
Chapter 1

An Historical Perspective on

Duality and Category Theory:

Hom is where the heart is

Jean-Pierre Marquis1

These functors are not independent; there exists a natural equivalence

of the form

↵ : Hom( ! , ) " Hom( ,Hom( , )).

D. Kan, Adjoint Functors

1.1 Introduction

Let us start with an informal and vague claim: a duality is a type of symmetry
between two systems of codependent things involving an inversion. There. A claim
so general that it cannot be false, and so vague that it cannot be true. But it is
heuristically useful. It directs our thinking towards certain key components that
are intrinsic to dualities.

In the context of category theory, the word ‘duality’ appeared embedded with
the main concepts of the discipline right from its official birth in Eilenberg and
Mac Lane (1945). In this original apparition, it had a simple meaning. Given a
category C, the dual category Co of C has as its objects the same objects as those
of C, and f o : Y ! X is a morphism of Co if and only if f : X ! Y is a morphism
of C. Composition of morphisms in Co is defined accordingly. Informally, the dual
of a category is basically the same as the original, but with the arrows inverted.
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Clearly, a category C is isomorphic to its double dual (Co)o. This is a type of
symmetry between codependent systems involving an inversion. Literally. But it
is hard to see what it might have in common with what mathematicians usually
call dualities, except, perhaps, when it is looked at from the point of view of our
very general and vague claim. There is nonetheless some sort of general mechanism
at work here that resembles what one finds in existing dualities. Be that as it may,
this notion of the dual of a category was at first innocuous and, as such, if we were
given only this definition, we might wonder what is the point of bringing it up.
And as we will see, it was at first merely a technical, formal device with barely no
mathematical content.

There might be a possible world in which the whole story ends here and were
we inhabitants of this world, our chapter would be very short indeed. But in our
world, things are more complicated and more subtle, yielding a rich, intricate and
infinitely more interesting story. And thus, in the real world, our chapter is long,
in fact, very, very long.

Despite its length, it goes without saying that we could not cover everything.
So, let us immediately say what we are not going to do. The history of the in-
teractions between the concept of duality, variously interpreted, and the notions
of category theory, involves mathematicians from different communities and back-
grounds, from 1945 to this day and onwards. Ours is not a social history, or a
comparative study of the ways various communities dealt with these interactions.
We will not concentrate nor elaborate on the social, political or intellectual cli-
mate of the various periods, nor will we examine the personalities and characters
of the mathematicians involved. We will make sporadic remarks here and there,
but nothing systematic. We leave these valuable projects to someone else.

We basically started this project from the end, but developed the narrative
mostly in a chronological order, following salient conceptual threads. The end
that we started with was clear: by the end of the 1970s, category theorists had
captured the structural components of a certain type of classical dualities, namely
Pontrjagin and Stone dualities. They had identified the global, abstract categorical
components as well as the specific, context dependent, components that underly
these dualities. The formal machinery and the conceptual mechanisms involved
were laid bare. Not only could they explain the conceptual, formal and structural
arrangements that made the results possible, they could also “predict”, so to speak,
new dualities. At the core of this engine one finds the Hom functor2. In a certain
sense, it fuels the whole process. We wanted to travel backwards and find how and
what led to these results.

But the territories we explored were more difficult to traverse than we antici-

2It would certainly be interesting to write a monograph on the role of the Hom functor, both
internal and external so to speak, in all of mathematics, given its omnipresence. It is the key to
even the simplest dualities, for instance between a Þnite dimensional vector space (over R, say)
and its dual. Once the functorial character of Hom is unraveled in the categorical context, it can
be exploited accordingly and, in a sense, an important part of the story we are about to report
amounts to this exploitation.
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pated. Many surprises awaited us. And so, along the way to our end, we harvested
unexpected fruits. Indeed, duality took different forms at different times and had
to take these different forms for the general analysis of these classical types of du-
alities to become a reality. Furthermore, all these interactions between the various
kinds of duality in category theory also played a key role in the development of
category theory itself. It is stunning to observe how important the various guises of
duality were in the maturation of category theory. In a sense, the various embod-
iments of duality are at the very core of category theory itself. The latter would
not be what it is without the former.

Let us underline immediately that the resulting mathematical analysis of the
Pontrjagin and Stone type dualities is not simple and does not lead to more simple
proofs of known results. The epistemic gain lies elsewhere: one is able to grasp the
whole abstract conceptual structure, together with its formal components and the
conceptual dynamics. Furthermore, it is a unifying framework. And here, one has
to be clear about the type of unity brought about. It is not merely an ontological
unity: the abstract structures in which the classical phenomena are embedded, are
constructed in a categorical universe and they are, to a certain extent, independent
of certain details of a traditional set-theoretical foundational framework3. However,
this ontological unity, important as it is, hides crucial aspects inherent to the
abstract structural unity.

For this unity carries also with it at least four epistemic gains. First, let us
mention the classical and obvious epistemic bonus to all dualities: it cuts the work
of mathematicians by one-half. You prove a theorem and you get one for free, you
perform a calculation and you get one for free, you build a model and you get
one for free. In other words, it increases one’s productivity by two. Second, the
classical dualities find a natural place in a larger conceptual structural domain, a
domain that contains its own inferential resources, and those resources are at play
in all the classical dualities and can therefore be used, modified and exploited in
various ways. Third, the new conceptual domain reveals the necessity of certain
features that could have been seen as being contingent otherwise. This forces us
to reconsider how these dualities work, how they arise from the interaction of
certain components that are now explicit. Fourth, the new conceptual domain
allows one to explain and understand how these dualities emerge from a global
but explicit structural context. And here, we do not have in mind a simple list of
necessary and sufficient conditions, as one usually finds in a mathematical theorem.
The abstract structure and its inherent dynamics, so to speak, together make
the logico-epistemic picture. Fourth, not only is it possible to find new dualities
once the abstract framework and its dynamics are revealed, it is also possible
to transpose the whole toolbox to different contexts and find dualities in new,

3This claim would deserve to be developed and explained, but we will not do so here. As
always, abstract structures are part of a conceptual system and are never completely independent
of global features of the foundational framework they are embedded in. But the fact remains that,
they do possess an ontological autonomy Ð largely based on a proper linguistic and conceptual
framework Ð that cannot be discarded.
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different contexts. At this stage, a conceptual technology is available and can be
used as such.

As should be clear by now, the purpose of this paper is to explore, in as
much detail as possible, the historical development that led to the analysis of the
Pontrjagin and Stone type dualities in a categorical framework.

More caveats

But before we plunge in the history, additional caveats inherent to such enterprises
have to be laid out.

As we have already mentioned, our analysis does not pretend to be mathe-
matically and historically exhaustive4. It is, on the contrary, highly selective. We
apologize beforehand for omissions, lacunae and shortcuts, and in particular we
ask forgiveness to all the mathematicians who have contributed to this story but
that we have failed to mention. The subject is part of larger historical studies
on and around categories, for instance in Corry (2004), Krömer (2007), Marquis
(2009), and Rodin (2014), but as far as we know, apart from Krömer and Corfield
(2014), there is very little philosophical and historical literature on duality and
category theory as such5.

Second, in our mind, the interactions between duality and category theory
clearly illustrate one of the facets of structuralism in contemporary mathematics,
in the spirit of Bourbaki. It can be claimed that in his monumental work, Bour-
baki presented and applied what can be called the structuralist imperative : 1. every
type of structure must be accompanied by an appropriate notion of isomorphism;
2. every proof of a theorem about structures of a certain type must be done up to
isomorphism6. The structuralist imperative extends to categories, although not in
the way expected, since the notion of isomorphism for categories is not the usual
set-based notion. It is, rather, the notion of equivalence of categories. The clas-
sical Pontrjagin and Stone type dualities are expressed in terms of isomorphisms
of structures. When we move to the categorical framework, these isomorphisms
become part of an equivalence of categories together with additional structural
data. Thus, to cast dualities in a categorical framework is to express them in a
structuralist fashion and to exploit the structural components of the situation. To
say that classical dualities are explained when formulated in categorical dressing
is to endorse a structuralist view of pure mathematics and a structuralist view of

4Such an analysis will require comprehensive searches in archival funds. To give but one
example of work that we had to put aside: the reader will not Þnd an analysis of the work done
by the Russian school, for instance by Fuks, Levin and others, in the early 1960s, although it
was signiÞcant and inßuential.

5The paper by Kršmer and CorÞeld (2014) does cover some elements of what we are doing
here. Although our analysis and theirs intersect on various aspects of the situation, we diverge
on certain points.

6 If this imperative seems to have been internalized by the following generations of mathe-
maticians, the foundational challenges that it brings are still open. See, for instance, Marquis
(2020).
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explanations – if there are any – in mathematics. Thus, we have a philosophical
perspective to push and we do so unabashedly.

The latter point is directly related to our third point. As is well-known and
as we will see, dualities can be expressed in different ways, at different levels and
with different means7. In fact, one of the challenges we face is to come up with a
theoretical analysis and a typology of the different kinds of dualities one finds. As I
write, there is no such thing, but there are, as we will also indicate, partial attempts
and syntheses available. Be that as it may, one interesting aspect that comes up in
our history has to do with the place duality occupies between metamathematics
and mathematics. This place also showed up early in the context of the interac-
tions between duality and category theory. Thus, focusing on duality also allows
us to show how the status of category theory evolved in the 1950s and the 1960s,
oscillating between a metamathematical role and a mathematical role. Some math-
ematicians, for instance André Weil, wanted to keep categories to a very restricted
metamathematical function, whereas others, like Kan and Grothendieck, saw cat-
egories, functors and natural transformations as genuine mathematical concepts.
Lawvere wanted to put categories at the very foundations of mathematics. In the
end, the metamathematical, mathematical and foundational interacted with one
another, but in specific cases, it is sometimes necessary to clearly recognize what
role they play in that particular context. This is not different from the case of sets
and set theory, since sets clearly appear in metamathematics, mathematics and
the foundations. The latter does not seem to generate confusion and it should be
the same for categories.

