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Abstract

This paper provides a formal characterization of the phenomenon of ‘semantic pollution’ rel-
ative to proof systems for modal logic and Kripke semantics. We propose that semantic pollution
can be made precise by several properties of syntax occurring in proof systems. First, our base
requirement for semantic pollution is given by the property of violating invariance results under
Kripke model equivalences. On top of that, the distinction between local and global syntax, and
between syntax that is dependent on and independent from the propositional valuation, induce
four levels of semantic pollution: weak pollution, global pollution, local pollution and strong pol-
lution. We analyze several main proof systems for (extensions of) modal logic in terms of these
levels of pollution: the display calculus, the hybrid calculus and the labeled calculus. The results
show that the display calculus is only weakly semantically polluted, while the hybrid calculus has
formulas introducing several types of pollution. The only calculus that is strongly semantically
polluted is the labeled calculus. These formal results are in line with general intuitions about
semantic pollution. Additionally, our formal framework for semantic pollution is suitable for ap-
plications to other logics and semantics. Finally, we comment on the relation of our framework
to the philosophical debate surrounding semantic pollution.

Keywords: semantic pollution, labeled calculi, proof systems for modal logic, philosophy of
proof theory

1 Introduction

The phenomenon of semantic pollution has attracted growing attention in the search for effective
proof systems for modal logic. At a high level, semantic pollution can be intuitively understood as
the notion of importing a model-theoretic semantics into the proof-theoretic syntax. However, what
this precisely entails remains largely ambiguous. In this work, we propose three formal measures
of semantic pollution specific to modal logic and Kripke semantics, resulting in four distinct levels
of pollution. We classify formulas from the display calculus, labeled calculus, and hybrid calculus
according to these levels, and embed these findings within a broader philosophical discussion of
semantic pollution. Our classification aligns with common intuitions about semantically polluted
proof systems, providing a formal foundation for these intuitions. First, we review how semantic
pollution has been discussed in the literature, followed by an outline of the structure of the paper.
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1.1 Semantic pollution

Traditional natural deduction and sequent systems for modal logic have struggled to meet core re-
quirements, such as analyticity and normalization of formal derivations (Negri, 2011). As a result,
numerous generalizations and modifications of standard (sequent) calculi have been proposed, of-
ten by extending the proof-theoretic language. These include hypersequent calculi (introduced by
Avron (1987) and Pottinger (1983)), tree-hypersequent or nested sequent calculi (see Brünnler
(2010) and Poggiolesi (2009), predated by Bull (1992) and Kashima (1994)), display calculi (Bel-
nap, 1982; Wansing, 1994) and labeled calculi (see e.g. (Negri, 2005), and dating back to Simpson
(1994) and Kanger (1957)). The modal language itself has also been extended in hybrid logic (see
e.g. (Braüner, 2010)), which solves the problem at the level of the object language. Labeled calculi,
in particular, are considered to semantically pollute the modal language, by explicitly internalizing
Kripke semantics into the proof system. The calculus introduces labels x, y, z, ... and a ‘forcing re-
lation’ ‘:’ to accompany every modal formula occurring in the proof system, as well as relational
atoms xRy as new primitive formulas. Consider for instance the rules for l in the system G3K
(Negri, 2005):

y : A, x : lA, xRy,Γñ ∆
Ll

x : lA, xRy,Γñ ∆

xRy,Γñ ∆, y : A
Rl

Γñ ∆, x : lA

While some proof theorists claim labeled calculi provide desirable technical properties — such as
“analyticity, applicability to proof search [and] the possibility to obtain direct completeness proofs”
(Negri, 2011) — the literature also refers to them more apprehensively with philosophical con-
cerns about semantic pollution. Consider for instance that “a philosophical objection to this kind
of system is that it builds-in the (desired) semantics into the given syntax” (Braüner and Paiva,
2006); “[t]he use of a labeled calculus has been sometimes criticized, as mixing semantic elements
into what should be a purely syntactic proof system” (Negri, 2011); “some proof-theorists are not
satisfied with the idea of labels in proofs that would be seen as ‘semantical pollution’ because some
ingredients of a labeled formalism resemble model-theoretic objects” (Marin, 2018); and “[s]ome
have criticised this as a lack of syntactic purity, i.e. as the presence of “semantic pollution”; others
defend it as allowing calculi for otherwise unmanageable logics” (Dyckhoff, 2016).

At this point, two main more elaborate analyses of semantic pollution can be found in the
literature. The first is by Read (2015), who argues that the explicit encoding of Kripke semantics in
labeled calculi is in fact a virtue, as opposed to tree-hypersequent or nested calculi, which attempt to
‘obscure’ the semantics in their structural syntax. A recent paper by De Martin Polo (2024) includes
a more overarching insight into the types of labeling used by proof theorists, and outlines the
current main philosophical attitudes towards using labels. Both authors argue that labeled calculi
are suitable for inferentialism, the endeavour to specify the meanings of logical constants in terms
of their rules of inference — this has been a main potential philosophical drawback of semantically
polluted calculi. Thus, the philosophical debate so far seems tentatively ready to accept semantic
pollution. However, in the interest of painting a complete picture, we believe that the philosophical
views expressing caution with respect to semantic pollution at this point deserve more attention.
Additionally, the notion of semantic pollution broadly as a relation between syntax and semantics,
remains underspecified in studies so far.

Hence, we have sufficient reason to take a closer look at what semantic pollution could amount
to, more formally. As far as we are aware, the only precisification of the notion of syntactic purity
(as the counterpart to semantic pollution) has been put forward by Poggiolesi (2010), and appeals
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to the difference between internal calculi (where each element of the proof system has an interpre-
tation as a formula of the logic) and external calculi (where some elements cannot be interpreted
as a formula of the logic).1 She proposes that a sequent calculus is syntactically pure if it does not
“make use of explicit semantic elements”, which are exactly elements that make the proof calculus
external, i.e., that prevent translation of a sequent to “a formula equivalent to the sequent”. Pog-
giolesi’s account follows Avron (1996)’s requirements for ‘good’ proof systems. There, he suggests
that “[a] sequent calculus should be independent of any particular semantic[s]. One should not be
able to guess, just from the form of the structures which are used, the intended semantics of a given
proof system”. Poggiolesi calls this ‘strong syntactic purity’, since it is hardly satisfied by any proof
system: already the classical propositional sequent calculus violates a reasonable interpretation of
this type of syntactic purity. Her account then forms a compromised definition of ‘weak syntactic
purity’.

Taking Poggiolesi (2010)’s proposal as a starting point, we believe that the wide range of proof
systems for modal logic could benefit from a more nuanced account of semantic pollution, and one
that is motivated by a more semantic perspective. In attempting to provide one, we will define con-
crete measures (resulting in four levels) of semantic pollution of proof systems relative to the modal
language, and provide a first comprehensive overview of the behaviour of several proof systems for
(extensions of) modal logic under these measures. Since the debate on semantic pollution focuses
almost entirely on logics with Kripke semantics, we restrict our analysis to this semantics and to
proof systems for (extensions of) modal logic. Our framework, however, is broadly applicable to
other logics and semantics, on which we briefly comment in the conclusion.

1.2 Outline of the paper

Before we dive into defining measures of semantic pollution, Section 2 will provide an overview
of the formalities necessary for our characterization, paving the way to Section 3 and 4. A base
requirement for semantic pollution will be defined in Section 3, which will also analyze several
proof systems in terms of this requirement. Section 4 will then define four levels of semantic
pollution and discuss its results, by building on the base requirement. Finally, Section 5 will provide
an analysis of the philosophical debate surrounding semantic pollution.

Remark 1. There is a general distinction between ‘bottom-up’ and ‘top-down’ approaches to for-
malizing philosophical notions. Generally, bottom-up approaches focus on the use of this notion by
experts in practice, and aim to provide a formalization that matches this practice closely. Top-down
approaches, on the other hand, develop a framework based on theoretical (possibly idealized) prin-
ciples intuitively underlying a notion. Practical examples may then instead be measured by the
standard of this framework. Both approaches are valuable for different reasons. This paper starts
‘bottom-up’ with the intuitions on semantic pollution mentioned in Section 1.1; we aim to provide
a formal framework capturing the idea that labeled calculi possess most semantic pollution, and
that the usual (e.g. propositional) sequent calculus possesses none. The inspiration for and specifi-
cation of our measures of semantic pollution in Section 3 and 4, however, also come with top-down
influences on what we think makes up a ‘semantic nature’.

1Although as mentioned by Lyon et al. (2023), “the proof-theoretic community lacks consensus on how [‘internal’ and
‘external’ calculus] should be precisely defined”. See footnote 3 for an elaboration on the term ‘formula interpretation’.
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2 Semantic pollution as a formal property

This section provides the formal preliminaries to our characterization of semantic pollution. First,
we define the various formal languages that we study in this paper. We then introduce notation for
restricted languages and for results of semantic pollution and syntactic purity.

2.1 Proof-theoretic languages

Let Prop “ tp, q, r, ...u be a set of propositional variables. From here on, the object language L will
refer to the basic modal language, generated by the grammar:2

A ::“ p | J | K | A^A | AÑ A | lA (where p P Prop)

As its model theory, we take the usual Kripke semantics, concerning Kripke models M “ pW,R, V q
consisting of a set of states W , an accessibility relation R Ď W ˆW and a propositional valuation
function V : Prop Ñ PpW q. L-formulas receive classical truth conditions relative to a pointed
model, as specified e.g. in (Blackburn, De Rijke, and Venema, 2001).

A proof-theoretic language PL, generated by the grammar of a proof system, can then extend L
by any new syntax.

Remark 2. It will not be possible for L-formulas to be semantically polluted: the same will hold for
proof-theoretic formulas translatable to L.3 Hence, if the translatability of a proof-theoretic formula
depends on the background logic, then whether proof-theoretic formulas are semantically polluted
does, too. This for instance concerns common extensions of the Gentzen calculus for modal logic,
like the nested calculus or tree-hypersequent calculus, and the hypersequent calculus (and even
the usual Gentzen arrow and comma). Relative to a background logic, these structural sequents
commonly have intended translations in terms of, for instance, disjunction and the box operator.
Our approach will render them automatically syntactically pure. However, such calculi have been
speculated to possess (some version of) semantic pollution by Read (2015) and De Martin Polo
(2024); hence, we will discuss them more in Section 5.

We now present the three proof-theoretic languages that this paper restricts itself to, as well as
the truth conditions of the formulas they introduce in terms of Kripke semantics. In particular, the
general notation PL for proof-theoretic language will have three instantiations:

• DL (the display language), based on the display calculus as in (Wansing, 1994).

• LL (the labeled language), based on the labeled calculus as in (Negri, 2005).

• HL (the hybrid language), based on propositional hybrid logic as in (Braüner, 2010), which
is a logical extension of the basic modal language.

