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1 Overview

Over the past fifteen years, a novel explanatory framework spearheaded by Karl

Friston has inspired both excitement and confusion in the philosophy of biology

and cognitive science. Active inference, whose most famous tenet is the free en-

ergy principle, purports to unify explanations in biology and cognitive science

under a single class of mathematical models. Unfortunately, the framework is

notoriously difficult to understand, hampering efforts at critical evaluation. The

Topical Collection aims to widen the field for proper assessment of active infer-

ence, and this introduction provides a jumping-off point.

There are broadly three reasons why the active inference framework is difficult

to understand. First, the mathematics are unfamiliar to many philosophers, and
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even to biologists and cognitive scientists. Second, the framework was developed

rapidly by a small but dedicated group of researchers, limiting its accessibility

while expanding its scope. Third, the framework makes claims across both math-

ematical and empirical domains, and the dialectical relationships between these

are unclear.

Here we attempt to redress this situation by targeting each source of potential

confusion. First, we offer simplified versions of the models used in active infer-

ence (section 2). Second, we describe the historical trajectory of the framework

and highlight its novel features (section 3). Third, we distinguish three kinds of

claim (labelled mathematical, empirical, and general) that proponents of active

inference make (section 4). We illustrate the ways these kinds of claim are used

to justify one another with reference to papers in the Topical Collection.

Our goal is neither to defend nor attack active inference, but to enable philoso-

phers to pursue more effective critical evaluation. A wider and deeper understand-

ing of the framework is required if it is to be given a proper hearing.

2 Simple models of the free energy principle for in-

ference, action, and selection

2.1 A note on ‘models’

Let us begin with a warning. The word ‘model’ takes on two distinct senses

throughout our discussion. The sense more familiar to philosophers is what we
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will call a scientific model: a representation of some possible or actual system,

which a scientist uses to reason about, or discover features of, that system and

related systems. By contrast, in the active inference literature a narrower sense

is typically meant; what we will call a generative model. This is a mathematical

object with applications in statistics and various sciences. Our simplified models

of the free energy principle are scientific models. They in turn posit generative

models, possessed by agents and employed by them to perform inference and

action.

Note further that some scholars opt for a deflationary stance on generative

models, using them only to describe the dynamics of agents. It is an open question

whether this kind of model building precludes any form of scientific realism about

the relation between the model and the target system. These issues are discussed

in section 4.

In each of our scientific models, the generative model in question takes the

form of a joint probability distribution like p(w,x) or p(w,x,z). If we use the term

‘model’ in isolation, context will be sufficient to indicate which sense is intended.

2.2 A simple model of inference

The inference problem addressed by the active inference framework concerns an

agent who can observe data x and must infer the value of an unobservable state

w. The unobservable state is assumed to cause observable data (Figure 1). The

agent is capable of harbouring beliefs about the unobservable state, and knows the

statistical relationship between it and the observable data, which is represented as
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Figure 1: The basic model of inference. An agent can observe x and must
infer the value of w. The agent knows the statistical connection between them,
encapsulated by the joint probability distribution p(w,x).

a joint probability distribution p(w,x).

For example, imagine you have a cat that spends its time in either the kitchen

or the bedroom. When it’s in the kitchen, it often meows for food; when it’s in the

bedroom, it often purrs loudly. Suppose you tally the proportion of the times your

cat is in each place and making each noise. The results might look something like

this:

Cat noise

meow purr

Cat location
kitchen

bedroom

 40% 20%

10% 30%


The table describes a joint probability distribution p(w,x), where w ranges over

possible cat locations: w ∈ {kitchen, bedroom}, and x ranges over possible cat

sounds: x ∈ {meow, purr}. You can see that 40% of the time the cat is in the

kitchen and meowing, and 30% of the time it is in the bedroom and purring. It

does sometimes mix and match those locations and noises – sometimes it purrs in
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the kitchen or meows in the bedroom – but less frequently. (We are assuming that

the cat cannot be anywhere but the kitchen or the bedroom, that it cannot make

sounds other than meowing or purring, and that it is always making one of these

sounds.)

Now suppose you are in the living room and you hear a meow. You can’t

tell whether the sound came from the kitchen or bedroom, but you do know the

statistics given in the table above. What is the probability of the cat being in one

location or the other, given that you heard it meowing? This is an inference

problem. We will say that you must give your solution in the form of a probability

distribution, which we denote by q(w). This can be said to capture your degrees

of belief – what philosophers sometimes call ‘credences’ – in the two possible

locations of the cat.

Of course, there is a sense in which you already possess a distribution of this

kind. The joint distribution that is your generative model, p(w,x), implies a distri-

bution p(w). But these are your prior credences, the probabilities you implicitly

assign before you hear the cat make a sound. We are asking what probabilities

you should assign – what your credences, represented by q(w), should be – after

hearing a meow.

Many philosophers will be familiar with one famous method for solving this

problem: Bayesian conditionalization. This method can be stated as a principle

saying how an agent using a model p(w,x) ought to choose their beliefs q(w) upon

observing data x:
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BAYESIAN PRINCIPLE: q(w)←− p(w|x)

The left-pointing arrow ←− means, ‘set the value of the thing on the left to the

value of the thing on the right.’ So this statement says, ‘set the value of q(w)

equal to the value of p(w|x)’. We have called this rule BAYESIAN PRINCIPLE

because p(w|x), which is called the posterior, is calculated via Bayes’ theorem:

p(w|x) = p(x|w)p(w)
p(x)

(1)

Since the numerator is equal to the joint probability, and the denominator is its

marginal distribution, we can rewrite (1) in terms of what the agent already knows:

p(w|x) = p(x|w)p(w)
p(x)

=
p(w,x)

∑w p(w,x)

Following BAYESIAN PRINCIPLE, the solution to the cat example is as follows:
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q(kitchen) = p(kitchen|meowing)

=
p(kitchen,meowing)
∑w p(w,meowing)

=
4

10
4

10 +
1
10

=
4
5

q(bedroom) = p(bedroom|meowing)

=
p(bedroom,meowing)

∑w p(w,meowing)

=
1

10
4

10 +
1
10

=
1
5

Upon hearing a meow, according to BAYESIAN PRINCIPLE, you should have 80%

credence that the cat is in the kitchen and 20% credence that it is in the bedroom.

It is worth noting that following BAYESIAN PRINCIPLE is much simpler than

the Bayesian statistical practices performed by many scientists. Usually the sci-

entist aims to improve the accuracy of a generative model of some real-world

phenomenon, which would mean improving the accuracy of p(w,x).1 This learn-

ing task is relatively difficult. It should be distinguished from the simpler task of

estimating w from an observation of x, which is called inference. In the present

example we are assuming for simplicity that the agent’s generative model is al-

1In this case the scientist is employing a generative model as a scientific model.
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ready accurate. We return to this point in section 2.5.

The formalism at the heart of active inference begins with the observation

that it is sometimes impossible to follow BAYESIAN PRINCIPLE. In many of the

situations in which statisticians would like to find p(w|x), the sum ∑w p(w,x) is

computationally intractable so p(x) cannot be calculated. This usually happens

when the state space is continuous rather than discrete, so the sum ∑ becomes an

integral
∫

over an infinite number of points.

In these cases, what is needed instead is a way to choose q(w) so as to make

it close to p(w|x). Even if you cannot formulate the true posterior, you will end

up with a distribution that is optimal given the computational resources at your

disposal.

When this problem is formulated by statisticians, we usually begin with a

family of possible distributions q, and search for the member of that family which

lies as close to p(w|x) as possible. We can do this indirectly by using a measure of

inaccuracy. Active inference employs a measure of inaccuracy called variational

free energy, labelled F . Because it is a measure of inaccuracy, smaller values are

better than larger values. Given a family of candidate distributions q, the best is

the one that produces the lowest value of F . Although the lowest possible value

of F is given by the true posterior p(w|x), that might not be one of the available

distributions q. In that case, the optimal q is the member of the family that yields

the lowest value of F from among the available members.

In short, according to active inference, the goal of inference is to adopt cre-

dences q that minimize variational free energy F . We will now build up to the

9



definition of F by giving an intuitive overview of its component parts.

Variational free energy captures two sources of inaccuracy in belief and dic-

tates how they ought to be traded off against one another. The two sources of in-

accuracy are overfitting and failing to explain the data. We will introduce them

in turn before displaying the full definition of F , then showing how it can provide

the same solution to the cat problem as the simpler BAYESIAN PRINCIPLE.