The plan, at last

We will proceed as follows. We will naturally start with the original paper by Eilen-
berg and Mac Lane, but from that point on, we will organize our historical analysis
around chosen themes. We will first look at the search, initiated by Mac Lane but
raised by Eilenberg and Steenrod in algebraic topology, for self-dual categorical
structures to do parts of mathematics that are characterized by a certain kind of
duality. That thread leads us directly to Buchsbaum, Grothendieck and Heller.
We pause to take a quick look at Kan’s early work on adjoint functors, since it
constitutes a turning point both for category theory itself and its links to dualities.
We then move to Mac Lane’s more general program, namely the idea of chasing
concepts, theorems and proofs in dual structures, or rather how this suggestion
was taken up by Eckmann and Hilton. Historically, these two threads intersect
towards the end of the 1960s in Quillen’s work, although we will not look at the
latter, despite its importance. Our third theme is the usage of dual categorical

7Even dualities in projective geometry can be looked at from a categorical point of view and
with fruitful results. See, for instance, Faure and Fršlicher (2000). Not surprisingly, Faigle in
his review of the latter book, claims that Òwithin this framework [i.e. the categorical framework]
the book is able to capture a large part of the structural theory of projective geometryÓ (Faigle,
MR1783451).
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structures to develop mathematics (and metamathematics). The paradigm case
that served as a model was Grothendieck’s work in algebraic geometry, although,
as we will see, Grothendieck himself never explicitly thought of this general set-up
as a duality. But we will also look at Morita’s work in algebra, for although it was
less influential at first, it clearly constitutes an original link between categories
and duality. Finally, our last thread brings us back to the 1950s, more specifi-
cally to general topological structures and their relations to algebraic structures.
It is in this context that all the previous concepts and ideas are developed and
exploited, first by Isbell and Pultr, on the one hand, and Hofmann and Keimel,
on the other hand, after Lawvere’s work and suggestion, and synthesized and ex-
panded by various mathematicians in the 1970s to provide categorical analyses of
classical dualities. It seems natural to close with three syntheses, namely Lambek
and Rattray (1979), Porst (1979) and Johnstone (1982).

1.2 Eilenberg & Mac Lane 1945 : the vocabulary

In their original paper entitled General Theory of Natural Equivalences, Eilenberg
& Mac Lane deal with the notion of duality in two places with two very different
meanings. The first one is the notion of the dual of a category. The second is in
the context of algebraic topology, more precisely in connection with homology and
cohomology theories. We will look at these two in turn.

1.2.1 The dual of a cateogry

Eilenberg & Mac Lane did introduce the notion of the dual of a category C. It is
important to understand why and where they did it, for it does not appear where
one might expect it, particularly from a contemporary perspective. Their original
paper is divided into five chapters, together with an introduction and an appendix,
which then comprises sections. The main chapters are:

I. Categories and Functors;

II. Natural equivalences of functors;

III. Functors and Groups;

IV. Partially ordered sets and projective limits;

V. Applications to topology.

The first chapter on categories and functors has 6 sections:

I.1. Definition of categories;

I.2. Example of categories;

I.3. Functors in two arguments;

I.4. Examples of functors;



Jean-Pierre Marquis 7

I.5. Slicing of functors and

I.6. Foundations.

From a contemporary perspective, it would be natural to think that the
notion of the dual of a category would show up in section I.1, that is in the very first
section. It does not. We thus move to the second chapter on natural equivalences
and functors, which has seven sections. Here is the original numbering:

II. 7. Natural transformations;

II.8. Categories of functors;

II.9. Composition of functors;

II.10. Examples of transformations;

II.11. Groups as categories;

II.12. Construction of functors by transformations;

II.13. Combination of the arguments of functors.

The notion of the dual of a category is finally given in section II.13! This is re-
markably late in the presentation and it shows that for Eilenberg & Mac Lane,
the concept was playing a minor role in the theory.

When they introduced the notion of functor, Eilenberg & Mac Lane defined it
for two arguments. They were thus forced to specify that such a functor is covariant
in the first variable and contravariant in the second variable. More precisely, if
F (X, Y ) is a functor from the categories C, D to the category E8, then given
mappings f : X 1 ! X 2 in C and g : Y1 ! Y2 in D, F (f, g ) : F (X 1, Y2) !
F (X 2, Y1) and the composition of arrows is defined accordingly. The paper then
proceeds from then on to the other sections of chapter I.

The first chapter merely sets up the stage for the central notion: natural
transformations. It is only in the very last section of that chapter that one finds
the notion of the dual of a category. For a contemporary reader, section II.13 is
definitely odd. Eilenberg & Mac Lane first introduced the (finite) product of n
categories in the obvious way and by using the latter, they showed that, given
categories C1, . . . , Cn and D1, . . . , Dm , any functor F covariant in C1, . . . , Cn and
contravariant in D1, . . . , Dm with values in E can be “reduced” to a functor G in
two arguments, covariant in C1 "á á á"Cn and contravariant in D1 "á á á"Dm with
values in the same category E. It is at this stage and at this stage only that they
introduced the notion of the dual C! of a category C. The definition of the latter is
essentially the same as the definition one finds in any textbook on category theory,
although with slight deviations. Here it is:

8We respect the original language here, for the notion of a product of two categories is not
given or used in that part of the paper. It is given only later, in the section we are interested in,
namely section II.13.
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DeÞnition 1. Given a categoryC, the dual category C! has the same objects as
C; the mappings f ! of C! are in a one-to-one correspondencef ! f ! with the
mappings ofC. If f : X 1 ! X 2 in C, then f ! : X 2 ! X 1 in C! . Composition is
given by the equation

f !
2 # f !

1 = ( f 1 # f 2)! ,

if f 1 # f 2 is deÞned inC.

Eilenberg & Mac Lane immediately pointed out that (C! )! is isomorphic to
C and that finite products of dual categories

!
i C!

i are isomorphic to the dual
of the products of the original categories (

!
i Ci )! . Then comes the observation

that any contravariant functor F : C ! D can be regarded as a covariant functor
F : C! ! D and vice versa. Armed with these notions, the main theorem of the
section is stated thus:

Theorem 1. Every functor F covariant in C1, . . . , Cn and contravariant on D1, . . . , Dm

may be regarded as a covariant functorF " on (
!

i Ci ) " (
!

j D!
j ).

That is it. That is the main result that uses the notion of the dual C! of a
category C. Its only function is to eliminate contravariant functors in the theory.
By using the opposite or dual of a category C, it is possible to consider only
covariant functors. This ‘trick’ will be used by both mathematicians throughout
their careers and writings. There is no other mention of the concept in that paper.

Duality is the title of section V.28, in the applications of natural transforma-
tions to topology, more specifically algebraic topology. In this chapter, Eilenberg
& Mac Lane defined abstract complexes K in the sense of Mayer which, accord-
ing to them “seem to be best adapted for the exposition of the homology theory
in terms of functors.”(Eilenberg and Mac Lane, 1945, p. 284) Of course, in that
paper, Eilenberg & Mac Lane did not give an axiomatic presentation of homology
theory. They did construct homology groups as functors and they did the same
for cohomology groups. In their original paper, the constructions are not directly
dual to one another, for the categories on which they are defined are different. A
homology functor takes as arguments an abstract complex and a discrete abelian
group, whereas a cohomology functor takes as arguments an abstract complex and
a topological abelian group. Eilenberg & Mac Lane were well aware that this fact
is a consequence of their choice of complexes to start with and that, by restricting
the complexes to “finite” ones, the functors are defined over the same categories.

1.2.2 Pontrjagin-type duality

Armed with these definitions, they set up the machinery to express what they
called “the Pontrjagin-type duality”. Let G be a discrete abelian group, Char(G)
be its compact character group and K a complex (in their sense). After having
established a series of isomorphisms, Eilenberg & Mac Lane ended up with a
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natural isomorphism

H q(K, Char(G)) " CharHq(K, G )9.

Of course, this is not strictly speaking the classical Pontrjagin duality theorem, but
the main point, for the authors at least, is that this correspondence is natural 10.

Thus, from Eilenberg & Mac Lane’s original paper on natural transforma-
tions, it is hard to imagine that duality would quickly become an important issue
in the applications of the categorical language11. By 1950, the mathematical com-
munity will be explicitly presented with new possibilities.

1.3 Doing Mathematics in Self-Dual Structures

1.3.1 Mac LaneÕs Duality for groups

In an address given in 1948, published in Mac Lane (1948) and later expanded in
a long paper in Mac Lane (1950), Mac Lane presented a categorical analysis of
duality for groups12. It is worth quoting the opening paragraph of the 1948 paper:

It has long been recognized that the theorems of group theory display a
certain duality. The concept of lattice gives a partial expression for this
duality, in that some theorems about groups which can be formulated in
terms of the lattice of subgroups of a group display the customary lattice
duality between meet (intersection) and join (union). This duality is not
always present, in the sense that the lattice dual of a true theorem on
groups need not be true; for example, a Jordan-Holder theorem holds
for certain ascending well-ordered infinite composition series, but not
for corresponding descending series. Moreover, there are other striking
group theoretical situations where a duality is present, but is not readily
expressible in lattice-theoretical terms. (Mac Lane, 1948, p. 263)

It is important to keep in mind that Mac Lane explicitly refers to the usage
of lattice theory to express a certain duality13. For this connection will somehow
recede from the scene and will come back in full strength later. To illustrate how the

9Warning: when Eilenberg and Mac Lane wrote their paper, homology was written with an
exponent H q and cohomology with an index H q, the opposite of the contemporary notational
convention. We are using the contemporary notation here.

10 In the form given by Eilenberg & Mac Lane, the theorem was proved by Kolmogoro! 1935,
see section??.

11 Thus, HiltonÕs claim in (P. Hilton, 1980) that Ò... a particularly important aspect of their
work [Eillenberg & Mac LaneÕs] was that of the duality which is automatically present whenever
categorical concepts are in questionÓ seems to us to be too strong, at least with respect to the
history of the subject.

12 See also Kršmer (2007) and Marquis (2009) who also look at Mac LaneÕs work, but from
slightly di!erent perspectives than the one developed here.

13 Mac Lane must have in mind the work of Ore (1935) and Ore (1936) and, of course, Birkho!
(1940).
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lattice-theoretical point of view is inadequate, Mac Lane gives as an example the
notion of a product of two groups G and H in terms of the usual universal property
and the dual notion, namely the coproduct of G and H . Mac Lane immediately
points out that although the deÞnitions are dual, however the proofs that such
objects exist in a category are not dual to one another. This is a theme that
will come back regularly from then on in the interaction between duality and
categories. Another surprising element is that Mac Lane wants to talk about all
groups, although as Mac Lane indicates himself in the paper, he was led to this
work after reading Eilenberg and Steenrod (1945) on axiomatic homology theory.
Indeed, in the last section of their paper, Eilenberg and Steenrod pointed out that
“cohomology can be axiomatized in the same way as homology. It is only necessary
to reverse the directions of the operators ! and f ! in the above axioms.” [p. 120]
“Reverse the directions of the operators” basically means reversing the arrows in
an appropriate category. This remark will be taken up again and expanded in
their book Eilenberg and Steenrod (1952), but it is precisely on the fact that
one merely needs to reverse the arrows in the category of abelian groups to move
from homology to cohomology that Mac Lane concentrated his energy on. Thus,
the original problem stems from algebraic topology and the relationships between
homology and cohomology groups. Mac Lane wanted to look at groups in general.
Notice also that this is the first time that the definitions of the categorical product
and coproduct are given in print.

