
A general note on categorical models of
abstract physical theories

Marcoen J.T.F. Cabbolet∗

Center for Logic and Philosophy of Science, Vrije Universiteit Brussel

Abstract — Defining an abstract physical theory T as a set of abstract mathematical-
logical formulas with a physical interpretation, this note introduces the notion of a categorical
model of such a theory T by identifying a model with a small category, whose objects
are mathematically concrete set-theoretic models of T that share a common background
language, and whose arrows are model isomorphisms. Specifying such a categorical model
of an abstract physical theory is then a new application of category theory to theoretical
physics, which in a natural way gives rise to new research programs.

1 Introduction

In categorical model theory, the syntactic view on theories—i.e. the view that a theory is a list
of axioms expressed in a formal language [1]—is abandoned : instead, one identifies the notion
of a ‘theory’ with a category of contexts formed by formulas in the language of the theory [2].
Such an identification is usually motivated by the idea of presenting a theory in a way that is
invariant with respect to syntactical choices. By contrast, in this note we preserve the syntactic
view of a theory: we brush aside the idea that there might be equivalent formulations, but we
identify the notion of a ‘model’ with a category whose objects are set-theoretic structures for a
theory and whose arrows are structure isomorphisms.

As the concept of a categorical model of a first-order theory in general may be too broadly con-
strued, we focus at abstract physical theories with a formalization in an existing mathematical-
logical framework. The idea is then that a categorical model of such a theory in a natural way
incorporates relativity: an object of the category is to be associated with a concrete mathemat-
ical model of a physical system in the coordinate system of an observer, and an arrow of the
category is to be associated with a transformation that maps a model of a physical system in
the coordinate system of one observer to a model of the same physical system in the coordinate
system of another observer.

The next section formally introduces the notion of an abstract physical theory formalized in
a mathematical-logical framework, the sections thereafter introduce categorical models thereof
and discuss how these give rise to research programs.

2 Abstract physical theories

The basic idea of an abstract physical theory is that it expresses physical principles in the form
of mathematically abstract, well-formed-formulas in a mathematical-logical language. Below we
give a formal definition, on which we elaborate in a number of remarks.

∗e-mail: Marcoen.Cabbolet@vub.ac.be

1



Definition 2.1. Let S be a foundational theory for mathematics, such as ZF, with formal
language L; then an abstract physical theory T formalized within S , or shortly an
abstract physical theory T, consists of

(i) the language L(T ) for T , which is a sublanguage of L determined by

• a nonempty set UT , whose elements are called individual constants of T ;

• a nonempty set RT , each element of which is an n-ary relation R ⊂ (UT )n of T ;

(ii) a collection of formal axioms of T :

• for every abstract constant φ ∈ UT , an axiom ∃x(x = φ);

• for every n-ary relation R ∈ RT , an axiom ∃x(x = R ∧R ⊂ (UT )n);

(iii) a collection of well-formed formulas in L(T ), which are called the physical axioms of T ;

(iv) a collection of statements in ordinary language, called the interpretation rules of T ,
which give a physical meaning to the individual constants and relations of T .

Let ΣT be the total collection of formal and physical axioms of T ; a theorem of T is then any
formula Ψ that can be inferred from ΣT within the framework of S as in

ΣT `S Ψ (1)

and the condition then has to be satisfied that all theorems that can inferred from the physical
axioms of T by eliminating all quantifiers, are expressed in terms of abstract constants of UT .
�

Remark 2.2. In the first place an abstract physical theory consists, thus, of a list of well-
formed formulas: the use of the term ‘theory’ is thus justified from the perspective of the
aforementioned syntactic view on theories. However, an abstract physical theory is a special
kind of theory, namely one whose axioms are expressed in a mathematical-logical language: as a
consequence, individual constants of the theory are things in the mathematical universe. Such a
theory T is, thus, not ‘just’ a first-order theory: in general, individual constants of a first-order
theory do not have that ontological status! �

Remark 2.3. In the second place the adjective ‘physical’ indicates that the collection of axioms
of an abstract physical theory is complemented with a collection of interpretation rules: without
these, the physical axioms would have no physical meaning whatsoever. That means that in
the context of an abstract physical theory, we have to distinguish between the material object,
i.e. the (postulated) thing in the physical universe that is referred to, and the formal object,
i.e. the thing in the mathematical universe that refers to the material object. Tegmark’s view
that mathematics is an external reality [3] is thus rejected: there is no physical reality to the
mathematical universe—mathematics provides the language for physics and that’s it. �

Remark 2.4. Last but not least, the adjective ‘abstract’ indicates that the individual constants
of an abstract physical theory that refer to components of the physical universe are abstract
objects in the mathematical universe. Now the ontological status of abstract constants can
probably be debated forever, but here the following position is taken. A formal axiom ∃x(x = φ)
of an abstract physical theory T guarantees that there is an object in the mathematical universe
whose name is φ, but without elaborating on which object that precisely is. The important
point here is that we do not have assumed new objects: therefore L(T ) is merely a sublanguage
of L in which we have assumed new symbols for existing objects. Examples of abstract objects
in the framework of ZF are abstract sets, i.e. sets whose elements are not specified: these stand
in contrast to concrete sets, i.e. sets whose elements are specified (such as the empty set or
the set of natural numbers). At this degree of abstractness, the nature of the correspondence
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specified by an interpretation rule is thus that the formal object designates a material object
without representing its state, that is, without containing information of (expectation values of)
quantitative properties of the material object: with an abstract physical theory we want to have
the largest possible degree of freedom of expression—we want to express physical principles that
hold regardless of the properties (like position, momentum, etc.) that the involved components
of the physical universe have in the reference frame of an observer. �

Example 2.5. The Elementary Process Theory (EPT), published in [4], is an example of a
fully specified abstract physical theory. The language L in which the EPT is formulated is that
of set matrix theory, cf. [5]. A mathematically abstract object in this framework is thus, e.g., a

2× 1 matrix

[
x
y

]
whose entries x and y are abstract sets. The matrix is then not a set. �

Example 2.6. Newtonian mechanics, classical electrodynamics, special relativity, general rel-
ativity, and standard quantum mechanics are examples of theories that do not qualify as an
abstract physical theory. The crux is that the condition of Def. 2.1 is not satisfied: the indi-
vidual constants of these theories that refer to components of the physical world are concrete
mathematical objects, not abstract ones as required. As a consequence, the EPT of Ex. 2.5 has
a higher degree of abstractness than the theories just mentioned. �

3 Categorical models

An abstract physical theory yields predictions, but due to its degree of abstractness (see Rem.
2.4) these are not experimentally verifiable. E.g. the EPT of Ex. 2.5 predicts that new building
blocks will be created from existing ones, but at this level of abstractness it does not predict
where the new building blocks can be found: as such, the prediction is not experimentally
verifiable. Given that in physics only verifiable predictions are of interest, one might therefore
be inclined to think that abstract physical theories are therefore not interesting for physics. But
that’s wrong thinking. A concrete set-theoretic model of an abstract physical theory, namely,
does yield verifiable predictions: an abstract physical theory can thus be tested by testing its
models (refined falsificationism). Below we first give a definition of a concrete set-theoretical
model, and then we argue that instead a model of an abstract physical theory is best identified
with a category.

Definition 3.1. Let T be an abstract physical theory; then a concrete set-theoretic model
M of T is an interpretation of the individual constants and relations of T in a concrete set-
theoretical domain D such that the interpretation of the axioms of T in the language of M are
true in M . The interpretation function is a function I : L(T )→ L(M) such that

(i) every abstract object φ ∈ UT that designates a material object is interpreted as a concrete
object I(φ) ∈ I[UT ] ⊂ D representing the state of that object in the reference frame of an
observer;

(ii) every n-ary relation R ⊂ (UT )n is interpreted as a relation I(R) ⊂ I[UT ]n for which

〈φ1, . . . , φn〉 ∈ R⇔ 〈I(φ1), . . . , I(φn)〉 ∈ I(R) (2)

(iii) for any axiom Ψ of T , its interpretation I(Ψ) in the language L(M) of M is true in M :