Overfitting. According to lexico.com (2021), overfitting is “The production of

an analysis which corresponds too closely or exactly to a particular set of data, and

may therefore fail to fit additional data or predict future observations reliably.” In

the cat example, the prior p(w) implied by the generative model captures general

statistics about the cat’s location,2 while q(w) is your ‘analysis’; that is, your

belief about its current location. You overfit when you choose a distribution q(w)

that explains the current data very well, but fails to account for the wider range of

statistical possibilities encapsulated by p(w). The cost of overfitting can therefore

be measured by checking how far q(w) diverges from p(w). The first term of F is

a measure of this kind:

∑
w

q(w) log
q(w)
p(w)

(2)

This term, which is also called relative entropy or Kullback-Leibler divergence,

2Again, for simplicity we are assuming your generative model accurately captures the ‘true’
statistical facts. Realistically, the prior and the generative model it is derived from can only be
informed by the samples you have managed to take. If there is a true, objective distribution, this
may differ from the generative model. See section 2.5 for more.
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measures how far a distribution q(w) differs from a distribution p(w). When q

and p are identical, they coincide for every value of the sum. In this case the

logarithm is always zero (because log a
a = 0) so the total value of the sum is zero.

As q and p get more and more different, the total value of the term increases. To

avoid overfitting, q(w) should be close to p(w).3

Failing to explain the data. Mathematically, ‘explaining the data’ means as-

signing high probability to events w that make the probability of x high. The

penalty for failing to explain data is captured by the second term of F :

∑
w

q(w) log
1

p(x|w)
(3)

Higher values of p(x|w) should be matched with high values of q(w) to keep this

term low.

Variational free energy F is the sum of the penalties for overfitting and failing

to explain the data:

F(p,q,x) = ∑
w

q(w) log
q(w)
p(w)︸ ︷︷ ︸

Penalty for overfitting

+∑
w

q(w) log
1

p(x|w)︸ ︷︷ ︸
Penalty for failing
to explain the data

(4)

3Note that the base of the logarithm in equation (2) is not important for our exposition. Chang-
ing the base changes the units in which the result is given, from (say) bits (when the base is 2) to
nats (when the base is Euler’s number e, so the logarithm is the natural logarithm ln). Beyond de-
scribing F as a measure of inaccuracy, however, we do not have space to relate its interpretation to
other quantities associated with those terms. Here we leave the base unspecified; in the solution to
the cat problem below we chose e which entails that F and its component penalties are measured
in nats.
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Suppose you happen to choose beliefs q(w) that are identical to p(w). Then the

first term is zero, but the second term may be inordinately high. You have avoided

overfitting at the expense of failing to explain the data. On the other hand, suppose

you happen to choose q(w) such that its high values correspond to high values of

p(x|w). Then the second term remains low, but the first term may be high as a

result. Your beliefs explain the data well at the expense of overfitting. The optimal

value of F occurs when q(w) lies between these two extremes.4 In a moment we

will see how this works in the solution to the cat example. But first we should

address a practical issue with equation (4).

We set up the inference problem by saying that the agent knows the statistics

p(w,x), but might not have access to the marginal distribution p(x). They were

prohibited from following BAYESIAN PRINCIPLE for this reason. However, we

did not address whether the agent has access to the prior p(w) or the likelihood

p(x|w). Since F includes both those terms, one would expect the agent needs

them in order to use F to guide inference. As it turns out, the agent does not need

access to the prior or the likelihood, because (4) simplifies to:

F(p,q,x) = ∑
w

q(w) log
q(w)

p(w,x)
(5)

Given our assumptions so far, the agent has access to all three inputs to F in

4In the active inference literature, the penalty for overfitting is often labelled ‘complexity’. The
penalty for failing to explain the data is usually presented as a reward for explaining the data well;
it is therefore introduced as the negation of the term we use here, and is called ‘accuracy’. Con-
sequently, variational free energy is defined as the difference between complexity and accuracy.
The goal of inference is described as minimizing complexity while maximizing accuracy. Our
presentation is mathematically equivalent.
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equation (5):

• p: A joint distribution over w and x. The agent’s generative model and, in

this simple example, also the true general statistical connection between w

and x.

• q: A distribution over w. The agent’s credences about the unobservable

state, in light of observing a specific piece of data x.

• x: A value of a random variable. The specific piece of data the agent has

just observed.

The inference problem is posed in the following way: given p and x, what should

q be? Considering F as a measure of the inaccuracy of belief, a new principle

suggests itself:

FREE ENERGY PRINCIPLE (INFERENCE): q(w)←− argmin
q

F

Here argmin
q

means ‘choose the distribution q that makes the following term as

small as possible’.

Notice that the form of FREE ENERGY PRINCIPLE (INFERENCE) is the same

as that of BAYESIAN PRINCIPLE. In both cases you are told to perform a calcu-

lation and set q(w) equal to the resulting value. The difference is that BAYESIAN

PRINCIPLE counsels a direct calculation via Bayes’ theorem. In contrast, FREE

ENERGY PRINCIPLE (INFERENCE) counsels what might be called an indirect cal-

culation. You must assess candidate distributions q in order to find the one that
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produces the lowest value of F . Happily, in practice this can be done by trial-

and-improvement rather than trial-and-error. Various algorithms for finding q are

available depending on the details of the generative model (MacKay, 2003, §33).

One of the developments that prefigured active inference was the implementation

of such an algorithm in a neural network (Friston, 2005).

In our cat example, p was given by the table of statistics of cat locations and

noises, and we assumed the observer heard the cat meowing (x = meow). To

solve the cat problem using FREE ENERGY PRINCIPLE (INFERENCE) we could

use one of the aforementioned algorithms, or simply test lots of different values

of q(w) to see which one produces the lowest value of F in combination with

these values of p and x. Fortunately, the example is so simple that we can draw

a graph of F against q and look for the smallest value (figure 2). The minimum

point is at q(kitchen) = 4
5 , implying that q(bedroom) = 1

5 . This solution agrees

with that given by BAYESIAN PRINCIPLE. It is important to note, however, that

the situations in which variational inference is most useful are those in which the

graph in figure 2 cannot be drawn. For illustrative purposes, we have here made

use of information that is usually unknown to the agent. Instead, the optimal q

would be found using an algorithm of the kind described above.
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Figure 2: Variational free energy F(p,q,x) as a function of the belief distribu-

tion q(w) when x = meow. The penalty for overfitting takes its minimum value

when q(kitchen) = 0.6 = p(kitchen). That is because choosing a posterior that is

identical to the prior is the extreme opposite of overfitting. The penalty for fail-

ing to explain the data takes its minimum value when probability 1 is assigned

to the cat being in the kitchen. That is because the kitchen is the best explanation

for the cat’s meowing. Variational free energy F takes its minimum value at 0.8

(solid black circle) between the minima of its two component costs. FREE EN-

ERGY PRINCIPLE (INFERENCE) therefore counsels that q(kitchen) = 0.8 = 4
5 , in

agreement with the solution given by BAYESIAN PRINCIPLE. The code to gener-

ate this graph can be found at https://github.com/stephenfmann/fep.
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2.3 A simple model of action

Now suppose you can perform an action, z, that will place the cat in one of the two

rooms. By changing the hidden state w you can indirectly change future values of

x (figure 3).

Figure 3: The basic model of action. An agent can produce an act, z, in order to
bring about states w that in turn produce outcomes x. Active inference employs a
controversial dual interpretation of p(w) and p(x) as probability distributions and
preference distributions over hidden states and sensory states respectively.

While the previous section dealt with an inference rule – how to choose q(w)

– this section deals with a decision rule – how to choose z. Traditionally, decision

rules stem from measures of preference, which we have not yet introduced. One

of the potentially confusing aspects of active inference is that it treats the statistical

model p as a measure of both probabilities and preferences at the same time.

Later we will discuss possible justifications of this move; for now we assume it is

interpretatively valid, in order to give as smooth an exposition as possible.

Recall that FREE ENERGY PRINCIPLE (INFERENCE) counsels choosing be-

liefs by minimising a function that measures the cost of inaccuracy. That func-

tion, F , is a sum of two kinds of penalty. Action selection is governed in the same

way, but with a slightly different cost function called expected free energy and
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labelled G. The definition of G is closely related to that of F . The interpretation

of the two penalty terms changes as the formalism is updated to reflect the fact

we are now making measurements over expected future states. Since future states

have yet to be observed, the agent must average over them to obtain expected val-

ues. The penalties are associated with failing to satisfy preferences and failing

to minimize future surprise.

Failing to satisfy preferences. q(w|z) is the assumed distribution over hidden

states given our action. If we place the cat in the bedroom, where do we expect it

to be? p(w) is now a preference distribution over hidden states. The first penalty

term in G is a measure of how far the expected distribution of hidden states di-

verges from the preference distribution:

∑
w

q(w|z) log
q(w|z)
p(w)

(6)

Compare equation (2). Again this is relative entropy, a standard way to measure

the divergence of one distribution from another.

