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Abstract 
Ambiguity occurs insofar as a reasoner lacks information about the relevant physical probabilities. There are objections 
to the application of standard Bayesian inductive logic and decision theory in contexts of significant ambiguity. A variety 
of alternative frameworks for reasoning under ambiguity have been proposed. Two of the most prominent are Imprecise 
Bayesianism and Dempster–Shafer theory. We compare these inductive logics with respect to the Ambiguity Dilemma, which 
is a problem that has been raised for Imprecise Bayesianism. We develop an agent-based model comparison that isolates the 
difference between the two inductive logics in their updating methods. We find that Dempster–Shafer theory does not avoid 
the Ambiguity Dilemma. We discuss the implications of this result. 

Keywords : belief functions, decisions under severe uncertainty, Dempster–Shafer theory, formal epistemology, Imprecise 
Bayesianism, Imprecise probability 

1 Introduction 

Inductive logics are formal systems for making and evaluating non-deductive inferences. One 
challenge in inductive logic is representing ambiguity, which occurs insofar as the relevant physical 
probabilities are unknown. Imprecise Bayesians, who model belief states via sets of probability 
functions called “credal sets”, have argued that their approach is better for representing ambiguity 
than Standard Bayesianism, which uses a single probability function to model beliefs [3, 8, 16, 33, 
34, 77]. The claim is usually that the divergence among the probability functions in the credal set 
can represent the level of ambiguity, because we have less reason to exclude probability functions 
from the credal set insofar as we know less about the relevant physical probabilities. 
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2 Automated decisions under ambiguity

In previous research, we have used agent-based modelling to show how, in a broad category of 
decision problems, Imprecise Bayesian inductive logics can face what we have called the “Ambiguity 
Dilemma” [59]. In brief, the problem is that, in decision problems based around Bernoulli trials with 
an initially unknown bias, increased divergence in credal sets results in slower updating. In turn, this 
slower updating results in worse decision-making performance. “Washing out” convergence does not 
occur fast enough to stop a detectable difference emerging between (a) Imprecise Bayesian agents 
with divergent credal sets and (b) a Standard Bayesian using a f lat prior. Moreover, no decision rule 
has been found that can avoid this problem for Imprecise Bayesians; some make it worse. Hence, 
there is a dilemma: in the type of decision problem used so far, to what extent should we prefer 
the representational tools of Imprecise Bayesianism or the potential decision-making advantages of 
some Standard Bayesian probability distributions? 

Thus far, the Ambiguity Dilemma has only been investigated for Imprecise Bayesianism, which 
updates via a version of conditionalization. Yet that is not the only way that non-additive belief 
representations can be updated. Dempster–Shafer theory is a broad family of approaches to 
uncertainty based on Arthur P. Dempster’s rule of combination and subsequent research by Glenn 
Shafer. Dempster–Shafer theory has been expanded and refined to become a prominent paradigm in 
inductive logic, knowledge representation, and formal epistemology. 

Dempster–Shafer theory has some prima facie grounds for being promising as a means of 
avoiding the Ambiguity Dilemma, given the role of slower updating in Imprecise Bayesian players’ 
relative underperformance in previous studies. It can be proven that, given the same evidence and 
initial beliefs, Dempster–Shafer theory always places bounds on one’s beliefs that are at least 
as tight as those of Imprecise Bayesianism, and sometimes tighter [38, pp. 286–287]. However, 
this theorem raises the question as to whether these tighter bounds result in significantly better 
performances. 

Consequently, our research question was simple: does specifically adopting the update approach 
of Dempster–Shafer theory improve on Imprecise Bayesianism with respect to the Ambiguity 
Dilemma? We continue to build on methods originally developed by Henry E. Kyburg and Choh Man 
Teng [40, 57–59]. In this approach to comparing inductive logics, the reasoning systems are coded 
as “players” of a game based on binomial trials, in an agent-based model. While not all decision 
problems are analogous to this situation, there is a wide range of situations that can be modelled 
(at least as an idealization) as featuring binomial trials or other types of exchangeable events. Thus, 
from a precisely specified agent-based model, we are able to unveil substantial information about 
the inductive logics’ comparative performances. In addition to identifying these differences, the 
controlled environment of these tests enabled us to analyse their causes. 

To isolate the particular effects of applying Dempster’s rule of combination rather than Imprecise 
Bayesian updating, we controlled for the choice of decision rule and the initial belief state. Thus, 
we used the same set of decision rules and the same initial (interval-valued) belief state for both the 
Dempster–Shafer players and the Imprecise Bayesian players in our tests. 

In Section 2, we provide the background to our study. In Section 3, we explain our agent-
based model’s decision problem and our tests for evaluating performances. In Sections 4 and 
5, we respectively detail the Imprecise Bayesianism and Dempster–Shafer theory update rules in 
our tests. In Section 6, we explain how these update rules were paired with decision rules to 
create players for our tests. In Section 7, we compare the results. In Section 8, we conclude that 
switching to Dempster–Shafer updating does not, in itself, avoid the Ambiguity Dilemma. However, 
Dempster–Shafer theory is a very f lexible approach, so we hope that our results stimulate further 
investigation of ways to avoid or mitigate the Ambiguity Dilemma using this paradigm of inductive 
logic.
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Automated decisions under ambiguity 3

2 Standard Bayesianism, Imprecise Bayesianism and Dempster–Shafer 
theory 

We shall brief ly contextualize these theories and our research question. We provide more detailed 
explanations of each theory in Sections 3, 4, and 5. 

Among quantitative inductive logics, “Standard” Bayesianism is currently the most popular 
approach [27, 62, 73]. In this approach, a reasoner’s uncertainties are represented via additive 
probabilities, usually interpreted in terms of (actual or ideal) degrees of belief. The probability 
functions assigning these degrees of belief are “credence functions”. “Credences” is another term 
for degrees of belief. Additionally, Standard Bayesianism requires that the credences are updated via 
conditionalization, following Bayes’ rule. 

There is relatively little controversy about the applicability of Standard Bayesian reasoning to 
situations where we know or can assume the relevant physical probabilities. Aside from a few 
objections, such as objections to the very idea of “degrees of belief,” even critics of Standard 
Bayesianism would use Bayes’ rule in classic gambling problems [72]. To take a textbook example, 
given background knowledge of the relative frequencies of red balls in each of a group of urns, 
and a random selection (behind a screen) of a red ball from one of the urns, even most critics of 
Standard Bayesianism would use Bayes’ rule if they were betting about which urn was the source of 
the red ball. 

This consensus dissipates once a greater degree of ambiguity enters into the problems under 
analysis. In the most general sense, ambiguity occurs insofar as a reasoner lacks evidence regarding 
the relevant hypotheses and possible actions. The most prominent type of ambiguity in the literature 
occurs insofar as the reasoner lacks information about the relevant physical probabilities. For 
instance, if you are betting about independent and identically distributed (i.i.d.) coin tosses with 
unknown bias, then Standard Bayesianism requires that you have equally precise credences before 
and after observing a large sample of the coin tosses. If the posterior matches the prior, then the 
credence in the hypothesis is unchanged, despite the addition of evidence. This feature, sometimes 
called the “Paradox of Ideal Evidence,” has been the grounds of many criticisms of Standard 
Bayesianism [33, 56, 60]. More generally, it has been argued that Standard Bayesianism involves 
“spurious precision” because credences of great exactitude, complexity, and strength can be assigned 
with minimal information [3, 37, 51]. 

A related criticism is the idea that initial beliefs in ambiguity should be neutral (or at least 
as neutral as possible) between different hypotheses, yet representing neutral belief in Standard 
Bayesianism is infamously difficult and arguably impossible. The traditional approach is to use a 
symmetry principle, such as the Principle of Indifference, the Maximum Entropy Principle, or some 
other rule for assigning “neutral” probabilities [13, 30, 42, 79, 80]. These symmetry principles define 
conditions under which hypotheses or events should be assigned equal probabilities. For example, 
the Principle of Indifference requires assigning a uniform distribution to the fundamental states of 
the domain. 

The problem is that, while there is a natural sense in which a uniform distribution across some 
partition is neutral with respect to that partition, it cannot be neutral with respect to all partitions 
of the domain [17, 46, p. 73]. Most famously, symmetry principles typically imply probabilities of 
zero for all universal hypotheses over infinite domains [12, 82, 84]. Even outside of this extreme 
case, neutrality for some sets of hypotheses or events can imply strongly non-neutral probabilities 
for other sets, due to the requirements of additivity and coherence. Consider the implications of 
assigning equal probabilities to heads and tails for each of a sequence of coin tosses. For unions and 
intersections of these events, this assignment will require strong probabilities (values close to 0 or 
1) for some unions, strong probabilities against some intersections, and so on. The desire for better
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4 Automated decisions under ambiguity

representations of neutrality is one reason why some have been attracted to Dempster–Shafer theory 
[69, pp. 22–25 and pp. 207–208]; [14]. 

Thus, ambiguity-related criticisms have been one reason for the development of alternative 
inductive logics that are putatively superior for representing ambiguity. One of the most prominent 
is Imprecise Bayesianism, in which credal sets are used to model belief states. Many Imprecise 
Bayesians represent greater ambiguity via greater divergence in a credal set for a hypothesis’s 
credence assignment. Moreover, insofar as there are special cases where Standard Bayesianism 
is the appropriate representation of the ambiguity in an agent’s evidence (perhaps when there 
is no ambiguity) Imprecise Bayesianism can mimic Standard Bayesianism via a completely non-
divergent set. Hence, Imprecise Bayesianism offers a strictly more f lexible approach for representing 
ambiguity. 

The Ambiguity Dilemma shows that, in a broad class of situations, these representations can have 
costly effects for decision-making performance. In particular, in the type of decision problem used 
so far, greater divergence results in (a) slower convergence of beliefs to the sample frequency, in 
the presence of reliable sample data and (b) for some decision rules, a failure to utilize reliable 
information in sample data when making decisions [59]. 

However, Imprecise Bayesianism is not the only approach to representing ambiguity in a 
formalism that is strictly more f lexible than Standard Bayesianism. Dempster–Shafer theory is 
another prominent approach among non-additive representations of beliefs and evidential support 
relations. In Dempster–Shafer theory, greater ambiguity can be represented by a greater difference 
between “belief” and “plausibility” as defined in Section 4 below. Thus far, the Ambiguity Dilemma 
has only been studied in relation to Imprecise Bayesianism. This raises the question: can Dempster– 
Shafer theory do better? 