We will not dwell on the 1948 paper, since MacLane (1950)’s paper “Duality
for Groups” is clearly an expanded version of this note. The latter paper is an
ambitious and remarkable paper for many reasons. It is usually remembered as
the paper in which the notions of categorical product and coproduct appear in
print for the first time as an alternative to the usual set-theoretical definitions,
although, as we have just indicated, these definitions were given already in 1948.
But the paper does much more than that. It uses the language of categories and
the abstract axiomatic method to define abstract categories that are supposed to
capture important and significant mathematical properties. Three abstract types
of categories are defined: what Mac Lane calls bicategories, abelian categories and
abelian bicategories. It is the latter notion that purportedly provides the concep-
tual analysis of duality for abelian groups. None of these abstract definitions were
retained afterwards, although they already contained some of the key elements
that were kept in subsequent works.

1.3.2 Axiomatic duality and the metamathematical duality principle

In the sixth section, entitled “Functional and Axiomatic Duality”, of Mac Lane
(1950), Mac Lane first rehearses how Eilenberg and himself have presented the
Pontrjagin-type duality in their paper on natural transformations and then moves
on to the situation underlined by Eilenberg and Steenrod:

For a topological space the duality between homology and cohomology
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groups with locally compact abelian coefficient groups can be formu-
lated in terms of character groups. Another formulation is suggested by
the axiomatic homology theory of Eilenberg and Steenrod. In this for-
mulation, the axioms for a homology theory refer not to elements of the
(relative) homology groups, but only to certain homomorphisms; the
dual statements are exactly the axioms for a cohomology theory. (...)
One of our chief objectives is that of providing a background in which
the proofs for axiomatic homology theory become exactly dual to those
of cohomology theory. ((Mac Lane, 1950, p. 494)

Mac Lane remarks that this phenomenon already appears in the case of vector
spaces and their dual spaces. Indeed, given a finite-dimensional vector space V over
a field F , the dual space V ! is given by the space of all linear maps f : V ! F ,
and, given a linear transformation T : V ! W , one can define a dual linear
transformation T! : W ! ! V ! , illustrating concretely the duality Mac Lane has
in mind. Mac Lane then indicates that the situation can easily be generalized
to locally abelian groups, by moving to character groups, invoking the classical
Pontrjagin duality directly. Again, Mac Lane wants to look at the most general
situation possible. Notice also that we are now moving to metamathematics and
also to traditional duality, as for instance it was developed for projective geometry
in the 19th century: the goal is to provide “a background in which the proofs of
axiomatic homology theory become exactly dual to those of cohomology theory.”
[my emphasis]

As we have said, these claims and observations come in section 6 of the
paper, after Mac Lane has looked at various specific cases of dualities for abelian
groups. In the first five sections, Mac Lane has observed that if one looks at various
concepts of abelian group theory, one notices that there are various properties that
can be defined by looking at the morphisms between groups and not their elements.
The first notion he gives is the notion of a free abelian group. He then shows how
by simply reversing the arrows, one obtains another reasonable property of abelian
groups, namely the property of being infinitely divisible. Moreover, not only can
these properties be defined by reversing the arrows of appropriate diagrams, but
given a theorem for the first property, one obtains a “dual” theorem for the dual
property. Mac Lane then introduces the notion of a product (of two abelian groups)
by using properties of arrows only, namely by the existence of a universal arrow.
The coproduct, in this case the free product of two abelian groups, is given by
moving to the dual situation.

In section 2, Mac Lane even adopts the traditional presentation of duali-
ties via a table: the pairs domain/codomain, isomorphism into/homomorphism
onto, composition of arrows and its opposite, subgroup/quotient group, injec-
tion/projection. Mac Lane specifies that the duality he is interested in is a “a
process which assigns a dual statement to each of certain statements about groups
and homomorphisms.”[p. 488] The process consists in inverting the group homo-
morphism in a statement that does not refer to the elements of a group and by
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interchanging the domain and codomain appropriately.
Of course, it cannot be done directly for all concepts. For instance, the dual

concept of subgroup is the concept of quotient group, but the former is transitive
whereas the latter is not. Moreover, as Mac Lane points out himself, in general, the
dual of a true statement about groups need not be true. Mac Lane therefore has
to find the right framework to make the duality go through, to determine the class
of statements about groups that are such that their dual are still true statements
about groups. Whence the necessity to distinguish between what Mac Lane called
the “functional duality” and the “axiomatic duality”. Although the two types of
duality are usually related systematically, he finds that he has to be careful in
the case of abelian groups and that, for the latter, one has to concentrate on the
axiomatic duality.

In these instances [the ones mentioned earlier, e.g. homology/cohomology,
finite dimensional vector spaces/dual spaces, etc.] there is a process as-
signing to each object a dual object and to each transformation a dual
transformation, so that a “functional” duality is present. Similarly, the
duality of a (plane) projective geometry may be formulated in two ways:
functional, by assigning to each figure its polar reciprocal with respect
to a fixed conic; axiomatic, by observing that the axioms for plane pro-
jective geometry are invariant under the interchange of “point” with
“line”.

Even for discrete abelian groups or for discrete (infinite-dimensional)
vector spaces, a functional duality does not exist. We aim to provide an
axiomatic duality covering such cases. (Mac Lane, 1950, p. 495)

How does one proceed to describe this axiomatic duality? Not surprisingly,
one starts with a category C. By modifying slightly the original definition of a
category given in the original 1945 paper, Mac Lane shows that categories satisfy
a metamathematical duality principle: “If any statement about a category is de-
ducible from the axioms of a category, the dual statement is likewise deducible.”
This is shown by simply inverting the order of composition in the axioms of a
category, together with the appropriate substitutions for the domains and the
codomains. One then obtains a dual statement that is true.

1.3.3 Mac LaneÕs Bicategories, Abelian categories and Abelian bi-
categories

However, categories are not enough, since they do not allow to describe adequately
certain concepts that Mac Lane takes as being dual to one another, like the pair
“subgroup/quotient group”. Thus, Mac Lane introduces the concept of bicategory,
although the terminology did not stick at the time, nor did his definition. A bicat-
egory in Mac Lane’s paper is a category together with two subclasses of privileged
maps, which he calls the “injections” and the “projections”. These two subclasses
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have to satisfy six axioms, which we will not present here. The main point is that
the notion of a bicategory in Mac Lane’s sense satisfies the metamathematical
duality principle: take any axiom of a bicategory and now inverse the composition
of mappings in it, and the result is also an axiom. In some cases, the axioms are
self-dual, that is the procedure yields the same axiom one started with. Mac Lane’s
target is to translate group theory into bicategory theory, thus making sure that
the statements thus obtained all have dual statements.

Mac Lane’s theory of bicategories covers many different cases, in fact, too
many cases. As Mac Lane himself shows in his paper, it is possible to modify
slightly the usual definitions of mathematical structures such that the resulting
category of these newly defined structures are bicategories in his sense14. Thus,
groups, abelian groups, rings and other algebraic structures form bicategories when
the usual identity is replaced with an appropriate equivalence relation15. The cat-
egory of non-void sets, in which each set is equipped with an equivalence relation,
is a bicategory. The category of topological spaces, again equipped with an equiv-
alence relation, forms a bicategory. Mac Lane even suggests that universal algebra
and lattice theory might benefit by being formulated in the language of bicate-
gories. Thus, the notion of bicategories as given by Mac Lane was extraordinarily
ambitious. It was based on two basic ideas that were extremely important, despite
the fact that the concept itself did not have an impact. The first idea is to choose
classes of maps within a category and describe what one might call the algebra
of these mappings by axioms. The second idea is to aim for a notion that is an
extension of the notion of category and that is self-dual, that is it satisfies the
principle of duality.

In section 18 of that paper, Mac Lane introduces another instance of a self-
dual concept, namely of what he calls an Abelian category. The latter concept is
considerably simpler than the notion of a bicategory. It stems from the observation
that, for abelian groups, the cartesian product of two abelian groups is simultane-
ously a categorical product and a coproduct. Nowadays, an object which is both
a product and a coproduct is called a biproduct. An Abelian category is then a
category having a zero object and biproducts with an additional property. It will
be useful to give the full definition.

DeÞnition 2. A (Mac Lane) Abelian category is a categoryC with a zero object16,

14 Mac LaneÕs description, although based on the language of categories, has clear connections
with OreÕs work on structures in which a principle of duality plays an important part. See Ore
(1935), Ore (1936), Ore (1937), Ore (1938b), and Ore (1938a), and Corry (2004). Mac Lane does
not refer to OreÕs work in his paper. We will not look at this here, since it would take us too far
from our goal.

15 Mac Lane introduces an equivalence relation to replace cosets in a quotient group. In this
way, one can always keep the same elements of the original group and change the equality relation
between them. This is the trick that allows him to have a duality between subgroups and quotient
groups. There is an ad hoc quality to his strategy.

16 Recall that a zero object in a category is an object which is both initial and terminal. Thus,
in the category of Abelian groups, the one element group is a zero object. Mac Lane gives the
deÞnition in categorical terms.
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biproducts, together with an integral object and a cointegral object.

As the terminology indicates, Mac Lane concentrates on the role of the group
of integers in the category of Abelian groups. The existence of the integral object
amounts to saying that the Abelian group of integers $Z, + %is a generator in
that category and that it is unique up to a unique isomorphism17. More precisely,
this means that for two morphisms f, g : G ! H in the category, there exists a
morphism h : Z ! G such that f # h &= g # h and Z is unique up to a unique
isomorphism. By inversing the morphisms, one gets what Mac Lane calls a coin-
tegral object, which in the case of the category of Abelian groups is the additive
group of rational numbers modulo 1. Notice that a (Mac Lane) Abelian category
is self-dual and thus satisfies the principle of duality.

The final notion introduced by Mac Lane is that of an Abelian bicategory:
it is a bicategory which is also an Abelian category that satisfies seven additional
axioms, two to get to what Mac Lane calls a lattice ordered bicategory and five
to characterize the new notion. Again, the concept of Abelian bicategory is self-
dual. It is the latter notion that yields what Mac Lane was after. Various results
of group theory, as well as the usual 5 lemma and the hexagon lemma can be
proved directly in an Abelian bicategory. This allows Mac Lane to claim that
“most of the standard properties of homomorphisms between abelian groups (or,
of linear transformations between vector spaces) can be deduced from our self-
dual system of axioms for an abelian bicategory. We thus provide an axiomatic
proof for the duality phenomena in abelian groups.”(MacLane, 1950, p. 516) Mac
Lane’s approach was certainly a success in as much as he was able to do anything
at all! No one, not even Eilenberg and himself, could have foreseen that there was
some intrinsic duality, similar in some ways to duality in projective geometry, at
least from the metamathematical point of view, to categories. However, the list of
axioms given by Mac Lane is daunting and it is far from clear that there is a real
mathematical gain in these concepts18.