Both languages LL and HL introduce a set of variables, called ‘labels’ in labeled calculi and ‘nom-
inals’ in hybrid logic. While labels are intuitively understood as naming states in a Kripke model,
nominals were motivated by the want to formalize natural language sentences referring to specific

2For compactness, we leave out ␣,_, and ♢, but they may be assumed to exist explicitly as well.
3By ‘translatable’, we mean that there is some translation function t from proof-theoretic expressions A to expressions

in the logic, such that t has suitable properties (like compositionality), and such that provability of A from B implies
logical entailment of tpAq from tpBq. We will use ‘being translatable to the logic’ synonymously with ‘having a formula
interpretation in the logic’.
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time points or individuals. We will treat labels and nominals uniformly throughout the paper, and
call them name variables for both languages, given by a set Var “ ta, b, c, ..., x, y, z, ...u.4 Formulas
including name variables will receive truth conditions in terms of Kripke models extended by an
assignment function τ : Var ÑW . Instead, the formulas of DL will receive truth conditions in terms
of the usual (unextended) Kripke models.

M will always stand for a regular (unextended) Kripke model pW,R, V q. A model for a proof-
theoretic language PM will be a model that can provide truth conditions for the formulas in DL,
LL or HL. This means that PM can either equal a regular Kripke model M (in case of DL), or an
extended model pM, τq (in case of LL and HL). Where it is relevant to know if we are talking about
M or a pair pM, τq, we will always use the specific notation. Similarly, a frame for a proof-theoretic
language PF will either stand for a regular Kripke frame F “ pW,Rq or for an extended frame pF, τq.

Now consider the proof-theoretic languages. DL extends L by forming the following grammar:

A ::“ B | I | pA ˝Aq | ˚A | ‚A (where B P L)

That is, the display calculus adds new structural connectives I, ˝, ˚, and ‚ to the modal language.
The resulting structures have two different translations into tense logic, depending on their position
(antecedent or consequent) in a sequent. The operators I, ˝ and ˚ have intended translations in
terms of conjunction, disjunction, negation, truth and falsum (see (Wansing, 1994) for details). In
consequent position, ‚A may be translated as lA. We will focus most, however, on the occurrences
of ‚A in a proof system in antecedent position (and whenever we talk of the bullet operator from
now on, we will assume this interpretation). In antecedent position, it has the intended translation
and so the truth condition of a backwards diamond:

M, w ( ‚A iff DvpRvw ^M, v ( Aq

Second, the language LL uses the name variables in Var (as just defined above) to accompany
object language formulas and to form new atomic formulas xRy. Thus, LL extends L by the follow-
ing formulas:

A ::“ B | x : B | xRy (where B P L and x, y P Var)

The truth conditions of the new proof-theoretic formulas are then defined as follows, for a Kripke
model extended by assignment function τ .

M, τ, w ( x : A iff M, τpxq ( A
M, τ, w ( xRy iff τpxqRτpyq

Finally, the language HL uses the name variables in Var to introduce various new operators. Some
of them are closely related to the labeled calculus, and thus HL provides a good comparison for
semantic pollution.5 HL extends the modal language by the following grammar.

A ::“ p | a | J | K | A^A | AÑ A | lA | @aA | @aA |ÓaA (where p P Prop, a P Var)
4In the literature, it is common for nominals to use early-occurring alphabet letters a, b, c, ..., and for labels to use

late-occurring alphabet letters x, y, z, .... In accordance with this custom, our examples for HL will commonly use letters
a, b, c, ..., and our examples for LL will commonly use letters x, y, z, ....

5Technically, as HL is primarily an object language, and secondarily a proof-theoretic language, results of semantic
pollution will apply to this language in both roles. We thus take semantic pollution then generally to apply to any language
extending the basic modal language, not just to proof-theoretic languages, although of course the use of languages in proof
systems is what concerns the debate on semantic pollution most, and what we focus on here.
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HLV HLQ

HLQ,V

L

Figure 1: The restricted versions of the language HL.

The truth conditions of the hybrid formulas are as follows, again for a Kripke model extended by
an assignment function τ . Let τa be the assignment function that agrees with τ on every nominal
assignment, except possibly on a. Specifically, let τra ÞÑws be the assignment function that agrees
with τ on every nominal assignment, except possibly on a, which is sent to world w.

M, τ, w ( a iff τpaq “ w

M, τ, w ( @aA iff M, τ, τpaq ( A

M, τ, w ( @aA iff for any τa, M, τa, w ( A

M, τ, w (ÓaA iff M, τra ÞÑws, w ( A

2.2 Restricted versions of HL

There is now reason to consider several restricted versions of HL. This is because we are mainly
interested in the effects of extending L by individual operators (that are, as far as possible, only
applied to formulas in L), so that we can more easily compare their individual behaviour to that of
L-formulas, and to that of other proof-theoretic operators. This is unproblematic in LL, as labels are
already only applied to L-formulas (and relational atoms are nullary). In DL, although the display
operators can stack, it is only ‚A that has no translation into L. We thus do not have to make any
effort to consider ‚ separately.

However, HL contains multiple hybrid operators a,@a,@a and Ó a, and the latter three are
applied to the full language HL. In order to approach the effect of applying these operators just to
L, we will try to limit combinations of hybrid operators only to the necessary ones (e.g., in order
to have any effect at all, the operators @a and Ó a must at least combine with name variables a).
Three restricted versions of HL (see Figure 1) will let us distinguish between different semantic
pollution results, that will indicate from which language they are obtained. First, consider HLV (V
for ‘variable’), which reduces the set of name variables to a singleton.

A ::“ p | a | J | K | A^A | AÑ A | lA | @aA | @aA |ÓaA (where p P Prop, a P Var for |Var| “ 1)

Second, consider HLQ, which excludes the operator @aA from the language (Q for its ‘quantifier’-
like property).

A ::“ p | a | J | K | A^A | AÑ A | lA | @aA |ÓaA (where p P Prop, a P Var)

Finally, consider HLQ,V , which combines the previous two changes.

A ::“ p | a | J | K | A^A | AÑ A | lA | @aA |ÓaA (where p P Prop, a P Var for |Var| “ 1)
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2.3 Semantic pollution and syntactic purity of languages

We now need to specify a few more ingredients for setting up the property of semantic pollution.
First, we will let any symbol C in a PL-grammar correspond to a formula type, which consists of all
formulas whose outer logical symbol is C. Consider its precise definition.

Definition 1 (Context language). For operators or metavariables C from one of our proof-theoretic
language PL, their possible context languages, denoted CL, are defined as follows.

• The context language for C P DLY LL is always L.

• The context language for C P HL is HL, HLV , HLQ, HLQ,V or L.

Definition 2 (Formula type). Consider an operator or metavariable C in one of our proof-theoretic
languages PL. We define the formula type of C relative to a context language CL (possibly PL ‰ CL),
and indicate it by CpCLq. We distinguish three cases, classifying the formulas from DL, LL and HL.6

1. C is a variable.

ppCLq “ Prop
apCLq “ Var

2. C is a nullary operator.

RpCLq “ txRy | x, y P Varu
αpCLq “ tαu for α P tI,J,Ku

3. C is an n-ary operator.

CpCLq “ tCpA1, ..., Anq | Ai P CL for 1 ď i ď nu

For example, ‚pp _ ␣qq P ‚pLq. Throughout the paper, we will propose a base requirement
(denoted by BR) for semantic pollution, and four more elaborated levels of semantic pollution.
Satisfaction of the base requirement and of a level of pollution will then be introduced to a proof-
theoretic language, and in turn to a proof system, by a formula type. By focusing on formula types,
the truth conditions of proof-theoretic formulas will be analyzed at the level of their main operator.
This way, it is really the operators introduced by the proof system that get full responsibility for
their semantic effects.

Remark 3. We will sometimes abuse terminology and say that a formula type or a proof-theoretic
language itself is already semantically polluted — but it should be kept in mind that these state-
ments in the end only serve as shorthand for saying that a proof system is semantically polluted
(one introducing the particular proof-theoretic language and formula type).

Suppose we are given the definition for the base requirement (BR). Then its satisfaction is
determined for a formula type CpLq with respect to the modal context language L.

• The result po means CpLq satisfies BR (po for (semantic) pollution).7

• The result pu means that CpLq does not satisfy BR (pu for (syntactic) purity).

6For the first two cases, CpPLq “ CpCLq for each PL ‰ CL (the context language does not matter).
7We will assume that ‚pLq “ ‚pDLq, as their results for the measures for semantic pollution will be the same.
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For HL, CpLq sometimes captures ‘vacuous purity results’. Namely, its operators cannot always
show their power when restricted to L. On the other hand, CpHLq will sometimes fail to show the
individual effect of C, as C can combine with any other operator of HL. Hence, we will introduce
some weaker types of pollution that arise for context languages L1 such that L Ă L1

Ď HL. po is then
the strongest type of pollution for HL-operators. A result poL1 will indicate that L1 is the smallest
language (among the ones we have selected) to satisfy BR. This means that the operator restricted
to a smaller language will not satisfy BR, and will instead satisfy a purity result: several of such
results will be proven in the Appendix. We use the following notation for weaker types of pollution.

• The result poQ,V means that CpHLQ,V q satisfies BR.

• The result poV means that CpHLV q satisfies BR.

• The result poQ means that CpHLQq satisfies BR.

• The result poHL means that CpHLq satisfies BR.

It will follow from the definition of BR that po implies poQ,V . Furthermore, poQ,V implies poV and
poQ, and the latter two both imply poHL, which is the weakest type of pollution.

2.4 Key aspects

Our method has a few characteristic properties, which we here emphasize for clarity. First, our
approach is heavily framework-dependent. We see semantic pollution as dependent on an object
language, a proof-theoretic language, and a particular semantics. We thus do not accommodate
a notion of semantic pollution that is irrespective of this background context, and that only relies
on proof-theoretic tools. We consider this to be natural: there is simply no absolute standard for
syntax to be ‘syntactic’ (any expression can in principle included in a syntax) — hence, we need a
baseline connection between an object language and a semantics in order to distinguish ‘semantic’
and ‘syntactic’ syntax in the proof-theoretic language.

Second, we define ‘operator-level’ semantic pollution (by using formula types). One might in-
stead focus on properties of individual concrete formulas (members of a formula type), or even of
languages as an entirety. However, the interesting level of detail seems to concern operators that a
proof-theoretic language introduces. This emphasizes that the object language itself is syntactically
pure, and that the proof system introduces pollution by adding to this language.

