0, d1 > 0 and ðd0 1 d1Þ 5 1 ðthink of flipping a coin to
determine whether test d*0 or d*1 is performedÞ. This does not seem to be the
authors’ intended interpretation because it would make the normative force

8. Here I am stating everything with respect to the non-Bayes rule dCL instead of two
arbitrary non-Bayes rules.
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of their theorem dependent on the normative force of the controversial an-
cillarity principle ðalso known as the conditionality principleÞ in the pres-
ence of mixed tests.9 That fixed-level hypothesis testing violates dominance
in the presence of mixed tests has been known at least since Cox ð1958Þ.
But the appropriateness of the ancillarity principle and the prescriptions for
hypothesis testing in the presence of mixed tests is much debated among
statisticians and philosophers of statistics, so it would add no new normative
force to recast the issue in the form of a Dutch Book theorem. Furthermore,
the theorem as stated by Schervish et al. ð2002Þ would need to be con-
strained to reflect the fact that d0 and d1 are meant to be probabilities and not
just some real-valued numbers.

It is possible that the coefficients d0 and d1 are not meant to have any
special interpretation in the context of laboratory procedures that a scientist
might actually carry out. The coefficients might simply be mathematical
devices necessary for the formalism that calculates rates of incoherence for
the implied priors that one can extract from the use of these testing pro-
cedures. This is perfectly reasonable for the purpose of demonstrating the
rate of incoherence of the procedure, but it has the unfortunate consequence
of making the Dutch Book result uninterpretable in the context of laboratory
practice and thus not part of a compelling argument to change methods for
any scientist who is not already a Bayesian.

I should note that nothing in the above analysis is meant to preclude the
possibility that some other Dutch Book–style result will meet the desider-
atum I outlined, that is, that the book-making strategy has plausible inter-
pretation in terms of statistical procedures an experimentalist might actually
carry out in a laboratory setting. In particular, alternative measures of rates
of incoherence might suggest strategies that do not require trades of risk
functions to be multiplied by real-valued coefficients; this will depend on
the mathematical details of the measure of incoherence ðe.g., how the es-
crow function is definedÞ. I am not aware of any measure that identifies de
Finetti gambles with trades of risk functions but that does not require the
manipulation of real-valued coefficients in order to guarantee a sure loss to
the bookie.

5. Combined ðor AverageÞ Risk Functions. One corollary to Schervish
et al.’s ð2002Þ result, which is apparent when their result is stated in the form
of equation ð8Þ, is that for any non-Bayes decision rule like dCL, there exist

9. The ancillarity principle states, roughly, that the evidential significance of a statistical
test should be calculated conditional on an ancillary statistic, i.e., in the coin-flipping
scenario, the evidential significance should depend only on which test was actually per-
formed, not on the probabilities of performing either test. So the coin-flipping procedure
should be ignored.
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two alternative decision rules d*0 and d*1 such that the combined risk function
of performing d*0 on sample n0 and d*1 on sample n1 will be lower than the
combined risk function of performing dCL on sample n0 and sample n1. A com-
bined risk function is just the sum of two risk functions for tests performed
on two different samples. So, if we index the risk function associated with
running test dCL on a sample n0 as Rn0ðv; dCLÞ, then the combined risk func-
tion for samples n0 and n1 is Rcombðv; dCLÞ5 Rn0ðv; dCLÞ1 Rn1ðv; dCLÞ. More
generally one can define the combined risk for a sequence of N tests:
Rcombðv; dÞ5oN

i Rniðv; dÞ. The exact same could be said replacing combined
risk functions with average risk functions, which might be more natural to
consider in certain contexts: Ravgðv; dÞ5 1=Nð ÞRcombðv; dÞ. So, if we extend
what I called principle P1 in section 2 to cover combined ðor averageÞ risk
functions, we now see that the a5 .05 convention ðP2Þ clashes with another
purely classical statistical principle ðP1*Þ:

P1*. For a sequence of samples n0, n1, and so on, if Rcombðv; d1Þ ≤ Rcombðv; d2Þ
for all v, and the inequality is strict for some v, prefer d1.

The a 5 .05 convention, when applied to tests at multiple sample sizes, is
tantamount to a preference for dominated combined risk functions.