Not only is it unusual to treat p as a preference distribution, it is unusual to

treat the goal of decision-making to produce a distribution that matches that dis-

tribution, rather than maximising expected utility. So perhaps it is best to keep in

mind that ‘preference’ in this sense might mean something different from ‘utility’

in the traditional sense.
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Failing to minimize future surprise. One of the tenets of active inference is

that agents should act to ensure that future data are not too surprising. The second

penalty term of G therefore measures how surprising future data would be, on

average, if you performed z:

∑
w

q(w|z)∑
x

p(x|w) log
1

p(x|w)
(7)

Compare equation (3). In addition to conditionalizing on z, this term also changes

from calculating the logarithm directly to calculating its expectation over x. That

is because x is here a future sensory state: we do not yet know what it will be,

so we must employ its expected value. As a result, the inner term that begins

with ∑x is the entropy of X – the expected surprise of your future observations –

given that a certain hidden state w occurs.5 You want this inner term to be low.

To do this, you should aim to bring about hidden states that lead to predictable

observations. That means you should perform acts that give a high value to q(w|z)

when w produces a low value for that inner term.

Overall, expected free energy is a sum of these penalties:

G(p,q,z) = ∑
w

q(w|z) log
q(w|z)
p(w)︸ ︷︷ ︸

Penalty for failing to
satisfy your preferences

+∑
w

q(w|z)∑
x

p(x|w) log
1

p(x|w)︸ ︷︷ ︸
Penalty for failing to minimize
expected surprise of future data

(8)

5Although ∑x p(x|w) log 1
p(x|w) is an entropy term composed from a conditional probability, it

is not synonymous with conditional entropy, which has a different definition.
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The third input to G is z rather than x. As mentioned above, this is because we

are calculating the expected value over possible future sensory states, rather than

inferring on the basis of a sensory state that has just occurred.

As with F , the measure G suggests a principle:6

FREE ENERGY PRINCIPLE (ACTION): z←− argmin
z

G

In the same sense that FREE ENERGY PRINCIPLE (INFERENCE) approximates

Bayesian inference, it has been suggested that minimizing expected free energy

can be read as an approximation of optimal Bayesian design and Bayesian deci-

sion theory.7

It is worth restating just how unusual it is to interpret p as a measure of both

probabilities and preferences. There is nothing wrong with treating a distribution

as a measure of preferences: distributions don’t demand to be interpreted as proba-

bilities, after all. But what is unorthodox, and in need of justification, is giving the

very same mathematical term two different interpretations within the same equa-

tion. One thing worth noting is that in communication theory, p(x) is a probability

and log 1
p(x) is a measure of cost (specifically: the number of binary symbols you

are required to expend in order to encode an outcome x, whose probability is p(x),

under the assumption that your code is optimised for the distribution p). These are

the components of entropy, H(X) = ∑x p(x) log 1
p(x) , which can be interpreted as

6Some treatments suggest variations on this principle e.g. Smith et al. (2021, Table 2, pp. 50-
58). Here we have chosen the simplest possible form of action selection in order to highlight the
concepts involved.

7Claims about these links have been impressed upon us by proponents of active inference, but
at time of writing we have not investigated them in the kind of detail required to endorse or reject
them. For textual resources relating to these claims see for example Da Costa et al. (2020, §7).
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the uncertainty about the outcome of event X and as the optimal expected cost of

encoding the outcome. We are not aware of proponents of active inference taking

this interpretive line, but it appears to be a viable option.

Finally, let us present a solution to the cat example. For the problem to have

a determinate solution we need a conditional distribution q(w|z). Let’s suppose

that if we put the cat in the kitchen it usually stays there, but if we put it in the

bedroom it tends to wander:

q(kitchen|put cat in kitchen) =
9

10

q(bedroom|put cat in kitchen) =
1

10

q(bedroom|put cat in bedroom) =
5

10

q(kitchen|put cat in bedroom) =
5

10

We obtain two different values of G, corresponding to the two different possible

acts z (figure 4). The smallest expected free energy results from putting the cat

in the bedroom, so that is what you ought to do according to FREE ENERGY

PRINCIPLE (ACTION).

The duality between probability and preference can be made a little more intu-

itive with another example. Suppose you take your cat’s temperature three times

a day for several weeks. If your cat is healthy, you will end up with a frequency

distribution whose points fall between 38.1◦C and 39.2◦C. Now suppose you are
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Figure 4: Expected free energy G(p,q,z) when putting the cat in the kitchen
or bedroom. The value of G is lowest when z = bedroom, so FREE ENERGY

PRINCIPLE (ACTION) dictates that that is where you should put the cat. The sur-
prise penalty for both acts is about the same, because in either case you can-
not be very certain about whether the cat will be meowing or purring at the
next time step. However, the preference penalty for putting the cat in the bed-
room is relatively small, because q(w|put cat in bedroom) =

( 5
10 ,

5
10

)
is relatively

close to the distribution p(w) =
( 6

10 ,
4
10

)
. Intuitively: if you want the cat to

spend roughly equal time in both places, you shouldn’t put it in the kitchen,
because it will stay there. The code to generate this graph can be found at
https://github.com/stephenfmann/fep.
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asked what you would prefer your cat’s temperature to be in future. Assuming

you want your cat to continue being healthy, you would prefer that its temperature

fall within the range defined by this distribution.

There are at least two reasons why this interpretation should be distinguished

from utilities as decision theory traditionally understands them. First, you should

not simply prefer that your cat always be the temperature that happens to occur

most often according to the frequency distribution. Healthy functioning entails

some fluctuation of temperatures throughout the day. The goal is not to maximise

the value of this distribution, but to match future event frequencies to it. Second,

preferences are just one consideration that must be taken into account when choos-

ing actions. The preference penalty must be balanced against the surprise penalty.

The tension between exploiting your circumstances to achieve your goals and ex-

ploring your circumstances to gain a better understanding of how acts produce

outcomes enables some of the more complex applications of active inference.

One of the ways proponents of the framework turn this unusual interpretation

to their advantage is by casting action as a form of inference:

The mechanism underlying [minimizing expected free energy] is for-

mally symmetric to perceptual inference, i.e., rather than inferring the

cause of sensory data an organism must infer actions that best make

sensory data accord with an internal representation of the environ-

ment.

Buckley et al. (2017), emphasis added
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Hence the name ‘active inference’. The treatment of action as inference in dis-

guise helps avoid perceived problems with purely utility-based theories of decision-

making (Schwartenbeck et al., 2015). By starting with an inference problem in the

form of expected free energy minimization, preferences emerge as the first term

of equation (8). But attempting to achieve these preferences must be balanced

against the second term, which explicitly counsels minimizing future surprise.

Proponents take this to be both more general and more principled than traditional

behavioural theories, which employ utility functions alone (DeDeo, 2019).

Further aspects of the duality between action and perception are brought to

the fore by Friston’s more recondite work on selection dynamics. We now turn to

these deeper themes.

2.4 A simple model of selection

In our model x and z are the inputs and outputs of the agent. The set {x,z} is

called the agent’s Markov blanket. This term is derived from Judea Pearl’s work

on statistical inference using Bayesian networks (Pearl, 1988). Roughly, in Pearl’s

sense the ‘Markov blanket’ of a focal node is the set of nodes that provide total

information about the focal node. However, Markov blankets have taken on a spe-

cial usage within active inference (Bruineberg et al., 2021). In the sense required

here, a Markov blanket can be understood as the set of nodes that ‘screen off’ the

agent from nodes considered external to it. Using the concept of a Markov blan-

ket, Friston has developed an account of selection based on a fundamental claim

about free energy. He claims that Markov blanket systems that persist over time
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within certain kinds of (mathematically defined) environments will come to act in

a manner that can be interpreted as minimizing F via inference and minimizing G

via action.

Another toy model will help illustrate. Consider an agent whose surface tem-

perature x can safely lie between -4 and 4 units. If it drops to -5 or increases to 5, it

dies. The external state w controls whether the temperature increases or decreases

by 1 unit at the next timestep. The agent’s preference distribution over available

temperatures might look something like this:

x

−5 −4 −3 −2 −1 0 1 2 3 4 5

w
+1

−1

 0 0.01 0.02 0.06 0.1 0.12 0.1 0.06 0.02 0.01 0

0 0.01 0.02 0.06 0.1 0.12 0.1 0.06 0.02 0.01 0


(9)

Notice that the value of w does not affect the agent’s preferences: all the agent

directly cares about is its surface temperature, denoted by x. That is why the two

rows are identical.