Third, we see semantic pollution as something static: if a formula type satisfies it, then the
proof system as a whole (and any formal proof using instances of the formula type) can be consid-
ered semantically polluted. This perspective ignores the behaviour of proof-theoretic syntax inside
inference rules (i.e., the way formulas are used in proofs). For instance, if the use of a semantic
formula in a proof is easily eliminable, this might take away from the level of semantic pollution.
However, this encourages a minimal view of semantic pollution, as there often exist many transla-
tions between proof systems, where ‘semantic’ properties may be lost. We prefer to consider proof
systems individually, and to evaluate their design. And perhaps especially when the uses of a ‘se-
mantic’ formula type in a proof system are easily eliminable, the proof system should be considered
semantically polluted: why should one introduce semantic notions into a language, if it is not even
necessary?8

8See for more comments on this topic Section 5.2.
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3 The base requirement: violating invariance results under
model equivalences

This section will define the base requirement of semantically polluted formula types. By itself, this
property provides enough information to conclude that a formula type is semantically polluted, and
it specifies a level of pollution with respect to it. However, the next section will introduce two prop-
erties on top of the one defined here, that more clearly divide the different formula types among
four levels of semantic pollution. The idea of the base requirement comes in when we consider the
connection that the (classical) basic modal language L displays towards Kripke semantics as a syn-
tactically pure baseline. That is, we can view the way that the basic modal language distinguishes
Kripke models, by describing Kripke models with a certain level of detail, as a syntactically pure
standard. The basic modal language partitions the space of pointed Kripke models based on what
it can express about these models, by equating pairs pM, wq that it considers to be the same (i.e.,
that cannot be distinguished by formulas of L).

Formulas of a proof-theoretic language extending L may then be found to make more distinctions
between pointed Kripke models than L, and create a more fine-grained partition. This tells us
that the formula can express differences between two (modally equivalent) worlds in two models
that no modal formula can. It can describe a Kripke model in a way that is unavailable to the
modal language — and in this sense, the formula has a stronger connection to the semantics. We
can check this by considering whether a proof-theoretic formula violates invariance results under
Kripke model equivalences of L. As mentioned before, note that this is a semantic perspective
and elaboration of the suggestion proposed in (Poggiolesi, 2010) that semantic pollution comes
down to untranslatability to an object language. Namely, violating invariance results under model
equivalences for L, is a way of establishing untranslatability to L. We will now formally define the
property of violating invariance results under Kripke model equivalences.

3.1 Levels of satisfying the base requirement

There are three aspects affecting the level of satisfying the base requirement for formula types from
HL, two for the formula types from LL and one for the formula type of DL.

Model equivalence (DL, LL, HL). This concerns baseline notions of equivalence for Kripke mod-
els. Generally, it is most difficult for a formula type to violate invariance results under model
equivalences that reduce many models to each other, and this will indicate a higher level of pol-
lution. We will use the symbol ” as covering two notions of equivalence defined in (Blackburn,
De Rijke, and Venema, 2001). That is, M, w ” M1, w1 means either:

1. pM, wq is isomorphic to pM1, w1q, i.e. M, w – M1, w1

2. pM, wq is bisimilar to pM1, w1q, i.e. M, w - M1, w1

Note that although we can make more distinctions by picking more notions of equivalence in be-
tween isomorphisms and bisimulations (such as generated submodels and disjoint unions), we
believe too many equivalences will only obscure the results, and these two extremes already form a
suitable representation of available equivalences and lead to variable results. Section 3.2 will make
these notions precise.
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Low level High level

FE CE SCE

Bisimulation Isomorphism

HL LHLQ,VHLVHLQ

HL-restriction

Model equivalence extension

Model equivalence

Figure 2: Three aspects affecting the level of satisfying the base requirement. ‘Model equivalence’ and ‘model
equivalence extension’ apply to LL, DL and HL, while ‘HL-restriction’ applies only to HL.

Model equivalence extension (LL, HL). This concerns the extension of the two model equiva-
lences to models with an assignment function. Three ‘equivalence strengths’ will be defined for
extended models pM, τq, corresponding to the following notation:

1. Free extended (FE-)equivalence ”FE.

2. Constrained extended (CE-)equivalence ”CE.

3. Strongly constrained extended (SCE-)equivalence ”SCE.

It is more difficult for a formula type to violate invariance results under a stronger equivalence for
extended models, which will indicate a higher level of pollution. We will use the symbol”P to cover
the four equivalences defined above, combined with the three possible strengths just mentioned.
Section 3.3 will make these notions precise.

Size of the context language (HL). It is most difficult for an HL-formula type to violate invari-
ance results relative to a small context language (see Figure 1), and so this will indicate a higher
level of pollution. Note that this does not apply to LL and DL.

Figure 2 visualizes the effect of these three properties on satisfying the base requirement. Now
we will see the model equivalences and model equivalence extensions defined in detail.

3.2 Equivalences between regular Kripke models

Here we introduce isomorphisms and bisimulations for regular pointed Kripke models pM, wq, after
their definition in (Blackburn, De Rijke, and Venema, 2001). Consider isomorphisms, which reduce
fewest pointed models to each other.

Definition 3 (Isomorphism). Two models M “ pW,R, V q,M1
“ pW 1, R1, V 1q are isomorphic if there

is a function f : M Ñ M 1 such that: w P V ppq iff fpwq P V 1ppq; wRv iff fpwqR1fpvq; and f is a
bijection. Pairs pw, fpwqq indicate isomorphic worlds (M, w – M1, fpwq).

If pM, wq and pM1, w1q are isomorphic, the frame structure and valuation of pM, wq and pM1, w1q

are entirely alike, so that violating invariance results can only happen if a formula does something
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independent from the local frame and valuation structure that surrounds w and w1. For instance,
unconstrained assignment functions τ can scan different parts of the same model, leading to differ-
ent truth values of formulas including labels or nominals.

Although we do not include disjoint unions and generated submodels, note that potential rea-
sons for violating invariance under one of these notions increase, as they reduce more models to
each other. In disjoint unions, formulas that say something about the global model situation can
additionally cause violation of invariance, since a disjoint union adds an entire model to an initial
one, and a formula may detect this. In generated submodels, a formula may furthermore detect
that local worlds preceding equivalent worlds disappear.

Both aspects are also captured by bisimulations. Additionally, a formula may violate invariance
under bisimulations because it detects differences in the number of local successors of equivalent
worlds, which can vary under bisimulation. Thus, bisimulations capture more types of semantic
pollution than isomorphisms, which are more strict in what counts as pollution.

Definition 4 (Bisimulation). Let M “ pW,R, V q and M1
“ pW 1, R1, V 1q. Then Z Ď W ˆW 1 is a

bisimulation if: if wZw1 then w and w1 satisfy the same propositional letters; if wZw1 and Rwv,
then there exists a v1 P M 1 such that vZv1 and Rw1v1 (forth); and if wZw1 and R1w1v1, then there
exists a v P M such that vZv1 and Rwv (back). Pairs pw,w1q related by Z indicate bisimilar worlds
(M, w - M1, w1).

3.3 Model equivalences for extended Kripke models

As mentioned, ”P denotes one of three strengths with which to adapt isomorphisms and bisimula-
tions to extended pointed models pM, τ, wq. Consider the weakest extended equivalence.

Definition 5 (Free extended (FE-)equivalence). Two extended pointed models pM, τ, wq and
pM1, τ 1, w1q are free extended (FE-)equivalent if their underlying pointed Kripke models are equiv-
alent:

M, τ, w ”FE M1, τ 1, w1 iff M, w ” M1, w1

‘Free’ indicates that the extended equivalence poses no requirements on τ . This notion extends
a regular equivalence simply by adding assignment functions on top of M and M1. It does not
matter what these functions look like: any pair of functions τ, τ 1 added to M and M1 will lead to
the equivalence between pM, τq and pM1, τ 1q. This may make violations of invariance results by
formulas including name variables rather unsurprising, since τ and τ 1 can map name variables to
very different states in the equivalent models. Lack of surprise does not indicate lack of value,
however: such results show exactly that τ scans a Kripke model in a way that is foreign to the
modal language, a phenomenon that we aim for semantic pollution to capture.

We now define two ways of placing more restrictions on τ . A weak one connects the object
language formulas satisfied at worlds τpaq and τ 1paq, and a strong one explicitly aligns equivalent
worlds with the name variables they are assigned. They will indicate a higher level of semantic
pollution, as a formula violating invariance results under these equivalences distinguishes even
more Kripke models than formulas only violating invariance results under FE-equivalences.

Definition 6 (Constrained extended (CE-)equivalence). Two extended pointed models pM, τ, wq
and pM1, τ 1, w1q are constrained extended (CE-)equivalent if their underlying pointed Kripke models
are equivalent, and if object language formulas are invariant under name variable assignments.

M, τ, w ”CE M1, τ 1, w1 if and only if:
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1. M, w ” M1, w1

2. For all name variables x and A P L: M, τpxq ( A iff M1, τ 1pxq ( A

‘Constrained’ indicates that the extended equivalence poses some requirements on τ . It still
allows a name variable a to be assigned to non-equivalent worlds. The strongly constrained ex-
tended equivalence will not allow this; it is based on hybrid bisimulations (Blackburn, Benthem,
and Wolter, 2006) (which is intended to provide an invariance result for the basic modal language
extended with the satisfaction operator and nominals).

Definition 7 (Strongly constrained extended (SCE-)equivalence). Two extended pointed models
pM, τ, wq and pM1, τ 1, w1q are strongly constrained extended (SCE-)equivalent if all states that are
assigned a name variable are related by the equivalence, and if equivalent states are assigned the
same name variables.

M, τ, w ”SCE M1, τ 1, w1 if and only if:

1. M, w ” M1, w1

2. For all name variables x, M, τpxq ” M1, τ 1pxq

3. For all name variables x:

(a) There is a unique v1 such that M, τpxq ” M1, v1, and

(b) There is a unique v such that M, v ” M1, τ 1pxq9

‘Strongly constrained’ indicates that the extended equivalence poses strong requirements on τ .
Replacing ” in these three definitions of FE-, CE- and SCE-equivalence by one of the equivalences
from Section 3.2 leads to twelve notions of equivalence between extended models.

Note that strongly constrained extended equivalences require (by the second criterion) that the
range of the functions τ, τ 1 is a subset of the states related by the equivalence. For isomorphisms,
this is not a problem, because all states of the isomorphic models are by definition already related
by the equivalence. For bisimulations, not all states in the model need to be bisimilar to some other
state: this just means that for SCE-bisimulations, the range of the functions τ, τ 1 possibly needs to be
restricted to a subset of all states (similar restrictions exist in case one wants to create SCE-disjoint
unions or generated submodels).

3.4 Base requirement for semantic pollution

The work of the previous sections now comes together in the base criterion that any semantically
polluted formula type will need to satisfy.