We stress that our study examines the question whether specifically adopting updating via Demp-
ster–Shafer theory makes a difference to the Ambiguity Dilemma. Like Imprecise Bayesianism, 
Dempster–Shafer theory is an extremely f lexible approach that allows for many representations of 
initial beliefs. Additionally, it would be impossible to cover all the different situations where the 
evidence seems ambiguous. For these reasons, we employed a previously utilised way to represent 
the initial ambiguity in a particular decision problem where the Ambiguity Dilemma occurs for 
Imprecise Bayesianism. We then tested whether using Dempster–Shafer theory, using the same 
approach that most Imprecise Bayesians would use for this decision problem, has the effect of 
mitigating, aggravating, or not affecting the Ambiguity Dilemma. 

3 Decision problem and tests 

In this section, we first describe the decision problem that we used as the basis of our tests, before 
detailing the tests that we used for comparisons. We selected a problem in the literature that (a) 
features pertinent ambiguity and (b) examines short-run performances. 

The latter desideratum is important, because in a wide range of problems there will be long-
run convergence between the decisions made by Standard Bayesians, Imprecise Bayesians and 
Dempster–Shafer reasoners. Hence, our focus on short-run performances is suitable for identifying 
any differences between Dempster–Shafer theory and Imprecise Bayesianism with respect to the 
Ambiguity Dilemma. 

3.1 Decision problem 

The agent-based model is based on a non-interactive “game,” consisting of observations of simulated 
coin tosses. However, unlike real coin tosses, the players of this game lack almost any background
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Automated decisions under ambiguity 5

knowledge of the stochastic properties of these coin tosses. In particular, we assume only that the 
players know that the coin tosses are Bernoulli trials, so that they are (a) binomial with tosses landing 
either heads or tails and (b) i.i.d. and therefore exchangeable. 

Players make their decisions myopically and separately. The latter implies that players cannot 
change their decision rules on the grounds that some other player is performing better. The former 
implies that their decision-making is purely concerned with their payoffs (and conformity to their 
rules) for a single game and without the need for strategic reasoning. For this reason, we also 
assume that players always have sufficient resources to bet. Finally, we stress that players are aiming 
to maximize payoffs within the prescriptions of their rules, rather than trying to maximize some 
function of our assessment criteria.1 

At predetermined points in the sequence, players can choose whether to bet on one or other result 
of the last coin toss in a game. Each game consists of 5 tosses, with an opportunity to bet on the fifth 
toss. The players accumulate their observations of coin tosses over the games. Thus, for their first 
choice in the first game, they have four observed coin tosses; in the second game, they have nine 
(the five from the first game, plus four in the second game) and so on as the games progress. In our 
main comparisons, there were 1000 games, each consisting of 5 tosses. 

In detail, for each toss, players observe either ωh, the state that the coin landed heads or ωt, the  
state that the coin landed tails. We define the set of these possible states, Ω := {ωh, ωt}, with a 
typical element ωi, so that Ω contains every possible outcome of an observation. A sequence of 
tosses is called a “history’. We define the set of possible histories that can occur in a finite number 
T ≥ 1 of coin tosses as  S := ΩT . The set of all possible histories is S := {

S ∪ {s̄} }
with a typical 

element s. Thus, each history s ∈ S is a sequence s := (s1, . . . , sT ) where, for each t ∈ [1, T], 
st ∈ Ω . When describing the players’ update rules, it will be useful to refer to their evidence prior to 
making any observations, so we also define the “no observation” history as s̄ := ∅. 

The players make statistical inferences using their observed sample frequencies. To formalize 
these sample frequencies for players’ update rules, we use a counting function in terms of ωh. 
This function is defined as κ : S → Z≥0 such that, for every history s ∈ S, κ (s) = 
n

({
t ∈ T : (s)t = ωh

})
, where n (·) is the set’s cardinality. 

At the predetermined points in the sequences of tosses (the end of each game) players have a 
choice among a set of actions C := {ch, ct, ca} with a typical element cj, where ch represents betting 
on heads, ct represents betting on tails, and ca represents abstention from betting. Players’ payoffs 
from games are represented with a von Neumann-Morgenstern utility function u : C×Ω → [−1, 1], 
that assigns, to each possible action-state combination

(
cj, ωi

) ∈ C × Ω , a cardinal utility payoff 
u

(
cj, ωi

) ∈ [−1, 1]. For brevity, we shall refer to just “payoffs”. 
Players know the payoff structure of the games, which is described in Figure 1. This figure details 

the action payoffs that are associated with every possible outcome in a particular game. A player 
wins a payoff of (1 − δ) if they choose ch when a game’s final toss results in ωh. They win  δ if they 
choose ct when a game’s final toss results in ωt. In contrast, if their chosen bet’s outcome does not 
occur, then they lose −δ if they choose ch but the state is ωt. Finally, they lose (δ − 1) if they choose 
ct and game’s final toss is ωh. 

Note how the payoffs are defined in terms of δ, except if a player chooses to abstain from betting 
in a particular game via action ca to receive a guaranteed result of 0. The values of δ were restricted 
such that δ ∈ [0, 1]. The values were generated randomly in our tests. They were the same for all 
players, as we describe in more detail in Subsection 3.3. 

1We thank Teddy Seidenfeld for encouraging ref lection on these points.
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6 Automated decisions under ambiguity

FIGURE 1. Player Payoff Matrix. 
3.2 The Standard Bayesian 

For the previously described decision problem, the Ambiguity Dilemma involves comparative 
performance relative to a Standard Bayesian player with a f lat prior [57]. In the context of the 
Ambiguity Dilemma, we call this player “Stan”. Stan performs well in this decision problem and 
sets a benchmark. 

Stan’s details are very important, since they will form the basis of our exposition of the 
Imprecise Bayesian and the Dempster–Shafer players. We define Stan via an epistemic model 
B := {

Ω , Θ , S, κ , p
}
, where p : S → Δ+ (Θ) is a credence function that assigns a strictly positive 

probability distribution p (s) ∈ Δ+ (Θ) on Θ to every history s ∈ S. As before, Ω is the set of states, 
Θ := {x ∈ R : x ∈ [0, 1]} is the set of coin biases2 towards ωh with a typical element θ , S is the set of 
possible observation histories, and κ is the counting function for ωh. The parameter p (θ | s) ∈ (0, 1) 
is the marginal probability of a coin bias θ ∈ Θ relative to a history s. 

Stan’s credences are beta distribution priors, matching both earlier studies and common practice 
in Bayesian statistics for binomial decision problems. Beta distribution priors have the useful feature 
that they are conjugate priors for the binomial likelihood function, meaning that the posterior 
distribution is also a beta distribution. This greatly simplifies both the computation and analysis of 
updating using beta distributions, which is one reason for their popularity when developing Bayesian 
models of binomial phenomena. A beta distribution is characterised by a beta function B (a, b), where 
a > 0 and b > 0 are hyperparameters (specifically, shape parameters) specifying the particular beta 
distribution. In our model, a defines the degree of bias in the beta distribution towards heads; b is 
the corresponding bias towards tails. 

Stan has a f lat prior B (1, 1). This prior is initially equivocal between heads and tails, but rapidly 
converges towards the sample frequency. Not only are f lat priors popular in Bayesian statistics for 
this type of decision problem: these properties are also shared by other popular approaches, such as 
the Jeffreys prior of B (0.5, 0.5). The Jeffreys prior is a very different distribution of the probability 
mass, but it is also equivocal and converges rapidly. 

Stan’s evidence consists of observing a sequence of coin tosses. Stan updates their credence in 
each θ ∈ Θ by revising p using Bayes’ rule: 

p (θ | s) = 
p (θ | s̄) p (s | θ) 

p (s) 
, where p (θ | s̄) > 0 denotes a prior probability of θ . (1)  

Since Stan knows that each toss is a Bernoulli trial and the game generates a binomial distribution, 
the Bayes’ rule can be reformulated using a counting function κ for each history s ∈ S and every 

2For conciseness, we describe the biases of the Bernoulli trials as “coin biases” even though they are the long-run 
stochastic tendencies of the whole event, the tossing of the coin. 
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Automated decisions under ambiguity 7

coin bias θ ∈ Θ as 

p (θ | κ (s) , T) = 
p (θ | s̄) p (κ (s) , T | θ) 

p (κ (s) , T) 
, (2)  

where p (κ (s) , T | θ) =
(

T 
κ (s)

)
θκ(s) (1 − θ)T−κ(s). Thus, the posterior probability distribution 

p (κ (s) , T) ∈ Δ+ (Θ) and the prior probability distribution p (s̄) ∈ Δ+ (Θ) are both beta 
distributions. 

The prior credence in any bias θ ∈ Θ can be described as 

p (θ | s̄) = p (θ | a, b) = 
θa−1 (1 − θ)b−1 

B (a, b) 
. (3)  

Thus, the Bayes’ rule for each bias and history is 

p (θ | κ (s) , T) =

(
T 

κ (s)

)
θa+κ(s)−1 (1 − θ)b+T−κ(s)−1

/
B (a, b)∫ 1 

0

((
T 

κ (s)

)
θ ′a+κ(s)−1 (1 − θ ′)b+T−κ(s)−1

/
B (a, b)

)
dθ ′

= 
θa+κ(s)−1 (1 − θ)b+T−κ(s)−1 

B (a + κ (s) , b + T − κ (s)) 
. (4)  

Consequently, Stan’s posterior is another beta distribution characterised by a + κ (s) and b + T − 
κ (s). 

We define an aggregate belief function f : {p} × S → Δ+ (Ω), such that, given s̄, the prior belief 
in ωh is 

f (ωh | p, s̄) =
∫ 1 

0 
θp (θ) dθ = 

a 

a + b 
, (5)  

while we define the prior belief in ωt as 

f (ωt | p, s̄) = 1 − f (ωh | p, s̄) = 
b 

a + b 
. (6)  

Stan’s posterior belief in ωh given s ∈ S is 

f (ωh | p, s) =
∫ 1 

0 
θp (θ | κ (s) , T) dθ = a + κ (s) 

(a + κ (s)) + (b + T − κ (s)) 
, (7)  

while their posterior belief in tails given that history s is 

f (ωt | p, s) = 1 − f (ωh | p, s) = 
b + T − κ (s) 

a + b + T 
. (8)  

We define Stan’s expectation-based choice using a model D := {C, S, π , p}, where C is the set of 
possible actions, S is the set of possible histories, u is the payoff function, and p is Stan’s credence 
function. For any history s ∈ S, the expected payoff from some action cj ∈ C is 

Eu
[
cj | p, s

] = u
(
cj, ωh

)
f (ωh | p, s) + u

(
cj, ωt

)
f (ωt | p, s) . (9)
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8 Automated decisions under ambiguity

FIGURE 2. Player Payoffs with a 0.2 probability for heads. 