We have to point out that the concept of the dual C! of a category C is
nowhere to be explicitly found in Mac Lane’s paper. Of course, it is implicitly
everywhere. But Mac Lane is squarely in metamathematics. Furthermore, as Mac
Lane points out himself in the last footnote of the paper, his axioms do not guar-
antee the existence of infinite products, infinite coproducts, nor does the existence
of the group Hom(X, Y ) of homomorphisms from X to Y . These elements will
become essential in the next step, coming this time from homological algebra.

17 We will get back to generators in general in a short while. Mac Lane talks about integral
and cointegral objects and deÞnes them in categorical terms.

18 It is in fact hard to evaluate the impact of Mac LaneÕs paper at the time. We do have to
mention, however, that Isbell (1957) is directly inspired by Mac LaneÕs paper and Isbell (1958)
gives an alternative deÞnition of a bicategory. In fact, in the later, Isbell uses the notion of
bicategory to express a speciÞc duality theorem. We will get back to Isbell and this result in
¤1.6.3. Bicategories in Mac LaneÕs sense were only used in Semadeni (1963).
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1.3.4 BuchsbaumÕs Exact categories and duality

Buchsbaum was Eilenberg’s student while the latter was working with Cartan on
homological algebra19. It is thus no surprise to find Buchsbaum doing his Ph.D.
on problems directly related to the latter. In fact, his paper Buchsbaum (1955) is
essentially his Ph.D. thesis defended at Ann Arbor in 1954.

Cartan and Eilenberg (1956)’s book was available to Buchsbaum before its
date of official publication20. In the latter book, Cartan & Eilenberg work with
functors from categories of modules over rings to categories of modules over rings.
Buchsbaum’s objective was to replace these concrete categories by abstract cate-
gories so that the theorems then obtained could be applied to cases not covered
originally, for instance modules over rings with additional structures or for sheaves
of groups over a topological space. Thus, the move to an abstract setting is pre-
sented as a tool to get a more general framework, i.e. that applies to cases that
ought to be covered by homological algebra without having to redefine everything
from scratch every time a new structure is brought in. Be that as it may, whereas
Mac Lane was focusing on the category of abelian groups, and to some extent on
the category of groups, Buchsbaum’s attention was on categories of R-modules,
the category of abelian groups being one specific case when R = Z, and the math-
ematics that is done in these categories for the purpose of homological algebra.
This transpires right from the beginning of the paper where Buchsbaum also gives
a very short table of dual concepts, like Mac Lane did, but in which one now finds
the pairs kernel/cokernel, projective/injective, cycles/cocyles. Thus, the duality
intrinsic to the definition of a category was assumed and the concepts chosen were
central to homological algebra.

Buchsbaum was well aware of Mac Lane’s work and acknowledged the fact
that there were connections between his work and Mac Lane’s. Indeed, one of
Buchsbaum’s goals was also to find an abstract categorical setting that was self-
dual21. In that respect, duality was central and was developed along the lines
explored by Mac Lane. And indeed, at the end of the paper, Buchsbaum indicated
that Eilenberg & Steenrod axiomatic homology theory could be done in his ab-
stract framework. Moreover, Pontrjagin’s duality can be used to show that certain
categories of groups are instances of these abstract categories, and this is a differ-

19 See also (Kršmer, 2007) for an analysis of BuchsbaumÕs work.
20 In fact, a condensed version of BuchsbaumÕs paper was included as an appendix in the

book. In his long and thorough review of Cartan & EilenbergÕs book, Mac Lane complained
with a joke that only Americans could understand: ÒAt last this vigorous and inßuential book
is at hand. It took nearly three years from completed manuscript to bound book: Princeton is
penalized 15 yards for holding.Ó (MacLane, 1956, p. 615) Clearly, the joke about the penalty
was meant for a North American audience! And later: ÒIn spite of the delay in its publication,
widespread acquaintance with the manuscript and with the ideas of this book has already played
an important role in the development of this lively subject.Ó (MacLane, 1956, p. 621) Thus, the
whole content of the book was known to many people as soon as 1953.

21 In some respects, Buchsbaum was not as ambitious as Mac Lane. Nowhere did he suggest
that his concepts could be used to develop universal algebra or provide a better analysis of the
structure of groups, in the way lattice theory was presented by Mac Lane.
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ent way of using the duality. But there is an additional element in his work, namely
the focus on derived functors, the core of homological algebra. As he indicated in
the opening paragraphs, whereas Cartan & Eilenberg had to treat both covariant
and contravariant functors, Buchsbaum used duality in such a way that it sufficed
to discuss (left) derived functors to develop the theory. By moving to the dual cat-
egory, one then automatically obtained a theorem for (right) derived functors22.
Thus, not only was the principle of duality central to the whole enterprise, but in
this case the dual category of a category was also used systematically throughout.
We now have a blend of metamathematics and mathematics. Let us now look at
the details.

1.3.5 BuchsbaumÕs exact categories

Buchsbaum first defined what he called an exact category. Needless to say, the lat-
ter term has now many different meanings, but Buchsbaum’s intention by choosing
the name was straightforward: the goal was to be able to deal with exact sequences.
Notice also that the Hom functor is now omnipresent, which is of course no surprise
in the context of homological algebra. We need a preliminary notational conven-
tion and a definition. First, whenever a hom-set Hom(X, Y ) has an abelian group
structure, we denote the identity element of the group by 0X,Y .

DeÞnition 3. Let C be a category such that, for every pairX, Y , the hom-set

Hom(X, Y ) is an abelian group. A pair of mapsX
f
'! Y

g
'! Z is said to satisfy

property (E) if the following conditions hold:

1. g # f = 0 X,Z ;

2. If f " : X " ! Y and g # f " = 0 X ! ,Y , then there exists a uniqueh : X " ! X
such that f " = f # h;

3. If g" : Y ! Z " and g" # f = 0 Y,Z ! , then there exists a uniquek : Z ! Z " such
that g" = k # g;

DeÞnition 4. An (Buchsbaum) exact category23 is a categoryC with a zero object
0, for every pair X, Y of objects ofC, the hom-set Hom(X, Y ) is an abelian group,
Hom(0, 0) = 0 0,0, satisfying the following property:

1. For any morphism f : X ! Y , there exist objectsU, V, V", W and morphisms
such that:

U u'! X v'! V v!

'! V " i'! Y w'! W

such that:
22 In a sense, we are back to Eilenberg & Mac Lane! The dual category allows Buchsbaum to

treat only left derived functors, in the same way that Eilenberg & Mac Lane wanted to treat
exclusively covariant functors. Dual categories are a tool to save work.

23 Not to be confused with a Barr exact category. For one thing, a Barr exact category is not
self-dual. See (Barr, 1971b; Barr, 1971a).
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(a) f = i # v" # v;

(b) v" is an isomorphism;

(c) U u'! X v'! V has property (E);

(d) V " i'! Y w'! W has property (E).

Informally, the property guarantees the existence of a kernel, a cokernel, an
image and a coimage for any arrow f : X ! Y . Buchsbaum then shows that a
pair of morphisms X

f
'! Y

g
'! Z satisfies property E if and only if

0 ! X
f
'! Y

g
'! Z ! 0

is a short exact sequence and one could use this fact to define the notion of an exact
category. Notice that one does not see directly that the definition is self-dual: one
does not see directly by looking at the property that the dual is satisfied. Some
simple verifications are required. In fact, Buchsbaum does not address the self-
duality of the notion immediately in his paper.

Buchsbaum then gives the definition of a G-graded category, where G is an
abelian group, where in most applications the group G is the group of integers Z or
a direct sum of Z’s, to cover the cases of graded modules over graded rings. Exact
categories are a special case of G-graded categories. It is at this point that Buchs-
baum brings in duality. In contrast with Mac Lane, Buchsbaum first introduces
the dual C! of a category C before introducing the metamathematical principle
of duality. Buchsbaum gives the notion of the dual C! of an exact category C: its
objects are the same as C, including the zero object; given a group Hom(X, Y ) of
C, the dual is Hom(Y, X ) and composition of morphisms is obtained by inverting
composition in C.

Then, Buchsbaum shows that the dual of an exact category is an exact cat-
egory and that the dual of a G-graded category is a G-graded category (some
care has to be taken for the last case). One verifies that by inverting the arrows
and making the necessary adjustments, the axioms are verified. Then, Buchsbaum
presents the duality principle explicitly as a metamathematical theorem, exactly
as Mac Lane did. All the results demonstrated after that in the paper have a dual
version, even it is not given nor proved.

Once these definitions are given, Buchsbaum starts to prove mathematical
theorems from them. Thus, in the first part, Buchsbaum proves various theo-
rems about short exact sequences, which are basically aimed at constructing the
necessary results to do homology. The latter is done in the second part of the
paper. Interestingly, the definition of homology is self-dual, and thus the abstract
homology theory developed is self-dual. In the third part of the paper, Buchs-
baum introduces an additional axiom about the existence of (finite) direct sums.
Projectives and injectives are defined and the axiom stipulating the existence of
projectives is assumed. It is then possible to reconstruct Cartan and Eilenberg’s
theory of derived functors on this abstract basis.
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This was acknowledged by Mac Lane in his review of Cartan and Eilenberg’s
book:

More significant for the general presentation of the subject is the fact
that the whole mechanism of projective resolutions works not just in the
category of left modules over a ring, but equally well for right modules,
for bimodules, or in many other categories. In an appendix to the book
Buchsbaum sets forth these ideas, together with the necessary axioms
on the additive categories (he calls them “exact” categories) in which
this theory works24. (MacLane, 1956, p. 621)

Buchsbaum uses systematically the dual C! of a category C throughout his
paper, in particular in order to work with covariant functors all the time. The
last section of the paper, which is very short, treats applications. Three cases
are given: first, the abstract axiomatic approach can be extended to the functors
Extn ; second, Eilenberg and Steenrod axiomatic development of homology theory
can be done by using an exact category C as the range of the homology functors.
Then, by replacing C by its dual C! , one automatically gets a cohomology theory;
third, Pontrjagin duality for discrete and compact abelian groups can be stated as
follows: the category of compact abelian groups is isomorphic to the dual of the
category of discrete abelian groups.