Definition 8 (Base requirement (BR)). Let C be an operator or metavariable of PL, and let CL
be the context language of C. Let ”P consist of an extended Kripke model equivalence with the
following ingredients:

• A regular equivalence E P t–,-u (as in Section 3.2)

• If PL equals LL or HL, a model equivalence extension S P tFE,CE, SCEu (as in Section 3.3)

9Thus, the τ - and τ 1-ranges of name variables are restricted to being isomorphic. Note that other equivalences can still
also have an SCE-version, by the states in M and M1 that are not assigned any name variables.
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Figure 3: Example of the base requirement.

Then C satisfies BRCL,E,S , i.e., the base requirement of semantic pollution relative to context
language CL, equivalence E and strength S if it violates invariance under ”P:

There are equivalent pointed models PM, w ”P PM1, w1, and an A P CpCLq such that

1. PM, w ( A

2. PM1, w1 * A

This requirement gives us a level of pollution with respect to the aspects shown in Figure 2.
We will discuss the results of BR with respect to the formula types of DL, LL and HL in the next
section, using the variants for pollution (po) and purity (pu) as described in Section 2.3. In order to
tear apart the formula types even more clearly, we will define more overarching levels of semantic
pollution in Section 4. First, a small example of BR for an intuitive sense of it.

Example 3.1 (Example of the base requirement). Take the operator @a of HL, and suppose we
want to show that it satisfies BRL,–,FE. Figure 3 shows two models pM, τq and pM1, τ 1q, where we
let V ppq “ w, V 1ppq “ w1, τpaq “ w, τ 1paq “ v1. Then pM, τ, wq and pM1, τ 1, w1q are FE-isomorphic,
yet M, τ, w ( @ap and M1, τ 1, w1 * @ap. Hence, @apLq satisfies BRL,–,FE.

Finally, we note that the base requirement is theoretically applicable to any other combination
of object language and model-theoretic semantics. However, the details of making the requirement
precise depend too much on the particular context for a useful generalization at this point.

3.5 Results

We treat the results per language DL, LL and HL. Most examples we provide are well-known and
can already be found elsewhere, for instance in (Blackburn, De Rijke, and Venema, 2001), but we
discuss them here for the first time within the context of semantic pollution.

Results of DL. From DL, we see that only ‚A as interpreted in the antecedent position of a sequent
(see Section 2.1) satisfies the base requirement. By their translatability to L, I, A ˝ A and ˚A stay
syntactically pure (see also Remark 2).
‚A gives us simple results (see Table 1). Results for extended model equivalences do not apply

to it, so we only consider the usual variants of Kripke model equivalences. There, we see that it only
violates invariance under bisimulations, simply because it functions like a backwards diamond. This
also indicates only a medium level of semantic pollution, as isomorphisms preserve its truth value,
and they are harder to violate invariance under (note that a similar pattern holds if we included
generated submodels and disjoint unions — ‚A is polluted with respect to the former, but pure with
respect to the latter).
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Equivalence ‚A
Isomorphism pu
Bisimulation po

Table 1: Base requirement results of the bullet operator.

Model equivalence extension x : A xRy
Free extended po po

Constrained extended pu po
Strongly constrained extended pu pu

Table 2: Base requirement results of LL-operators (results are the same for isomorphisms and
bisimulations of the same model equivalence extension).

Results of LL. Consider now labeled formulas and relational atoms, that also give us rather clear-
cut results (see Table 2). Interestingly, their semantic pollution is indifferent to the type of Kripke
model equivalence chosen (bisimulation or isomorphism), for all model equivalence extensions.
This indicates that τ rises above the differences in model properties that the modal language cannot
see. Consider the following example for FE-isomorphisms (and so also bisimulations).

Example 3.2 (x : p, xRy). Consider the models in Figure 3, and let V ppq “ twu, V 1ppq “ tw1u.
Let τpxq “ w, τ 1pxq “ v1, τpyq “ v and τ 1pyq “ v1. Then pM, τ, wq is FE-isomorphic (and observe,
not CE- or SCE-isomorphic) to pM, τ 1, w1q. However, M, τ, w ( x : p, M1, τ 1, w1,* x : p, and
M, τ, w ( xRy, M1, τ 1, w1,* xRy.

Stronger model equivalence extensions reduce pollution, and also tear apart x : A and xRy, as
relational atoms are more semantically polluted than labeled formulas. Of course, this is by design
of the model equivalence extensions: CE-equivalences purify x : A by definition, while they do not
yet tie down xRy (just edit the previous example by giving all worlds valuation tpu — just because
each world satisfies the same modal formulas, does not mean they have the same R-context).

Only SCE-equivalences tame xRy. To see this, suppose that M, τ, w ( xRy, and suppose there
is a strong equivalence M, τ, w ” M1, τ 1, w1. By assumption, τpxqRτpyq, and we know that the
entire range of τ is included in the equivalence. Hence, there are worlds s1 and t1 in M1 such that
τpxq ” s1 and τpyq ” t1. We also know that equivalent worlds must satisfy the same name variables,
so s1 “ τ 1pxq and t1 “ τ 1pyq. Now to see that s1Rt1, suppose that our equivalence is a bisimulation
(for isomorphisms, s1Rt1 is clear). By the forward condition, there exists u1 P M1 such that s1Ru1

and τpyq ” u1. But as equivalent worlds must satisfy the same labels, u1 “ τ 1pyq, and so u1 “ t1, so
that s1Rt1 (and M1, τ 1, w1 ( xRy).

Results of HL. The results of HL are a little more intricate. First consider the simple results of a
as in Table 3, and note that it has the same results as xRy. The following example illustrates the
cases of pollution.

Example 3.3 (a). Take Figure 3 and let all worlds have valuation tpu. Let τpaq “ w and τ 1paq “ v1.
Then pM, τ, wq and pM1, τ 1, w1q are FE- and CE-equivalent. Yet M, τ, w ( a and M1, τ 1, w1 * a.

Clearly, strongly constrained extended equivalences will purify a by definition, because of the
strict demand that equivalent worlds are assigned the same name variables.
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Model equivalence extension a
Free extended po

Constrained extended po
Strongly constrained extended pu

Table 3: Base requirement results of a (results are the same for isomorphisms and bisimulations of
the same model equivalence extension).

‚ ‚ ‚
w v w1

M M1

(a) (b)

(c) (d)

‚ ‚ ‚
w v w1

M M1

‚ ‚ ‚
w v v1w1

‚

M M1

‚ ‚ ‚ ‚
w v w1 v1

M M1

Figure 4: The extended models serving as proof for satisfying the base requirement. Assume that all worlds
receive valuation tpu.

We then switch to the more graded results of the operators @a, @a and Ó a. Recall that we
consider them with respect to several language fragments. Note from Table 5 that @a : A shows
more pollution than x : A, as it retains pollution in a context language more powerful than L.
The difference is seen in CE-equivalences, where x : A is immediately turned pure, but @aA finds
pollution even in the rather restricted language HLQ,V : consider the example below.

Example 3.4 (@a♢a). Consider the pair of models in Figure 4(a). Let τpaq “ w and τ 1paq “ v1.
Then pM, τ, vq is CE-isomorphic to pM 1, τ 1, v1q. Yet M, τ, v * @a♢a, and M 1, τ 1, v1 ( @a♢a.

In a strongly constrained extended isomorphism (see Table 6), @a is finally turned pure. As
Theorem 5 shows, in fact, all formulas in HL are invariant under SCE-isomorphisms.

But SCE-bisimulations still show a low level of pollution for @aA relative to HLV , by interacting
with @aA. Consider the example below.

Example 3.5 (@ap@apaqq). Consider the pair of models in Figure 4(b). Let τpaq “ w and τ 1paq “ w1.
Then pM1, τ 1, w1q is SCE-bisimilar pM, τ, wq. Yet M, τ, w * @a@apaq, while M1, τ 1, w1 ( @a@apaq.

To see that for bisimulations, this is the highest level of pollution that @aA can have, Theorem
6 shows that all hybrid formulas in HLQ are invariant under SCE-bisimulations. Thus, any smaller
language than HLV will purify @aA.

Next, consider the operator @aA separately. Just like in the example above, @a is able to make
restricted cardinality statements in a small language, and so is easily able to continuously satisfy
the base requirement for non-isomorphism equivalences. An easy example works for bisimulations
of all three strengths (in the language HLQ,V , accounting for the results in Table 4, 5, 6): simply
take Example 3.5 for just the formula @apaq. This is why the level of SCE-pollution of @a relative
to HLV has to be seen as rather low (it is mainly ‘caused by’ @aA). Note also that these results for
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FE-equivalence @aA @aA ÓaA
Isomorphism po popHLQq popHLQq

Bisimulation po popHLQ,V q popHLQ,V q

Table 4: Base requirement results of HL-operators for free extended equivalences.

CE-equivalence @aA @aA ÓaA
Isomorphism popHLQ,V q popHLQq popHLQq

Bisimulation popHLQ,V q popHLQ,V q popHLQ,V q

Table 5: Base requirement results of HL-operators for constrained extended equivalences.

bisimulations indicate the highest level of pollution that @aA can achieve, as it is invariant under L
(the only smaller language than HLQ,V ).

For isomorphisms, there is an example in the restricted language HLQ that still works for @aA
in the FE and CE case (see Table 4, 5).

Example 3.6 (@apa _ bq). Consider the pair of models in Figure 4(c). Let τpaq “ w, τpbq “
w, τ 1paq “ w1, τ 1pbq “ v1. Then pM, τ, wq and pM1, τ 1, w1q are both FE- and CE-isomorphic. But
M, τ, w ( @apa_ bq, while M1, τ 1, w1 * @apa_ bq.

The fact that popHLQq is the highest level of pollution of @aA for FE-isomorphisms, is shown
by Theorem 4 (showing that @aA is invariant under FE-isomorphisms relative to HLV ). This result
extends to CE-isomorphisms, which only pose more requirements on τ . However, as mentioned
before, Theorem 5 shows that SCE-isomorphisms purify @aA (see Table 6).

Finally, consider ÓaA. By resorting to reflexivity statements, it can satisfy the base requirement
relative to FE- and CE-bisimulations and HLQ,V (Table 4, 5), as in the following example.

Example 3.7 (Óap♢aq). Consider the pair of models in Figure 4(d). Let τpaq “ w and τ 1paq “ w1.
Then pM, τ, wq and pM1, τ 1, w1q are FE- and CE-bisimilar. Yet M, τ, w *Ó ap♢aq, while M1, τ 1, w1 (

Óap♢aq.

Just like for @aA, note that popHLQ,V q is the highest level of pollution for these categories, as
Ó aA is pure relative to L (the only smaller language than HLQ,V ). For FE- and CE-isomorphisms,
the following polluting example of Ó aA is taken from HLQ, a less restricted language, and so less
polluting (Table 4, 5).