FIGURE 3. Player Payoffs with a 0.984 probability for heads. 

It follows that Stan always has a unique expected payoff associated with each action, so they can 
use payoff maximization to make their decisions: Stan always chooses an action cj ∈ C, such that 

cj ∈ arg max 
ck∈C 

(Eu [ck | p, s]) . (10) 

In our tests, Stan had a unique expected payoff-maximizing action in every game. 

3.3 Tests 

Our comparisons of players’ performances were all based around a series of “tests.” These consisted 
of 1000 games, each with randomly generated tosses. Players were unaware of the coin toss 
sequences at the beginning of each test, so they had to inductively extrapolate coin biases using their 
observations. Players did not retain information from test to test. All players faced the same tosses. 
We investigated 5 different coin biases, defined in terms of heads, with values of 0.1, 0.3, 0.5, 0.7 
and 0.9. For example, a 0.9 bias means that the long-run probability of generating heads tosses in 
that setting is 0.9. We investigated both 0.3 and 0.7, as well as 0.1 and 0.9, to check for asymmetries 
in players’ rules. Our tests did not reveal any significant player performance asymmetries across 
these pairs of biases. 

We randomly generated sequences of 1000 ticket prices for each test. Since each player faced the 
same set of randomly generated tosses and ticket prices, we could regard the tests as controlled virtual 
experiments. Since the tests were independent and randomised, we could use them for confidence 
interval estimates of measures of players’ performances. We ran 1000 tests per bias, so that our 
confidence interval estimates of players’ performances were both informative and possessed a low 
risk of random error. All of these confidence intervals were estimated at the 0.95 level.3 

3.4 Comparison methods 

We used four types of comparison methods. First, we constructed graphs of players’ average payoffs 
over the tests; this method has the advantage of showing the evolution of players’ performances, to 
diagnose the causes of differences. Second, we examined specific aspects of players’ performances, 
such as the rates at which they lost money in absolute terms and their performance in the extremely 

3To ensure compatibility with earlier research, our tests had the same technical specifications — see [58]. This included 
the use of the statsmodel econometric and statistical library [65]. 
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Automated decisions under ambiguity 9

FIGURE 4. Optimists: Dempster–Shafer players vs. Imprecise Bayesians. Lines represent the average 
profit per bet (Y-axis) against the number of bets (X-axis) for DS-Optimist players (top graph) and 
Imprecise Bayesians (bottom graph). The confidence intervals around them are calculated at the 0.95 
level. Numbers adjacent to lines mark the coin bias. 
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10 Automated decisions under ambiguity

FIGURE 5. Maximin: Dempster–Shafer players vs. Imprecise Bayesians. Lines represent the average 
profit per bet (Y-axis) against the number of bets (X-axis) for DS-Optimist players (top graph) and 
Imprecise Bayesians (bottom graph). The confidence intervals around them are calculated at the 0.95 
level. Numbers adjacent to lines mark the coin bias. 
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Automated decisions under ambiguity 11

FIGURE 6. Stan. Average profit per bet (Y-axis) against the number of bets (X-axis). Solid lines are 
the averages. The confidence intervals around them are calculated at the 0.95 level. 

short run, because short-run aggregate payoff maximization is not the only criterion that could be 
used when assessing decision-making. Third, we used Stan as a benchmark, to evaluate comparative 
performance with respect to the Ambiguity Dilemma. 

3.4.1 Graphical comparisons We constructed graphs to show both the average profit rates over 
the tests, as well as their evolutionary path for players. We found very regular results for all the 
player-decision rule combinations that we investigated. Hence, we do not provide graphs for all their 
performances. Instead, we show the results for (a) Stan (b) the best and worst performing Imprecise 
Bayesian players, and (c) the best and worst Dempster–Shafer players. These results are reported in 
Figures 4, 5 and 6. 

The graphs show player performances (in terms of payoffs) at each moment in a test, averaged 
over the 1000 tests that we performed. The zero point in each graph is the average of all players’ 
performances for a 0.5 bias, to provide a common and symmetric scale across all of the graphs. 

As a supplement to the graphs, we provide information about the average frequencies that players 
made particular types of decision in the problem, in Tables 1 to 4. 

3.4.2 Caution Check The graphs do not show the rates at which players make net losses at points in 
the tests. However, these rates can be important in real-world contexts. Hence, the rates of net losses 
are a further metric to examine. Following our earlier research, we call this metric the “Caution 
Check” [ 59]. We report the Caution Check results in Figures 8 and 9. 

One might think that avoiding net losses is a relatively weak test for cautious reasoning, but, in 
fact, it is sufficiently strong to show differences in players’ performances. Stronger tests of successful 
loss avoidance would involve more controversial assumptions, such as choosing what constitutes 
“unacceptable” net losses. In contrast, frequencies of net losses provide a more clearly appropriate 
way to assess whether players are being successfully cautious.
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12 Automated decisions under ambiguity

FIGURE 7. DS-Dominance+Ultra-Optimist vs. DS-Dominance. Average profit per bet (Y-axis) 
against the number of bets (X-axis). DS-Dominance+Ultra-Optimist is represented by the solid 
lines. DS-Dominance is represented by dashed lines. The confidence intervals around them are 
calculated at the 0.95 level. Numbers adjacent to lines mark the coin bias. 

TABLE 1 Possible player conditions. 

Condition Description 

K1 Directly choosing h. 
K2 Directly choosing t. 
K3 Directly choosing a. 
K4 Randomizing between h and t. 
K5 Randomizing between h and a. 
K6 Randomizing between t and a. 
K7 Randomizing between h, t and a. 

3.5 Ultra-Minimum Evidence Comparisons 

We examined players performances in extremely short periods of 5, 10, 25 and 50 games, because 
differences in loss avoidance might only manifest in the extremely short-run. We call this assessment 
the “Ultra-Minimum Evidence Comparison” [59] because it focuses on the early period where 
players have the smallest quantity of coin toss observations. 

We found that, as the tests proceeded, there was an approximately linear convergence towards the 
patterns in our main comparisons. Hence, we only show the results for the average performances over 
the first five games, because this period featured the largest differences from our main comparisons. 
We report these results in Figures 10 and 11.
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Automated decisions under ambiguity 13

TABLE 2 Stan and MaxEnt players. Mean values and related standard errors multiplied by z = 
1.96 (5% significance level) of the number of times a given condition was met by the pure action 
players. Statistics based on 1000 tests, each comprising 1000 games. Conditions’ legend provided 
in Table 1. 

Coin Bias Condition Stan IB-MaxEnt DS-MaxEnt 

0.1 K1 102.507 ± 0.689 166.650 ± 0.765 166.509 ± 0.765 
K2 897.493 ± 0.689 833.350 ± 0.765 833.491 ± 0.765 
K3 0 0 0 

0.3 K1 300.704 ± 1.033 347.032 ± 1.026 346.833 ± 1.027 
K2 699.296 ± 1.033 652.968 ± 1.026 653.167 ± 1.027 
K3 0 0 0 

0.5 K1 500.205 ± 1.115 499.724 ± 0.933 499.725 ± 0.933 
K2 499.795 ± 1.115 500.276 ± 0.933 500.275 ± 0.933 
K3 0 0 0 

0.7 K1 699.271 ± 1.066 653.374 ± 1.028 653.545 ± 1.028 
K2 300.729 ± 1.066 346.626 ± 1.028 346.455 ± 1.028 
K3 0 0 0 

0.9 K1 898.902 ± 0.705 834.783 ± 0.771 834.944 ± 0.770 
K2 101.098 ± 0.705 165.217 ± 0.771 165.056 ± 0.770 
K3 0 0 0 

3.6 Standard Bayesian benchmark 

In the Ambiguity Dilemma, Stan serves as a benchmark that shows what degree of perfor-
mance is possible. However, in this study, we are not making a general decision-theoretic or 
formal epistemological comparison of Stan and the other approaches. There are too many dif-
ferences in objectives, philosophical assumptions, and formal differences that are beyond our 
scope [1, 7, 8, 66, 69, 83]. Instead, comparisons with the performance of Stan show the degree of 
the Ambiguity Dilemma: to what extent does an inductive logic’s tools for representing ambiguity 
cause less successful performances than Stan’s? 

Note that Stan is not the only possible Standard Bayesian player that could be implemented for this 
decision problem. Firstly, while many Bayesian statisticians would use a f lat prior for our study’s 
decision problem, this prior is not required by Standard Bayesianism as such. Secondly, there are 
other priors that would presumably behave similarly to Stan, such as a Jeffreys prior [31]. Thirdly, 
beta distributions are not the only permissible way to reason about Bernoulli trials according to 
Standard Bayesian inductive logic, but they are popular due to their convenience, responsiveness to 
evidence, and equivocation across the most basic partition of the sample space — in our decision 
problem, tosses landing heads or tails. 

4 Imprecise Bayesianism 

In the next two sections, we begin by describing the representation of beliefs and the update rule for 
each type of player. Once they are defined, we explain the decision rules that we used to generate 
their choices given their beliefs in the agent-based model. 

As their name suggests, Imprecise Bayesians have similarities to Standard Bayesians. The key 
difference is that the former’s beliefs are modelled as a set of different credence functions, rather
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14 Automated decisions under ambiguity

TABLE 3 Imprecise Bayesians. Mean values and related standard errors multiplied by z = 1.96 
(5% significance level) of the number of times a given condition was met by the mixed action 
players. Statistics based on 1000 tests, each one comprising 1000 games. Conditions’ legend 
provided in Table 1. 