Suppose the agent can act to affect the external state. We will say it can try to

set the value to either -1 or +1, and in both cases it is successful 95% of the time:
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w ∈ {−1,+1}

z ∈ {−1,+1}

z =−1 =⇒ p(w|z) = (0.95, 0.05)

z =+1 =⇒ p(w|z) = (0.05, 0.95)

Given this set-up and the model in figure 3 we have an agent who will survive if

and only if it keeps x within a certain bound. When the temperature is high, it

would be best for the agent to act with z = −1. When the temperature is low, it

would be best for the agent to act with z =+1.

To make the appropriate causal link between the current surface temperature

and the act, the agent needs to employ an inner state y. It can initiate two strategies:

p(y|x) for inference, and p(z|y) for action. Let us allow the inner state to also take

the values {−1, +1}. Then the question that active inference attempts to answer

is, what can we say about the strategies of successful agents?

We will simulate the problem using two agents: a smart agent who tries to

increase low temperatures and decrease high temperatures, and an oblivious agent

who acts randomly. The smart agent sets y = +1 if x <= 0, and y = −1 other-

wise. The random agent chooses y by flipping a coin. Both agents set the act to

be identical to the inner state, so in this simple case there is no difference between

inference and action. In order to calculate variational free energy, we would usu-

ally need to make a choice about how the inner state y corresponds to a probability
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distribution over the external state q(w). However, because p(w,x) has identical

rows, the value of free energy is the same no matter what q is chosen. The only

thing that affects F is therefore x.

Results from a single run are shown in figures 5 and 6. The smart agent keeps

values of x mostly between -1 and 1, which keeps F slightly above 2 nats. The

random agent quickly spirals away from the optimal sensory states, and its F

increases to values much higher than those for the smart agent. After 42 timesteps

the random agent dies: its value for x reached 5, and since p(w,5) = 0 for both

values of w, its free energy takes an infinite value.

Figure 5: Variational free energy over time for an agent that controls
its external state in a survivable manner. The agent’s control over its ex-
ternal state is 95% accurate; occasionally its grasp slips and free energy in-
creases beyond the average. The code to generate this figure can be found at
https://github.com/stephenfmann/fep.
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Figure 6: Variational free energy over time for an agent that acts randomly.
After 42 timesteps the agent dies. The code to generate this figure can be found at
https://github.com/stephenfmann/fep.
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The correspondence between high values of F and life-threatening states leads

to a third form of the free energy principle:

FREE ENERGY PRINCIPLE (SELECTION): any system that survives

long enough will act so as to appear to be minimizing F .

This is not a normative principle – not a suggestion to agents regarding how they

should perform inference – but a means of describing how agents behave. In

recent work Friston gives a deflationary interpretation on which agents do not in

fact minimize anything, but perform acts which can be interpreted as minimizing

F . That is the reason for the emphasized phrase ‘so as to appear to be minimizing

F’. Despite this deflationary approach, there is a link between this and the earlier

principle. Agents subject to FREE ENERGY PRINCIPLE (INFERENCE) ought to

minimize F , so if this ‘ought’ is tied to their survival, then the normative principle

has the same underlying justification as the descriptive principle.

FREE ENERGY PRINCIPLE (SELECTION) interprets p as a kind of fitness func-

tion in the form of a probability distribution over sensory states. When we mea-

sured the temperature of our cat, we obtained a frequency distribution that acted

both as a description of what happened when the cat was previously healthy and

as a prescription of what temperatures the cat should have if we want it to re-

main healthy. FREE ENERGY PRINCIPLE (SELECTION) expands the scope of this

intuition, from cats to every biological system, and from temperature to every

measurable property. Supposing our smart and oblivious agents stood at the end

of a long line of evolved organisms, the probability distribution given by the ta-
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ble in (9) could be constructed from the frequencies with which those ancestors

found themselves in the relevant states. What is important here is that only direct

ancestors count for tallying the frequencies. Cousins of direct ancestors may have

found themselves in the state x = 5, but they immediately died. The event does

not count towards the tally because it is not survivable. As a result, necessarily

p(w,x) = 0 when x is an unsurvivable state.

The principle seems to imply that parts of the system (or the system-environment

pairing) will come to correspond to the component terms of F . The way those

parts change over time will correspond to F getting smaller. However, in this toy

case, the inner state y cannot obviously be interpreted as corresponding to a dis-

tribution q because q does not affect the value of F . What is doing the work in

this example is the definition of p(w,x): because states that are not survivable are

assigned probability zero, their variational free energy is infinitely large. In this

case, FREE ENERGY PRINCIPLE (SELECTION) captures the rather banal point that

systems can only ever occupy survivable states. If you are likely to be in states

your successful ancestors were in, then you are likely to be successful. Variational

free energy contains a reciprocal of p(w,x); consequently, high values of p(w,x)

produce low values of F . Indeed, any function that contains this reciprocal (or its

logarithm) as a component will be infinite when the probability is zero.

What, then, is the rationale for choosing variational free energy as the function

we should interpret organisms as minimizing?

Ultimately, organisms are said to be acting so as to minimize the surprisal of x,

defined as log 1
p(x) . But there are said to be limitations on the ability to minimize

29



surprisal ‘directly’, meaning that variational free energy must be used as a proxy.

It is easy to show that variational free energy is an upper bound on surprisal.8 But

any number of functions are upper bounds on surprise. In the literature, differ-

ent and not obviously compatible reasons are given for the move from minimiz-

ing surprise to minimizing variational free energy. From a purely mathematical

perspective, we can outline the set of systems for which surprisal is difficult to

evaluate (MacKay, 2003, pp. 358 ff.): they are high-dimensional. So proponents

of FREE ENERGY PRINCIPLE (SELECTION) seem committed to the claim that the

systems it refers to are high-dimensional systems. But the justifications given in

the literature do not obviously line up with this. As part of justifying the hypothe-

sis that the visual system minimizes variational free energy, Friston (2002, p. 118)

asserts that “nonlinear mixing may not be invertible [...]. For example, no amount

of unmixing can discern the parts of an object that are occluded by another.” On

the other hand, Hohwy gives an informal account of what a creature would have

to ‘know’ in order to perform Bayesian inference:

There is no way the creature can assess directly whether some par-

ticular state is surprising or not, to do that it would have to do the

impossible task of averaging over an infinite number of copies of it-

self (under all possible hypotheses that could be entertained by the

model) to see whether that is a state it is expected to be in or not.

8Proof: rearranging (4) gives F = ∑w q(w) log q(w)
p(w|x) + log 1

p(x) . The first term is a relative
entropy, which by Jensen’s inequality is always greater than or equal to zero (Cover and Thomas,
2006, p. 28). Therefore F ≥ log 1

p(x) .
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Hohwy (2013, p. 52)

Hohwy gives a very different rationale from Friston. Neither obviously corre-

sponds to the purely mathematical justification of avoiding an intractable calcula-

tion over many dimensions. Hohwy’s account seems to describe something along

those lines, but that does not entail that the only viable solution is variational in-

ference. Nor is it clear that real organisms are faced with the problem Hohwy

describes.

In each of the three examples discussed in this section, there has been a distinct

role for the distribution p, and thus a distinct interpretation of each model:

1. In our first model, p was a generative model employed by an agent. It was

therefore interpreted as representing probabilities.

2. In our second model, in addition to representing probabilities, p measured

the desirability of certain future states over others. It was therefore inter-

preted as representing preferences.

3. In our third model, p tallied the historical frequencies of a set of (hypothet-

ical) ancestors. It was therefore interpreted as representing the fitness of

different states.9

Supporters of the framework often point to the third role to explain how p can

simultaneously fulfil the first two. A historical tally of successful states denotes
9Sprevak (2020, §6.3) convincingly argues that Friston invokes two distinct senses of free

energy, which here correspond roughly to roles 1 and 3. Sprevak cites Colombo and Wright
(2018) as drawing a similar distinction. Williams (2021) distinguishes descriptive and explanatory
versions of the free energy principle, seemingly tracking the same issue.
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probabilities (i.e. ancestral frequencies) and preferences (i.e. future expected fit-

ness). However, it does not immediately follow that the sense in which successful

organisms appear to minimize F is relevantly similar to the sense in which (for

example) predictive processing systems actually minimize F (see section 3). Or-

ganisms are said to “entail a generative model” (Ramstead et al., 2021, p. 111)

as a consequence of existing, whereas predictive processing systems are said to

employ a generative model that gets updated through prediction error minimiza-

tion. It is not yet clear what warrants treating these two kinds of system in the

same way. The organism that entails a generative model, and whose actions entail

minimizing free energy with respect to that model, is like the ball bearing that

entails a measure of gravitational potential energy, and whose ‘actions’ – falling

to the lowest point in its local region – entail minimizing gravitational potential

energy. From the fact that a ball bearing can be treated as though it were attempt-

ing to minimize gravitational potential energy, it does not follow that a unified

framework can be developed encompassing the ball and (for example) a species

of animal that always seeks the lowest point in its local area in order to evade

predators. Entities that employ representations to act successfully are distinct in

an important way from entities that can be treated as if they employ representa-

tions as a consequence of the effects of physical laws.