Example 3.8 (Ó ap@baq). Consider the pair of models in Figure 4(c). Let τpaq “ w, τ 1paq “ w1,
τpbq “ w, and τ 1pbq “ v1. Then pM, τ, wq and pM1, τ 1, w1q are FE- and CE-isomorphic, yet M, τ, w (Ó
ap@baq, while M1, τ 1, w1 *Óap@baq.

SCE-equivalence @aA @aA ÓaA
Isomorphism pu pu pu
Bisimulation popHLV q popHLQ,V q popHLV q

Table 6: Base requirement results of HL-operators for strongly constrained extended equivalences.
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‚A ÓaA @aA

x : A

@aA
xRy
a
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x : A
@aA xRy
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ÓaA
@aA

x : A
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xRy
a

SCE

CE

FE

Figure 5: Summary of the results for (levels of) satisfaction of BR.10

To see that this popHLQq result is the highest level of pollution for FE-isomorphisms, see The-
orem 3 (showing invariance of Ó aA under FE-isomorphisms relative to HLV ). Again, this result
extends to CE-isomorphisms. Finally, an example using @aA comes back in, and gives a low pollu-
tion result for SCE-bisimulations relative to HLV (Table 6).

Example 3.9 (Ó ap@apaqq). Consider the pair of models in Figure 4(b). Let τpaq “ w and τ 1paq “
w1. Then pM, τ, wq and pM1, τ 1, w1q are SCE-bisimilar, yet M, τ, w *Ó ap@apaqq, while M1, τ 1, w1 (Ó

ap@apaqq.

Theorem 6 then shows that (among others) Ó aA is invariant under SCE-bisimulations relative
to HLQ, implying that popHLV q is indeed the highest pollution level here for @aA. And once more,
the purity result of @aA for SCE-isomorphisms relative to HL is shown by Theorem 5.

3.6 Summing up

The base requirement for semantic pollution can be satisfied with various levels, depending on
model equivalence, model equivalence extension (if applicable) and context language restriction
(if applicable). These aspects already create a division in satisfaction of the base requirement for
formula types in LL, DL and HL. The results are summarized in Figure 5. The lowest level of
satisfaction of the base requirement is steadily provided by ‚A. The highest level is displayed by
xRy and a, which are only ‘purified’ for strongly constrained extended equivalences, showing the
independence of τ from the basic modal language.

The level of semantic pollution of @aA is reduced significantly by strong equivalences, but never
completely eliminated (unlike x : A), due to its interaction with other formulas in HL. The level
of BR-satisfaction for Ó aA and @aA is relatively low, yet (especially for @aA) remains persistent

10Two formula types have a different level of pollution in the figure, if this difference exists with respect to isomorphisms,
bisimulations, or both. Additionally, although ‚A does not need FE-, CE- and SCE-equivalences, its results can be seen as
unchanged with respect to these notions.
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throughout the different model equivalence extensions. Only for SCE-equivalences does Ó aA get
similar results to @aA, and @aA retains the highest level of pollution there. However, although low
pollution levels remain with SCE-equivalences for @aA, Ó aA and @aA, note that these all rely on
the workings of @aA. That is, they rely on the ability of @ to distinguish between a model cardinality
of one and more than one. Clearly, we should emphasize that for @aA and ÓaA this is a side effect
of the context language HLV , and this is a low level of BR-satisfaction. For @aA itself, the property
is more inherent and reflective of a proper remaining level of semantic pollution (relative to the
minimal context language HLQ,V ).

Furthermore, we see that the BR-results of Ó aA for SCE-bisimulations hold with respect to a
larger context language than those of @aA. This shows that sending a to the current world (as ÓaA
does) is something less invasive than sending it to all worlds (as @aA does). Both operators change
the assignment function, but ÓaA changes it only by using local information, while @aA changes it
by using global information. Note that both formulas are still syntactically pure for isomorphisms.
Thus, there must be some ‘actual’ difference between two equivalent models for @aA and Ó aA to
pick up on. This is unlike more direct uses of the assignment function τ as in xRy, x : A or a, which
can more easily vary even for very similar models, but are also more easily be constrained again by
stronger equivalences.

So far, we provided a general distinction between levels of BR-satisfaction. In the next section,
we will highlight two aspects that should, according to us, count more strongly in determining
the exact level of pollution. This provides a more intuitive division into various types of semantic
pollution, and emphasizes the differences that the base requirement cannot capture.

4 Four levels of semantic pollution

The base requirement for semantic pollution is insightful, and distinguishes between some degrees
of semantic pollution. However, we believe that the emphasis of two properties (underlying some
of the results in the base requirement) should give rise to stronger forms of semantic pollution.
They can be interpreted as being ‘less modal’ and ‘more semantic’ in two respects, and thus form
more of an unnatural invasion into the modal language than lower forms of semantic pollution.

Globalness. The first is the property of globalness, or world invariance. It is well-known that
“[m]odal satisfaction is intrinsically local: only the points accessible from the current state are rele-
vant to truth or falsity” (Blackburn, De Rijke, and Venema, 2001). Another way to view locality is to
recognize that the truth value of a modal formula can change in a model depending on the world of
evaluation: if the latter changes, the context of accessible points may change as well. The property
of globalness then becomes an ‘unmodal’ property, and has two corresponding conceptions: the
satisfaction of a formula is global if points inaccessible from the current state are relevant to truth
or falsity; or if its truth value is the same in a model for all worlds of evaluation. A well-known
example of global formulas where these conceptions overlap is the global modality (Blackburn, De
Rijke, and Venema, 2001; ten Cate, 2004):

Global diamond E: M, w ( EB iff M, v ( B for some state v in M

Global box A: M, w ( AB iff M, v ( B for all states v in M

The idea that inaccessible states affect the truth value of a formula can be made precise by
the notion of violating invariance results under disjoint unions. Note that this is an instance of
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BR, even though we only treated isomorphisms and bisimulations in Section 3 (namely, by taking
as model equivalence not bisimulation or isomorphism, but disjoint union as in Definition 11.).
Instead, world invariance as a measure of globalness is stricter than BR. We will show soon that BR
is indeed implied by world invariance11, and we take the latter as our conception of globalness. A
border case that is considered local by this conception is @aA, that intuitively possesses some type
of globalness. We will discuss this formula more in Section 4.2.

Besides straying from an intrinsically modal nature, global formulas may be seen as more se-
mantic than local formulas. Local formulas, only taking into account accessible states, are simply
blind to a certain part of a Kripke model. Global formulas, when their truth value depends on
inaccessible states, can collect more information about the model — and by the property of world
invariance, they lift information up to a state that the entire model finds itself in. That is, instead
of forming truth relations with each world separately, these formulas provide a truth state for all
worlds in a model at the same time.

Valuation independence. The second is the property of valuation independence. Generally, a
modal formula “is valid on a frame when it is globally true, no matter what valuation is used.
This concept allows modal languages to be viewed as languages for describing frames” (Blackburn,
De Rijke, and Venema, 2001). This quote connects both globalness and valuation independence to
semantic properties, but we here focus on valuation independence separately. The semantic nature
of such formulas is then still best seen when first restricting to the modal language. Valuation inde-
pendent modal formulas can be seen to describe the local frame structure of the world of evaluation
w, as shown by the simple example ♢J (‘w has a successor’). However, they are still instances of
formula types that we do not regard as semantically polluted, because operators like ♢ are pri-
marily intended to capture valuation dependent statements, and they clearly do not satisfy BR. On
the other hand, if an operator introduced in the proof-theoretic language can only convey valua-
tion independent information, then we consider it semantically polluted. In case such a formula is
translatable to the modal language, its semantic nature is strengthened by the fact that it will be
describing the frame. There can also be valuation independent formulas that are untranslatable to
the modal language. They can still describe frame structure (such as a formula that is true when
the world of evaluation has exactly two successors), but they can also concern other properties of
worlds (concerning, for instance, an assignment function of an extended model). A more general
view on the semantic nature of valuation independence then says that they have a stronger connec-
tion to the world of evaluation than the modal language.

We can thus consider formula types satisfying one of these properties as carrying a different type
of semantic pollution as formula types just satisfying the base requirement. Furthermore, formula
types satisfying both globalness and valuation independence can be thought of as possessing the
strongest form of semantic pollution. The gradations of satisfying the base requirement can still
show differences in semantic pollution within these four new categories.

4.1 Defining the levels

The properties of globalness and valuation independence are made precise by the following defini-
tion.

11Combined with valuation dependence or contingency.
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Definition 9 (Modal semantic properties). Let C be an operator or metavariable of PL. The modal
semantic properties are then defined with respect to PL.12 The notion of globalness gives rise to two
variants concerning the relation of C to states.

1. Locality (LO). There is an A P CpPLq, a model PM and worlds w1 and w2 such that PM, w1 (

A and PM, w2 * A.

2. Globalness (GL). For each model PM and for all A P CpPLq it is the case that either:

(a) PM, w ( A for all w PW (A is globally true in PM), or

(b) PM, w * A for all w PW (A is globally false in PM)

The second property, also with two variants, concerns the relation of C to the valuation.

1. Valuation dependence (VD). There is an A P CpPLq, a pointed frame pPF, wq, and two
models PM,PM1 extending PF such that PM, w ( A and PM1, w * A.

2. Valuation independence (VI). For each pointed frame pPF, wq, and for all A P CpPLq, it is
the case that either:

(a) PM, w ( A for all models PM over PF (we say A is w-valid on PF), or

(b) PM, w * A for all models PM over PF (we say A is a w-contradiction on PF)

As these properties will be imposed on top of the base requirement, they only function to further
classify formula types that are already untranslatable to the modal language. Thus, now we can
define the following four levels of semantic pollution (see Figure 6).

Definition 10 (Levels of pollution). Let C be an operator or metavariable of PL, and let BR be
defined with respect to context language CL, model equivalence E and (if applicable) extended
equivalence strength S. Then four levels of pollution are defined as follows.

1. C satisfies weak semantic pollution if it satisfies BRCL,E,S + LO + VD.13

2. C satisfies local semantic pollution if it satisfies BRCL,E,S + LO + VI.

3. C satisfies global semantic pollution if it satisfies BRCL,E,S + GL + VD.

4. C satisfies strong semantic pollution if it satisfies BRCL,E,S + GL + VI.

Blackburn, De Rijke, and Venema (2001) provide a simple proof that global diamond and global
box are undefinable in the basic modal language. Similarly, we can provide an untranslatability
result for the two properties of global semantic pollution (so that BR is actually a superfluous
requirement here). Consider the definition of a disjoint union, followed by the theorem.

12This is a choice: they can also be defined with respect to L, for instance with our earlier motivation of capturing only
the effects of C, and not interactions with other operators. However, for our operators, the results relative to the different
available context languages remain the same. Additionally, as mentioned before, Ó aA and @aA simply act like A when
A P L, so in order to see some more interesting examples highlighting the workings of @ and Ó, it is insightful to let A P HL,
and so to let the context language generally be PL.

