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Abstract

The idea that there is a “Number Sense” (Dehaene, 1997) or “Core Knowledge” of number

ensconced in a modular processing system (Carey, 2009) has gained popularity as the study of

numerical cognition has matured. However, these claims are generally made with little, if any,

detailed examination of which modular properties are instantiated in numerical processing. In this

article, I aim to rectify this situation by detailing the modular properties on display in numerical

cognitive processing. In the process, I review literature from across the cognitive sciences and

describe how the evidence reported in these works supports the hypothesis that numerical cogni-

tive processing is modular. I outline the properties that would suffice for deeming a certain pro-

cessing system a modular processing system. Subsequently, I use behavioral, neuropsychological,

philosophical, and anthropological evidence to show that the number module is domain specific,

informationally encapsulated, neurally localizable, subject to specific pathological breakdowns,

mandatory, fast, and inaccessible at the person level; in other words, I use the evidence to demon-

strate that some of our numerical capacity is housed in modular casing.

Keywords: Modularity; Numerical cognition; Cognitive architecture; Nativism; Analog magnitudes;

Mental processes; Automaticity

1. Introduction

Traditional models of modularity attempted to individuate mental modules by focusing

on the five sense organs plus language (Fodor, 1983). These models then ballooned, wid-

ening their scope from just (e.g.,) vision, audition, and language, to include proposals for

a postural module (e.g., Massion & Duffose, 1988), a face recognition module (e.g.,

Kanwisher, McDermott, & Chun, 1997), a letter recognition module (e.g., Polk et al.,

2002), a theory of mind module (e.g., Baron-Cohen, 1995; Scholl & Leslie, 1999), a

cheater detection module (e.g., Cosmides, Barrett, & Tooby, 2010), and so forth. In this
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article, I propose another candidate for modularity: an innate number system. This type

of proposal in itself is not novel; indeed, some eminent theorists in cognitive science

have proposed such a model before, most notably Carey (2009), Dehaene (1997), Margo-

lis and Laurence (2008), and Barrett and Kurzban (2006). However, none of these authors

have detailed the sense in which numerical cognitive processing approximates a modular

style of processing. This article’s goal is to fill that lacuna by sketching how our process-

ing of numerical stimuli has the hallmark properties of modules.

Such a project is of both theoretical and experimental import. One sees passing men-

tion of a number module in developmental psychology, cognitive psychology, evolution-

ary psychology, cognitive neuroscience, and philosophy; in other words, the idea looms

large across the cognitive sciences. However, without some detail for how to understand

numerical modularity we are left with little guide of what the claim amounts to. Thus, it

is important to delve into the details of numerical modularity, for it is near impossible to

evaluate the number module hypothesis without a clear sense of the evidence in favor of

the module in conjunction with some account of the putative module’s abstract properties.

Clarifying this matter will in turn dictate what numerical processing tells us about the

structure of the mind and can help guide future avenues of experimental exploration.

In speaking of modularity, I intend to follow the strictest use of modularity, using its

strongest sense available. The diagnostic features I will rely on follow Fodor’s traditional

conception of modularity (Fodor, 1983) and not some of the looser conceptions at play in

discussions of massive modularity (e.g., Barrett & Kurzban, 2006; Carruthers, 2006;

Pinker, 1997). The reasoning for this is plain: If something counts as a Fodorean module,

then it also meets the criteria for weaker notions of modularity. In particular, Fodorean

modularity entails the modularity at use in evolutionary psychology. In evolutionary psy-

chology (e.g., Barrett & Kurzban, 2006), modules are just understood as functionally indi-

viduable subprograms. Fodorean modules have additional attributes over and above the

easy-to-come-by functional individuation. The properties of a Fodorean module (hence-

forth a “module”) are specified as follows: the modular systems are the mental processes

that are domain specific and mostly inaccessible to conscious thought. They are manda-

tory in that their processing is automatic like a reflex; the modules must process their

proprietary stimuli without the need of endogenous control. Like a reflex, the modules

must be fast and informationally encapsulated. Modules are assumed to be innate and

thus have a regular maturational growth and decay. Lastly, the modules should be associ-

ated with some type of fixed neural architecture.1,2 In what follows, I will argue that the

innate number system is instantiated in its own site-specific modular mental process, one

which has all of the aforementioned properties.

2. The accumulator

The model for numerical cognition that I will be working with is the “accumulator”

model (Gallistel & Gelman, 1992; Meck & Church, 1983). This model has had substan-

tial success in predicting and explaining behavior and is widely—though by no means
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universally (a topic I will return to in section 4.1)—accepted as a psychological informa-

tion-processing model of how the mind computes numerical quantities. Importantly, the

accumulator model is what the aforementioned proponents of numerical modularity have

in mind when they discuss the existence of a number module. The accumulator model is

dissociable from, and ontogenetically and phylogenetically prior to, the more familiar lan-

guage-based discrete number system that we learn in school (Gallistel & Gelman, 2000).