In sum, there is a disconnect between the two major domains in which the

free energy principle is usually said to apply. The disconnect must be addressed if

philosophers – even those with mathematical inclinations – are to properly evalu-

ate the active inference framework.
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2.5 Extensions to the models: more things to learn, more ways

to act

If you open a random journal article in the active inference tradition, its scientific

models – comprising agents who employ generative models to solve problems in

their environments – will likely be much more complex than ours. Over the last

decade much effort has been devoted to extending and adapting these basic models

in order to fit them to empirical data. Active inference models can be augmented

seemingly indefinitely. Some examples follow.

We assumed that p(w,x) denoted both the agent’s generative model and the

true statistical connection between unobserved state and observable data. Real-

istically, agents do not have perfect knowledge of these statistics. There are two

ways to generalize the situation in this regard. First, agents can learn to improve

their estimates of p(w). Second, agents can learn the causal relationship p(x|w).

Since p(w,x) = p(w)p(x|w), this offers two distinct routes to learning a more ac-

curate statistical model. Some of Friston’s early work is geared towards showing

that these statistics can be learned by employing algorithms that minimize varia-

tional free energy through methods known as empirical Bayes (Friston, 2005).

We also assumed that there was a single cause, w, of sensory data. Realisti-

cally, the external world is a panoply of criss-crossing causal paths. An adequate

generative model would contain terms representing at least some of the interac-

tions between unobservable states. Active inference captures these features by

treating agents as employing hierarchical models of their external worlds. The
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first level of the hierarchy x is the sensory data, the second level w1 represents

whatever causes sensory data, the third level w2 represents whatever causes w1,

and so on.

The simplest models assume that the agent is correct about all these features.

The more features the agent can be incorrect about, the more features it is able

to learn, and the more complex the generative model and method of updating. In

principle, agents could be uncertain about any aspect of their representation of the

world, so every model component can be subject to updating in light of evidence.

Furthermore, in principle, the hierarchy of external causes is not restricted to a

certain number of levels. Scientific models of agents performing active inference

can therefore be extended indefinitely. This might be considered a problem when

it comes to justifying the view: if the active inference framework can be extended

to fit any empirical phenomenon, then there needs to be some principled way to

assess the framework, other than by fitting it to data. More broadly speaking, the

worry is that we cannot empirically confirm or dis-confirm scientific models that

can, in principle, explain all possible states of affairs.

Regarding action, instead of a single act z the framework enables decisions

about sequences of acts. Such sequences are called policies and are usually la-

belled π . Expected free energy can be calculated across an entire policy in order

to determine which sequence of acts is optimal. Our model used only a single act,

which is equivalent to a policy that is evaluated at the next time step only.

A great deal of extra complexity can be added to the story about Markov blan-

kets (Friston, 2013). The FREE ENERGY PRINCIPLE (SELECTION) is usually
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introduced with more complex mathematical terms like ergodic densities (Fris-

ton, 2013), solenoidal flows (Aguilera et al., 2021), nonequilibrium steady-state

(Ramstead et al., 2018), and so on. One issue is whether or not this complexity is

really needed to justify FREE ENERGY PRINCIPLE (SELECTION). We saw above

that a simple toy system will obey the principle by virtue of the definition of p. If

proponents are aiming at a more precise claim, then perhaps the extra complexity

is necessary. Some work along those lines is already tempering enthusiasm about

the generality of the principle (Aguilera et al., 2021); on the other hand, propo-

nents are working hard to deliver pure mathematical results that can be evaluated

in isolation from biological hypotheses (Da Costa et al., 2021; Friston, 2019; Fris-

ton and Ao, 2012; Friston et al., 2014). Active inference is a work in progress and

should be evaluated as such.

3 A brief history of the free energy principle

The free energy principle is a modern incarnation of ideas that have been raised

sporadically over at least the last five decades. It combines traditions from physics,

biology, neuroscience and machine learning.

3.1 Variational free energy from physics to predictive process-

ing

Although the term ‘variational free energy’ used in active inference has a purely

statistical meaning, it first appeared in physics, where it has a sense connected to
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the more familiar physical meaning of energy. The term is used to help determine

the states of certain physical systems (MacKay, 2003, §33.1), (MacKay, 1995, p.

191 n. 1). In statistical mechanics, many systems have states whose probabilities

are functions of their energies. For example, a state with very high energy might

have a low probability of obtaining, and vice versa. However, the functions p that

describe exactly how probability depends on energy can be very complex. Cal-

culating the statistical properties of such systems is computationally intractable

(MacKay, 2003, p. 423). Adequate approximations can be found by defining

simpler probability functions q and then minimizing variational free energy. The

name arises from the fact that F is related to an existing term called “free energy”

(MacKay, 2003, p. 423) – which explicitly denotes the more familiar physical

sense of ‘energy’.

Variational methods were first deployed in physics, most famously by Feyn-

man (1972).10 By the 1980s it had become clear that techniques from statistical

physics could be adopted in machine learning (Fahlman et al., 1983; Hopfield,

1982) (Hofstadter, 1985, pp. 654–9). By at least 1989 Hinton and colleagues

were referring to free energy in a purely statistical sense (Dayan et al., 1995;

Hinton, 1989; Hinton and van Camp, 1993; Neal and Hinton, 1998). The term

‘variational free energy’ came to mean ‘the function that must be minimized in

order to improve your approximation of a system’s statistical properties’, even

though physical energy was no longer the feature that determined those statistical

10We have unfortunately found it difficult to identify the terms in Feynman (1972) that corre-
spond to the terms subsequently used in machine learning and active inference. Nonetheless, it is
common to see Feynman’s book cited in this connection.
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properties. The systems in question were no longer ‘physical’ systems: they were

sets of inputs to an automated inference engine whose job was to reconstruct the

causes of those inputs (MacKay, 1995). Some of the methods developed in this

body of work became known as ‘variational Bayesian inference’ or just ‘varia-

tional Bayes’, because of the relationship with Bayes’ rule discussed in section 2.

These techniques continue to be used, and are now a standard method in statistics

and machine learning (Bishop, 2006, §10.1). Variational free energy is sometimes

called an ‘objective function’, which is the general name for a term that must be

minimized (or maximized) to solve an inference task.

Because forerunners of these methods were implemented in neural network

models, the question of biological plausibility was often raised (Hinton, 1989,

p. 143) (Dayan et al., 1995, pp. 899–900). But the most successful neural mod-

els were perhaps those spawned by the predictive processing tradition. Predictive

processing was inspired by predictive coding, a technique in communications en-

gineering (Elias, 1955). In the 1980s and 1990s neuroscientists began investigat-

ing its plausibility as a model of visual perception (Kawato et al., 1993; Rao and

Ballard, 1999; Srinivasan et al., 1982). In the early 2000s, Friston (2002, p. 131)

claimed that a predictive processing system could be constructed that performs

variational inference (see also Friston, 2003, pp. 1339–40).

Very roughly, we can understand the relationship between these aspects in

terms of Marr’s hierarchy, which is usually said to have three levels: computa-

tional, algorithmic, and implementational (Marr, 1982). In Friston’s scientific

model of predictive processing, the computation is variational inference. The al-
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gorithm is the expectation-maximisation algorithm, a two-step process whereby

two different mathematical operations are performed iteratively. Neal and Hinton

(1998) had already shown that a version of that algorithm minimizes variational

free energy. Friston claimed the algorithm could be implemented by the activities

of (and structural relations between) individual neurons (for a simplified example

see Bogacz, 2017, §§2-3).

As part of this work, Friston (2003, 2005) began to make strong claims about

the generality of his scientific model. He also cited empirical evidence that sup-

posedly matched model behaviour. This generality, and concordance with data,

led him to develop the free energy principle.