Thus, Buchsbaum succeeded in constructing an abstract set-up to do homo-
logical algebra as it was developed in Cartan and Eilenberg’s book. However, when
Cartan and Eilenberg’s book was finally published, it was already out-of-date, even
with Buchsbaum abstract set-up. In Mac Lane’s words:

The authors’ approach in this book can best be described in philosoph-
ical terms and as monistic: everything is unified. [...] Historically, each
monistic doctrine is resolved by a subsequent pluralism. So it was here.
When the authors (Cartan and Eilenberg) started to write, it was true
that all known cases of homology of algebraic systems (groups, algebras,
Lie algebras) could be neatly subsumed under resolution, Tor, and Ext
pattern. When they finished writing this was no longer so – and this
because of the authors’ own separate efforts elsewhere! (MacLane, 1956,
p. 622)

Does Mac Lane sees some sort of dialectic at work in the history of mathemat-
ics? Periods of unification are followed by periods of diversification. Periods of
abstraction are followed by periods of representations or the development of de-
tailed concrete cases25. Be that as it may, Mac Lane anticipated what was about
to come in a certain respect:

24 Mac Lane uses GrothendieckÕs terminology, as we will see. And indeed, he refers to
GrothendieckÕs unpublished work in the next line. Thus, in 1956, Mac Lane, and presumably
many others, already knew about GrothendieckÕs work in homological algebra.

25 There are numerous places where Mac Lane seems to endorse such views. We will see another
example later. But we will not elaborate on Mac LaneÕs philosophical views here. See McLarty
(2005).
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Hence it seems likely that the a future presentation of homological alge-
bra will operate in a suitable category, provided at least that someone
concocts a convenient method of chasing diagrams without chasing el-
ements. (MacLane, 1956, p. 622)

Thus, the field was led to find still more general abstract set-ups of self-
dual categories to do homological algebra, “suitable categories” with “a convenient
method of chasing diagrams without chasing elements.” One such set-up was given
by Heller in (Heller, 1958). Heller presents three categorical structures in his paper:
pre-additive categories, additive categories and (Heller) abelian categories. Heller
basically reorganizes Buchsbaum’s axioms so that the latter’s exact categories
are recovered. The main point of Heller’s paper is to show that a large portion of
homological algebra can still be done in a more general setting, thus covering cases
that showed up in the following years. Duality is taken completely for granted in
Heller’s paper. Here is how he puts it: “The theory is completely self-dual with
respect to the usual contravariant isomorphism between a category and its dual.
The duals of definitions and theorems are usually stated; the latter are never
explicitly proved.”(Heller, 1958, p. 485)

From the very beginning and up to that point, everything is done up to
isomorphism. Notice how Buchsbaum himself rewrites Pontrjagin’s duality: it is
an isomorphism between two categories. Of course and as it was already indi-
cated by Eilenberg and Mac Lane in 1945, there is an obvious isomorphism be-
tween a category and its double dual and a contravariant isomorphism between
a category and its dual. When Heller’s paper was published, the situation had
already changed, although Heller was apparently not aware of it, or if he had seen
Grothendieck’s unpublished paper, he did not acknowledge it nor is there a refer-
ence to Grothendieck’s paper, a landmark not only in homological algebra, but in
category theory as well.

1.3.6 GrothendieckÕs abelian categories and duality

Most of Grothendieck’s work in his Grothendieck (1957) was done while he was
in Kansas in 1955, and although he knew the content of Cartan and Eilenberg
(1956) and acknowledges Buchsbaum’s contribution, it seems that his work was
done independently of the latter. His goal is to find an abstract framework in
which homological algebra applies also to the cohomology theory of a space with
coefficients in a sheaf. Thus, once again, the goal is to find the appropriate abstract
self-dual categorical structure – but as we will see, Grothendieck develops a more
supple framework – in which one can develop homological algebra so that it can
be applied to the targeted cases, and in this case, it included algebraic geometry.
Grothendieck’s T™hoku’s paper is deservedly considered as a landmark in the field.

One interesting feature of Grothendieck’s paper is that he develops category
theory from scratch and adapts it to his needs. Even the definition of a category
is different from the definition given in Eilenberg and Mac Lane (1945). He then
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immediately gives the definition of the dual category of a category. Finally, he
introduces the notion of an abelian category in steps, stopping at an intermediary
step that turns out to be useful. Finally, the definition of an abelian category is
extremely elegant, inasmuch as its self-dual character is immediate.

DeÞnition 5. A category C consists of a non-empty class26 of objects together with,
for X, Y ( C, a set Hom(X, Y ) and for three objectsX, Y, Z ( C, composition
of morphisms (f, g ) )! g # f of Hom(X, Y ) " Hom(Y, Z) ! Hom(X, Z ), which
satisfy two axioms: composition is associative; forX ( C, there is an element
i X ( Hom(X, X ), the identity morphism of X , which is a right and left unit for
the composition of morphisms. Finally, if X, Y and X ", Y " are two distinct pairs
of objects ofC, then Hom(X, Y ) and Hom(X ", Y ") are disjoint sets.

Notice that the Hom-sets are now part and parcel of the definition of a
category, whereas in Eilenberg & Mac Lane’s original definition, a category was a
purely abstract structure with no explicit reference to underlying sets. Of course,
this is not an ideological choice27. It simply works better given Grothendieck’s
goals in that paper.

The definition of the dual Co is given immediately afterwards and becomes28:

DeÞnition 6. Let C be a category. Thedual category Co has as objects the same
objects asC and the set Hom(X, Y )o of morphisms of X into Y is identical to
Hom(Y, X ), with the composite off and g in Co being identiÞed as the composite
of g and f in C.

Grothendieck then points out that any concept or statement about an arbi-
trary category admits a dual concept or statement in the obvious way. That is it.
He does not single out a (metamathematical) principle of duality as such.

Then Grothendieck defines a series of elementary concepts and their dual di-
rectly in the categorical language, e.g. monomorphism, epimorphism, isomorphism,
subobject, quotient object, direct products (finite and infinite), sums (finite and
infinite). The next section introduces functors and this is where the definition of
an equivalence of categories is given for the first time in print29.

DeÞnition 7. An equivalence of a category C with a category C" is a system

26 As indicated by the Barrs, whose translation we are following, the requirement that the
class of objects be non-empty is idiosyncratic and is not necessary. As the Barrs pointed out,
Grothendieck seemed to abhor the empty set.

27 Or is it? There is room for debate here, given BourbakiÕs views on structures and the fact
that, at the time, Grothendieck was very close to Bourbaki Ð he was a Ôguinea pigÕ at one of their
meetings already in 1950 Ð and became an o"cial member later.

28 We will follow the change of notation here.
29 Curiously enough, it seems that Grothendieck introduced the deÞnition for purely theoretical

reasons, since he does not use it in his T™hokupaper. I suspect that Grothendieck simply wanted
to include it for completeness sake. It is clear that Serre had already used it in his work, but
had not given the general deÞnition. We will get back to this point. I thank Mathieu Anel for
pointing this out to me.
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(F, G, ", # ) consisting of covariant functors:

F : C ! C" G : C" ! C

and of natural isomorphisms30

" : 1C ! GF # : 1C! ! F G

(where 1C and 1C! are the identity functors of C and C", respectively) such that
for any X ( C and X " ( C", the composites

F (X )
F ( ! (X ))
'''''! F GF (X )

" " 1 (F (X ))
'''''''! F (X )

G(Y )
G(" (Y ))
'''''! GF G(Y)

! " 1 (G(Y ))
'''''''! G(Y )

are the identities of F (X ) and G(Y), respectively.

Notice that an equivalence is defined by two covariant functors. Grothendieck
points out the difference between the notion of equivalence of categories and iso-
morphic categories and states that the equivalences that are encountered in prac-
tice are not isomorphisms, but he does not give any example nor does he give a
reference to such examples, although he had some at least from Serre’s work.

Then come the self-dual notions. We strictly follow the definition given by
Grothendieck:

DeÞnition 8. An additive category C is a category such that:

1. For each pair X, Y of objects ofC, Hom(X, Y ) is an abelian group such that
the composition is a bilinear operation;

2. For any pair X, Y of objects ofC, the product X " Y and the sum (coproduct)
X * Y exist.

3. C has a 0 object.

Grothendieck points out that it is enough to assume that either products or
sums (coproducts) exist, since the existence of one can be proved from the other.
This definition is obviously self-dual. In any additive category C, given a morphism
f : X ! Y , it is possible to define the kernel of f , the cokernel of f , the image
and the coimage of f , denoted by Imf and Coimf , respectively. However, they
do not always exist. Given two additive categories C and C", an additive functor
F : C ! C" is a functor such that given f, g : X ! Y in C, F (f + g) = F (f )+ f (g).

And then comes the definition of an abelian category.
30 As I have already pointed out in Marquis (2009) and as Barr & Barr point out in their

translation, in the original paper, Grothendieck requires ! and " to be merely natural transfor-
mations, which is not right. In fact, he gives the deÞnition of adjoint functors, but does not see
it! We have made the appropriate correction. For the translation into English, see M.L. Barr &
Barr, https://www.math.mcgill.ca/barr/papers/gk.pdf.
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DeÞnition 9. An abelian category is an additive categoryC that satisÞes the fol-
lowing self-dual conditions:

AB 1) Any morphism admits a kernel and a cokernel;

AB 2) Let f be a morphism inC. Then the canonical morphism øf : Coimf ! Imf
is an isomorphism.

Grothendieck then claims that if “C is an abelian category, then the en-
tire usual formalism of diagrams of homomorphisms between abelian groups can
be carried over if we replace homomorphisms by morphisms in C, insofar as we
are looking at properties of finite type, i.e. not involving infinite direct sums or
products.”(Grothendieck, 1957, p. 127) To deal with the latter, Grothendieck in-
troduces four additional axioms, called AB 3), AB 4), AB 5) and AB 6). These are
not self-dual. But they have dual formulations and it is then important to check
which ones of the axioms or their duals a given category satisfies.

Next comes a pair of notions which occupy a central role in our story, the
pair generators/cogenerators. But first, we need the simple but tricky concept of
a subobject.

DeÞnition 10. Let A, X be objects of a categoryC. A is said to be asubobject of
X if there is a monomorphism A # X 31. (Grothendieck, 1957, p. 120)

And now we can define generators.