The accumulator system is a system that grounds our numerical competence; it is what

allows us to understand and process numerical quantities as numerical quantities and not

just as words in a language.3

The accumulator system contains a “pacemaker” that releases one pulse per number

counted. The pulses “get filled” into an “accumulator,” a metaphorical graduated cylinder

(Meck & Church, 1983; Gallistel & Gelman, 1992).4 The accumulator’s value is then

automatically transferred to working memory and compared to other past accumulator

values that are stored in long-term memory. A comparator mechanism then decides what

accumulator value in long-term memory is closest to the current working memory accu-

mulator value. If the accumulator value is positively reinforced, then that particular accu-

mulator value gets stored in long-term memory to make bi-directional mappings between

the long-term accumulator value and the transient working memory accumulator value

more accurate.5 More formally speaking, the accumulator model is frequently understood

as a logarithmically compressed subjective number scale, one where (e.g.,) the representa-

tions of 19 and 20 are closer together on our mental continuum than 9 and 10. The closer

the representations are to each other, the more difficult it is to determine their ordering,

thus making higher numbers harder to process (i.e., longer reaction times, more errors)

than lower numbers.6

The accumulator model can predict and explain a broad range of data. Most notably, it

can predict and explain the size and distance effects. The “size effect” denotes the fol-

lowing phenomenon: the greater the numerical size between a pair of numbers, the longer

it takes to distinguish the numbers (assuming the distance between the two numbers is

kept the same).7 For example, if one’s task is to pick the greater of two quantities, it is

quicker for one to distinguish 5 items from 7 items than it is to distinguish 7 items from

9 items, which itself is an easier pair to distinguish than 11 items from 13 items (see,

e.g., Gallistel & Gelman, 2000; Moyer & Landauer, 1967). Thus, as we keep the distance

between two sets the same, the greater the size of the items in the sets, the longer it takes

to distinguish the quantities. The “distance effect” names the phenomenon whereby two

numbers are more quickly distinguishable as the distance between the two numbers

increases. Thus, in a task where one needs to pick the larger of two numbers, one will be

quicker at making the judgment that 9 is greater than 5 than one is when judging that 9

is greater than 8.

When one posits that analog magnitude representations are the representational med-

ium of numerical thought, it becomes clear why the size and distance effects arise. Ana-

log magnitude representations naturally lead to well-known Weber/Fechner effects,

consequences of Weber/Fechner’s law. Weber/Fechner’s law states that the discriminabil-

ity of two perceived magnitudes is fixed by the ratio of the two objective magnitudes.
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What follows from the law is that the greater the ratio between two magnitudes, the easier

they are to distinguish, which in essence is the distance effect. Weber/Fechner’s Law also

implies that in order to create a “just noticeable difference,” larger differences are required

for greater intensities, which in essence is just the size effect. Since the accumulator system

is the representational system that causes the size and distance effects, which is just the

instantiation of Weber/Fechner’s law in the numerical case, whenever we see numerical size

and distance effects we are justifiably licensed to infer that the accumulator system has been

active (though, of course, such an inference still accrues some epistemic risk).

A fairly astonishing finding is that the size and distance effects hold not only when

one is perceptually distinguishing numerosities but also when one is distinguishing Arabic

numerals from one another (Moyer & Landauer, 1967, ibid). This surprising finding is

quite robustly reproducible (see, e.g., Dehaene et al., 1998; Whalen, Gelman, & Gallistel,

1999). Moreover, the size and distance effects are relatively species-inspecific: They are

observable not only in adult and infant humans but also in a varied array of other crea-

tures such as pigeons, rats, and monkeys.8 If we posit the accumulator model as part of

our numerical processing system, then we can explain both the size and distance effects,

for the analog magnitude accumulator system would be active whenever we process

numerical stimuli regardless of the stimuli’s format (such as Arabic numerals).

In addition, the accumulator model finds evidential support even outside of the deluge

of behavioral evidence; for example, there are studies of cultures, the Piraha and the

Munduruku, that have no number words or any exact numerical representational system,

but whose numerical behavior displays the size and distance effects (Gordon, 2004; Pica,

Lemer, Izard, & Dehaene, 2004). There are also well-known double dissociations between

people who lose their memory of language-based “numerical” knowledge (e.g., remem-

bering that 5 9 9 is 45) yet still retain what one might consider the core of numerical

competence9 and thus display the size and distance effect in their numerical judgments

(Lemer, Dehaene, Spelke, & Cohen, 2003, see also the end of section 3).

In summary, we have strong evidence in favor of (a) the accumulator model being

phylogenetically ancient and thus (probably)10 innate in us, and (b) the model being a

model of at least some part of our numerical competence. I will henceforth assume the

validity of the accumulator model as (part of) our numerical processing system. Next, I

will explain how the accumulator model can be used to defend the claim that numerical

perception is modular.

3. Modular properties of numerical processing

We are now in a position to see how numerical cognitive processing can be seen as

modular. In what follows, I will assume that the input for the numerical module can

come from any sense modality.11 This situation is similar to the language module hypoth-

esis that allows the language module to cross-classify sense organs and thus allow for

effects like the McGurk effect (McGurk & Macdonald, 1976). Because, ceteris paribus,

one can ascertain language by reading or writing, the input can either be auditory, visual,
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or tactile; likewise, because one can ascertain numerical stimuli from either hearing

sounds or looking at numerosities or Arabic numerals, we can infer that the number mod-

ule cross-classifies sense organs. I will proceed by assuming that the input for the accu-

mulator system (or “number module”) can come from any sense modality and that the

output is a representation whose referent is a (perhaps fuzzy) numerical quantity.12 Let us

now turn our attention to the modular properties (domain specificity, mandatoriness,

informational encapsulation, inaccessibility, quick processing, common developmental

maturation and breakdowns, and neural localizability) inherent in numerical processing.