3.2 Free energy minimization as a general principle

Most proponents of predictive processing assert relatively modest claims. Friston

began similarly, claiming we have evidence to believe the visual cortex imple-

ments a hierarchical generative model with variational free energy as the objective

function (Friston, 2003). By 2006, however, he extrapolated from this position to

the much stronger claim that minimizing free energy is almost everything the brain

does (Friston et al., 2006). Not only inferential processes, but also action, were

said to be geared towards minimizing free energy. He reached these conclusions

seemingly by extending earlier predictive processing models and identifying em-

pirical phenomena they faithfully mimic.

By 2012, Friston was asserting that minimizing free energy is almost every-

thing every biological system does (Friston, 2012, 2013) (earlier examples of
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claims of this kind appear in Friston and Stephan (2007)). Rather than being

based on extensions to existing scientific models, this generalized claim is based

rather on considerations of selection (section 2.4). It is worth emphasizing that

the proposed justification for the biological version of the free energy principle

is different from the justification of the original, brain-related claims. Originally,

the principle was a claim about the generality of scientific models of predictive

processing. Gershman (2019) has noted that the free energy principle inherits

some justification from the explanatory success of those models, which have been

discussed extensively in the literature on computational cognitive neuroscience

(Huang et al., 2019; Rao and Ballard, 1999; Wiese and Metzinger, 2017), theoret-

ical neuroscience (Abbott and Dayan, 2005, §10.2) and philosophy (Cao, 2020;

Clark, 2013). In contrast, the biological version of the claim relies on a priori

justification via mathematical proofs of statements like FREE ENERGY PRINCI-

PLE (SELECTION). There is no pre-existing scientific modelling practice whose

success extends to active inference here. Proponents must find empirical support

themselves.

The past decade has seen applications and elaborations of active inference for

biology. Calvo and Friston (2017) apply the framework to plant activity. Tschantz

et al. (2020) simulate bacterial chemotaxis, and give an active inference interpre-

tation. Three contributions to the present Topical Collection discuss E. Coli in an

active inference context: Corcoran et al. (2020); Kirchhoff and van Es (2021);

and Kiverstein and Sims (2021). Baltieri and Buckley (2019) argue that a cer-

tain kind of control process called Proportional-Integral-Derivative (PID) control,
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which has been used to explain the behaviour of bacteria and amoebae, can be un-

derstood in terms of active inference. The question for philosophers is what theo-

retical or explanatory virtues result from applying active inference in this way. In

section 4 we discuss the dialectical structure of active inference, highlighting key

questions philosophers need to ask in order to evaluate the framework.

4 Dialectic: the free energy principle and related

claims

4.1 Mathematical, empirical, and general claims

Part of the difficulty understanding the body of work associated with the free en-

ergy principle is a lack of transparency over the dialectic. We think a great deal of

confusion can be overcome by considering three kinds of claim. First, there are

mathematical claims. These are claims about the status of theorems, features of

scientific models and statistical techniques. Some of the core mathematical fea-

tures of active inference predate the framework itself (section 3); however, Friston

and colleagues have since introduced many novel mathematical elements. Impor-

tantly, claims in this category do not need to be interpreted as statements about real

systems in order to be evaluated. Second, there are empirical claims about cogni-

tive and biological mechanisms, how brains and bodies actually work. These are

the remit of cognitive neuroscience and biology. Third, there are general claims

that typically abstract across a wide class of empirical claims. Active inference
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grew out of an increasingly generalized explanatory approach to cognition, such

that its central claims crossed over from the empirical to the general category.

When these categories are distinguished, it is easier to see the dialectical re-

lationship between their constituent claims, and to delineate specific topics for

investigation. For example, discoveries about neural network capabilities (math-

ematical) are sometimes used to justify hypotheses about neural organisation in

biological brains (empirical). Such arguments are not restricted to the free en-

ergy program, but are part of a broader disciplinary movement known as com-

putational cognitive neuroscience (Gregory Ashby and Helie, 2011). Similarly,

general claims are sometimes used to justify the relevance of empirical claims, by

providing reason to believe that all biological systems minimize free energy. And

mathematical claims support general claims when mathematical theorems and sci-

entific models are argued to be widely applicable to real biological systems.

In the remainder of this subsection we describe each category in more detail

and highlight key claims in each. In the following subsection we outline dialecti-

cal links between categories. Throughout, we use Hamilton’s rule – which will be

familiar to philosophers of biology – to illustrate the different categories and their

relationships. Hamilton’s rule can be construed as a mathematical claim when in-

terpreted as a statement as part of a mathematical model. It can also be construed

as a general claim when interpreted as a statement about conditions on selection

for genes influencing social behaviour in real populations. And the rule can guide

the verification of empirical claims about the mechanisms of social behaviour, e.g.

the genetic control of parental behaviour towards offspring.

41



4.1.1 Mathematical claims

Mathematical claims are statements about mathematical models and objects. This

category contains all of the formal statements deployed as part of modelling prac-

tices in biology and cognitive science, including mathematical claims relating to

active inference. For example, assertions about the computational abilities of neu-

ral networks belong to this category, as long as such claims do not mention the

explanatory power of neural networks with regard to brains.

To take an example better known to philosophers of biology, Hamilton’s rule

states the conditions under which genes for certain kinds of socially-oriented be-

haviour would be favoured by selection. In essence, Hamilton’s rule is a math-

ematical statement constructed as part of a model of an evolving population. It

can be evaluated – i.e. proven, and have its proof checked – without recourse to

real systems. Because of the way the mathematical model is defined, it is not nec-

essary that there be any real examples of selection for Hamilton’s rule to be true

within its mathematical context.11

For an example from active inference, the claim that a small neural network is

capable of minimizing variational free energy via encoding prediction error is ver-

ifiable by actually building such a network, as Bogacz (2017, §§2-3) shows. Re-

cent models of variational message passing constitute similar claims, with message-

passing being a distinct way to minimize variational free energy (Parr et al., 2019)

– a different implementation and algorithm, but the same computation. Similarly,

11We are here using the term ‘mathematical model’ to mean very roughly a scientific model that
need not have a real system as its target.
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it is possible to verify the claim that variational inference approximates Bayesian

inference by demonstrating that variational free energy takes its lowest value when

the true posterior is used.

Friston makes a number of claims that can be evaluated mathematically. But

the formal framework he employs is idiosyncratic, and based upon work that is

already complex. These novel claims are difficult to assess for philosophers, even

those of us with a mathematical background. The good news is that because the

mathematical claims are screened off from questions about realism and model in-

terpretation, they can be evaluated in isolation. Indeed, the mathematics of active

inference are still being developed (Da Costa et al., 2021), so it is possible that

it currently lacks a coherent, comprehensive formalism. Proponents have pointed

out to us that that is the state of many early sciences: often mathematical rigour

comes after scientific discovery and theory-building.

The term ‘free energy principle’ is sometimes used to denote a purely mathe-

matical statement (see for example Friston and Stephan, 2007, p. 434). Andrews’s

contribution to this Topical Collection endorses this usage. Their opponents are

those that critique the free energy principle under the assumption that it is truth-

apt. Andrews contends that the principle is not truth-apt, because as a set of

mathematical tools it does not by itself entail any empirical claims. For exam-

ple, Andrews claims that “when we take the existence or qualities of a model to

constitute knowledge of the natural world we make a category error and reify the

model” (Andrews, 2021, p. 14). Interestingly, Andrews downplays the relevance

of general claims – the feature of active inference usually emphasised by Friston
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and colleagues.

4.1.2 Empirical claims

Empirical claims are statements about the structure, function and operation of

real biological systems. For example, the claim that the mammalian visual system

works via prediction error feedback is an empirical claim. With regard to main-

stream biology this is probably the largest category. Most experimental science

and fieldwork is geared towards gathering evidence to establish or refute empirical

claims.

Different empirical claims can comprise specific instances of the same gen-

eral claim. For example, Bourke (2014, Table 1, p. 3) presents a diverse list of

socially-oriented behaviours across a variety of species, some of which can be

explained with respect to Hamilton’s rule. Although Hamilton’s rule does not

mention particular behaviours (nor even particular species), empirical claims can

be seen as instantiations of the more abstract rule.

Similarly, although the active inference framework does not mention specific

systems, we can ask whether its features are instantiated in particular cases. The

empirical category includes specific features of brain activity that have been ar-

gued to be better explained by appeal to minimisation of free energy. For example,

Friston and Stephan (2007, p. 429) claim that the brain uses a mean-field approx-

imation to minimize free energy. This claim is empirical because it is in princi-

ple verifiable: either the brain possesses structures corresponding to the different

components of a mean-field approximation that change according to the dynamics
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of free energy minimization, or it does not. The importance of computational cog-

nitive neuroscience is that it provides methods for assessing and verifying claims

like these.