M |= I(Ψ) (3)

�
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Remark 3.2. If we are very strict in applying the syntactic view on theories and models—
and that is our intention here—then specifying a single set-theoretical model M of an abstract
physical theory T will only yield verifiable predictions in the coordinate system of one observer.
For example, in accordance with clause (i) of Def. 3.1 we have that the initial state of a system is
a single point-particle at position X0 in the coordinate system of an observer O with momentum
~p0, and the model M predicts that after time t the state of the system is that the point-particle is
at position X1 in the coordinate system of O with momentum ~p1: this is a verifiable prediction.
But for another observer O′ the initial state of that same system will be a single point-particle at
some position X ′

0 in the coordinate system of O′ with momentum ~p′0, and the predicted state of
the system will be that the point-particle is at a position X ′

1 in the coordinate system of O′ with
momentum ~p′1. The model M , however, does not contain the initial state of the system in the
coordinate system of O′: it only contains the initial state of the system in the coordinate system
of O. And the model M is incapable of predicting what the values of the aforementioned position
X ′

1 and momentum ~p′1 will be: a single set-theoretic model of an abstract physical theory is thus
insufficient because it can never predict relativity of spatiotemporal characteristics of motion.
That provides the motivation for introducing the notion of a categorical model of an abstract
physical theory: this does contain a model of a physical system for every observer. �

Definition 3.3. Let T be an abstract physical theory; then a categorical model of T is a
(small) category C for which

(i) the collection of objects of C is a family {Mi}i∈F1 of concrete set-theoretic models of T ,
such that each Mp in {Mi}i∈F1 is specified in a common background language L(C );

(ii) the collection of arrows of C is a family {Aj}j∈F2 of structure isomorphisms, so that for
any arrow Ak in {Aj}j∈F2 there is a domain Mp ∈ {Mi}i∈F1 with interpretation function
Ip and a codomain Mq ∈ {Mi}i∈F1 with interpretation function Iq such that

• Ak bijectively maps the universe Ip[UT ] to the universe Iq[UT ];

• for any n-ary relation R ⊂ (UT )n of T we have

(Ak(α1), . . . , Ak(αn)) ∈ Iq(R)⇔ (α1, . . . , αn) ∈ Ip(R) (4)

�

Example 3.4. A categorical model of the EPT (from Ex. 2.5) has been fully specified in
[6]. Relativity is then incorporated in the categorical model, as every Lorentz transformations
between coordinate systems of observers corresponds with an arrow of the category.

Remark 3.5. The semantic view on theories is that a theory is a collection of models [7]. So
from the perspective of this semantic view, the collection of objects of the category C of Def. 3.3
form a mathematically concrete theory T ′. It should be noted, however, that T ′ is constructed
by directly specifying the collection of models {Mi}i∈F1 : that implies that no axiomatization
of T ′ has been developed. In the case of Ex. 3.4 the collection of models corresponds to a 5D
unification theory of the EPT and Special Relativity. �

Remark 3.6. Clause (i) of Def. 3.3 resembles ‘standard’ categorical model theory in the sense
that each model Mp in {Mi}i∈F1 is a context consisting of formulas in the language L(C ). But
not every possible context is an object of C : only those contexts are considered that qualify as
a set-theoretic model of T according to Def. 3.1. �

Remark 3.7. Likewise, each arrow Ak in {Aj}j∈F2 is an isomorphism, but not every possible
isomorphism between the objects of the category C is an arrow. There are only isomorphisms
between models that concern the same physical system. To get a grasp of what that means,
consider again the physical system of Rem. 3.2. We thus have a model M1 in which the initial
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state S0 of the system is a point-particle with position X0 and momentum ~p0 in the coordinate
system of observer O, and in which the state S1 of the system is the point-particle with position
X1 and momentum ~p1 in the coordinate system of O. The categorical model then contains a
model M ′

1 that describes the same physical states S0 and S1 in the coordinate system of the
observer O′: there is, thus, an arrow A1 that transforms the model M1 to the model M ′

1: if we
know M1 and A1, then we can predict M ′

1—note that this is verifiable because O′ can check
whether the particle indeed pops up at position X ′