13Note that here, the only reason C is semantically polluted is that it satisfies some variant of BR.

20



GL VI

LOVD

Global Local

Strong

Weak

BR

Figure 6: Levels of semantic pollution (the properties of GL together with VD imply the base requirement).

Definition 11 (Disjoint union). Two models are disjoint if their domains contain no common
elements. For disjoint models Mi “ pWi, Ri, Viq pi P Iq, their disjoint union is the structure

Ţ

i Mi “

pW,R, V q, where W is the union of the sets Wi, R is the union of the relations Ri, and for each
proposition p, V ppq “

Ť

iPI Vippq. For each Mi, a world w PWi is equivalent to its copy in
Ţ

i Mi.

Theorem 1. If an operator or metavariable C of PL satisfies globalness and valuation dependence
relative to CL, then it satisfies BRrCL,

Ţ

,FE{CEs.14

Proof. Suppose that C satisfies globalness and valuation dependence relative to CL. Then there is
an instance A P CpCLq and two models PM and PM1, such that A is globally true in PM and globally
false in PM1. Now take an FE or CE- disjoint union PM

Ţ

PM1, which will be equivalent to both PM
and PM1 (separately).15 Since A is invariant under worlds, one of the following holds:

1. PM
Ţ

PM1, w ( A for all w PW YW 1

2. PM
Ţ

PM1, w * A for all w PW YW 1

Suppose wlog that the first case holds. Then there exists a world w PW 1 such that PM1, w * A, and
such that PM

Ţ

PM1, w ( A. Thus, A violates invariance under disjoint unions.

As this theorem gives the BR-result for disjoint unions, and disjoint unions are a specific type
of bisimulation, the result is implied for bisimulations as well. However, it is not implied for iso-
morphisms. A counterexample is a global modality, for instance Ap or Ep, which are global and
valuation dependent, yet invariant under isomorphisms.

Now we provide a few remarks concerned with the difference between formula types CpPLq and

14Note that if we require that some A P CpPLq is contingent, then globalness by itself already implies BR. Without
contingency, J satisfies globalness, and clearly does not satisfy BR (hence, we need valuation dependence).

15On the contrary, SCE-disjoint unions are only equivalent to one of PM or PM1, which prevents the proof from going
through. As an example, consider the instance @ap of the global and valuation dependent @apLq. Under an SCE-disjoint
union it will retain its truth or falsity, as a’s range in the disjoint union must be the same as in the equivalent model.
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Figure 7: Levels of semantic pollution (the properties of GL together with VD imply the base requirement).

concrete instances A P CpPLq of a formula type. First, observe that global semantic pollution re-
quires global matters to have full influence on the truth value of formulas for it to result in pollution.
Suppose that a proof system introduces an atomic formula A translatable to the specific formula
@apa^ pq, or similarly to xRy^ p. The parts @apaq and xRy are global and violate invariance under
(for instance) FE- and CE-disjoint unions (for these notions, just add disjoint unions to the regular
model equivalences in Section 3). However, p introduces not only valuation dependence but also
locality into A, so that both versions of A (as atomic formula types) are not globally semantically
polluted. This means that covering up globalness with local ‘camouflage’ is considered to decrease
semantic pollution, as this means that it is not the primary intent of a formula to convey just a
global property. Analyzed at their main operator, our method still disects @apa ^ pq and xRy ^ p
into syntactically pure parts (^ and p) and parts possessing semantic pollution (@aA, a, xRy).

As for the definition of local semantic pollution, note that it considers modal formulas that are
local and valuation-independent (like ♢J) to be syntactically pure. This is seemingly because of
BR, which ensures that semantically polluted formulas are not translatable to the modal language.
However, even without BR ♢J would not count as semantically polluted, as we measure pollution
at the level of formula types. Clearly, ♢pLq does not satisfy valuation independence. Still, for each
modal instance of a local and valuation independent formula, a new primitive formula type A can
be added to the modal language that has exactly the truth condition of this instance (such as ‘w
has a successor’). Requiring BR then means that formula types A that are translatable to concrete
local, valuation independent modal formulas, are pure just like these modal formulas themselves —
while without BR, such formula types A are semantically polluted (even though their translations
are not). Hence, our definition of local pollution, including BR, says that a formula is only locally
semantically polluted if you cannot in principle replace it in a formal proof by an expression of the
object language.

The way that the modal language can describe a Kripke frame (by being valuation independent)
is thus considered acceptable, and a syntactically pure baseline. This includes specific descriptions
of R-depth, as the modal operators describe exactly one R-step. The ‘height formulas’ in (ten Cate
and Koudijs, 2022) show that a formula ln`1K ^ ♢nJ says that w starts at least one R-path of
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length exactly n. The modal language cannot describe specific R-width, however, as a consequence
of modalities describing ‘at least one successor’ or ‘for all successors’. Specifying a precise number
of successors thus provides more opportunities for introducing semantic pollution than specifying
the length of an R-chain.

4.2 Results

Figure 7 shows the general division of the formula types in terms of the four levels of pollution.
The results of locality and globalness are quite easily seen. Relative to their relevant proof-theoretic
language, locality of ‚A should be obvious, as should globalness of xRy, @aA and x : A. Below are
some examples of locality of the remaining HL-formulas.

Example 4.1 (Locality). Consider model M in Figure 8. Let τpaq “ w. Then M, τ, w ( @ap♢aq,
as wherever a is sent to, w sees it. However, M, τ, v * @ap♢aq, as v does not see itself nor w.
Additionally, M, τ, w (Ó ap♢aq, as w sees itself, while M, τ, v *Ó ap♢aq, as v does not see itself.16

And clearly, M, τ, w ( a, while M, τ, v * a.

The results of valuation independence are even quicker to see. It is easy to tell that only xRy
and a have a truth value that does not vary under changing propositional valuations.

Finally, as promised, some reflection on the hybrid operator @aA. It does not satisfy our criterion
of globalness, but intuitively, its truth value is affected by inaccessible worlds (A’s truth is tested
for a sent by τ to all worlds in turn). To give body to this intuition, note that @aA would satisfy a
criterion of globalness as follows, a variant of violating invariance under disjoint unions. Given a
model PM, add a separate Kripke model pW,R, V q to it (essentially creating a disjoint union, but
keeping τ of PM constant (in case of an extended model)). A formula type is then ‘global’ (i.e.,
able to be affected by inaccessible worlds) if its truth value can change under this model operation.
Clearly, this is the case for @apHLQ,V q (consider @apaq), while it is not the case for Ó apHLQq (as
shown by an easy induction proof). This illustrates how Ó aA is really just a specific subcase of
@aA, sending a to the current world, instead of all worlds in the domain. Thus, ÓaA in some sense
possess more locality than @aA, so that @aA may deserve a higher level of semantic pollution.

However, note that the latter idea for globalness would, as τ remains static, not consider any
labeled formula to be global, which is undesirable. A variant that would attribute semantic pollution
to labeled formulas is violating invariance results under CE-, FE- or SCE-disjoint unions — but
clearly, this is just another variant of BR, which satisfaction we already require. On top of that,
recall that BR itself already captures a difference in pollution level between @aA and Ó aA (see

16Locality of @aA and Ó aA is already clear from modal instances @appq, Ó appq, but hybrid local instances provide more
insight.
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Figure 5). Hence, after taking in the four levels of pollution defined here, more nuance within
these levels can be found by looking at the levels of BR-satisfaction.

Finally, note the difference between @aA, Ó aA on the one hand, and labels on the other: @aA
and ÓaA are still general (it is unclear which world exactly a refers to), while name variables in @aA,
x : A and xRy are always specific (they pinpoint particular points in a model). This corresponds
intuitively to the idea that name variables in the latter operators are more semantically polluted
than @aA and ÓaA.

4.3 Four levels compared to the base requirement

To finish this section off, we highlight several observations that come out of the comparison of
the four pollution levels to the results concerning BR of Section 3. First, ‚A is a minimal example
of semantic pollution. It steadily has the lowest level of pollution, according to the four levels of
pollution as well as BR. Within weak semantic pollution, it may be considered to possess a lower
amount of pollution than @aA and ÓaA. On our approach, it thus possesses (in our context) the least
number of properties required to be semantically polluted. For BR, it only violates invariance under
bisimulations (consider generated submodels), but it is neither global nor valuation-independent.

Second, BR brings nuance within weak semantic pollution and global semantic pollution. Within
weak semantic pollution, BR shows that @aA possesses the highest level of pollution in this category,
leaving Ó aA in between @aA and ‚A. Furthermore, while @aA and x : A are put in the same
category of global pollution, BR shows that @aA is able to express more semantic pollution because
of its stronger context language.

Third, the local-global distinction tears apart a and xRy. While a and xRy seemed equal in their
level of pollution with respect to BR, the four levels tear them apart. Their difference resides in that
a retains locality, while xRy does not. In doing so, xRy becomes the maximal example of pollution
among our collection of formulas.

We conclude that the four levels of semantic pollution create a helpful overview of the differ-
ences between our formula types, while BR remains a useful tool to gain more refined insights
into semantic pollution results. The results show that display calculi are very weakly polluted, hy-
brid calculi possess an intermediate level of semantic pollution (with three different variants), and
labeled calculi have the strongest level of pollution (with two different variants).

5 Philosophical views on semantic pollution

The previous sections gave us a definition of the intuitive phenomenon of semantic pollution of
modal proof systems. As shown in Section 1.1, the discussion in the literature concerning philo-
sophical suitability of semantically polluted proof systems is ongoing. Instead of aiming to solve
the matter in this paper, we will propose that our characterization of semantic pollution is neutral
with respect to the debate on suitability for inferentialism; that it emphasizes importance of the
distinction between implicit and explicit proof systems; and that it is compatible with less often
voiced reasons for desiring syntactic purity.
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5.1 Suitability of proof systems for inferentialism

The literature discusses the suitability of proof systems with extended proof-theoretic syntax for
inferentialism, i.e. the idea that the meaning of logical connectives is established by their inference
rules, instead of model-theoretic semantics (see for instance Schroeder-Heister (2024)). Most no-
tably Read (2015) and De Martin Polo (2024) have provided a philosophical defense of semantically
polluted (in particular, labeled) calculi for inferentialism.

One view in this debate, as advocated by Read (2015) and De Martin Polo (2024), says that
properties such as harmony (and separability, and others) are decisive in determining suitability for
inferentialism, no matter the proof-theoretic language used. Then, labeled calculi are acceptable,
as “[t]he labeled rules [...] for l and ♢ are harmonious, that is, the introduction rules encapsulate
the whole meaning of the modal operators” (De Martin Polo, 2024). Read (2015) emphasizes that
“[t]he semantics lies in the shape of the rules”, and so relational atoms and labels “need not be
thought of as having any meaning themselves”.