Both Corcoran, Pezzulo and Hohwy’s and Kiverstein and Sims’s contribu-

tions to this Topical Collection make empirical claims about the nature of allosta-

sis, and both are interested in demarcating behaviour that is distinctively cognitive.

Corcoran et al. (2020) use the free energy principle to conclude that the term ‘cog-

nition’ should be reserved for organisms that engage in counterfactual inference,

and hence that allostasis is not properly cognitive. Kiverstein and Sims (2021)

disagree. On their reading of the free energy principle, what they call “allostatic

control” is a properly cognitive process. The range of organisms to which the term

‘cognition’ applies thus extends beyond those that have a nervous system. In both

cases, these claims are in principle verifiable: either allostasis operates according

to the dynamics of free energy minimisation, or it does not. If, for instance, it turns

out that allostasis operates according to the dynamics of reinforcement learning,

then free energy treatments are in error.12

At the same time, empirical claims are sometimes used to justify aspects of

the modelling framework. The problem is that there has been no independent ver-

ification of the soundness of these connections. For example, Friston and Stephan

(2007, p. 432) assert, “At the level of perception, psychophysical phenomena sug-

gest that we use generalised coordinates, at least perceptually: for example, on

12Here we assume reinforcement learning constitutes a distinct kind of computation, incompat-
ible with free energy minimization – though they are sometimes taken to be consistent with each
other (e.g. Da Costa et al., 2020, fig. 3 p. 11).
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stopping, after looking at scenery from a moving train, the world is perceived as

moving but does not change its position.” We do not know of any computational

cognitive science work that explicates the sense of ‘generalised coordinates’ and

confirms whether the phenomenological evidence described by the authors in fact

supports their claims.

Empirical claims include negative claims. For example, Friston (2009, p. 298)

states “there is no electrophysiological or psychophysical evidence to suggest that

the brain can encode multimodal approximations”. He uses this as evidence for

a positive claim about the mathematical features of distributions the brain does

encode, on his view. Again, this is the kind of claim on which computational

cognitive scientists could weigh in.

Several other empirical claims, said to be derivable by applying active infer-

ence models to real systems, are listed by Da Costa et al. (2020, Table 1 pp. 3-4).

During the last decade, the rate at which these hypotheses have been formulated

has outpaced the ability of independent evaluators to determine whether they can

be substantiated or not. Proponents will point to a long list of citations, but the

complexity of the mathematics makes determining the relevant empirical evidence

difficult. We need computational cognitive science to determine what kinds of ev-

idence would count in favour of the empirical claims made on the basis of active

inference.
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4.1.3 General claims

General claims are highly abstract or generalized empirical claims. This includes

empirical claims whose scope is very wide, perhaps ranging over every organism

or biological system.

When formulated as a claim about real populations, Hamilton’s rule fits this

description. This is a general claim because its scope is so wide: it applies to every

population of genes subject to selective forces, stating conditions under which a

gene influencing behaviour that impacts the fitness of social partners would be

promoted by selection.

General claims abstract from empirical claims. Empirical claims can therefore

be derived by replacing abstract terms with concrete cases. For example, Hamil-

ton’s rule could be related to specific empirical claims by replacing the abstract

notion of ‘a gene for cooperative behaviour’ with a specific gene, and replacing the

terms for cost, benefit and relatedness with estimated values for real populations

(Bourke, 2014).

Because proponents of active inference often move swiftly between the math-

ematical framework and real systems, some general claims have been given the

label ‘the free energy principle’. For example,

The free-energy principle discussed here is not a consequence of ther-

modynamics but arises from population dynamics and selection. Put

simply, systems with a low free-energy will be selected over systems

with a higher free-energy.
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Friston and Stephan (2007, p. 451)

It seems that “systems” here are real systems such as organisms. But sometimes

the exposition of the principle blurs the lines between mathematical and general

claims. For example, Hohwy says that “FEP [the free energy principle] moves a

priori – via conceptual analysis and mathematics – from existence to notions of

rationality (Bayesian inference) and epistemology (self-evidencing). [...] [T]his

a priori aspect is central to how we should assess FEP” (Hohwy, 2020, p. 8);

later continuing: “FEP says organisms “must” minimise free energy [... this] is

a ‘must’ of conceptual analysis and mathematics, for that is all that was needed

to arrive at FEP. FEP is therefore rightly called a ‘principle’ rather than a law of

nature” (Hohwy, 2020, p. 8) (for Hohwy, a principle is something that may or may

not hold of a given system). By deducing a statement about real organisms from

mathematical premises, Hohwy seems to be overriding the distinction between

mathematical and general categories. In contrast, Andrews distinguishes them

while allowing that the free energy principle has both mathematical and general

aspects:

Not unlike Charles Darwin’s theory of evolution by natural selection,

the free energy principle can be interpreted alternatively as mathe-

matical model or as meta-theoretical framework; [...] It is only as its

constituent variables are mapped onto measureable, observable (or in-

ferable, latent) processes in the world that it attains genuine explana-

tory power, and becomes capable of generating testable hypotheses.
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Andrews (2017, p. 14)

Whether or not there is a claim deserving the title of the free energy principle,

and whether or not it is really mathematical or general, is moot: what matters is

that there is a mathematical claim – something akin to FREE ENERGY PRINCIPLE

(SELECTION), but formulated in a more complex mathematical setting – and there

is a corresponding general claim. Given this, they ought to be evaluated separately.

The distinction between general and empirical claims is not sharp. An em-

pirical claim that generalizes over a species or a class of biological systems may

not be broad enough to deserve being called general, but a claim that generalizes

over entire kingdoms may well be. The point of distinguishing the categories is

to highlight the different kinds of justification that each type of claim requires.

Empirical claims may be made plausible by scientific modelling and wide gen-

eralisations, but they can only be ultimately validated through evidence. General

claims can also be made plausible by modelling, but can only be fully validated

by confirmation of the empirical claims they entail.

The most pressing philosophical issues about general claims are familiar from

the literature on scientific models. The models involved in these claims are typ-

ically extremely abstract, and a common refrain regarding biological systems is

that models which attempt to explain everything end up explaining nothing. This

line of thought is often cashed out in terms of trade-offs between generality, re-

alism and precision. In particular, drawing on Levins’ work, it is thought that

maximising the generality of a model will require sacrifices in terms of realism

and/or precision (Levins, 1966; Weisberg, 2006). Realism, or accuracy, is typ-
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ically understood in terms of the amount of causal structure that a model rep-

resents. Consequently, the more target systems a model encompasses (i.e. the

more general it is) the less accurately it represents them. Precision is understood

in statistical terms, as the closeness of repeated measurements of some quantity.

Consequently, as a model’s parameters become more finely specified, the num-

ber of systems which lie outside those parameters increases (i.e. the less general

it is). So it looks as though the free energy principle will be useful for building

highly general models that will score low on realism and/or precision. Levins’

work is normally thought to deliver a pragmatic lesson: we cannot produce one

model to rule them all, so which trade-off you make should be relativized to your

aims. For instance, models that score highly on realism – and thus capture a lot of

the causal structure of a system – will be better for predicting the effects of some

intervention.

In their contribution, Colombo and Palacios take up this line of critique

(Colombo and Palacios, 2021). On their analysis, the free energy principle’s

“...foundations in concepts and mathematical representations from physics allow

free energy theorists to build models that are applicable to theoretically any (bi-

ological) system” (p. 19). However, “...achieving this generality comes at the

cost of minimal biological realism, as those models fail to accurately capture any

real-world factor for most biological systems” (p. 19).

If all this is right, then it suggests that the usefulness of models produced by ac-

tive inference will be importantly restricted (Brown et al., 2020). These concerns

speak also to the practicality and disciplinary scope of the free energy principle. If

50



its utility lies in its ability to provide a general theory of biological processes, but

what working biologists need are models high on precision and/or realism, then

its application will be confined to theoretical and philosophical aspects of biol-

ogy. If, however, it can deliver the latter type of models, then it will have potential

implications for biology in practice. On the other hand, proponents of active in-

ference might simply reject the terms of the trade-off outlined above. Bhat and

colleagues’ contribution to this Topical Collection takes this line. Unifying psy-

chiatric disorders and immune responses using the free energy framework has, in

their view, consequences for the treatment of disorders such as schizophrenia and

Cushing’s syndrome (Bhat et al., 2021).

4.2 Justificatory links between dialectic categories

4.2.1 How can mathematical claims justify empirical claims?

Brain structures posited by empirical claims are often related to properties of artifi-

cial neural networks. As mentioned above, computational cognitive neuroscience

is the branch of cognitive science dedicated to constructing scientific neural mod-

els and evaluating their biological plausibility. Scholars have long appealed to

scientific models originally produced in the context of machine learning to ex-

plain biological facts (Dayan et al., 1995).