DeÞnition 11. Let (Ui )i # I be a family of objects of a categoryC. Such a family is
said to be afamily of generators for C if, for all objects X of C and every subobject
A # X , distinct from X , there exists ani ( I and a morphismu : Ui ! X which
does not come from a morphism ofUi in A. An object U is said to be agenerator
for C whenever the family{ U} is a family of generators. (Grothendieck, 1957,
p. 134)

Grothendieck’s definition is equivalent to saying that the family (Ui )i # I is a
family of generators if for every distinct parallel pair of arrows f, f " : Y ! X , there
is a morphism u : Ui ! Y , such that f áu &= f " áu. In particular, U is a generator if
the family { U} satisfies the definition. Or course, Grothendieck focuses on family
of generators in an abelian category and he leaves the definition of a family of
cogenerators in an abelian category to the reader. He notes, however, that it can
be shown that if an abelian category satisfying AB 5) has a generator, then it also
has a cogenerator.

The combination Grothendieck is after is an abelian category which satisfies
AB 5) – the latter assumes that AB 3) holds – , and has a generator. For, in
this case, Grothendieck is able to show that, in the jargon, the given category has
“enough injectives”, that is every object of the category has an injective resolution,

31 This is not quite right and not what Grothendieck did. One usually takes the equivalence
class of the objects isomorphic to A and are thus necessarily subobjects of X . But we will ignore
this important detail.
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thus allowing the machinery of homological algebra to be applied. It could be
argued that this theorem, namely theorem 1.10.1 in (Grothendieck, 1957, p. 135)
constitutes a turning point in the history of category theory32. Grothendieck uses
category theory to obtain a result that has a direct mathematical content: it gives
him immediately, as a special case, injective resolutions of sheaves to get sheaf
cohomology.

Grothendieck’s definition of an abelian category is equivalent to Buchsbaum’s
definition of an exact category, with the exception that Buchsbaum only considers
finite limits, see section 3.3.4.1 of Krömer (2007). The mathematics done after-
wards in Grothendieck’s paper introduces a considerable amount of original con-
cepts and constructions. One such important concept is worth mentioning, since
it will play a crucial role in some of the subsequent developments of our story.
It is a very simple notion, but it will become central to his work, as well as in
Kan (1958b) and Kan (1958a) and Morita (1958). Grothendieck introduced what
he called “categories of diagrams”33, which are specific functor categories. They
constitute a crucial categorical tool in the development of the theory and its appli-
cations, not to mention the foundational chasm that they tear in the set theoretical
landscape. We will restrict ourselves, without loss of generality, to categories of
functors.

DeÞnition 12. Let C be a small category andD an arbitrary category. Then the
category of functors from C to D, denoted byDC, has, as objects, functorsF :
C ! D, and as morphisms, natural transformations$ : F ! G.

Of course, Grothendieck observes that one can take Co instead and that the
dual of DC is (Do)(Co ) . This gives a uniform framework to treat various construc-
tions and objects, e.g. arbitrary limits and colimits, presheaves and sheaves, etc.
Notice that it is an internal Hom in the category of categories.

Despite its influence and importance, Grothendieck’s paper was not the last
work on the search for self-dual categories to do homological algebra. Needless
to say, Freyd (1964) constituted a landmark on the subject, both because it was
presented as a textbook on category theory and also because it was a clear attempt
at presenting the project of designing the most appropriate self-dual category in a
self-contained and autonomous fashion, that is, abelian categories were no longer
seen as merely a useful abstract device to do homological algebra, but as genuine
mathematical structures. But it was not the end of the story either. According
to Bühler (2010), it was left to Quillen (1973) to design an axiomatization of the
notion of exact category that yields at the same time all the important theorems
of homological algebra as well as the right level of generality and flexibility. For
detailed proofs and a discussion, see Bühler (2010).

The search for self-dual categories did not restrict itself to homological al-
gebra. Of course, Quillen’s model categories are also self-dual and constitute

32 Thanks to Michael Barr who has emphasized this point to me.
33 As we will see, Kan introduced the same idea approximately at the same time.
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the starting point of homotopical algebra34. We also have to mention Barr’s %-
autonomous categories, which are omnipresent nowadays35. In contrast with Mac
Lane, Buchsbaum, Grothendieck, Heller and Quillen who were trying to find a
self-dual context to develop a specific kind of mathematics, Barr was intention-
ally looking for self-dual categories satisfying a certain property. He was literally
trying to abstract at the categorical level a specific kind of situation. It is striking
to see that what seemed to be at first a very restricted abstract concepts, namely
with a very small class of examples, became a very rich class of structures with
numerous and unexpected applications. See Barr (1979), Barr (1991), Barr (1996),
Barr (1999), and Pratt (1999).

We have to make one last point before we move on to the next historical
step. Although Grothendieck missed the notion of adjoint functors, he introduced
the equivalent notion of representable functor quickly after and the latter came
to occupy a privileged position in category theory in general and in the transcrip-
tion of dualities in the categorical framework in particular36. We will reproduce
Grothendieck’s definition, even though the basic components are now well-know.
Grothendieck first starts by presenting what is now called ‘Yoneda lemma’37.

Let C be a category. For all objects X of C, there is a contravariant functor
hX : Co ! Set38 defined by

hX (Y ) = Hom(Y, X ).

This yields, as Grothendieck himself says, a canonical covariant functor

h($ ) : C ! SetCo

which is fully faithful. Then comes the notion of representable functor.
34 We will mention these categories again later in the context of homotopy theory.
35 Barr has indeed dedicated a lot of time and energy during his career to dualities in categories,

by which he meant Ònot such things as the duality between Boolean algebras and Stone spaces,
nor between compact and discrete abelian abelian groups, but rather self-dual categories such
as complete semi-lattices, Þnite abelian groups, and locally compact abelian groups.Ó (Barr,
2006, p. 10) See the latter paper for the historical exposition, which is quite fascinating from an
epistemological point of view.

36 Grothendieck introduced the concept in February 1960, in BourbakiÕs seminar, and expanded
it in CartanÕs seminar in January 1961. See (Grothendieck, 1960b; Grothendieck, 1962). It is
almost impossible not to speculate as to why Grothendieck was led to the notion of representable
functor instead of the notion of adjoint functors. Of course, it is easy to go from one to the other,
but still there are conceptual di!erences between the two. Lawvere, for one, will try to avoid
representable functors and he will try to develop the notion of adjoint functors independently of
any set-theoretical assumption.

37 As far as we know, that terminology is due to Mac Lane. According to Michael Barr, Mac
Lane was taking Yoneda to the train station and, while waiting on the platform Yoneda mentioned
that when Hom (A, ! ) is naturally equivalent to Hom (B, ! ), then A is isomorphic to B (and,
obviously, conversely). Apparently, Mac Lane went back and proved the theorem and generalized
it to what is now called the Yoneda lemma.

38 Grothendieck does not take the dual of C in (Grothendieck, 1960b), but introduces it in
Grothendieck (1962).
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DeÞnition 13. A functor F : Co ! Set is said to be representable if there is
a natural isomorphism µ : hX ! F , for some X in C. A representation of F
is a pair (X, µ ) such that the natural transformation µ : hX ! F is a natural
isomorphism.

The canonical functor h($ ) defines an equivalence of categories between C and
the full subcategory of representable functors in SetCo

. This allows Grothendieck
to expand on the idea that mathematical objects might as well be represented by
functors.

... the general yoga being to identify purely and simply, using the canon-
ical functor h, the objects of C with specific contravariant functors,
the representable functors, of C in the category of sets. (Grothendieck,
1960b, pp. 370–371)[my translation]

And this yoga became a central idea in the 1960s, as well as adjoint functors, to
which we now turn.

1.4 KanÕs adjoint functors and duality

This is certainly the time to make a few comments on the presence and role of
duality in Kan’s early work, since it occupies a central role in the ensuing story39.

As their titles indicate, Kan’s first four publications present a categorical
framework to do abstract homotopy theory. (See Kan (1955), Kan (1956a), Kan
(1956b), and Kan (1956c).) The goal is to capture in the formalism of category
theory the structural components that allows one to develop homotopy theory, that
is, replace topological spaces by combinatorial constructs that are homotopically
equivalent in some precise technical sense. But Kan is also looking for an axiomatic
framework analogical to Eilenberg & Steenrod’s axiomatic framework for homology
and cohomology theories, but in a sense, he (and others) did not have at their
disposal some of the required concepts to fulfil this task satisfactorily40.

Duality appears explicitly in the last section of Kan (1955), the paper in
which Kan introduces what are now called Kan complexes – for cubical complexes
–, but it is restricted to a theorem on the category of Kan complexes. The theorem
states that the extension property defining Kan complexes is self-dual. This is in

39 We will be brief here. For more on KanÕs early work, see Kršmer (2007) and Marquis (2009).
40 And Kan will get back to the axiomatization of homotopy theory in Kan (1958d). The search

for an appropriate axiomatic framework for homotopy theory was an active area of research at
the time, e.g. Kuranishi (1954), Milnor (1956), and S.-T. Hu (1956). However, these axioma-
tizations turned out to be dead ends and it was left to Quillen in Quillen (1967) and Quillen
(1969) to provide the answer that is now considered the starting point of contemporary abstract
homotopy theory, or what he called Ôhomotopical algebraÕ. The axiomatic frameworks proposed
by Kuranishi, Milnor, Hu and Kan Ð and, apparently Serre, but I could not Þnd any published
trace of the latter Ð constitute nonetheless fascinating cases of failures and the reasons why they
were failures are quite interesting. We will come back to this topic in another paper.
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itself an interesting observation, but not entirely surprising given the nature of the
objects defined.

Kan (1956a) does not refer to duality explicitly, although homology and
cohomology are treated in an abstract setting.

The third paper, Kan (1956b), is really where duality enters the picture in an
interesting way. Kan complexes are defined in the setting of simplicial sets, called
complete semi-simplicial complexes, or c.s.s. complexes, by Kan, who borrows
the notion from Eilenberg and Zilber (1950). The category of simplicial sets is
denoted by S and the full subcategory of Kan complexes, that is those simplicial
sets satisfying what Kan calls the extension axiom, is denoted by SE . The purpose
of this third note is to show how to extend the homotopy theory on SE , in Kan’s
abstract sense, to the whole category S. In order to do so, two operations are
introduced, the subdivision of standard simplices and the extension of a simplicial
complex. As Kan says himself “Our main tool will be what we call the extension
ExK of a c.s.s. complex K , which is in a certain sense the dual of the (barycentric)
subdivision of K .” (Kan, 1956b, p. 419) This is where the term ‘dual’ is introduced
in a new, informal, sense. The operations of subdividing and extending a simplicial
set are ‘inverse’ to one another, in the informal sense that subdividing is the
inverse of extending, and also performing them in succession yields something
that is ‘identical’ to the original input. Moreover, they correspond to operations
that are present in classical dualities, e.g. Poincaré duality. If these were the only
reasons justifying the use of the ‘dual’ here, it would at best be a metaphorical or
analogical usage. But, as we will see, this informal sense is based on a formal link
between the functors discovered by Kan in his research.