First, the number module appears to be innate. It is phylogenetically ancient—as previ-

ously mentioned, one can infer its existence in locations up and down vast swaths of the

phylogenetic tree—and it is ontogenetically primitive, for it is up and running in astonish-

ingly young infants. Even four-day-old infants are able to make numerical discriminations

(Bijeljac-Babic, Bertoncini, & Mehler, 1993), and five-month-old infants have been

shown to have implicit knowledge of addition (Wynn, 1992). Consequently, the ontoge-

netic development of the accumulator system should not be in question: Since infants

have the system available for use soon after leaving the womb, the effects of the accumu-

lator system appear to be unlearned.

Thus, the innateness criterion appears to be attainable (though see section 4.1 for some

dissenting views). Note that the innateness claim does not simply hinge on early discrimi-

nation abilities (of course, many innate traits do not appear early—for example, secondary

sexual characteristics); instead, it is strongly buttressed from the comparative evidence.

For example, the analog magnitude-based behavioral results we see in human infants and

adults are also found in a wide array of other species (pigeons, rats, macaques, apes, etc.).

The number module is domain specific. Originally, the accumulator model was pro-

posed to do double duty (Meck & Church, 1983): It was hypothesized to process both

time and number, for it fits both the numerical and temporal data quite well. Yet, even

though the model is predictive for both time and number, one need not infer that the very

same (token identical) model works on both categories. For instance, Dormal, Seron, and

Pasenti (2006) found that temporal cues do not interfere with numerosity processing in a

numerical Stroop task, showing that numerical processing is independent of temporal pro-

cessing. Thus, both systems are functionally distinguishable, even if their processing is

quite similar.13 Another datum in favor of separating the accumulator system for number

and from that of time is that animals and humans can simultaneously keep track of time

and number, implying that they are dissociable systems that can work in parallel (Meck

& Church, 1983). Though we may wish to conclude that there is an accumulator-like sys-

tem for temporal processing, it appears that it is a separable system from the accumulator

system for number, which is the candidate modular process currently at issue.

Another consideration in favor of the domain specificity of the number module is that

the module works across different modalities. An illuminating example of the language

module’s domain specificity is the existence of effects like the McGurk effect (McGurk

& Macdonald, 1976), which shows that the language module can be activated by linguis-

tic stimuli when presented auditorily or visually. Thus, the language module is domain

specific to language and not inherently modality specific. Likewise, analogous inferences can
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be drawn about the number module. Infants can detect identities of numerical values across

domains (Starkey, Spelke, & Gelman, 1983, 1990). Adult perception and judgment of numer-

ical relations of identity and difference also do not differ in any significant way regardless of

whether trials are intramodal or intermodal (Barth, Kanwisher, & Spelke, 2003). The cross-

modal representational format of numerical representations is evidence that suggests the

domain specificity of the number module, for the accumulator becomes activated by tracking

its proprietary inputs regardless of the modality that accomplishes the tracking.

The case for the “top-down” access of the number module is not in dispute. Top-down

access is meant to imply that one cannot introspect the bottom-up processing of a mod-

ule; rather, all we, at the person level, have access to is the output of the module. If

access were bottom-up, then we could expect people to be able to ascertain the mid-level

numerical representations for processing outside of the accumulator domain; that is, we

would expect some inferential promiscuity (Stich, 1978).14 However, the analog magni-

tude representations that are at play in the accumulator are not representations that are

“inferentially promiscuous”: There is no extant reason, theoretical or experimental, to

believe that the analog representations are used or usable for any other type of mental

process or behavioral manipulation.15 The claim is not that there is not analog processing

elsewhere in the mind/brain, for that would beg the question against projects as various

as Shepard’s mental rotation studies (e.g., Shepard & Metzler, 1971), Kossyln’s work in

mental-map searches (e.g., Kosslyn & Pomerantz, 1977), and Prinz’s iconic theory of

concepts (Prinz, 2002). For present purposes, I assume an agnostic stance toward any of

these other programs. All I wish to assert is that whatever type of analog processing is

being done in these areas, the processing is computationally distinct from the analog

mental representations at play in the accumulator.

Moreover, the results in the studies of numerical cognition are surprising. One would

not be able to introspect one’s mental processing and conclude that it would take them

longer to distinguish the Arabic numeral 7 from 6 than it would take to distinguish 7

from 4. The accumulator is an unconscious mental processor, one where the computations

at hand are startlingly different from the computations one might think one theoretically

goes through when judging the size of numbers. If we did have top-down access to the

workings of the accumulator then we should not be so shocked at the size and distance

results we find when processing Arabic numerals.

Fodor (1983) provides some anecdotal evidence that subjects’ access to numerical rep-

resentation is top-down. He writes,

The generalization about the relative inaccessibility of intermediate levels of input

analysis is pretty rough, but all sorts of anecdotal and experimental considerations sug-

gest that something of the sort is going on. A well-known psychological party trick

goes like this:

E: Please look at your watch and tell me the time.

S: (Does so)
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E: Now tell me, without looking again, what is the shape of the numerals on your

watch face?

S: (Stumped, evinces bafflement and awe.)16

The point is that visual information which specifies the shape of the numerals must be

registered when one reads one’s watch, but from the point of view of access to later

report, that information does not take. One recalls, as it were, pure position with no

shape in the position occupied (57).

We now have reason to go even further than Fodor did. Were the experimenter to have

then tested the subject on a number discrimination task, the subject’s behavior would

have obeyed Weber’s Law and thus showed the size and distance effects. When process-

ing numerals the subject must have noticed the shape, but the subject loses access to the

shape. When asking the subject for the time, the subject remembers what time it is, but

not what the shape of the numerals look like. Yet surely the shape is being processed (if

it was not how would people see the numeral?) and in its being processed, the numerical

information of the Arabic numeral is also processed and automatically calculated in the

analog magnitude format.