Coin 

Bias 

Condition Maximin Optimist Pessimist Dominance ORO Regret 

0.1 K1 94.158 ± 0.659 132.609 ± 0.725 113.533 ± 0.690 94.158 ± 0.659 103.670 ± 0.671 119.838 ± 0.698 

K2 829.048 ± 0.768 867.391 ± 0.725 848.288 ± 0.752 829.048 ± 0.768 838.509 ± 0.762 854.689 ± 0.746 

K3 76.794 ± 0.475 0 38.179 ± 0.356 0 57.821 ± 0.440 25.473 ± 0.298 

K4 0 0 0 0 0 0 

K5 0 0 0 0 0 0 

K6 0 0 0 0 0 0 

K7 0 0 0 76.794 ± 0.475 0 0 

0.3 K1 277.507 ± 0.991 315.684 ± 1.016 296.567 ± 0.997 277.507 ± 0.991 286.919 ± 0.994 302.961 ± 1.001 

K2 645.705 ± 1.044 684.316 ± 1.016 664.980 ± 1.021 645.705 ± 1.044 655.242 ± 1.034 671.384 ± 1.024 

K3 76.788 ± 0.476 0 38.453 ± 0.343 0 57.839 ± 0.442 25.655 ± 0.288 

K4 0 0 0 0 0 0 

K5 0 0 0 0 0 0 

K6 0 0 0 0 0 0 

K7 0 0 0 76.788 ± 0.476 0 0 

0.5 K1 461.724 ± 1.063 500.228 ± 1.071 480.815 ± 1.077 461.724 ± 1.063 471.271 ± 1.072 487.216 ± 1.082 

K2 461.501 ± 1.077 499.772 ± 1.071 480.537 ± 1.072 461.501 ± 1.077 470.879 ± 1.082 486.952 ± 1.073 

K3 76.775 ± 0.478 0 38.648 ± 0.364 0 57.850 ± 0.452 25.832 ± 0.310 

K4 0 0 0 0 0 0 

K5 0 0 0 0 0 0 

K6 0 0 0 0 0 0 

K7 0 0 0 76.775 ± 0.478 0 0 

0.7 K1 645.984 ± 1.038 684.311 ± 1.039 665.105 ± 1.033 645.984 ± 1.038 655.546 ± 1.038 671.550 ± 1.033 

K2 277.304 ± 1.007 315.689 ± 1.039 296.603 ± 1.026 277.304 ± 1.007 286.896 ± 1.015 303.035 ± 1.032 

K3 76.712 ± 0.474 0 38.292 ± 0.343 0 57.558 ± 0.444 25.415 ± 0.287 

K4 0 0 0 0 0 0 

K5 0 0 0 0 0 0 

K6 0 0 0 0 0 0 

K7 0 0 0 76.712 ± 0.474 0 0 

0.9 K1 830.407 ± 0.770 868.600 ± 0.731 849.513 ± 0.751 830.407 ± 0.770 839.886 ± 0.773 855.920 ± 0.750 

K2 92.912 ± 0.661 131.400 ± 0.731 112.169 ± 0.702 92.912 ± 0.661 102.395 ± 0.683 118.673 ± 0.714 

K3 76.681 ± 0.470 0 38.318 ± 0.353 0 57.719 ± 0.438 25.407 ± 0.295 

K4 0 0 0 0 0 0 

K5 0 0 0 0 0 0 

K6 0 0 0 0 0 0 

K7 0 0 0 76.681 ± 0.470 0 0 
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Automated decisions under ambiguity 15

TABLE 4 Dempster–Shafer theory players. Mean values and related standard errors multiplied by 
z = 1.96 (5% significance level) of the number of times a given condition was met by the mixed 
action players. Statistics based on 1000 tests, each one comprising 1000 games. Conditions’ legend 
provided in Table 1. 

Coin 

Bias 

Condition Maximin Optimist Pessimist Dominance ORO Regret 

0.1 K1 94.882 ± 0.660 132.862 ± 0.726 113.996 ± 0.689 94.882 ± 0.660 104.086 ± 0.674 120.270 ± 0.697 

K2 829.282 ± 0.768 867.138 ± 0.726 848.294 ± 0.753 829.282 ± 0.768 838.487 ± 0.763 854.621 ± 0.747 

K3 75.836 ± 0.476 0 37.710 ± 0.352 0 57.427 ± 0.439 25.109 ± 0.298 

K4 0 0 0 0 0 0 

K5 0 0 0 0 0 0 

K6 0 0 0 0 0 0 

K7 0 0 0 75.836 ± 0.475 0 0 

0.3 K1 278.082 ± 0.990 315.808 ± 1.015 296.902 ± 0.996 278.082 ± 0.990 287.259 ± 0.994 303.224 ± 1.003 

K2 646.096 ± 1.044 684.192 ± 1.015 665.097 ± 1.020 646.096 ± 1.044 655.320 ± 1.035 671.426 ± 1.023 

K3 75.822 ± 0.475 0 38.001 ± 0.341 0 57.421 ± 0.440 25.350 ± 0.287 

K4 0 0 0 0 0 0 

K5 0 0 0 0 0 0 

K6 0 0 0 0 0 0 

K7 0 0 0 75.822 ± 0.475 0 0 

0.5 K1 462.229 ± 1.064 500.230 ± 1.071 481.060 ± 1.077 462.229 ± 1.064 471.512 ± 1.071 487.387 ± 1.082 

K2 461.927 ± 1.076 499.770 ± 1.071 480.763 ± 1.071 461.927 ± 1.076 471.071 ± 1.082 487.112 ± 1.072 

K3 75.844 ± 0.477 0 38.177 ± 0.360 0 57.417 ± 0.452 25.501 ± 0.306 

K4 0 0 0 0 0 0 

K5 0 0 0 0 0 0 

K6 0 0 0 0 0 0 

K7 0 0 0 75.844 ± 0.476 0 0 

0.7 K1 646.313 ± 1.039 684.195 ± 1.039 665.233 ± 1.033 646.313 ± 1.039 655.626 ± 1.038 671.594 ± 1.032 

K2 277.877 ± 1.007 315.805 ± 1.039 296.939 ± 1.025 277.877 ± 1.007 287.187 ± 1.013 303.310 ± 1.032 

K3 75.810 ± 0.473 0 37.828 ± 0.341 0 57.187 ± 0.442 25.096 ± 0.285 

K4 0 0 0 0 0 0 

K5 0 0 0 0 0 0 

K6 0 0 0 0 0 0 

K7 0 0 0 75.810 ± 0.473 0 0 

0.9 K1 830.676 ± 0.768 868.365 ± 0.731 849.524 ± 0.751 830.676 ± 0.768 839.854 ± 0.772 855.836 ± 0.749 

K2 93.647 ± 0.663 131.635 ± 0.731 112.634 ± 0.704 93.647 ± 0.663 102.828 ± 0.682 119.057 ± 0.715 

K3 75.677 ± 0.468 0 37.842 ± 0.354 0 57.318 ± 0.434 25.107 ± 0.294 

K4 0 0 0 0 0 0 

K5 0 0 0 0 0 0 

K6 0 0 0 0 0 0 

K7 0 0 0 75.677 ± 0.468 0 0 
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16 Automated decisions under ambiguity

FIGURE 8. Caution Check: Dempster–Shafer players. A stacked bar chart reporting the frequency 
of net losses in the cumulative payoff series for all tests and all coin biases. Bars are scaled in the 
unit interval and ordered from tallest (worst—IB-Dominance) to smallest (best—Stan). 

than as a single credence function. We shall refer to these sets of credence functions as “credal sets.” 
One argument that has been presented for Imprecise Bayesianism is that it offers a richer formalism 
for modelling beliefs in conditions of ambiguity [ 3, 7, 33, 44, 77]. 

We formally define a ‘credal set’ as a convex set P. Not all Imprecise Bayesians make a convexity 
requirement, but it is a widespread assumption. It usually simplifies the modelling of an agent’s 
beliefs [44, 68]. The convexity requirement implies that if the credal set contains a credence function 
that assigns a probability of (for example) 0.25 to an event and another credence function that assigns 
a probability of 0.75 to that event, then the credal set also contains credence functions assigning 
each intermediary real value to that event. Each credence function in P corresponds to a beta 
distribution. 

We shall define a generic player template, IB, who becomes a full player when combined with a 
decision rule. IB’s credal set is defined via a function φ : P × S → Δ+ (Ω) that assigns, to each 
credence function-history combination (p, s) ∈ P × S, a probability distribution φ (p, s) ∈ Δ+ (Ω). 
IB updates a credal set by conditionalizing each credence function in P on their new evidence. 

For any set P, any history s ∈ S and any state ωi ∈ Ω , we can define IB’s minimum and maximum 
aggregate beliefs in ωi as ϕmin 

ωi|s := minp∈P (φ (ωi | p, s)) and ϕmax 
ωi|s := maxp∈P (φ (ωi | p, s)). Since 

the set P is assumed to be convex, IB’s set of aggregate beliefs about ωh and ωt can be represented 
by a function  μP : Ω × S → P ([0, 1]) that assigns, to each state-observation history combination 

(ωi, s) ∈ Ω × S, an aggregate belief interval μP (ωi, s) :=
[
ϕmin 

ωi|s, . . . , ϕmax 
ωi|s

]
with a typical 

element ϕωi|s ∈ (0, 1). The intervals are such that, for any ϕωi|s ∈ μP (ωi, s), it is the case that 
(1 − ϕ (ωi, s)) ∈ μP (ω−i, s). 

In sum, the IB generic player has a credal set of beta credence functions, in contrast to 
Stan. Like  Stan, they update by conditionalization, except they must update a set of probability
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Automated decisions under ambiguity 17

FIGURE 9. Caution Check: Imprecise Bayesians. As Figure 8, but for Imprecise Bayesian players. 

FIGURE 10. Ultra-Minimum Evidence Comparison—five games: Dempster–Shafer players. A 
stacked bar chart for normalized cumulative payoffs for all players and all coin biases after five 
games. Bars are scaled in unit interval and ordered from tallest (best—Stan) to smallest (worst— 
Dominance). 
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18 Automated decisions under ambiguity

FIGURE 11. Ultra-Minimum Evidence Comparison—five games: Imprecise Bayesians. As 
Figure 10, but for Imprecise Bayesian players. 

distributions rather than a unique distribution. The Imprecise Bayesian players in our model are 
essentially pairings of this generic Imprecise Bayesian player with decision rules, as we explain in 
Section 6. 