Kan generalizes the usual (barycentric) subdivision of simplicial complexes
to simplicial sets. (See (Hatcher, 2002, p. 119) for a detailed presentation of the
barycentric subdivision of standard simplices.) The standard barycentric subdivi-
sion of a simplicial complex yields another simplicial complex which is nonetheless
topologically equivalent to the original simplicial complex. Furthermore, the oper-
ation of barycentric subdivision can be iterated finitely many times. Kan defines
the operation of subdivision on simplicial sets in such a way that the process be-
comes a functor Sd : S ! S and it still makes sense to consider Sdn K , called the
n-fold subdivision of a simplicial set. The extension ExK of a simplicial set K is
a map & : ! "

n ! K , where ! "
n is (Kan’s definition) of the subdivision of ! n , the

latter being the standard n-simplex. Ex : S ! S is also functorial and Exn means
that the functor has been iterated n times.

Now, the duality is made explicit by Kan at the very end of the paper, in
what Kan describes as a lemma: “let K, L ( S . For every integer n > 0, there
exists (in a natural way) a one-to-one correspondence between the c.s.s. maps
Sdn K ! L and the c.s.s. maps K ! Exn L .” (Kan, 1956b, p. 421) Kan uses this
lemma to prove an abstract version of the usual simplicial approximation theorem.
Of course, this is not, as such, a classical duality, e.g. Poincaré duality, although
it involves processes that are involved in these dualities. Nonetheless, what will be
seen as a specific adjoint situation is presented as a duality by Kan.
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Duality is absent from Kan (1956c).
In his remarkable paper on adjoint functors, Kan introduces the terminology

and the analogy with the classical dualities in algebraic topology. It is worth
quoting the opening paragraph of the paper in full:

1. Introduction In homology theory an important role is played by pairs
of functors consisting of

(i) a functor Hom in two variables, contravariant in the Þrst variable
and covariant in the second(for instance the functor which assigns
to every two abelian groups A and B the group Hom(A, B ) of
homomorphisms f : A ! B ).

(ii) a functor + (tensor product) in two variables, covariant in both (for
instance the functor which assigns to every two abelian groups A
and B their tensor product A + B ).

These functors are not independent; there exists a natural equivalence
of the form

' : Hom( + , ) ! Hom( , Hom( , ))

Such pairs of functors will be the subject of this paper.

In the above formulation three functors Hom and only one tensor
product are used. It appears however that there exists a kind of duality
between the tensor product and the last functor Hom, while both func-
tors Hom outside the parentheses play a secondary role. (Kan, 1958a,
p. 294)

The ‘duality’ is now between the tensor product and the Hom functor, a situation
which is considerably different from the pair Sd and Ex in homotopy theory. In fact,
the latter case is not even mentioned in the paper on adjoint functors! One of the
key properties which clearly strikes Kan at this point is the fact that these functors
determine each other (up to a natural equivalence); they are not independent. In
fact, Kan translates this last claim in a precise mathematical statement which
encapsulates Bourbaki’s structuralist imperative in this particular situation:

Theorem 2. Let S, S" : X ! Z and T, T" : Z ! X be covariant functors and' :
S , T and ' " : S" , T "41. Let & : S ! S" be a natural transformation. Then there
exists a unique natural transformation ( : T ! T " such that the commutativity
holds in the diagram

H (S(X ), Z ) H (X , T(Z ))

H (S"(X ), Z ) H (X , T"(Z ))

#

# !

41 This is the notation used by Kan himself to indicate that S is left adjoint to T by # .
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If & is an equivalence, then so is( 42.

There is a conceptual symmetry at work here. None of the functors in the
given pair occupies a privileged position. In practice, thus in a particular chrono-
logical development, one of the functors usually arises first and then the adjoint is
found and thus assumed to be ‘derived’ from the other. Kan’s position here, and
I take it that it partly justified his choice of the term ‘dual’, is that they are code-
pendent and, thus, from a purely conceptual point of view, they determine each
other systematically. In other words, if you have one of the functors and the latter
is part of an adjoint situation, the other is completely determined. But it does not
matter which functor you had first. Furthermore, by composing the functors, you
naturally “get back” to the identities. Thus, the formal components involved make
it very hard not to think of an adjoint situation as a kind of (conceptual) duality.

We have to point out that Kan uses the dual category Co of a category C
systematically in his paper. He even introduces the notion of the dual F o of a
functor F thus: given F : C ! D, the dual functor F o : Co ! D is defined
by F o(X o) = F (X )o, for all X ( C, and given f : X ! Y in HomC(X, Y ),
F o(f o) = F (f )o. This allows Kan to prove a duality theorem for adjoint functors
which asserts that S , T if and only if To , So, a result he uses throughout his
paper. For instance, the unit of the adjunction is defined directly, whereas the
counit is the dual of the unit. He also uses duality to define colimits as the duals
of limits. However, Kan does not introduce nor use a metamathematical duality
principle in his paper. His approach is squarely mathematical. There are very few
examples in the paper, and apart from the example of the tensor product and the
Hom functor in homological algebra, all the other examples come from algebraic
topology. As we have already said, Kan, like Grothendieck and independently of
him, introduces the category of all diagrams over a category C and uses those
categories extensively in his work. Finally, we should also point out that a large
portion of that presentation in Kan (1958a) in geared towards the companion
paper Kan (1958b), which introduces the now common definition of simplicial sets
as a functor category and in which numerous adjunctions between the category
of simplicial sets and other categories (including itself) are established. However,
there is no trace of duality in the latter paper.

Kan does not expand or comment on the kind of ‘duality’ at work between
adjoint functors. Of course, we do have a type of symmetry between two systems
of codependent things involving an inversion. But it is not an instance of a precise
mathematical duality. Obviously, it could not be, since the notion of adjoint func-
tors is a clear abstraction from specific cases. Kan’s description of adjoint functors
as being dual to one another will soon afterwards be interpreted not as an ab-
straction from homological algebra and homotopy theory, but as a generalization
of lattice theory, and this reinterpretation will play a key role in the lifting of these
dualities to the categorical context.

42 This is KanÕs notation! He writes H for the Hom functor, but, more surprisingly, X , the
symbol denoting the whole category, as arguments for the functors.



Jean-Pierre Marquis 29

1.5 Chasing Concepts, Theorems and Proofs in Dual Struc-
tures in Algebraic Topology

In 1947 he [Mac Lane] was in Zürich and pointed out to Beno Eckmann
that, in this sense, direct products of groups and free products of groups
stood in a dual relation to each other. In making this observation, Mac
Lane was, of course, giving expression to what is now a commonplace
approach – that of definition by a universal mapping property. The
work of Eckmann and myself on duality in homotopy theory was very
much inspired by Mac Lane’s pioneering work - we worked in the homo-
topy category of based topological spaces where he had been principally
concerned with the category of groups. (P. Hilton, 1980, p. 160)

This is how Hilton recalls how his collaboration with Eckmann on dualities in
homotopy theory started: it was directly influenced by Mac Lane’s program and
how the latter thought of it in 1947. Eckmann and Hilton picked up the latter’s
program in algebraic topology, more precisely in homotopy theory. However, in the
latter, it did not amount to a search for a type of abstract category in which one
could simply reverse all the arrows to obtain new theorems. Instead, it became a
heuristic to find new concepts and new theorems in homotopy theory, and in some
rare cases, even new proofs, for it is rare that one can obtain a new proof about a
specific type of mathematical objects simply by reversing all the arrows in a given
proof43. It turned out nonetheless to be a fruitful line of research, especially after
the introduction of some of the central concepts of category theory. Indeed, in the
foregoing quote, Hilton is compressing into a few comments what would evolve
in parallel with the construction of category theory itself. When they started,
it was mainly a trial and error effort, guided merely by the language and a few
constraints. When category theory emerged, Eckmann and Hilton felt the need, as
we will see, to recast their work in the latter framework, and once that was done,
their “duality theory” acquired a fundamental role in homotopy theory.

Eckmann & Hilton duality is often presented as a special type of duality in
algebraic topology.

There are two major groupings in algebraic topology: Strong duality
and Eckmann-Hilton duality. [...] Strong duality depends on finiteness
and compactness. On the other hand Eckmann-Hilton duality is a loose
connection of useful dualities which arose from the categorical point
of view first put forward by Beno Eckmann and P.J. Hilton in 1956.
(Becker and Gottlieb, 1999, p. 3)

Thus, Eckmann & Hilton’s duality is a “loose connection of useful dualities”. This
characterization is surprisingly vague and it is hard, as such, to determine what
it amounts to. What does “loose connection” mean? Are we dealing with family

43 What I mean here is beautifully exempliÞed in May (1983) where not only two statements
are dual to one another, but their proofs are also dual to one another. See also Vogt (2011).
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resemblances, to use Wittgenstein’s catchy expression? As we have already hinted
at, historical reasons provide a partial explanation to this loose connection. There
was indeed, at the beginning, a process of trial and error, of guessing whether a
given concept had a useful dual concept. May offers a somewhat different reading
at two different times.

Eckmann-Hilton duality has been around for quite some time and it
is something we now all take for granted. Nevertheless, it is a guiding
principle to “the homotopical foundations of algebraic topology” that
is still seldom exploited as thoroughly as it ought to be. (May, 1983,
p. 46)

And more recently:

The theories of cofiber and fiber sequences illustrate an important, but
informal, duality theory, known as Eckmann-Hilton duality. It is based
on the adjunction between Cartesian products and function spaces.
(May, 1999, p. 43)

The first quote indicates that the duality occupies, despite its informal charac-
ter, a central position in the homotopical foundations of algebraic topology. The
second quote underlines the role played by an adjoint situation, a crucial formal
component that was not in Eckmannn & Hilton’s horizon at first. Indeed, when
they started, their duality was at best a heuristic, restricted to a specific context.