Wherever access is top-down, we have some reason to believe that there will be infor-

mational encapsulation. Fodor writes that modular inaccessibility is

in effect, the inverse of encapsulation. Just as information that is available to its com-

putations cannot get into a module so the information that is available to its computa-

tions is supposed to be proprietary and unable to get out. In particular, it is supposed

not to be available for the subject’s voluntary report (Fodor, 1998, p. 127).

It is not unreasonable to suppose that where we find inaccessibility, we should also

find encapsulation. Unsurprisingly, all the evidence we have points to the fact that the

number module is not “cognitively penetrable” (Pylyshyn, 1984). Illusions like the Mul-

ler-Lyre are paradigm cases in favor of the cognitive impenetrability of the visual mod-

ule. Analogously, there are illusions in numerical processing, though curiously these

illusions are rarely if ever discussed. For example, the Stroop effect is repeatable in the

numerical domain (e.g., Besner & Coltheart, 1979). If a subject is presented with two

Arabic numerals, the physical size of the numerals will interact with their semantic values

in interesting ways. If we change the physical size of the numerals so that the numeral

denoting the larger quantity (e.g., 9) is in a physically smaller font than the numeral

denoting the smaller quantity (e.g., 5), then it will take subjects longer to choose the tar-

get quantity, regardless of whether the task asks them to choose the smaller or larger

number. Although the Stroop effect is not the most paradigmatic illusion the effect does

not rely on a false belief), it does pump one’s intuitions in the right direction.

An even more paradigmatic numerical illusion occurs when subjects make comparative

judgments among large sets of numerosities. If a subject is presented with two sets
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containing an equally large amount of dots (say 100), then one would expect them to judge

the sets as more or less equal. However, this is not the case when the spacing in the two

sets is such that one of the sets is evenly spaced and the other set is unevenly spaced. In

the “Regular-Random” illusion (Fig. 1; Messenger, 1903; Ginsburg, 1976, 1978, 1980)

subjects judge that the unevenly spaced set contains fewer items than the evenly spaced set

and the perception of the evenly spaced set as larger will not go away even when one is

told that the sets contain an equal amount of dots. The belief that the sets are equal cannot

affect the numerical/perceptual processing because the number module is informationally

encapsulated. The same holds true for the “Solitaire Illusion” (Fig. 2), an illusion where

sets that contain one large cluster will be seen as having more items than sets containing a

few small clusters, even though the two sets are equal (Frith & Frith, 1972). The fact that

these perceptual effects do not go away when subjects are told of the equivalence between

the sets is another datum in favor of the cognitive impenetrability of the number module.

The number module’s informational encapsulation allows for extremely fast processing.

For example, one study in non-verbal counting in adult humans shows that non-verbal

accumulator based counting occurs much faster than verbal counting (Cordes, Gelman, &

Gallistel, 2002). Experimenters asked subjects to non-verbally count by continually pressing

Fig. 1. Regular-Random illusion (from Ginsburg, 1976).

Fig. 2. Solitaire illusion (from Frith & Frith, 1972).
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a button until they believed that they had reached a pre-specified value that varied from

trial to trial. The subjects were asked to either repeat the word “the” continually or to

sing “Mary had a little lamb” while non-verbally counting as fast as possible. The amount

of time per accumulator based counting was 125 ms as opposed to 200 ms for verbal

counting (derived from Whalen, Gelman, & Gallistel, 1999). In addition, numerical stim-

uli can cause the probative size and distance effects even in priming situations. The num-

ber module is fast enough that even a 43 ms display of a numeral is enough exposure to

cause an immediate tokening of an analog numerical representation (Reynvoet & Brysba-

ert, 2004).

The processing of numerical stimuli is not only very fast but also appears to be manda-

tory: The merest flicker of numerical information sets off the ballistic processing. The cri-

terion of “mandatoriness” itself contains a systematic ambiguity, one that has yet to be

mentioned in the literature. Mandatoriness can be understood as a form of automaticity,
where the processor has to compute any of its proper inputs when it comes into contact

with that input; mandatoriness can also have a ballistic connotation, which entails that

anytime a module begins processing its input it cannot stop its processing until it delivers

an output. These senses of mandatoriness are not only conceptually distinct, but they

appear to come apart empirically also. For example, (putative) cheater detection modules

(e.g., Cosmides, Barrett, & Tooby, 2010) are ballistic but not mandatory: Merely encoun-

tering a “social exchange” conditional is not enough to ensure that someone parses the

truth values—for that to happen one must think about the conditional as a conditional.

Likewise, many models of language processing see language modules as mandatory (i.e.,

you cannot help but hear a sentence in your language as a sentence) but not ballistic (pro-

cessing can crash for garden path sentences). Yet the number module appears to be man-

datory in both the automatic and ballistic sense.

When one encounters numerical stimuli of any type, whether numerosity based or Ara-

bic numeral based, the accumulator system shows its typical effects.17 As discussed

above, the size and distance effects can take hold whether one is judging sets of objects

or merely symbols denoting numerical values, and they arise with super minimal (prime-

level) exposure times. In other words, there is no way to sidestep the processing of the

accumulator system—it is set off automatically. Thus, the number module acts like a

mental reflex. The processing occurs subconsciously and the subjects need not be aware

of the fact that any stimulus was presented to them. But even though the subjects cannot

say what the stimulus was, the effects of the primed number are evident through the sub-

jects’ response times, showing that the subjects automatically processed the stimulus.18

Even when one is presented Arabic numerals, one is forced to automatically translate the

stimulus into analog mental magnitudes.