5 Dempster–Shafer theory 

Dempster–Shafer theory was developed by Shafer, who expanded and refined earlier ideas from 
Dempster [19, 69]. The theory has subsequently been investigated using a variety of update methods, 
interpretations, and other modifications [20, 52]. While Dempster–Shafer theory can be represented 
by convex sets of credence functions [38] and Dempster initially described his rule of combination 
in terms of “imprecise probabilities” [19], Shafer was clear that he did not interpret the theory as 
bounds on sets of admissible Bayesian credences [69, p. ix]. Shafer aimed at a general theory of 
reasoning under uncertainty, which would contain Standard Bayesianism as a special case, which 
might sometimes be justified by epistemic or pragmatic reasons [69, p. vii].  

Shafer had several aims. For example, he wanted a way of distinguishing between (1) a lack of 
belief in a hypothesis and (2) a belief that the hypothesis is false [69, pp. 22–23]. Shafer also wanted 
to avoid how evidence for a conjunction’s parts are combined in Bayesianism [69, p. 28].  

Dempster–Shafer theory has attracted considerable interest among artificial intelligence 
researchers, logicians, computer scientists, mathematicians, and others researching uncertain infer-
ence. However, compared to Standard or Imprecise Bayesian approaches, formal epistemologists 
have rarely discussed it, although interest has increased in recent years [8, 24, 28, 36, 47, 48, 61, 70, 
71]. Thus, exploring the differences it makes for the Ambiguity Dilemma is an appealing and focused 
topic for research. In this article, we isolate the difference made by just adopting Dempster–Shafer 
updating.
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Automated decisions under ambiguity 19

In what follows, we begin by explaining the synchronic belief states of the Dempster–Shafer 
players. We then explain their Dempster conditioning rule. We do so in terms of a generic Dempster– 
Shafer player template DS, who is later paired with particular decision rules to generate Dempster– 
Shafer players. 

Like their Bayesian counterparts, DS knows that each coin toss can yield only one of the two 
outcomes — either ωh or ωt. So, as in the Bayesian models, the set of possible decision-relevant 
states is Ω := {ωh, ωt}. DS’s frame of discernment can then be defined as W := P (Ω) = 
{∅, {ωh} , {ωt} , Ω} with a typical element W . DS’s initial belief assignment can be represented with 
a mass function m : W → [0, 1] that assigns, to each element W ∈ W , a belief mass m (W) ∈ [0, 1] 
in such a way that m (∅) = 0 and

∑
W⊆Ω m (W) = 1. Each assignment m (W) represents the amount 

of initial evidential support allocated to the subset W of Ω , and not to any proper subset of W . In our 
model, we shall also assume that m ({ωh}) > 0 and m ({ωt}) > 0, in order to represent a situation 
whether DS believes that both ωh and ωt are possible outcomes of a coin toss. In addition, we shall 
assume that m (Ω) := 1 − (m ({ωh}) + m ({ωt})) > 0 in order to represent DS as initially uncertain 
about the bias of the coin. 

Given the function m, the initial belief function can be defined as Bels̄ : W → [0, 1], 
such that, for any W ∈ W , Bels̄ (W) := ∑

V⊆W m (V). A belief function Bels̄ is a completely 

monotone capacity, in the sense that Bels̄ (∅) = 0, Bels̄ (Ω) = 1 and Bels̄
(⋃y≥2 

q=1 Vq

)
≥∑

U �=∅,U⊆{1,...,y} (−1)n(U)+1 Bels̄
(⋂

q∈U Vq

)
. The relationship between the belief function Bels̄ and 

the mass function m is such that, for each W ∈ W , m (W) = ∑
∅ �=V⊆W (−1)n(W)−n(V) Bels̄ (V). 

Notice how, given the outlined assumptions about the mass function m, the assignment of values of 
function Bels̄ to each W ∈ W can be defined as Bels̄ (W) = m (W) for each W ∈ W . 

The initial plausibility function can be defined as Pls̄ : W → [0, 1] that assigns, to each W ∈ W , 
a plausibility value Pls̄ (W) := ∑

V∩W �=∅ m (V) = 1 − Bels̄
(
W̄

)
, where W̄ is the complement of 

W . Thus, given the established relationship between functions Bels̄ and m, function Pls̄ is such that 
Pls̄ ({ωh}) = 1 − m ({ωt}) and Pls̄ ({ωt}) = 1 − m ({ωh}). 

A plausibility function provides an upper bound for the evidential support of a hypothesis, while a 
belief function provides a lower bound. Thus, Dempster–Shafer measures of evidential support can 
be interpreted as interval-valued. The presence (absence) of larger (smaller) quantities of evidence 
can be modelled via the width of such intervals, insofar as one grants the assumption that (with 
respect to a particular hypothesis) more concordance in the total evidence is a proxy (or equivalent 
to) more evidence.4 

In order to isolate the particular effect of Dempster–Shafer updating on the Ambiguity Dilemma, 
we assume that DS’s function m is such that m ({ωh}) = 1 

100 , m ({ωt}) = 1 
100 and m (Ω) = 98 

100 . That 
is, we assume that DS’s belief function Bels̄ and plausibility function Pls̄ generate the same intervals 
of beliefs on ωh and ωt as IB’s function μP given a history s̄ and a convex credal set P ranging from 
B (1, 99) to B (99, 1). This isolates the update process as the relevant difference between the two 
types of player in our agent-based model. 

To represent Dempster conditioning, we need to define a belief function Bele corresponding to 
the mass function me assigning mass 1 to evidence e. This mass function will define the particular 
variation of the DS player template that we shall use for comparisons against the Imprecise Bayesian 
players. In our model, each player learns solely from observation histories in S. Thus, the evidence-
based mass function will represent a special case of the general DS player template who, given any 

4The “weight of evidence” literature has extensively explored this assumption [11, 18, 22, 23, 35, 49, 55, 63, 69].
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20 Automated decisions under ambiguity

history s ∈ S, assigns a mass ms (W) ∈ [0, 1] to each W ∈ W in a similar way as an Imprecise 
Bayesian player derives the maximum and minimum probability of each state by using the counting 
function κ to update the extreme beta distributions B (1, 99) and B (99, 1). That is, given any history 
s ∈ S, the mass function ms is such that 

ms ({ωh}) := 
1 + κ (s) 
100 + T 

; (11) 

ms ({ωt}) := 
1 + T − κ (s) 

100 + T 
; (12) 

ms (Ω) := 1 − (ms ({ωh}) + ms ({ωt})) . (13) 

As in the case of the initial belief function Bels̄, the evidence-based belief function can be defined 
as a map Bels : W → [0, 1], such that Bels (W) = ms (W) for each W ∈ W . 

To represent DS’s final beliefs derived via Dempster’s combination rule, we define a belief 
function Bel : W → [0, 1], such that, for any pair W ∈ W , 

Bel (W) := Bels̄ (W) ⊕ Bels (W) =
∑

V ,Y :V∩Y=W m (V) ms (Y ) 
1 − ∑

V ,Y :V∩Y=∅ m (V) ms (Y ) 
. (14) 

Using the final belief function Bel, we can define the final plausibility function as Pl : W → 
[0, 1], such that, for any W ∈ W , Pl (W) := 1 − Bel

(
W̄

)
. 

Via Equation (14), we can derive final beliefs in each W ∈ W from the Dempster conditioning 
rule: 

Bel (∅) = 0. (15) 

Bel({ωh}) := 
m ({ωh}) ms ({ωh}) + m (Ω) ms ({ωh}) + m ({ωh}) ms (Ω) 

1 − (m ({ωh}) ms ({ωt}) + m ({ωt}) ms ({ωh})) , (16) 

Bel ({ωt}) := 
m ({ωt}) ms ({ωt}) + m (Ω) ms ({ωt}) + m ({ωt}) ms (Ω) 

1 − (m ({ωh}) ms ({ωt}) + m ({ωt}) ms ({ωh})) . (17) 

Bel (Ω) := m (Ω) ms (Ω) 
1 − (m ({ωh}) ms ({ωt}) + m ({ωt}) ms ({ωh})) . (18) 

A Dempster–Shafer player’s final belief interval about each ωi ∈ Ω can be represented with a 
function ρ : W × S → P ([0, 1]) that assigns, to each combination (W , s) ∈ W × S, an interval 
ρ (W , s) := [

Bel (W) , 1 − Bel
(
W̄

)]
. Since a Dempster–Shafer player will be betting on events ωh 

and ωt, the decision-relevant intervals are ρ ({ωh} , s) := [Bel ({ωh}) , 1  − Bel ({ωt})], ρ ({ωt} , s) := 
[Bel ({ωt}) , 1 − Bel ({ωh})]. A useful feature of this interval-based setup is that, for any value  ∈ 
ρ ({ωi} , s), (1 − ) ∈ ρ ({ω−i} , s). 

6 Decision rules for IB and DS Players 

Both Imprecise Bayesian and Dempster–Shafer players make decisions with belief intervals, so 
they require special decision rules that can select among the available actions given interval-valued 
beliefs. For any history s ∈ S, we can define a set of decision-relevant intervals about the state ωh as
�s := {μP (ωh, s) , ρ ({ωh} , s)} with a typical interval Ψs := [

ψmin, . . . , ψmax
]
. Given any interval
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Automated decisions under ambiguity 21

Ψs ∈ �s and any value ψ ∈ Ψs, the expected payoff associated with any action cj ∈ C can be defined 
as 

Eu
[
cj | ψ

]
:= ψu

(
cj, ωh

) + (1 − ψ) u
(
cj, ωt

)
. (19) 

Given any interval Ψs ∈ �s, the minimum payoff expectation from any action cj ∈ C can be defined 
as 

E
min 
u

[
cj | Ψs

]
:= min 

ψ∈Ψs

(
Eu

[
cj | ψ

])
, (20) 

while the maximum payoff expectation can be defined as 

E
max 
u

[
cj | Ψs

]
:= max 

ψ∈Ψs

(
Eu

[
cj | ψ

])
. (21) 

For each decision rule, there are two players who use it: the Imprecise Bayesian player using 
that rule (e.g. IB-Dominance) and the corresponding Dempster–Shafer player using that rule (e.g. 
DS-Dominance). 

We excluded some decision rules that we investigated in similar research, since their performances 
are not notably different from players whom we include. We do not claim that these decision 
rules are an exhaustive list of possible approaches for making choices using interval-valued beliefs. 
There are ongoing programmes of developing decision theories for both Imprecise Bayesianism and 
Dempster–Shafer theory [8, 20]. We have aimed at including popular and historically significant 
decision rules. We have also avoided decision rules that are still in the early stages of their 
development and exploration, because we do not want to misinterpret their application to our study’s 
decision problem. We encourage proponents of alternative rules to explore their application in the 
context of this decision problem, as well as other decision problems that might be used to compare 
these inductive logics. 