1.
However, under different conditions (e.g. different gravitational and electromagnetic fields),

the same initial state S0 will evolve to a different state S1′: the categorical model thus also
contains a model M1′ in which the initial state S0 evolves to a state S1′ where the point-particle
has position X1′ and momentum ~p1′ in the coordinate system of O. Although M1 and M1′ are
isomorphic mathematically, the category contains no arrow A : M1 →M1′ because M1 and M1′
do not concern the same physical system. But of course, the category C does contain a model
M ′

1′ and an arrow A2 : M1′ → M ′
1′ such that M ′

1′ describes the evolution of the state S0 to S1′
in the coordinate system of the observer O′.

Thus speaking, both M1 and M1′ are models of the abstract physical theory T , but at most one
of them corresponds to reality as seen from the perspective of observer O: which one depends
on the actual conditions. �

4 Research programs

Once an initial categorical model C0 has been developed, an abstract physical theory T corre-
sponds in a natural way with a research program in theoretical physics—here the term ‘research
program’ is used in the sense as meant by Lakatos [8]. In [6] a research program based on the
EPT has been set forth, but below we specify hard core, positive and negative heuristics of such
a research program in general terms.

The hard core of the research program consists at least of a foundational theory for math-
ematics that corresponds with the language L in Def. 2.1 and of the abstract physical theory
T : the latter is then considered to be fundamental—that is, the physical axioms of T are the
fundamental laws in this research program. This may be supplemented by some examples of
how T applies, at an abstract level, to real world problems. This hard core already corresponds
to what Kuhn called a paradigm (disciplinary matrix) [9].

The natural positive heuristic is to develop successors C1, C2, ... of C0 that are theoretically
and empirically progressive. Lakatos has defined notions of theoretical progression and empirical
progression for theories [8], but these notions can be defined similarly for categorical models [6]:

Definition 4.1. Let T be an abstract physical theory; then a categorical model Cn+1 of T
is theoretically progressive compared to a categorical model Cn of T when not only all
observations, which could be expressed as predictions in the language of Cn, can also be expressed
in the language of Cn+1 but also some observations, which could not be expressed as predictions
in the language of Cn, can be expressed in the language of Cn+1. Likewise, a categorical model
Cn+1 of T is empirically progressive compared to a categorical model Cn of T when in the
framework of Cn+1 predictions can be formulated that are impossible in the framework of Cn

and some of these predictions have been verified. �

The notion of empirical reduction, introduced by Rosaler in [10], is then important for comparing
a categorical model C of an abstract physical theory T to an existing scientific theory T ′.

Definition 4.2. Let C be a categorical model of an abstract physical theory T ; then C reduces
empirically to an existing scientific theory T ′ if and only if for every experiment that has
confirmed a prediction of T ′, the experimentally successful predictions of T ′ can be reproduced
by C . �
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Note that only the empirically successful predictions of T ′ have to be reproduced by C . Also,
note that T ′ does not have to be an axiomatized theory: Def. 4.2 holds for a scientific theory
in the sense of a generally accepted body of explanatory principles that has been tested by the
scientific method—in that sense, e.g. quantum electrodynamics (QED) is a scientific theory
although it is not axiomatized. With that definition of empirical reduction, we can think of an
abstract physical theory T as a unifying scheme if it has a categorical model C that reduces
empirically to two existing theories T ′

1 and T ′
2 that are known to be irreconcilable. For example,

suppose the EPT would have a categorical model that reduces empirically to QED and general
relativity (GR): although a unification of QED and GR—in the sense of a single theoretical
framework in which QED and GR are both universally valid—is impossible, the EPT would
then be a unifying scheme with the unifying principles (the physical axioms of the EPT) at a
more abstract level.

The natural negative heuristic is to refrain from developments that are inconsistent with
the physical axioms of the theory T in the hard core. For example, the EPT is inconsistent
with standard quantum mechanics (QM): then there is no point in attempting to develop a
categorical model of the EPT that unifies the EPT and QM. Note that this is something else
than developing a categorical model of the EPT that reduces empirically to QM!
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