The available evidence is consistent with the ballistic reading of mandatoriness, too.

The paradigmatic way to shut down a mental process is by depleting attentional and cog-

nitive resources through cognitive load. However, extra load brought on from competing

cognitive tasks does not interfere with the number module producing an output and there

is no numerical equivalent to a crashing garden path sentence. Lastly, as aforementioned

even temporal processing tasks that recruit an isomorphic set of analog magnitude
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representations do not interfere with the accumulator’s numerical processing (Dormal

et al. 2006).

All modules are functionally defined and thus computationally isolatable. However, the

number module is not just computationally, but also neurally, isolatable. As such, it can

be selectively impaired and show the type of characteristic and specific breakdowns that

are the hallmark of other putative modules (prosopagnosia, alexia, agraphia, etc.). Acalcu-

lia is a type of “number blindness”; it is an acquired syndrome, one which occurs because

of trauma to one’s parietal cortex.

The accumulator system is thought to be located bilaterally in one’s inferior parietal

cortex. Specifically, fMRI studies have shown the accumulator system to be present more

specifically in the left and right intraparietal sulci extending anteriorly to the postcentral

sulcus (Dehaene et al., 1999). Hence, the number module appears to be associated with

some fixed neural architecture. When trauma occurs in the inferior parietal cortex, the

ensuing deficits of acalculia are expectable (Cohen-Kadosh & Walsh, 2009). The subjects

will lose almost all competence at even the most hideously mundane numerical tasks

(and other more tacitly numerical tasks, such as understanding natural language quantifi-

ers; Clark & Grossman, 2007).

For a more concrete idea of the deficits associated with losing one’s accumulator sys-

tem, take patient MAR who had a right inferior parietal lesion that caused some very odd

numerical deficiencies (from Dehaene, 1997). Patient MAR erred 16.8% of the time on

number comparison trials (figuring our whether, e.g., 8 was bigger than 2). MAR also

answered incorrectly on 20% of proximity judgment trials (figuring out which of two

numbers were closer in proximity to a target value, for example, judging that 5 is closer

to 4 than 9 is). A sampling of MAR’s specific errors may convey the severity of the

impairment. MAR judged that 10 was closer to 5 than to 9, that 8 was closer to 4 than to

9, and that 28 was closer to 21 than 27. Lastly, on number bisection tasks (tasks where

one has to pick a number that was the average of two presented numbers, e.g., for 2 and

4 the answer is 3), MAR answered incorrectly 77.4% of the time.19

In summary, it appears that numerical processing can be seen as modular. In the next

section, I deal with some criticisms of the case for numerical modularity. In particular, I

address objections to the accumulator model itself, to nativist approaches to number

acquisition, and to the overall utility of a modularity picture.

4. Objections

Many theorists in quite different fields are antecedently convinced of the reality of the

accumulator model; some of these theorists even assert that numerical modularity is proba-

bly true. To these theorists the discussion so far can be seen as the first detailed attempt to

flesh out what numerical modularity amounts to. However, as can be expected in a field as

variegated as cognitive science not everyone endorses the accumulator model or even the

utility of a modularity approach. In this section, I will attempt to assuage some of the con-

cerns of those who are hostile to either the analog magnitude picture or the modular one.
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4.1. Defending accumulator model

Some theorists, often of an empiricist stripe, have qualms about the accumulator model’s

explanatory power and descriptive adequacy. A complete defense of the accumulator model

is beyond the scope of the current project’s space limitations (for a fuller defense see Man-

delbaum, 2005). Consequently, this discussion will have to be a bit compressed. That said,

there are some strong reasons to endorse the accumulator system. For one thing, it has

become increasingly hard to doubt that there are in fact analog magnitude effects that need

to be accounted for. Infants at 6 months of age can distinguish numerosities that are in a 2:1

ratio and adults show similar effects (see, e.g., Brannon, Abbot, & Lutz, 2004; McCrink &

Wynn, 2007; Xu, Spelke, & Goddard, 2005). Moreover, these discriminations occur when

other extraneous variables are controlled for (such as total contour length, total filled area,

total brightness, item size, array size, and density). No doubt there are still theorists who

reject these proposals. However, I find these positions less appealing than one’s based

around the accumulator model. I will now quickly canvass a few competing positions.

Starkey and Cooper (1980) attempt to advance a subitizing model instead of an analog

magnitude model. However, there is good reason one should be skeptical of subitizing

models. For one thing, the subitizing system appears to be a completely different mental

process than whatever is at play for larger numbers. Subitizing has been hypothesized as

an object file, FINST (see Scholl & Pylyshyn, 1999) type system, one that can only oper-

ate to track up to approximately 4 objects. Beyond that, the subitizing system stops work-

ing. Yet the infant discrimination data deals with numerical distinctions of much larger

sets of numbers (e.g., distinguishing 16 from 32; Xu, Spelke, & Goddard, 2005). More-

over, the signature analog magnitude behavioral results are not apparent when dealing

with sets of 1–4 (Clearfield & Mix, 1999; Feigenson, Carey, & Spelke, 2002; LeCorre &

Carey, 2006), which lends more evidence for the claim that the subitizing system is a

wholly separate mental process from whatever underwrites the analog magnitude effects.20