As a running example, we shall show how an Imprecise Bayesian player using each rule would 
make a decision in a particular game. In this example, δ = 0.55. The players have each made 
25 observations, 24 of which are heads. The lower bound for ωh is (1 + 24)/125 = 0.2, and the 
upper bound (plausibility in Dempster–Shafer theory, highest credence in Imprecise Bayesianism) 
is (99 + 24)/125 = 0.984. We provide the expected payoffs given the lower and upper expectations 
for ωh in Figures 2 and 3 respectively. 

The expected payoff for each action in the figures is the sum for its row. Notice how the expected 
payoff for ct is higher than for ch in Figure 2, but the reverse is true in Figure 3. Therefore, this is an 
example where the imprecision of beliefs is highly relevant to players’ expected payoffs. 

6.1 Dominance 

The Dominance rule essentially says that any choice is rational unless one believes that its expected 
payoff is less than that of some alternative action. In the context of our model, a choice cj is 
“dominated” if its maximum expected payoff is strictly less than the minimum expected payoff of 
one or more alternatives. 

We define the set of non-dominated actions given any Ψs ∈ �s as 

DΨs := {
cj ∈ C : Emax 

u

[
cj | Ψs

] ≥ Emin 
u [ck | Ψs] , for every ck ∈ C

}
. (22) 

In some cases, the set DΨs is not a singleton, which means that players using the Dominance 
rule must choose among multiple permissible actions. To resolve this selection problem, we use the
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22 Automated decisions under ambiguity

uniform randomization tie-breaker, meaning that Dominance players randomly choose an action cj 
from a set DΨs . The other players defined below all had a unique permissible action in each game 
and hence did not need a tie-breaker procedure. 

In our running example, no action has a lowest expected payoff that is above the highest expected 
payoff for any other action. Therefore, a Dominance player would randomize among all three actions. 

6.2 Maximin 

The next rule is an adaptation of maximin decision theory to interval-valued beliefs [4]. The concept 
behind this rule is that it is rational to maximize one’s actions’ minimum expected payoffs [76]. Note 
that, unlike the classic Maximin rule, the Maximin rule in our tests is dynamic: players following this 
rule use their updated interval-valued expectations, so the Maximin rule extends beyond situations 
of complete ambiguity. 

Maximin players choose an action cj ∈ C, such that 

cj ∈ arg max 
ck∈C

(
E

min 
u [ck | Ψs]

)
. (23) 

In our running example, ca has the highest minimum expected payoff of any possible action, since 
0 > −0.35 > −0.434. Therefore, a Maximin player would abstain. 

6.3 Regret 

The concept behind the Regret rule (often called the “Minimax Regret” rule) is that it is rational 
to minimize expected opportunity costs, defined in terms of expected payoffs. Alternatively, its 
rationale could be put this way: one should minimize regrets, in the technical sense of losses given 
unavoidable risks, relative to one’s information [64]. Regret players calculate a regret number based 
on their belief intervals and chooses an action with a minimal regret number. 

The set of regret-minimizing choices can be defined with a regret function ζΨs : C → R that 
assigns, to each action cj ∈ C, a regret value  

ζΨs

(
cj

)
:= max 

ψ∈Ψs

(
max 
ck∈C 

(Eu [ck | ψ]) − Eu
[
cj | ψ

])
. (24) 

Regret players choose an action cj ∈ C, such that 

cj ∈ arg min 
ck∈C

(
ζΨs (ck)

)
. (25) 

In our running example, the regret values for ch, ct and ca are respectively 0.7, 0.868, and 0.434. 
Therefore, a Regret player would choose ca. 

6.4 Optimist 

The next rule is defined in terms of the Hurwicz criterion approach. There is a constant parameter 
α ∈ [0, 1], representing the degree to which a player is cautious [29]. As α is closer to 1, the player 
puts more weight on lower expected payoffs. As α is closer to 0, the player puts more weight on 
higher expected payoffs. 

The players using the Hurwicz criterion in our model have an α value of 0.25, thus assigning a 
weight of 0.25 to actions’ minimum expected payoffs and 0.75 to their maximum expected payoffs. 
Because of the distribution of weights that puts more emphasis on expected outcomes of actions, this
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Automated decisions under ambiguity 23

rule is called the Optimist rule. A player using this rule chooses an action cj ∈ C, such that 

cj ∈ arg max 
ck∈C

(
1 

4 
E

min 
u [ck | Ψs] + 

3 

4 
E

max 
u [ck | Ψs]

)
. (26) 

In our running example, the weighted expected payoff of ch is 0.238. The weighted expected 
payoff of ct is 0.154. Finally, the weighted expected payoff of ca is 0. Therefore, Optimist players 
will choose ch. 

6.5 Pessimist 

This player type is very similar to the Optimists. The only difference is that they are more cautious: 
α = 0.75 rather than α = 0.25. A player using this rule is otherwise identical to an Optimist player. 

In our running example, the weighted expected payoff of ch is −0.154. The weighted expected 
payoff of ct is −0.238. Finally, the weighted expected payoff of ca is 0. Therefore, Pessimist players 
will choose ca. 

6.6 Opportunity Risk Optimization 

This decision rule is an adaptation of earlier suggestions by Daniel Ellsberg [21, p. 664] into a rule for 
imprecise probabilities [58]. The concept is that a rational agent tries to optimize a balance between 
using their expected payoffs and minimizing their risks of losses, but discounts the former expected 
payoffs by the extent to which their evidence is ambiguous. The Opportunity Risk Optimization 
(ORO) rule is based on a method for weighting an action cj by its average expected payoff, given 
a point-estimation method and the action’s minimum expected payoff. The weighting of the first 
factor increases with their sample sizes, as formalised below. 

The average expected payoff of any action cj ∈ C, given any Ψs ∈ �s can be defined as 

E
avg 
u

[
cj | Ψs

]
:= ψavgu

(
cj, ωh

) + (
1 − ψavg) u

(
cj, ωt

)
, where ψavg := 

ψmax + ψmin 

2 
. (27) 

We then define the ORO rule as choosing an action satisfying the following requirement: 

cj ∈ arg max 
ck∈C

(
� (Ψs) Emin 

u [ck | Ψs] + (1 − � (Ψs)) Eavg 
u [ck | Ψs]

)
, 

where � (Ψs) := 
ψmax − ψmin 

99 
100 − 1 

100 

= 
50

(
ψmax − ψmin

)
49 

. (28) 

Like the Optimist rule, this rule essentially requires maximizing an auxiliary quantity, generated 
from the expected payoff intervals. 

In our running example, the minimum expected payoffs for ch, ct and ca are respectively –0.35, 
–0.434, and 0. The average expected payoffs are respectively 0.042, −0.042 and 0. Finally, � (Ψs) = 
0.8. Substituting into Equation (28), we find values of –0.2716, –0.3556, and 0 respectively. 
Therefore, ORO players would choose ca. 

6.7 MaxEnt 

The MaxEnt rule is an adaptation of the Maximum Entropy Principle [30, 78, 81] to the context of 
interval-valued beliefs. The idea is that one should make decisions using the minimally informative
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24 Automated decisions under ambiguity

probability distribution that is compatible with one’s belief intervals. Note that this probability 
distribution is interpreted as a tool for decision-making, but not necessarily as credences. For 
example, an Imprecise Bayesian using the MaxEnt rule would regard the probabilities as auxiliary 
quantities for decision-making, rather than as Standard Bayesian credences. 

An entropy-maximizing probability function for a given belief interval is defined as η : Θ → 
Δ+ (Θ) which assigns a uniform probability distribution on the set Θ and a belief function π : �s → 
P ([0, 1]) that assigns, to any interval Ψs ∈ �s, a set of entropy-maximizing beliefs π (Ψs) ⊆ Ψs, 
where each belief ψ ∈ π (Ψs) is such that 

ψ ∈ arg min 
ψ ′∈Ψs

(∣∣∣∣∣ψ ′ −
∫ 1 

0 
θη  (θ) dθ

∣∣∣∣∣
)

. (29) 

Since
∫ 1 

0 θη  (θ) dθ = 1 
2 , Equation (21) can be simplified to 

ψ ∈ arg min 
ψ ′∈Ψs

(∣∣∣∣ψ ′ − 
1 

2

∣∣∣∣
)

. (30) 

The MaxEnt rule requires choosing an action cj ∈ C, such that 

cj ∈ arg max 
ck∈C 

(Eu [ck | ψ]) with some ψ ∈ π (Ψs) . (31) 

In our running example, there is an entropy-maximizing function assigning probabilities of 0.5 to 
both heads and tails. For this function, the expected payoffs for ch, ct and ca are respectively −0.05, 
0.05, and 0. Therefore, a MaxEnt player would choose ct. Note the contrast with all other players 
so far, who variously randomise, abstain, or choose ch. This shows how different decision rules can 
meaningfully affect players’ choices. 

7 Results 

7.1 Main comparisons 

The main overall result from our tests was that the Imprecise Bayesian and Dempster–Shafer players 
performed approximately identically. Therefore, there was no setting (decision rule and coin bias) 
such that a Dempster–Shafer player’s updating rule made a positive difference to performance. 
Consequently, adopting this version of Dempster–Shafer updating does not avoid the Ambiguity 
Dilemma. 

We shall proceed in three steps. First, we shall use our running example to explain how the beliefs 
of Imprecise Bayesian and Dempster–Shafer players can diverge. Second, we shall explain the result 
in general terms. Third, we explain the extent to which different decision rules affected the results. 

In our running example, there are 25 coin toss observations, 24 of which landed heads and 1 of 
which landed tails. For Dempster–Shafer players, the initial belief assignment can be represented 
with a mass function ms̄, such that ms̄ ({ωh}) = 0.01, ms̄ ({ωt}) = 0.01, and ms̄ (Ω) = 0.98. 

The beliefs that Dempster–Shafer players hold in the running example can be represented with 
an evidence-based belief function ms, such that ms ({ωh}) = 0.2, ms ({ωt}) = 0.016 and ms (Ω) = 
0.784. 