At this point, a few remarks about the relationship between machine learn-

ing and neuroscience are in order. Machine learning intersects with neuroscience

in at least two distinct ways. First, large datasets derived from experiments and
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measurements can be processed and analysed using machine learning techniques.

In this regard, the relationship between the two fields is no different than that

between machine learning and any other branch of science that generates large

datasets that need to be processed efficiently. Call this the general relationship.

In contrast, there is a unique connection between machine learning in the context

of neural network models and neuroscience. There is a substantial body of scien-

tific and philosophical work dedicated to the question of correspondence between

scientific neural models and actual neural systems, i.e. biological brains. This re-

lationship is familiar to philosophers of mind and cognitive science, with its roots

in connectionism of the 1980s. Because these issues are unique to the relationship

between machine learning and neuroscience, call it the special relationship.

With regard to the free energy principle, what we are interested in is the spe-

cial relationship. Whether scientific neural models can explain brain functioning

depends in large part on how well those models correspond to biological brains.

This is the remit of computational cognitive neuroscience. In general, justifying

empirical claims by appealing to a scientific model requires critical evaluation of

how good the model is. This is the remit of both scientists and philosophers of

science.

The mathematical −→ empirical direction invites philosophical analysis due to

novel interpretations of scientific model terms. For example, in active inference

it is claimed that the same term p can be interpreted as representing both prob-

abilities and preferences. Mathematically there is nothing stopping this, but the

problem comes when we seek the real entity that corresponds to that term in the
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real world. Is it possible for a component of a neural system to represent probabil-

ities and preferences at the same time? It is not even clear that this is what is being

claimed, because some proponents takes a deflationary or instrumentalist stance

on active inference models, disclaiming the requirement that mathematical terms

map neatly onto components of real systems. It remains an open question whether

this instrumentalist stance is justified merely because the scientific model (or map)

does reflect all variables in the target system (territory). For example, in the phi-

losophy of science literature about model construction some (e.g. Williamson,

2017) suggest that scientific model building is entirely consistent with scientific

realism. This is a discussion still to be had in the active inference literature.

Typically biologists and computational cognitive neuroscientists are more mod-

est than proponents of active inference. In mainstream science, models are often

presented with caveats about their idealised nature and indications of how their

realism can be improved. In contrast, it sometimes seems as though proponents

of active inference take their scientific models to be definitionally accurate. Ac-

tive inference doesn’t get a free pass on model validation. Its proponents almost

certainly know this, but an outsider reading the literature might wonder why their

dialectic slips so easily between claims about scientific models and claims about

real systems. We think it is because the need for justification has not been suf-

ficiently emphasised. This is probably a cultural accident rather than genuine

overconfidence.

Consider an example from the active inference literature. In a discussion of

techniques the brain might be using to minimize variational free energy, Da Costa
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et al. (2020, p. 10) assert that “the marginal free energy currently stands as the

most biologically plausible.” It is not clear how the reasons they cite lead to that

conclusion. It seems that marginal free energy minimization is the most accurate

technique for which there is a known neural implementation (that is, a neural net-

work model whose dynamics are at least consistent with what is observed in the

brain). But it is not clear why we should believe the brain employs the most accu-

rate technique. It is also not clear whether consistency provides strong evidence in

favour of biological plausibility. Sometimes Friston describes a scientific model

as biologically plausible just because it is a neural network model. Again, com-

putational cognitive science can weigh in on the question of what makes a neural

network model of cognition more or less plausible.

Finally, although the justificatory link in question concerns the special rela-

tionship between machine learning and brains, some of Friston’s work is squarely

within the general relationship. For example, his proposals about “variational fil-

tering” (Friston, 2008) are engineering techniques for building machine-learning

systems. These systems would be used to process data from neuroimaging stud-

ies. The important aspects of these proposals lie with the data-processing abilities

of the engineered system, not any correspondence there may be between such sys-

tems and biological brains. It might be the case that Friston’s claims pertaining to

the special relationship were inspired by or otherwise related to his earlier work

developing such techniques. But more premises are needed to support claims of

correspondence between a brain and a scientific neural model, beyond the mere

fact that one was inspired by the other. After all, connectionism was itself inspired

54



by neuroscientific discovery of brain structure, but this did not automatically ren-

der connectionism a viable explanatory framework.

4.2.2 How can mathematical claims justify general claims?

When it comes to justifying the active inference framework, emphasis is usually

placed on FREE ENERGY PRINCIPLE (SELECTION). For example, Ramstead et al.

(2018) assert:

The FEP is a mathematical formulation that explains, from first prin-

ciples, the characteristics of biological systems that are able to resist

decay and persist over time. It rests on the idea that all biological

systems instantiate a hierarchical generative model of the world that

implicitly minimises its internal entropy by minimising free energy.

Ramstead et al. (2018, p. 2)

To our knowledge, this mathematical claim has not been independently evaluated,

though Aguilera et al. (2021) offer reasons to think the constraints on systems that

satisfy it are more restrictive than proponents of active inference usually assume.

Similarly, it is difficult to evaluate the corresponding general claim because there

is not enough understanding of the mathematical theorem and how it maps onto

real systems. Recently, however, Beni (2021) and Bruineberg et al. (2021) have

critiqued the framework on grounds of its applicability to real systems. We are

starting to see critical analysis of active inference from outside the tradition. This

is a healthy development.
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The analogy with Hamilton’s rule can help illuminate the situation. Hamilton’s

rule as a mathematical statement is reasonably simple and relatively easy to prove

within a given mathematical framework. Variations on the rule can be clearly

defined mathematically because of the precision offered by formalism. Interesting

questions arise when it comes to using the rule, or its variations, to explain the

evolution of social behaviour. But its relative simplicity enables philosophers to

understand the basic components of Hamilton’s rule and what the rule says, even

though there are still interpretive questions to ask (Birch, 2014).

Constant’s contribution to this Topical Collection uses a mathematical claim

to make a general claim. On the basis of a “numerical example”, he argues against

the claim that minimising free energy entails life. Rather, he believes the converse

is true: life entails minimising free energy (Constant, 2021).

4.2.3 How can general claims justify empirical claims?

Proponents of active inference distinguish process theories (roughly, our cate-

gory of empirical claims) from normative principles (roughly, general claims).

For example, Hohwy (2020) argues that the generalized form of the free energy

principle should be treated as a regulatory principle guiding the construction of

process theories. The idea is to add assumptions about the structure of specific sys-

tems to the general claims in order to yield testable empirical claims. These would

include computational, algorithmic, and implementational claims about brain ac-

tivity. However, Parr and Friston (2017, p. 4) use the phrase “computational archi-

tectures implied by active inference”, which conceals the fact that extra premises
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are required to get from general claims at the core of active inference to empirical

claims about system architectures.

In their contribution Kirchhoff and van Es (2021) are interested in whether or

not active inference can overcome what they call the universal ethology challenge.

Active inference can only unify biology and cognition if low-level biological sys-

tems are explained in terms of inference, but – so the challenge goes – explaining

such systems does not require inference. So active inference cannot unify biology

and cognition. Kirchhoff and van Es disagree with this assessment. They argue

that it is possible to explain chemotaxis in bacteria using inference. They tenta-

tively conclude that this gives us reason to think that active inference might be

able to address the universal ethology challenge.

While Kirchhoff and van Es use an empirical example to motivate a general

claim, Fabry’s contribution uses an empirical example to restrict a general claim

(Fabry, 2021). She distinguishes between three types of niche construction: se-

lective niche construction, developmental niche construction, and organism-niche

coordination dynamics. She then assesses attempts by proponents of extended

active inference (who marry active inference with ideas from extended cognition

research) to account for these various types of niche construction. She concludes

that, while extended active inference is successful in the case of organism-niche

coordination dynamics, it fails to explain selective niche construction and devel-

opmental niche construction.
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5 Concluding remarks

The active inference framework is incredibly ambitious in its explanatory scope.

From humble beginnings as a theory of brain function, it is now positioned as a

framework for understanding life itself. There is a critical tradition in the phi-

losophy of biology, inspired by Levins, with regard to such ambitions. Many,

then, will approach active inference with scepticism. Healthy scepticism is a good

thing, but healthy scepticism is informed scepticism. Unfortunately, getting one’s

head around the details of active inference is no small task.

Our goal in this introduction has been to clarify the basic mathematics, his-

tory and internal dialectics of active inference, and draw attention to some key

concerns. With these details on the table, philosophers of biology are in a better

position to critically evaluate the framework. We look forward with interest to

seeing the results.
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