Mix et al. (2002) have suggested that infants make their discriminations not from an

accumulator-style process but rather based on whatever correlated non-numerical cue is not

controlled for in a given trial (although the cited experiments generally control for all of

these across trials, no single trial can control for each variable). No doubt this is a coherent

position to hold, but it is quite a hard one to prove (especially in light of some of the consid-

erations raised toward the end of the next section). Perhaps, it is best to conclude that

although the evidence in favor of the accumulator model is not airtight, the acceptance of

arguments that reject that accumulator system are also far from obligatory. I will end just by

pointing out that without an accumulator model it is very hard to see what mental process

could underwrite numerical modularity, so if one is inclined toward a number module, one

should be reasonably optimistic about the accumulator’s existence.21,22

4.2. Nativism

So far, the discussion has run together nativism and modularity. Doing so, is common

enough, as innateness was an original criterion of a modular system. But though running
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nativism and modularity together is commonplace, it is not mandatory to do so. Modular-

ity is, at its core, a hypothesis about the structure of mental processes. The main claims

in modularity theory are contingent on the specific character of a given mental process:

for a process to be considered modular it has to be domain specific, mandatory, and infor-

mationally encapsulated. In other words, the real crux of modularity is that a given men-

tal process is autonomous and automatic—its workings are sequestered from the rest of

higher cognition and it can operate in the background of the mind. Nothing about the

core formulation of modularity demands anything like a nativistic approach to mental

processes or concepts. Nativism concerns itself with the etiology of certain structures and

representations. Since modularity is concerned with current processing and not how those

processes got there, one could be a thoroughgoing empiricist and still support the exis-

tence of certain modular processes. In fact, there are some such relatively well-known

theories of this flavor around; for example, Karmiloff-Smith (1992) defends a view of

modularity where the modules themselves are acquired (or perhaps better, assembled)

through learning and experience. Likewise, modularity is compatible with the mental rep-

resentations that the module uses being innate or acquired. That is, one can buy into a

modular view of numerical cognition while still holding that number concepts are them-
selves acquired. Failing to make the distinction between modular processing and nativism

has caused some theorists (such as Cohen-Kadosh & Walsh, 2009) to incorrectly malign

modularity theory while only actually taking aim at nativism.

So why is nativism so often run together with modularity theory if the two are separa-

ble empirical hypotheses? I suspect this is the case for two reasons. Historically, very

few theorists have been empiricists about core mental processes. Even the classic British

Empiricists (Hume, Locke, Berkeley) were nativists about the mental processes they

endorsed: They did not think that association (as seen as a mental process) was learned,

nor did they think that the sensorium was acquired (likewise, few contemporary connec-

tionists think that the process of association is acquired, though of course experience dic-

tates how the particular associative weights are set). Like the classic empiricists, one

could hold that all concepts are acquired while still maintaining that the processes that

range over these concepts are innate. Since it is hard—though not necessarily impossible

—to see how core mental processes could be learned, it seems reasonable to default to an

inference of ‘innate mental process’ from ‘mental process’. Indeed, it seems likely that

modularity theory’s association with nativism is predicated on this (non-apodictic) infer-

ence.

All of that having been said, I am still sympathetic to nativist claims in numerical

cognition, though nativism is an additional claim over and above modularity. The main

reasons for being pro-nativism are two-fold: (a) the behavioral signatures of analog mag-

nitude numerical representations are isomorphic across a diverse range of species, includ-

ing human infants and adults, and (b) human adults continue to recruit their analog

magnitude representations even after they acquire a more complex, efficient, and exact

discrete numerical representational system. (a) Shows that the magnitude system is phylo-

genetically ancient, so it is sensible to suppose that since we share the same mental pro-

cess with species much lower on the evolutionary tree, we may inherit it through our
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genes. As for (b), if the accumulator system were just a learned representational medium

it is hard to see why this scaffolded process would not be discarded when a more effi-

cient system is in place. Yet the analog magnitude effects are without fail detectable even

when dealing with Arabic numerals. This is not a surprising datum if one assumes that

the system’s processing is mandatory, and of course if the system is innate, then we can-

not just choose to discard it because of its shortcomings. Add to this, other arguments

about how soon the analog magnitude system comes on line (which is a hotly debated

topic, but there are sane theorists who think it is online almost immediately after birth; at

the very least analog magnitude effects are clearly detectable at 6 months, Xu, Spelke, &

Goddard, 2005; McCrink & Wynn, 2007) and arguments about what exogenous stimulus

and learning situation could possibly underwrite the acquisition of a purely abstract con-

cept of number (arguments as old as Plato), and it becomes reasonable to presume that

there is an innate number module that computes over innate, fuzzy numerical concepts.

But to reiterate, although I am sympathetic to a nativist account of numerical mental pro-

cesses and numerical concepts, one need not take a nativist position to endorse modular-

ity theory; the modular processing claims stand or fall on their own.

4.3. What good is modularity for cognitive science anyway?

Prinz (2006; and an anonymous reviewer) raises the question of the value of modular

models. Prinz attacks modules along two axes: First, he wonders whether any systems

actually contain the properties of modules (e.g., “I think the properties on Fodor’s list

neither can be used neither jointly nor individually to circumscribe an interesting class of

systems,” Prinz, 2006, ibid, p. 22), and second, he criticizes whether an abstract charac-

terization of modularity is useful for cognitive science. Prinz’s first criticism is an onto-

logical one: He is skeptical whether any actual system is modular. I applaud such

skepticism; too many loose claims of modularity are made without detailing what evi-

dence there is in favor of the existence of the module. However, the main aim of this

essay is to fill this lacuna with some actual details of the state of the evidence in favor of

a numerical module. I agree with Prinz that is incumbent upon the proponent of modular-

ity to sketch a picture that shows how the system has interesting modular properties.