Both mass functions assign positive mass to Ω , which means that, once the Dempster combination 
rule is applied, a Dempster–Shafer player’s final beliefs will assign a positive value to Ω . This can
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Automated decisions under ambiguity 25

be checked by applying the rule in order to derive the values for the Dempster–Shafer player’s final 
belief and plausibility functions: 

1. Bel ({ωh}) ≈ 0.206286, Pl ({ωh}) ≈ 0.976269, 
2. Bel ({ωt}) ≈ 0.023731, Pl ({ωt}) ≈ 0.793714. 

In contrast, at the same point in the tests, an Imprecise Bayesian player will have credences in their 
set of 0.2 to 0.984 for ωh and from 0.016 to 0.8 for ωt. This result is interesting, because it shows 
how Dempster–Shafer theory and Imprecise Bayesianism can diverge, given analogous initial beliefs 
and the same data, even in a decision problem based around the relatively simple case of choosing 
how and whether to bet given a sequence of binomial trials. 

Notice how the Dempster–Shafer players have narrower intervals in the running example. This 
feature occurs throughout our tests. In previous research, we found that the slow convergence 
of Imprecise Bayesian players caused their underperformance relative to Stan. However, while  
the gap between belief and plausibility closed slightly faster than the corresponding values for 
Imprecise Bayesians, Dempster–Shafer players do not perform detectably better and do not avoid 
the Ambiguity Dilemma. 

This result is surprising, because updating via Dempster’s rule is fundamentally different from 
Imprecise Bayesianism. The problem is that, while Dempster’s rule enables faster convergence 
towards the cumulative sample frequency, it still can only represent ambiguity via an initial belief 
state that requires relatively large samples to revise. Conversely, as we discuss below, Stan updates 
more rapidly, at the cost of not having the representational tools possessed by Dempster–Shafer and 
Imprecise Bayesian players. 

For both types of player, IB-Optimist and DS-Optimist were the best performers. Similarly, for 
both types of player, IB-Maximin and DS-Maximin were the worst performers. The graphs of their 
performances are shown in Figures 4 and 5. The relatively poor performance of Maximin players 
was detectable with all biases. The reason was that abstaining often has the maximum minimum 
expected payoff in early games, when intervals are wide, because (depending on the ticket price) it 
can be the case that both betting on heads and betting on tails have negative expected payoffs. In 
contrast, abstaining has a guaranteed payoff of 0. However, abstaining is a costly action (in terms of 
opportunity costs) when there is useful sample data, because it forgoes potential profits that some 
other players can reliably attain. 

Players using the Dominance rule performed very similarly to players using the Maximin rule. 
This occurred because the Dominance rule often requires randomizing among ch, ct and ca if the 
belief interval is wide, since none of these actions is dominated for a given ticket price unless it 
is superior given any point in the belief interval. In these randomizations, there is a 1/3 chance of 
choosing abstaining, and thereby missing potential profits. Such situations occur more often insofar 
as convergence is slower. 

The performances given the other decision rules were in between these two extremes of the 
Optimist and the Maximin rules. The ordering of decision rule performances was the same for both 
types of player. 

Players using the ORO, Pessimist and Regret rules performed slightly worse than those using 
the Optimist decision rule, except when the coin bias was 0.5. The performance gap was greatest 
when the coin bias was 0.1 or 0.9. Under those conditions, samples of Bernoulli trials provide more 
reliable information, but these rules make less use of this information than the rules for IB-Optimist 
and DS-Optimist. There was no statistically significant difference in the performance of the ORO, 
Pessimist and Regret rules. Meanwhile, MaxEnt players’ performance was very sensitive to the coin 
bias: when the bias was 0.5, they did as well as any other player; when the coin bias was 0.1 or 0.9,
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26 Automated decisions under ambiguity

they did poorly; when the coin bias was 0.3 or 0.7, they also lagged behind many other players. These 
problems for MaxEnt players were caused by a slow convergence towards the true bias. However, 
regardless of the decision rule, Dempster–Shafer players performed approximately identically to the 
corresponding Imprecise Bayesian player. 

7.2 Ultra-minimum evidence 

Our Ultra-Minimum Evidence comparisons in Figures 10 and 11 provide a crucial piece of 
information, by focusing in precisely on early games. They show that even in the very short 
run, there is not a significant advantage from using Dempster–Shafer updating, nor disadvantage. 
This is because, while the Dempster–Shafer belief intervals narrow quicker than the corresponding 
Imprecise Bayesian values, the difference is too marginal to create a substantial effect. 

7.3 Caution Check 

For our Caution Check test, the performances among the two types of player were almost identical— 
see Figure 8 and 9. Firstly, the rankings of the performances of decision rules were the same for both 
types of player. The Regret and Pessimist players had the lowest frequencies of net losses among the 
Imprecise Bayesian and Dempster–Shafer players. Both were close to Stan. The ORO and Optimist 
players were not far behind. MaxEnt and Maximin then followed. The Dominance players were the 
worst performing players on the Caution Check test, by a very large margin. 

It may seem surprising that being more cautious about using information from early samples 
would increase the rate of net losses. However, while the early sample frequencies are more likely to 
diverge from the true coin bias, they do provide usable information for making decisions. Meanwhile, 
avoiding net losses in this decision problem will generally require making sufficient profits as well 
as avoiding losses in games, because some losses are inevitable (except by forgoing profits very 
frequently) due to the stochastic unpredictability of the coin tosses. 

Why did Dominance players perform so badly on the Caution Check? Recall that the Dominance 
rule with a randomizing tiebreaker requires randomizing among ch, ct and ca whenever none of these 
actions is dominated for the given belief interval and ticket price. For instance, suppose that the coin 
bias is 0.9 (towards heads). Until a Dominance player’s belief interval has narrowed sufficiently, they 
have a 1/3 chance of selecting ct. Hence, given the 0.9 coin bias, a Dominance player randomizing 
in this way has a 1/3 chance of a loss. Consequently, Dominance players not only sometimes miss 
profit opportunities by abstaining, but also systematically have a greater chance of making losses by 
betting on the wrong outcome in the early games. 

The Dempster–Shafer players received no detectable advantage from their updating method in the 
Caution Check. This reinforces our general point that the Ambiguity Dilemma is robust against the 
use of Dempster’s rule to update, ceteris paribus. 

7.4 Standard Bayesian 

As noted before, we are not providing a holistic comparison of Standard Bayesianism and Dempster– 
Shafer theory. There are many alleged advantages and disadvantages of both approaches, but these 
are beyond our scope. However, for this decision problem, we can definitely state that the Dempster– 
Shafer players do not improve on the performance of the Imprecise Bayesians with respect to 
comparative performance against Stan. 

Interestingly, the reasons for this performance gap are fundamentally the same for both Dempster– 
Shafer players and Imprecise Bayesian players. These approaches involve slower convergence, but
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Automated decisions under ambiguity 27

without a compensating gain in terms of the Caution Check. Moreover, this slower convergence is 
caused by the use of the tools by which these approaches can represent ambiguity in this decision 
problem. 

Stan’s f lat prior means that their credences converge especially rapidly towards the sample 
frequency. At the same time, since their initial prior is equivocal between heads and tails occurring in 
the first game, they have a cautious element that causes their prior to be robust against different coin 
biases.5 This result was also corroborated by the graphs for Stan, who quickly attained the long-run 
rate of profit. 

For the Caution Check, we found that Stan’s performance could be approximately matched by 
some decision rules with either Imprecise Bayesian or Dempster–Shafer updating. However, it is 
notable that Stan’s profit making success in this problem does not come at the cost of greater 
frequencies of net losses. 

Stan’s performance also reinforces the importance of even the marginal differences in the Caution 
Check among Dominance and Maximin players, as well as the more general differences in favour 
of the Imprecise Bayesian players. In a very large proportion of decision problems, comparative 
performance is crucial to success. The differences can be marginal in size but very substantial 
in importance. Think of the science team that achieves priority in a discovery, the business that 
achieves the best comparative profits or losses against comparable investments, the military that 
achieves victory in a battle; even if these comparative successes are marginal, they can be the 
difference between fame or obscurity; fortune or bankruptcy; survival or death. Therefore, even when 
the gains from one learning method over another are numerically marginal, they can be practically 
significant. 

8 Discussion 

Since our results are stable and reliable, there are several issues to discuss. We shall separately 
discuss, in turn, (1) issues directly concerning the Ambiguity Dilemma, (2) issues relating to the 
representation of neutral belief states, (3) issues concerning different rules for making decisions 
given the use of Dempster–Shafer theory, and (4) significant limitations of our study. 

8.1 The Ambiguity Dilemma 

Both types of player start out with comparable representations of ambiguity, but with different 
results. The combination rule offers an interesting alternative to Imprecise Bayesian updating, but 
not one that avoids the Ambiguity Dilemma. 

Of course, the Dempster–Shafer theory formalism allows for players with more convergent initial 
belief states. The same is true of Imprecise Bayesianism. Yet this choice would make their initial 
beliefs less representative of the ambiguity. Already, the degree of convergence in the credal set and 
belief functions goes beyond the initial information provided about the coin bias. Further restrictions 
to create a narrower range of beta distributions would aggravate this lack of ambiguity representation. 
Conversely, a broader initial range would aggravate the comparative decision-making performance 
problems relative to Stan. 

Recall that the Ambiguity Dilemma is a trade-off, not a simple f law, for Imprecise Bayesians 
and (as we have now shown) Dempster–Shafer theory. There are advantages to these approaches in 
terms of a rich and flexible method of representing evidence and knowledge. Choosing between these 

5Stan does better compared to other players given “extreme” biases of 0.1 or 0.9, because the average variance for these 
biases is lower. Similarly, to a lesser extent, they do better with a 0.3 or 0.7 bias than a 0.5 bias. 
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28 Automated decisions under ambiguity

advantages and the disadvantages of relatively diminished performance is presumably a contextual 
matter. For applications in formal epistemology, inductive logic, and the philosophy of science, one 
might choose to opt for the tools that Imprecise Bayesianism and Dempster–Shafer theory offer 
for representing ambiguity. Conversely, given decision problems that are relevantly comparable to 
that studied in this article, in applications such as financial machine learning or applied artificial 
intelligence in imaging software, one might prefer the decision-making performance of Standard 
Bayesian approaches such as Stan. In intermediate contexts, there is a vast range of possible 
alternatives, such as Dempster–Shafer reasoning with a belief function that is closer to Stan’s 
credence function or Imprecise Bayesianism with a more convergent credal set. 

Previously, the Ambiguity Dilemma has been discussed just in relation to Imprecise Bayesianism. 
However, due to Dempster–Shafer theory’s adaptability, it would be interesting to explore how it 
might have hitherto unforeseen benefits. What we have shown is that just adopting Dempster’s 
combination rule is insufficient to avoid the Ambiguity Dilemma. 