There is nothing mathematically novel in this claim. In fact, the same can
be gleaned from discussions in Seidenfeld, Schervish, and Kadane ð1990Þ
and Berry and Viele ð2008Þ, both of which draw on Cox ð1958Þ. The dif-
ference is that these discussions employ the terminology of mixed tests, and,
as mentioned above, the presence of mixed tests brings to the fore the
somewhat controversial ancillarity principle. Since statisticians disagree
about the validity of this principle ðe.g., Helland 1995Þ, it would be benefi-
cial for practitioners to be able to get some insight into the apparent conflict
between the Bayesian and classical recommendations with minimal foray
into philosophically troubled waters. In another paper, Schervish, Seiden-
feld, and Kadane ð2009, 218Þ prove a theorem ðtheorem 7Þ about the risk
inadmissibility of non-Bayes decision rules when randomized decision rules
are available. Randomized decision rules can be thought of as similar to
mixed tests, as discussed above ði.e., the decision maker chooses which test
to perform by some random processÞ. Whether a randomized decision rule is
in fact available or appealing to the practicing scientist depends on a number
of considerations I do not have the space to discuss here. The formulation in
terms of combined risk is, I think, advantageous because it does not appeal to
any concepts or procedures that might be controversial by the lights of the
experimentalist trained in the classical paradigm.

Berry and Viele ð2008Þ show that one can calculate ðfor the normal dis-
tributionÞ a coherent decision rule in which a is a function of sample size. In
summary: a coherent decision rule for null hypothesis testing requires that a
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decrease as the sample size increases. The precise functional dependence
of a on sample size depends on a number of details, but for simple versus
simple the prescription is not complicated. The recipe for compound testing
is more involved and requires some perhaps controversial decisions on be-
half of the scientist. An interesting implication of this result is that the ex-
perimentalist who chooses values of a consistent with Berry and Viele’s pre-
scription can arrive at combined risk functions that have both lower a and
lower b than dCL. In other words, we can find combinations of tests that are
strictly better than dCL with respect to combined risk.

6. Future Work: Planning Particle Physics Experiments. While journals
in fields like psychology have at times enforced something like the a5 .05
or .01 convention as a prerequisite for publication, contemporary experi-
mental particle physics has an ðunwrittenÞ analogous convention in the so-
called 5j criterion. The 5j value amounts to an a of approximately 3 �
1027 ðsee James 2006, 321Þ. Physics journals will generally only publish
claims of “observation of ” ðas opposed to “evidence for” or something like
itÞ new particles if the null hypothesis—which coincides with a “no new
particle”model—is rejected at this extremely low significance level. For the
history of this convention and its use, see Franklin ð2013Þ. The common
justification for the 5j criterion is a high cost associated with false positives
in the discovery of new particles; particle discovery claims at the 3j and 4j
levels have been frequently overturned by more data and repeated experi-
ments.

The long lifetimes of typical experiments in contemporary particle phys-
ics provide plausible contexts for evaluation in terms of average or com-
bined risk functions. The ATLAS and CMS experiments at the Large Hadron
Collider, for example, began taking data in 2009 and will continue to do so
for several years. In July 2012, ATLAS and CMS both announced the ob-
servation of a particle resembling the long-sought-afterHiggs boson. The null
hypothesis, which consisted of an expected distribution of particle masses
that did not include the Higgs, was rejected at the 5j level in both experiments
ðsee ATLAS Collaboration 2012; CMS Collaboration 2012Þ. Both experi-
ments continue to take data and have presented updated results with much
larger data sets, again rejecting the null hypothesis but now ðas of mid-2014Þ
at levels well above 5j. Fortunately, as the experiments collect more data,
they report the highest significance level at which they can reject the null
hypothesis, and not only the fact that the hypothesis remains rejected. Yet it
remains true that many journals in the field do not accept “observation” results
below the 5j level, regardless of sample size. This convention is suboptimal
with respect to combined risk. Physicists could do better by adopting a co-
herent decision rule, and this does not require specifying prior probabilities
over competing hypotheses. In future work, I hope to include suggestions for
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adopting a coherent decision rule, taking the details and complexities of
particle physics data into account.

7. Conclusion. Dutch Book arguments in themselves seem to be uncon-
vincing to non-Bayesian experimentalists because they are not relevant
ðfrom the perspective of a non-BayesianÞ to decisions actually made in
laboratories. But luckily, the results of Schervish et al. ð2002Þ point to a way
to move forward. By changing the language and focus of the discussion, I
have shown how two commonly espoused principles of classical hypothesis
testing—the preference for lower risk functions and the convention of using a
fixed a-level test at all sample sizes—conflict when the former principle is
extended to include combined or average risk. No considerations of mixing
tests, ancillarity, or prior probabilities played a key role in identifying this
problem or in the proposed solution. The context of contemporary particle
physics is offered as a motivating example for the plausibility of considering
combined ðor averageÞ risk functions in planning experiments. Experi-
mentalists have compelling reasons to take steps analogous to those advo-
cated by Berry and Viele ð2008Þ in order to determine an optimal way to tie
the choice of a values to sample size. Thus, we need not find ourselves at an
impasse when the experimentalist insists she “doesn’t bet.” We can use the
results of Bayesian analysis to illuminate the circumstances in which clas-
sical statistical commitments conflict with each other.
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