A strand of more philosophically-oriented proof theorists argue that proof systems should suit-
ably correspond to our inferential practice (in order to be suitable for inferentialism). This idea
also comes in independently for those who use a proof system to faithfully formalize informal rea-
soning. Its application to inferentialism for instance emerges as Steinberger (2011)’s Principle of
Answerability: “[a]dherence to inferentialism importantly constrains one’s choice of proof-theoretic
frameworks and thus requires one to reject Carnap’s amoralism about logic: the inferentialist must
remain faithful to our ordinary inferential practice”. Not only semantically polluted calculi are
subject to this view, but also syntactically pure proof-theoretic languages: for instance multiple-
conclusion calculi (see Steinberger (2011) and Restall (2005)), and hypersequent calculi (see e.g.
Hjortland and Standefer (2018)). On this view, it is unclear where labeled calculi stand, although
at first sight they seem a rather controversial idealization of modal reasoning in practice.17 These
arguments are burdened by the question of what an ‘acceptable’ idealization is: Dicher (2020) for
instance claims that such a boundary is unhelpful, and any idealization should be acceptable.

Our characterization of semantic pollution in this paper is relatively neutral with respect to these
aspects of inferentialism. Semantic pollution (in terms of satisfying the base requirement, valua-
tion independence, or globalness) nor syntactic purity prevents or guarantees harmony. Concerning
‘principles of answerability’, our definition may at first sight be seen as a proposed ‘border’ for ac-
ceptable (semantically polluted) and unacceptable (syntactically pure) idealizations. Semantically
polluted calculi analyze the use of a connective in a stronger language than the object language:
such strong ‘language contexts’ are perhaps more prone to unacceptable idealization. However, we
discourage such a strict view: strong languages are clearly not guaranteed to be separated from
inferential practice (lots of natural logical languages differ in strength), while weaker languages
can still be shaped artificially and lack correspondence to practice (just consider the debate on
multiple-conclusion calculi (Steinberger, 2009)). In the end, we simply encourage inferentialists
using syntax-rich proof systems to spell out the intended interpretation of the syntax in the context
of inferential practice.

17In terms of the possible world interpretation, there are at least certainly counterexamples. For instance: “Why are horses
necessarily mammals? Not because every horse is a mammal in every possible world. But because the property of being a
horse bears a special relationship to the property of being a mammal.” (Warmke, 2016) As for a temporal interpretation
of labels, Arthur Prior (see (Blackburn, 2006)) for a long time considered the use of labels (in hybrid logic) to promote an
unnatural ‘reasoner-external’ perspective, as opposed to our internal experience of time.
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5.2 The relevance of distinguishing explicit and implicit proof systems

A further justification for the use of labeled rules in inferentialism draws on the distinction between
explicit and implicit rules. In the literature, labeled systems are considered to incorporate the
semantics ‘explicitly’. Explicit semantic elements are made precise by Poggiolesi (2010) as the
idea that sequents containing them are untranslatable to the modal language. Instead, systems
such as nested sequents or tree-hypersequents (that do have an interpretation into the logic), then
import semantic elements implicitly.18 Authors often consider the implicit incorporation of semantic
elements to be syntactically pure (Poggiolesi, 2010; Brünnler, 2010), while (explicit) labeled calculi
are generally considered semantically polluted.

De Martin Polo (2024) and Read (2015) argue that the difference between explicitness and
implicitness is less big than it seems. They argue that there is no actual semantic difference between
them when considered closely — hence, labels should not be considered more semantically polluted
than implicit calculi. The argument in (De Martin Polo, 2024) goes:

“Read notes that in tree-hypersequent calculi, the semantic content is still explicitly
present, but is indicated by the symbols “/” and “;” instead of R. Similarly to Boretti,
he argues that the tree-hypersequent rules for necessity only encode the semantic struc-
ture of modal formulas in an opaque and disguised manner, thus simply obscuring the
semantic apparatus that is more evident in the notation of labeled sequents [...] even
though the apparatus of Kripke semantics is presented differently in tree-hypersequent
systems than in labeled calculi, it is still (i) explicitly displayed (although obscured in
an unconventional notation) and (ii) plays a fundamental role.”

While we remain neutral on the difference between implicit and explicit proof systems regarding
suitability for inferentialism, we here maintain that this difference is relevant regarding the notion
of semantic pollution. As claimed above, it is true that the labeled calculus and the nested or tree-
hypersequent calculus both arrange modal formulas into a graph structure: but this fact by itself
is not enough to claim that their relation to the Kripke semantics is the same. In this paper, we
suggest that semantic pollution arises from the way that the graph structure is described. If it is
described by a language that can express more about Kripke models than the modal language can,
then ‘too much’ detail about the semantics enters the language, and we talk of pollution, and of
an ‘explicit’ calculus. If, like nested and tree-hypersequent calculi, the graph structure is described
by formulas that have an interpretation in the logic (and so a truth condition like that of a logical
formula), then this graph structure has no particular ‘semantic’ nature at all — in any case, it is
no more semantic than the logic itself. This means that we do not think that “in tree-hypersequent
calculi, the semantic content is still explicitly present”. Rather, the semantics is described through
the object language. Of course, it may still be the case that proof-theoretic syntax which has a
logical counterpart, has a different informal meaning (e.g. in inferential practice) than its logical
translation. However, our point here is that the relation to the model theory of the proof-theoretic
syntax and its logical counterpart (by their truth conditions) is in fact the same.

Saying that “/” and “;” display Kripke semantics at the level of tree-hypersequents, is like saying
that ♢ and l display the semantics at the level of the basic modal language. Should we thus con-
sider ♢ and l as semantically polluted? It seems clear that this is not so. Simply as a consequence

18As mentioned, this is similar to the distinction between ‘external’ and ‘internal’ proof systems, see also (Lyon et al.,
2023).
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of its model-theoretic truth conditions, any syntactic element displays the semantics to some ex-
tent. The interesting question for semantic pollution is where the boundary lies: what syntactic
elements do we consider pure (surely, the logical object language) and what syntactic elements do
we consider impure (our proposal is found in the previous sections).

This relates to our conceptual understanding of the different ways in which proof calculi can
describe Kripke frames (see also Poggiolesi and Restall (2012)): labeled systems can explicitly
and globally describe a Kripke frame, while display calculi use a local perspective while allowing
perspective switches along R-connections (i.e., switches between actual worlds). By incorporating
the forward as well as backward perspective, display calculi can describe a Kripke frame better than
the modal language. The tree-hypersequent or nested systems, on the other hand, through their
logical interpretation, only possess the (syntactically purest) local ‘forward’ perspective: everything
is encoded through uses of l.

Note also that this counters the ‘proof-theoretic’ idea that ‘notational variants’ of proof systems
should have an equal level of semantic pollution.19 There exist proof-theoretic translations between
labeled sequents, nested sequents, (tree-)hypersequents and display sequents (see e.g. Ciabattoni
et al. (2021) and Goré and Ramanayake (2014), and the hierarchy of translations defined in (Lyon
et al., 2023)). Now consider for instance a labeled calculus that only allows labeled tree sequents
(so that it is formally now ‘just a notational variant’ of a nested or tree-hypersequent calculus,
in which all structures are already trees). Our proposal will still say that this labeled calculus
is semantically polluted, whereas the nested and tree-hypersequent calculus is not: the labeled
calculus still describes a tree using more expressive power than necessary. It uses relational atoms
and labels that, by definition, can express more semantic information than the nested structure. And
perhaps more importantly: if made true model-theoretically, the labeled tree sequent will actually
indicate a tree-form in the Kripke model, by indicating the specific worlds and relations. A nested
sequent or tree-hypersequent has a tree structure within the sequent, but its model-theoretic truth
at a world (interpreted in terms of disjunction and box) does not enforce this world to be arranged
in a tree inside the model. That is, even though the different proof systems may describe the same
graph arrangement in a sequent, the labeled calculus does this in a semantically polluted way. This
shows that proof translations do not always preserve philosophical values.

Hence, on our approach, the distinction between explicit and implicit notions matters when
defining semantic pollution: it provides a natural formal definition supporting a distinction that
philosophers and proof theorists already make intuitively — and we thus conclude that this distinc-
tion cannot be abolished on the grounds that their semantic content is the same.

5.3 Syntactic purity as an ideal of proof (systems)

Finally, we argue here that there exist clear cases where semantic pollution has philosophical harm,
other than possible harm for inferentialism, and for closeness to inferential practice. First, motiva-
tions of aesthetics, or ideals of proof, are and have always been common in mathematical fields.
Dawson (2006) presents an overview of reasons mathematicians have to reprove a theorem, among
which “to employ reasoning that is simpler [...] than earlier proofs”. Simplicity is a well-known
ideal of proof, where we may distinguish between conceptual simplicity, and formal (computa-
tional) simplicity. In our analysis of proof systems, we can make a similar distinction. labeled

19See (French, 2019) for an analysis of when two logics can be said to be notational variants — note that it is unclear
whether the intuitive use of notational variant here corresponds to this analysis, although this is not the place to further
investigate this.
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calculi may conceptually provide a simple way of analyzing inference rules (for those familiar with
Kripke semantics). However, the ideal of simplicity may also manifest itself in the search for a
proof system in as small a language as possible. I.e., as also noted by Lyon (2021, p. 112), we
might be interested in finding out that there exists a satisfying proof system for modal logic that is
restricted to the modal object language, without any ‘brute force’ or potential clutter from external
syntax. No more than aesthetics (a desire for resource-minimality) is involved in this, and yet it is a
common motivation in mathematics. From this point of view, semantic pollution is in fact undesir-
able. Incidentally, other reasons than aesthetics may still also apply: Lyon (2021) notes that a tree
structure of sequents (that nested sequents or tree-hypersequents guarantee, but labeled sequents
do not) can be necessary for certain proof-search algorithms. In this case, the excess of syntax in
semantically polluted systems can even provide too much freedom for technical applications.

Another ideal of proof (systems) may be, given a model-theoretic semantics for it, that the
proof system and the model theory are sufficiently conceptually separated. This is possibly simply
what Avron (1996) meant with his claim that a proof calculus should be ‘independent’ from any
particular semantics: the fact that we consider proof theory to be an activity that is somehow
separate from model theory. Similarly, soundness and completeness proofs should then show us
a ‘valuable’ insight: instead of giving us two notational variants of the same conceptual approach
to a logic, they should connect a model-theoretic perspective to a (sufficiently different) proof-
theoretic perspective. If not, the ‘proof system’ can be regarded merely as a systematization of
semantic thought. Although not much more than aesthetics seems to validate these preferences, in
a bottom-up approach to philosophy of proof theory, they should be taken seriously.