8.2 Neutrality and performance 

In this subsection, we discuss a particular issue concerning the Ambiguity Dilemma and its 
scope. As mentioned in Section 2, one inf luential argument for Dempster–Shafer theory is that 
a method for representing neutral belief states seems to be a desideratum for an inductive logic, 
yet the Standard Bayesian tools for this task (such as the Principle of Indifference) are infamously 
contested. 

In our decision problem, it is possible to determine a f lat prior that is “neutral” with respect to the 
events of practical interest. Thus, Stan’s initial belief state is equivocal with respect to the coin tosses 
landing heads or tails. Yet this neutrality is not always possible. Consider the following modification 
to our decision problem: players are offered the opportunity to bet on the coin toss at the end of a 
game and the chance to guess the overall relative frequency of heads in the 5000 tosses in the test. 
Stan would have a strong initial belief that the relative frequency of heads will be close to 2500/5000. 
Furthermore, regarding decision-making performance, if there was a coin bias that was not 0.5, then 
Stan would tend to make early losses insofar as they could bet on their initial belief in the overall 
relative frequency. In contrast, erstwhile poor performers like the Maximin players would benefit 
because of their great tendency to abstain until their samples became sufficiently large for reliable 
estimates. 

Hence, the Ambiguity Dilemma is more complex than simply formal epistemological advantage 
versus decision-theoretic advantage. Nonetheless, these considerations do not affect our result, which 
is that for this specific decision problem, Dempster–Shafer updating does not avoid the Ambiguity 
Dilemma. 

Moreover, note that the Dempster–Shafer players (and Imprecise Bayesian players) also do not 
start with a strictly neutral belief state. The sets of beta distributions that they use for their initial 
belief intervals also imply strong beliefs for some hypotheses. Therefore, in some decision problems, 
the same challenges mentioned for Stan will occur for them. For instance, the beta distributions 
ranging from B (1, 99) to B (99, 1) impose strong constraints on an Imprecise Bayesian’s beliefs 
about some higher-order events consisting of coin tosses. These credence functions all assign 
some outcomes (such as 5000 out of 5000 heads) credences close to zero. In general, one could 
engineer tests with coin biases and betting options such that the Imprecise Bayesian and Dempster– 
Shafer players would also suffer from being overly confident in their initial beliefs. Therefore, 
when assessing decision-making performances using agent-based modelling, one should explore 
test settings that are fair, plausible and connected to well-explored decision problems, rather than 
gerrymandered tests to “catch out” particular types of player.
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Meanwhile, pure agnosticism—being neutral with respect to all beta distributions—would result 
in “inertia,” where players fail to update [34, 67, 74, 77, 79]. In this decision problem, inertia would 
be very costly in terms of the missed potential profits. A formal system that represents neutrality, 
while avoiding inertia and other problems, remains a continuing quest for inductive logic [3, 50]. 
However, we stress that our results do not challenge the progress that Dempster–Shafer theory has 
made in representing ambiguity. 

8.3 Rules and performance 

Suppose that, due to one of the many arguments for Dempster–Shafer theory, someone favours 
this approach to updating in this type of decision problem. Given that choice, our results show the 
advantages of using a decision rule that is less likely to leave the choice of actions undetermined. For 
instance, such a reasoner would be better off if they followed Optimist-DS rather than Dominance-DS 
and Maximin-DS. 

Tiebreaking is a conceptually controversial operation. Should one randomise? Or use a 
supplementary rule? Decision theorists have explored a variety of tiebreaker approaches in the 
context of imprecise probabilities [45, Chapters 6 and 7]. In situations of ambiguity, the choice 
of tiebreaker rule can be significant. Thus, a decision rule that avoids tiebreaking can also avoid 
some thorny conceptual issues, as well as the additional computational time employing a tiebreaker 
procedure, such as randomization. 

To illustrate how tiebreaking makes a difference, we provide Figure 7. DS-Dominance is the player 
described in Subsection 6.1. The player we call DS-Dominance+Ultra-Optimist uses the Hurwicz 
criterion with α = 0, instead of randomizing, given multiple undominated actions in a game. This 
α value means that, in a sense, DS-Dominance+Ultra-Optimist is even more “optimistic” than 
Optimist. Note how DS-Dominance+Ultra-Optimist does much better in this particular decision 
problem. On the other hand, there is nothing in the Dominance rule as such that entails either 
tiebreaking procedure [39, Chapter 14]. 

8.4 Limitations 

We have strived to maintain comparability with other studies that use this decision problem to 
compare inductive logics [40, 57–59]. Our study inherits some of the limitations of these studies. 
Most notably, our decision problem is based around a series of Bernoulli trials. Obviously, not all 
decision problems concern such events, and rapid convergence is not always an advantage. 

However, our results do not merely show that convergence is advantageous when it is advanta-
geous so Stan benefits from convergence when it is beneficial. What our results principally show 
is that the slower convergence rates of Dempster–Shafer and Imprecise Bayesian players matters, 
while Dempster–Shafer reasoning does not significantly improve in itself on Imprecise Bayesian 
performances. 

In addition, there are many decision problems where it is a reasonable to assume that the trials 
are exchangeable. It is also notable that the sorts of distributions that would harm the relative 
performance of Stan are not straightforward to identify, because the beliefs of the other players 
we studied also converge towards the sample frequency. Departures from the exchangeability 
assumption would have to be ref lected in the Standard Bayesian player’s choice of prior, to reproduce 
the type of ambiguity that we study here. Given a non-exchangeable problem, many Standard 
Bayesian statisticians would argue for different types of prior. Problems with player uncertainty 
about the structural features of the model (such as the outcome space or the stability of the stochastic 
parameters) would require very different analyses; these are interesting potential areas of strength 
for Imprecise Bayesianism and Dempster–Shafer theory, but topics for another day.
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In this article, our focus has been on how Dempster–Shafer theory and Imprecise Bayesianism 
compare with respect to the Ambiguity Dilemma. Hence, we have used a range of decision rules 
primarily as a control method, in order to ensure that our main inductive logic comparison is not 
an artefact of any particular decision rule. A consequence of this focus is that we cannot rule out 
that other decision rules might have better results when paired with Dempster–Shafer (or Imprecise 
Bayesian) learning. 

An additional limitation is that our results only show that there are some priors with which a 
Standard Bayesian can outperform Dempster–Shafer players. Yet these priors are not required by 
Standard Bayesian inductive logic. Many Bayesians are subjectivists and think that the choice of prior 
is largely unconstrained. Previous research has shown that biased priors can seriously affect the short 
run performance of Standard Bayesian players in this decision problem, even though “washing out” 
convergence results hold in the long run [57]. Since there are indefinitely many Standard Bayesian 
players who would be outperformed by the Dempster–Shafer players, our results do not indicate 
a general superiority of the former approach, even for the specific criteria we have used in this 
article. 

Furthermore, our study has examined decision-theoretic performance, but Dempster–Shafer 
theory might be interpreted more as a method for combining and quantifying evidence. For instance, 
Judea Pearl has argued that Dempster–Shafer theory formalizes “provability” [52–54]. On the other 
hand, the Ambiguity Dilemma occurs regardless of the decision rule, and it is due to differences 
in how inductive logics extract reliable information from sample data. Thus, while the Ambiguity 
Dilemma as such does not hold with respect to the application of Dempster–Shafer theory to aims 
such as “provability” formalization, it does raise some inductive logical issues that Dempster–Shafer 
theorists might want to examine further. 

In this article, we have focused on statistical decisions, in that players’ decisions are informed by 
estimates of the probabilities of a stochastic process — the coin tosses. Imprecise Bayesianism and 
Dempster–Shafer theory have also been investigated in contexts such as policymaking and medical 
decisions, where causal reasoning is important [6, 10, 75]. While the type of decision-making we 
consider here does not require causal knowledge, many decisions based on causal reasoning involve 
stochastic knowledge (such as estimating causal effects [25, 26, 32]) and thus our article provides a 
useful first step towards comparisons in causal reasoning decision problems. There are also types of 
reasoning, such as hypothetical and counterfactual reasoning, where the players could be compared 
using our methods but which typically involve formalisms and controversies that are well beyond 
this article’s scope [5, 43]. 

In sum, our results have the limitations that come from isolating a particular factor (Dempster’s 
combination rule or Imprecise Bayesian conditioning) and investigating performances in one type 
of decision problem, but also the corresponding advantages of precision and identifying the relevant 
factors. One must be wary when extrapolating the Ambiguity Dilemma from this article’s Dempster– 
Shafer players’ performances to other decision problems or to alternative Dempster–Shafer players. 
On the other hand, we were able to isolate the role of the update method in players’ performances. 
Consequently, we provide a solid basis for further research that will either warrant or reject 
extrapolations to alternative decision problems. 

9 Conclusion 

We have shown that simply adopting Dempster’s combination rule does not achieve a better trade-
off in the Ambiguity Dilemma. For this reason, we have compared one possible way that Dempster– 
Shafer theory could be applied to the decision problem. For example, there is nothing in Dempster–
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Shafer theory as such that excludes learning by a method that is effectively equivalent to Stan. 
Yet note that such approaches would also be forgoing the ambiguity representation tools of the 
Dempster–Shafer players in our study. Therefore, they would not escape the Ambiguity Dilemma. 

Dempster–Shafer theory and Imprecise Bayesianism are the most prominent approaches to 
reasoning using interval-valued beliefs and imprecise probabilities, but they are not alone [2, 9, 
15, 35, 41]. Further examination of the short-run decision-making performance of these alternatives 
will enable our results to be placed in a broader context. 

Perhaps there is some version of Dempster–Shafer theory that offers a trade-off in the Ambiguity 
Dilemma that is superior to Imprecise Bayesianism. For instance, the use of beta distributions 
is common but not required. Dempster–Shafer decision theory continues to evolve [20] while 
organizations like the Belief Functions and Applications Society provide annual conferences for 
the development and exploration of Dempster–Shafer belief functions. Our article has been the first 
investigation of the Dempster–Shafer theory in relation to the Ambiguity Dilemma, but it should not 
be the last. We hope that our results will serve as a stimulus for Dempster–Shafer theorists to explore 
their f lexible formalism’s capacity to mitigate or perhaps even avoid the Ambiguity Dilemma. 
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