Though one might want to argue with the state of the evidence presented here, the blan-

ket argument against modularity theory does not apply since this essay has canvassed

how the data can be interpreted to support modularity.

My response to Prinz’s second concern is two-fold. First, I think it is a justifiable

methodological approach to assume that the utility of any claim is secondary to its truth.

If there truly are modular systems, that fact should be of great interest to cognitive sci-

ence. After all, cognitive science wants to uncover truths about the mind and this is not

an easy task. If there are modules, that is a deep fact about the mind and should be

embraced regardless of its predictive value, for finding a deep truth is a good in itself

(and is not so easy to accomplish). Second, it remains unclear why one would hold that

modularity does not guide research and make predictions. A very salient empirical predic-

tion would naturally follow from the number module hypothesis: If there is a number
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module, then we should be able to find that the size and distance effects are replicable

cross-modally. That is, we should be able to (e.g.,) prime a subject auditorily and then

have the subject visually identify a number. The subjects’ performance should then dis-

play the normal number priming identification effects. For example, if the subject is

primed with six tone bursts and then visually presented with the Arabic numeral 5, then

the subject should be quicker to identify the 5 than if the subject is primed with 8 tone

bursts and then visually presented with the Arabic numeral 5.23 Thus, like any robust the-

oretical proposal, the number module proposal leads to specific empirical predictions and

should be a fruitful area of research for cognitive scientists. Of course, making predic-

tions is different than having a realized computational model, but it is hard to see exactly

why these concrete predictions do not constitute real progress.

5. Conclusion

I have argued that the accumulator processing model can be seen as a fast, informa-

tionally encapsulated, domain specific, automatic, ballistic, mental process; in other

words, a number module. In doing so, I have made the first sustained attempt I know of

to show what the number module would amount to. I think we have some strong reasons

to expect that there is a number module. From an evolutionary perspective, we can see

why such a module would be advantageous: Even without higher cognitive functions,

foraging animals would need to keep track of paths that led to more food and distinguish

these from paths that were fruitless. A necessary condition on this task would be to have

some sort of number processing system. Thus, we can see why the number processing

system would be phylogenetically ancient, and we can see why the system could have

arisen separate from a central cognitive system that underwrites higher cognitive func-

tioning.24

Notes

1. One should note that merely mentioning some fixed neural architecture as a possi-

ble property of (psychological) modules does not commit one to Anderson’s con-

ception of “anatomical modularity” (Anderson, 2010). Moreover, being associated

with fixed neural architecture does not entail that the neural regions underlying the

module are only used for the module’s processing; all that is needed is that there is

some local, fixed neural region that is regularly activated when the corresponding

psychological process is likewise active. It is non-locality, but not non-selectivity,

that can cause trouble for the putative neurological symptom of psychological mod-

ularity.

2. The reader may notice that “shallow outputs,” which is a feature of Fodor’s origi-

nal conception of modularity does not appear on this list. This is because it is

unclear that shallow outputs were anything more than a red herring caused by
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overly focusing on the visual case. It is not just very unclear what a “shallow out-

put” would amount to in the numeric case but also in areas of theory of mind, let-

ter recognition, posture, etc. Thus, I propose to follow Fodor (1998) in dropping

shallow outputs as an indicative property of modularity.

3. Even those who appear to be suspicious about the accumulator model are not gen-

erally suspicious of its existence or its necessary role as part of the process of

numerical cognition, but of its ability to generate discrete numerical representations

for higher integers (viz., higher than 3 or 4) without linguistic scaffolding. These

theorists just deny that the accumulator can be the whole story of adult numerical

competence (see Carey, 2009 or Spaepen, Coppola, Spelke, Carey, & Goldin-Mea-

dow, 2011). Of course, some theorists (though not Carey) are inclined to deny its

existence completely; we will return to arguments for the existence of the accumu-

lator in section 4.1.

4. The scare quotes around “get filled” are meant to imply that though the filling is

metaphorical, it is a functional equivalent of a certain computational mental pro-

cess. One can think of the analog magnitude “water bursts” as energy potentials

(Margolis & Laurence, 2005).

5. “Bi-directional mappings” might be a bit too ambiguous. All that it means in the

present context is the ability to compare one’s current working memory accumula-

tor value, the one brought about by stimuli in the organism’s environment and held

in working memory, to the accumulator values that are held in long-term memory.

6. Some theorists prefer to interpret the system as one that is not logarithmic, but

instead linear with scalar variability (e.g., Brannon, Wusthoff, Gallistel, & Gibbon,

2001). Both the logarithmic and linear interpretations can explain the size and dis-

tance effects, so both are descriptively adequate for our current purposes. Since,

the differences between the logarithmic and linear views will not make a difference

to the arguments that follow, the issue will be ignored hereafter.

7. Of course, though I speak of numbers, all of the stimuli used in these experiments

are, strictly speaking, numerosities, and it is a (fairly untendentious) theoretical

inference that what subjects are responding to is the numerical properties instanti-

ated in the numerosities.

8. See, for example, Platt and Johnson (1971) and Mechner (1958) for rats; Roberts,

Coughlin, and Roberts (2000) and Brannon et al. (2001) for pigeons; Brannon

(2002) for human infants; Cordes, Gelman, and Gallistel (2002) for human adults;

and Brannon and Terrace (2002) for rhesus macaque monkeys.