A different motivation for discarding semantic proof systems, in particular labeled systems, has
to do with impartiality with respect to the background logic. Given a desire for a model-theoretic
semantics, and the natural interpretation of labels into Kripke semantics, there is arguably a sense
in which labeled calculi favor a classicist world-view. Classicists who want to reason with modalities
may be happy to accept labels as concerning time or possibilities. Intuitionists who wish to assign
some interpretation to labels and relational atoms, may struggle to find a satisfying one: labeled
rules would ask them to quantify over worlds (or times), and explicitly refer to states other than
the actual one. This simply may not be acceptable for them, even though modal reasoning should
be a perfectly acceptable activity for intuitionists. An interesting open question relating to the latter
two points (which we leave to future research) is how a proof system is formally independent or
impartial from a particular semantics. That is, perhaps there is an interesting way to say that the
relation of labeled calculi to Kripke semantics is more ‘necessary’ formally, than its relation to other
types of semantics.

6 Conclusion

We have presented a characterization of semantic pollution of proof systems in terms of four levels
of pollution. Our measures suggest that the nature of modal syntax lies in what it can express about
Kripke models, its local view of a model, and direct interaction with basic propositions. Instead, the
properties of higher expressivity than the modal language, a global view of a model, and valuation
independence suggest semantic influence in proof-theoretic syntax.

Our results show that the display calculus is only weakly semantically polluted (by ‚A). The
hybrid calculus, on the other hand, introduces formula types that are weakly semantically polluted
(@aA, Ó aA), but also ones that possess global (@aA) and local (a) semantic pollution. Finally,
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the labeled calculus introduces a globally polluted formula type (x : A) and the only strongly
semantically polluted formula type (xRy). In line with intuitions throughout the literature, then,
the labeled calculus can be seen as possessing the highest level of semantic pollution (among the
calculi that we studied). We concluded that the difference between explicit and implicit proof
calculi is key in our characterization of semantic pollution, and that besides the virtues of polluted
calculi, semantic pollution can just as well have technical and philosophical downsides.

We might also seek a more general analysis of semantic pollution as a distinction between syn-
tactic proof systems and their semantics, with applications to all kinds of logics. Indeed, semantic
pollution might occur in all logical areas where ‘good’ proof systems are hard to find. The mea-
sures of violating invariance results under model equivalences, and being valuation independent,
seem relatively easily transferable to other logics. World invariance seems more tailored to a type
of semantics with different ‘points of evaluation’, although extensions to intuitionistic logics seem
natural. These quick considerations already give reason to think that certain proof systems for
neighborhood semantics (similar to labeled systems) are semantically polluted (see (Dalmonte,
Olivetti, and Negri, 2018), and similarly (Negri, 2016)), as well as a proof system for intuitionistic
predicate logic (see (Baaz and Iemhoff, 2008)).

Besides the extension of semantic pollution to other logics, future research could analyze seman-
tic pollution of modal proof systems for different types of proof systems than the ones we chose to
study; or they could provide additional conceptions of semantic pollution that come with different
measures. These directions could all provide us with a more fundamental understanding of the
difference between syntax and semantics.
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7 Appendix

We here provide the various induction proofs referred to in the paper:

1. ÓaA is invariant under FE-isomorphisms relative to HLV (see Theorem 2 and 3).

2. @aA is invariant under FE-isomorphisms relative to HLV (see Theorem 2 and 4).

3. All formulas in HL are invariant under SCE-isomorphisms (see Theorem 5).

4. All formulas in HLQ are invariant under SCE-bisimulations (see Theorem 6).

The first proof will set the stage for showing that Ó aA is invariant under FE-isomorphisms
relative to HLV . Note that we cannot show that any hybrid formula A has this property, as the base
case where A is a nominal a violates it. The reason we show the general Theorem 2 before Theorem
3 is that the case of lA requires a to be mapped to an arbitrary y (instead of already sending a to
the current world as ÓaA does), in order to apply the induction hypothesis at R-reachable worlds.
We use –FE as a symbol for FE-isomorphism, and –SCE for SCE-isomorphism.

Theorem 2. Suppose M, τ, w –FE M1, τ 1, w1 and M, τ, y –FE M1, τ 1, y1. Then for all A P HLV :
M, τraÞÑys, w ( A iff M1, τ 1

ra ÞÑy1s
, w1 ( A.

Proof. The proof proceeds by induction on A, with an induction hypothesis for B less complex than
A. Assume M, τ, w –FE M1, τ 1, w1, and M, τ, y –FE M1, τ 1, y1. Consider the cases below (we omit the
straightforward cases of conjunction and negation).

• Base case. Clearly, a proposition letter p has this type of invariance under FE-isomorphisms.
For nominals, suppose M, τra ÞÑys, w ( a. Then τra ÞÑyspaq “ w (and y “ w). Now consider
τ 1

ra ÞÑy1s
. As M, τ, y –FE M1, τ 1, y1, and y “ w, it holds that w –FE y1. As M, τ, w –FE M1, τ 1, w1,

it also holds that w1 “ y1. Hence, τ 1
ra ÞÑy1s

paq “ w1, and M1, τ 1
ra ÞÑy1s

, w1 ( a.

• Box. Suppose M, τraÞÑys, w ( lA. We need to show that for all v1 such that Rw1v1, M1, τ 1
raÞÑy1s

, v1 (

A. By the isomorphism, for every such v1 there is an isomorphic world v such that wRv. By
assumption, for these v, M, τraÞÑys, v ( A. Then by the induction hypothesis, for each corre-
sponding v1 it holds that M1, τ 1

ra ÞÑy1s
, v1 ( A. Hence, M1, τ 1

ra ÞÑy1s
, w1 ( lA.

• Satisfaction. Suppose M, τra ÞÑys, w ( @aA. Then M, τra ÞÑys, τra ÞÑyspaq ( A. By assumption,
τra ÞÑyspaq (that is, y) is isomorphic to y1. Then by the induction hypothesis, M1, τ 1

ra ÞÑy1s
, τ 1

ra ÞÑy1s
paq (

A. That is, M1, τ 1
ra ÞÑy1s

, w1 ( @aA.
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• For all. Suppose M, τraÞÑys, w ( @aA. Then M, pτra ÞÑysqa, w ( A for all pτra ÞÑysqa. Note that
this simply equals M, τraÞÑvs, w ( A for all v P W . By the isomorphism, for each v P W we
have a world v1 P W 1 such that M, τ, v –FE M1, τ 1, v1. By the induction hypothesis, and by
surjectivity of the isomorphism, we have M1, τ 1

ra ÞÑv1s
, w1 ( A for each v1 PW 1. In other words,

it holds that M1, τ 1
a, w

1 ( A for all τ 1
a. So, M1, τ 1, w1 ( @aA, and we can also rewrite this as

M1, τ 1
raÞÑy1s

, w1 ( @aA (as the assignment of a does not matter).

• Down-arrow. Suppose M, τraÞÑys, w (Ó aA. Then M, pτraÞÑysqra ÞÑws, w ( A. We can rewrite
this as M, τra ÞÑws, w ( A. Now we apply the induction hypothesis to obtain M1, τ 1

ra ÞÑw1s
, w1 ( A.

Again, we can write this as M1, pτ 1
raÞÑy1s

qra ÞÑw1s, w
1 ( A, so that we obtain M1, τ 1

ra ÞÑy1s
, w1 (ÓaA.

Theorem 3. ÓaA is invariant under FE-isomorphisms relative to HLV .

Proof. Take Theorem 2 and consider the instance where y “ w and y1 “ w1. The theorem then says
that for isomorphic states w and w1, M, τ, w (ÓaA iff M1, τ 1, w1 (ÓaA.

Theorem 4. @aA is invariant under FE-isomorphisms relative to HLV .

Proof. We simply need to prove that for all models M,M1, assignment functions τ, τ 1, worlds w,w1

and variants τa and τ 1
a, if M, τ, w –FE M1, τ 1, w1 then

M, τa, w ( A for all τa iff M1, τ 1
a, w

1 ( A for all τ 1
a

So suppose M, τ, w –FE M1, τ 1, w1, and that for some A P HLV , M, τa, w ( A for all τa. This equals
M, τra ÞÑvs, w ( A for all v P W . By the isomorphism, for each v P W there is a world v1 P W 1

such that M, τ, v –FE M1, τ 1, v1. By Theorem 2, and by surjectivity of the isomorphism, we obtain
M1, τ 1

ra ÞÑv1s
, w1 ( A for each v1 PW 1. Thus, M1, τ 1

a, w
1 ( A for all τ 1

a.

Theorem 5. All formulas A P HL are invariant under SCE-isomorphisms.

Proof. The proof is by induction on A, with an induction hypothesis for formulas B less complex
than A. We only treat the cases of nominals and of the hybrid operators (as the modal cases are
straightforward). Suppose M, τ, w –SCE M1, τ 1, w1.

• Base case. Suppose M, τ, w ( a, so that τpaq “ w. By the requirements of SCE-isomorphisms,
equivalent worlds satisfy the same nominals, and so τ 1paq “ w1, and M1, τ 1, w1 ( a.

• Satisfaction. Suppose M, τ, w ( @aA. Then M, τ, τpaq ( A. By the induction hypothesis, and
the fact that M, τ, τpaq –SCE M1, τ 1, τ 1paq, M1, τ 1, τ 1paq ( A. Hence, M1, τ 1, w1 ( @aA.

• For all. Suppose M, τ, w ( @aA, so that M, τraÞÑvs, w ( A for all v PW . We have to show that
M1, τ 1

raÞÑv1s
, w ( A for all v1 P W 1. By the isomorphism, for each v1 P W 1 we have a world v P

W such that M, τ, v –SCE M1, τ 1, v1. Specifically, for each such pair of worlds, M, τraÞÑvs, w –SCE

M1, τ 1
raÞÑv1s

, w1 holds: changing a’s assignment does not break the SCE-isomorphism, as a is still
sent to equivalent worlds. By the induction hypothesis, and by surjectivity of the isomorphism,
we have M1, τ 1

raÞÑv1s
, w1 ( A for each v1 PW 1. Hence, M1, τ 1, w1 ( @aA.
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• Down-arrow. Suppose M, τ, w (Ó aA, so M, τraÞÑws, w ( A. Then, we also have a strong
isomorphism M, τra ÞÑws, w –SCE M1, τ 1

ra ÞÑw1s
, w1, as a is still sent to equivalent worlds. By the

induction hypothesis, M1, τ 1
raÞÑw1s

, w1 ( A. Hence, M1, τ 1, w1 (ÓaA.

Theorem 6. All formulas A P HLQ are invariant under SCE-bisimulations.

Proof. This proof proceeds in the same way as that of Theorem 5. Note that the base case works
even for bisimulations, as SCE-bisimulations still need equivalent worlds to satisfy the same nom-
inals. We skip the @aA case (which does not work anymore because of possible change in model
cardinality over the equivalence), but the cases of nominals, @aA and ÓaA go through as before.
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