9. Those who lose the language-based system (through, e.g., trauma) still can perform

well at inherently numerical tasks such as number bisection tasks (e.g., saying

whether 30 is in-between 20 and 40) and numerical comparison tasks (e.g., saying

whether 20 is less than 30), showing that they still have some core understanding

of number. On the contrary, those who suffer parietal damage and lose access to

their accumulator system while maintaining the language-based system cannot per-

form the basic numerical tasks of number bisection and numerical comparison. For

more on this topic see the end of section 3.
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10. Of course, even an innate accumulator processing system does not itself entail

innate concepts of number. In general, any innate processor can (logically speak-

ing) process representations that are acquired. For more on numerical modularity’s

relation to innate number concepts, see section 4.2.

11. I thus apparently part ways with Margolis and Laurence (2008), who hypothesize

that the inputs of the putative number module are the subitized object files from

the object indexing system. However, they explicitly leave open the possibility

that there are similar object file systems corresponding to non-visual modalities.

As I discuss in the text immediately below, multimodal input for numerical pro-

cessing is necessary because numerical competence is not inherently visual (for

one thing, although we have numerous reports of acaculiacs, none of them have

an impairment that is restricted to any modality specific numerical information;

Polk et al., 2002). Consequently, I need not disagree with Margolis and Laurence,

pending how the rest of their view is spelled out (i.e., whether they can find other

object file like systems in non-visual modalities) in their in-progress book, Think
of a Number. In any case, we will have to specify what the proprietary inputs are;

and since numbers are abstracta, they cannot serve as the proximal cause so some-

thing else, such as object files, will have to do.

12. In principle, numerical stimuli should be detectable via any modality. This is a

natural consequence of the types of things numbers are, viz. inherently abstracta

(even for token instances of numbers).

13. Functional distinguishability is all that basic modularity requires, though of course

functional distinctness does not necessarily imply computational distinctness. It is

lamentable that the difference between the two is often ignored, for many evolu-

tionary psychologists run these together (e.g., Barrett & Kurzban, 2006) when

they can clearly come apart, as in the current case.

14. To a first approximation a representation is inferentially promiscuous if it can be

used in inferences outside of a single domain. One’s belief that the sky is blue

thus counts as inferentially promiscuous, whereas the visual system’s knowledge

that there is one overhead light source does not (for an explanation of the latter

datum, see Scholl, 2005).

15. Of course, this is not meant to imply that the accumulator model of timing is not

structurally similar to the number module; the claim in the text is just that the

token mental representations underwriting numerical processing are not used in

temporal processing.

16. For a variation on this theme, see Morton (1967), where a considerable amount of

subjects (over 25%) could not even recall the placement of numerals on a tele-

phone (and none of the 151 subjects could remember the placement of letters on

the phone).

17. Even theorists that are very opposed to modular interpretations (and the accumula-

tor model) grant this (e.g., Cohen-Kadosh & Walsh, 2009, p. 320).

18. For example, suppose the subjects’ task in the number priming paradigm is to

identify a number as opposed to pick the larger of two numbers. This difference
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causes the “priming distance effect”: The closer the prime is to the target, the

faster the subject identification of the target. For some examples of the numerical

priming paradigm, see Dehaene (1997), Dehaene et al. (1998), and Reynvoet and

Brysbaert (2004).

19. These errors were not made because of a misunderstanding of the task at hand.

For example, after a trial in which MAR judged that 20 bisected 30 and 40, the

experimenters asked him to write down the numbers between 30 and 40 on a

piece of paper and point to the middle number. MAR had no problem with this

and similar tasks. Moreover, MAR succeeded in non-numerical bisection tasks.

MAR had no problem choosing which letter bisected to others (e.g., C is between

A and E) nor which day bisected other days (e.g., Wednesday bisects Monday

and Friday).

20. That said, there is some recent evidence that analog magnitude effects are detect-

able in auditory enumeration for small number sets (vanMarle & Wynn, 2009). Of

course, this datum is of no help to those who try to deny the accumulator model.

21. This last point makes Carey’s position (Carey, 2009; LeCorre & Carey, 2006) all

the more puzzling, for Carey both wants to deny that the accumulator plays a par-

ticularly important part in the development of number concepts (in particular, they

deny that the accumulator plays apart in learning how the counting principles are

constructed) and hold that there is a number module. That said, even Carey does

not deny the actual existence of the accumulator system (LeCorre & Carey, 2006;

p25), and she thinks it is a component of core knowledge (Carey, 2009, p. 188).

So Carey appears to accept the accumulator as the basis for numerical modularity;

what she denies is its causal efficacy in learning the counting principles.

22. Because of space restrictions, I am unable to deal with other anti-accumulator pro-

posals, such as the mental models proposal of Huttenlocher, Jordan, and Levine

(1994), but I have trouble seeing exactly how such models explain why 6 month

olds correctly discriminate sets in a 2:1 ratio, but not sets that have smaller ratios.

23. Though cross-notational priming is commonplace (Naccache & Dehaene, 2001), I

know of no cross-modal priming studies.

24. The author acknowledge the James Martin School and the ACLS Foundation for

their generous support. Institutional support was also provided through fellowships

held at Oxford University and Yale University during the writing of the essay.

Special thanks to Jesse Prinz, Susanna Siegel, and three anonymous reviewers for

their helpful criticisms.
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