In both cases, since we were concerned with the more heuristic notion
of duality within a given category, rather than with categorical duality,
choices had to be made to determine appropriate dual concepts, and
the truth of a dual assertion could not necessarily be inferred from the
truth of the assertion, unless the proof of the assertion could be “lifted”
into a general category, that is, could be expressed in universal terms
rather than in terms meaningful and valid only in the special category
under consideration. Just as MacLane [sic] had been interested in the
late 1940’s in pairs of dual assertions in group theory, both of which
were both interesting and true, so, in the work of Eckmann and myself
beginning in 1955, we were interested in such pairs of dual assertions in
homotopy theory. (P. Hilton, 1980, p. 160)

As we have already said, Eckmann & Hilton duality was a heuristic, an infor-
mal procedure to search for mathematical meaningful and useful concepts. It was
driven by the belief that duality would indeed be effective in such a search. The
latter belief was at that time based on purely empirical grounds, namely Mac
Lane’s success in capturing concepts of group theory, and more generally the con-
cepts of product/coproduct. Furthermore, this revealing passage also shows how
the procedure was conceived at the beginning. Start with a specific concept be-
longing to a specific theory, write it in categorical language and look at the proofs
associated with that concept, see whether a dual concept can be defined and the
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proofs can be done by using the language of category theory. If, indeed, it works,
then one has a “dual” concept and “dual” theorems, if not, move to another one
and hope for the best. It turned out to be surprisingly effective and important.
As we will see, many important notions and results of homotopy theory resulted
from Eckmann & Hilton’s strategy. But not only was this significant for homotopy
theory, it also showed the importance of category theory itself in the development
of the field44.

1.5.1 Eckmann and HiltonÕs duality in homotopy theory

Eckmann and Hilton started to publish the fruits of their collaboration in Eckmann
(1957), and then in a series of papers that spanned almost twenty years. There is
no need here to cover all these papers45. We will concentrate on the first ten years
or so, and even for those, we will try to extract the role duality played in their
work and not all the mathematical results.

Their first published joint paper, Eckmann and P. J. Hilton (1958b), does
not give any specific motivation for their work. They start directly with the set
up and start defining and proving some results. The set up is the category of
pointed topological spaces with morphisms continuous functions respecting the
base points. The goal of the paper is to give a generalized definition of homotopy
groups that can be then used to define the usual groups of algebraic topology.
As such, there is nothing in the note indicating that duality will play a role in
the enterprise. Let (X, oX ) and (Y, oY ) be topological spaces with base points oX

and oY respectively. We let "( X, Y ) denote the collection of classes of homotopy
equivalent maps from X to Y , where, of course, a homotopy f - g is relative
to the base points. Thus, they work in what we would now denote by Ho(Top)! ,
which is crucial, for otherwise the duality would not reveal anything, since it would
collapse to trivial structures. Eckmann & Hilton then define what is now called
an H -space, which they call an H -structure46. An H -structure on Y is a group
structure up to homotopy. More precisely:

DeÞnition 14. An H-structure on Y is given by a mapm : Y " Y ! Y satisfying
the axioms of a group up to homotopy, that is:

44 In the last twenty years or so, some mathematicians followed a principle which has been
captured by the verb ÔcategorifyÕ or the ÔcategoriÞcationÕ which, very roughly, consists in taking
a theorem involving equalities, try to replace the latter by isomorphisms, thus replacing sets
by categories in the background, and see whether one can prove a theorem again. In the case
of Eckmann & Hilton, the term was ÔdualizeÕ or ÔdualizationÕ and see if you get a concept and
theorems.

45 We will not cover, for instance, P. Hilton (1965) which, despite what one could believe from
its publication date, goes back to 1958 when Hilton gave a course on the subject at Cornell
University. Thus it only di!ers from Eckmann and P. J. Hilton (1958b), Eckmann and P. J.
Hilton (1958c), Eckmann and P. J. Hilton (1958a), and Eckmann and P. J. Hilton (1958d) in its
organization.

46 Of course, this is not the original contribution of the paper, for the notion of an H -space
was introduced by Serre in Serre (1951). There was afterwards a ßurry of activities surrounding
the notion of H -spaces in the 1950s. See, for instance, Hubbuck (1999).
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1. m # (m " 1Y ) - m # (1Y " m) : Y " Y " Y ! Y ;

2. m # (1Y " o) # ! - 1Y : Y ! Y ;

3. There exists aµ : Y ! Y such that m # (1Y " µ) # ! - o : Y ! Y ;

where! is the diagonal mapY ! Y " Y and o is the trivial map sending everything
to the base point.

Given an H -structure on Y , it is then possible to define a group structure on
"( X, Y ), for all X and natural in X , that is, given any continuous map X " ! X ,
there is a group homomorphism "( X ", Y ) ! "( X, Y ).

At this stage, the dual construction shows up. Eckmann & Hilton define
what is now called a co-H-space, which they call an H "-structure. Or course, this
is obtained by reversing the arrows in the foregoing definition. But in order to do
so, one has to use operations that make these reversals possible. Thus, one has to
use the wedge sum X . X to define the map m" : X ! X . X . The dual of the
diagonal map, also known as the folding map / : X . X ! X has to be used. We
get the following definition.

DeÞnition 15. A co-H -structure on X is given by a mapm" : X ! X . X satisfying
the following axioms:

1. (m" . 1X ) # m" - (1X . m") # m" : X ! X . X . X ;

2. / # (1X . o) # m" - 1X : X ! X ;

3. There exists aµ" : X ! X such that / # (1X . µ") # m" - o : X ! X .

Then, if X has a co-H -structure, then it is possible to define a group structure
on "( X, Y ), for all Y and natural in Y . Eckmann & Hilton then claim that if there
is a co-H -structure on X and a H -structure on Y , then the two induced group
structures on "( X, Y ) coincide and are abelian.

Why are co-H -spaces important? Today, with hindsight, we can appreciate
their importance in mathematics in general. (See, for instance, Arkowitz (1995).)
But to Eckmann & Hilton, it is an instance of the fruitfulness of Mac Lane’s
program. By dualizing the concept of an H -structure, they can actually reconstruct
important concepts of algebraic topology on homotopical grounds. For instance,
they indicate that the loop space # X of a space X has a canonical H -structure
and the suspension space $ X of a space X has a canonical co-H -structure, and
for two given spaces X and Y , there is a natural group isomorphism "($ X, Y ) 0
"( X, # Y). By identifying the two groups — notice the structuralist stance here
— they define, for all n > 0,

" n (X, Y ) = "($ n X, Y ) = "($ n $ k X, # k Y ) (0 1 k 1 n).

When X is a sphere Sm , m 2 0, one recovers Hurewicz’s homotopy groups of
the space Y . It is also possible to use the functor " to reconstruct the standard
singular homology and cohomology theories and even other homology theories.
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In the following notes, Eckmann and P. J. Hilton (1958c), Eckmann and P. J.
Hilton (1958a), and Eckmann and P. J. Hilton (1958d), they show how their work
allows to recover other fundamental concepts of algebraic topology: fibrations,
exact sequences, cohomology theory with coefficients, universal coefficients for
homotopy groups and transgression. In the following two papers, Eckmann and
P. J. Hilton (1959b) and Eckmann and P. J. Hilton (1959a), they dualize certain
diagrams to obtain new and improved constructions of known results. Thus, in
all these cases, duality is a tool to redefine, reconstruct on a more general and
abstract basis concepts and theorems of algebraic topology. No small feat.

We have to underline the differences between Eckmann & Hilton’s usage of
duality with Mac Lane, Buchsbaum and Grothendieck. Whereas the latter were
trying to identify categorical structures, Eckmann & Hilton work in a specific
category, trying to use the given structure of that category to find dual concepts
and theorems. As Hilton himself remarked later: “We should emphasize that we
were not, at that time, adopting a strictly categorical approach; we were working
firmly within the category of based topological spaces and based maps. Our first
three notes had the general title Groupe dÕhomotopie et dualitŽ, indicating that the
duality was intended to clarify the study of (generalized) homotopy groups; the
study of homotopy groups was not intended merely to exemplify the duality.”(P.
Hilton, 1980, p. 162)

Their strategy and their work, however, changed once the general theory of
categories was available. The goal consists in determining, in the results they have
obtained, what rests on general categorical notions and what depends on specific
properties of the objects and mappings of a given category. A first indication of
this change appears in Eckmann and P. J. Hilton (1960), where the set up is
now an abstract category satisfying an axiom and its dual, but as they indicate
themselves, the real shift is presented in Eckmann and P. J. Hilton (1962), the
first of a series of three papers, and we will concentrate on the latter.

1.5.2 Lifting the heuristic process into the categorical machinery

The first pages of Eckmann and P. J. Hilton (1962) are extraordinarily interesting.
Now, Eckmann & Hilton place themselves in an abstract category. They explicitly
acknowledge the fact, in the first footnote of the paper which was added in proof,
that “... many of the notions of these three papers [their three papers] are related
to those in the categorical foundations of Grothendieck’s work”(Eckmann and P. J.
Hilton, 1962, 16, footnote 1). The landscape has now changed and they are aware
of it. Clearly, they had not seen Grothendieck’s work when they first wrote their
three papers. But they had seen Kan’s work on adjoint functors, since, as we will
see, there is a section devoted to the latter in their first paper. Thus, there is a
theory of categories, with the notions of adjoint functors, representable functors,
universal morphisms, functor categories, additive categories, abelian categories,
etc. Be that as it may, Eckmann & Hilton also give a detailed definition of the
dual Co of a category C.
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Indeed, it is somewhat surprising, for a contemporary reader, to see that
Eckmann & Hilton decided to give an exhaustive description of the categorical
duality at the beginning of the paper. After indicating that they now work in an
arbitrary category C, they feel the need to justify the latter choice. The very first
reason they give is the formal duality principle, which they explain carefully and
explicitly. We will quote a long passage, since it shows how they moved from a
purely heuristic principle to a general theoretical framework. After they have given
the definition of the dual of a category, they go on:

The construction of Co is a formal device that enable us to dualize
axioms, definitions and theorems in the theory of categories. Two state-
ments in C, in terms of objects and maps, are called dual if they differ
only in the direction of the maps involved. More precisely, if S is a state-
ment which is meaningful in any category, let S(C) be the statement S
applied to the category C. If we interpret S(Co) as a statement about
the objects and maps of C we get a statement So, meaningful in any
category, given by So(C) = S(Co). Then So is the dual of S. It is in this
precise sense that we will speak of dual axioms, dual definitions and
dual theorems. If the proof of a theorem belongs to the theory of cat-
egories the dual theorem is automatically true, being, in fact, logically
equivalent to it.

Of course, the duality principle is not the point and their goal is not to find
categories with self-dual axioms. They are trying to find a systematic way to
present and abstract from their previous work. They even acknowledge, later in
the paper, that some of their previous work, for instance Eckmann and P. J. Hilton
(1960), “has not been discussed as it appeared in sufficient generality” (Eckmann
and P. J. Hilton, 1962, p. 230). Then, they continue:

This duality principle is exploited repeatedly in this series of papers. If
a theorem T is proved for all categories satisfying some axiom A, then
theorem T! automatically holds for all categories satisfying axioms A! .
If one works in a single category C0 (say, the category of groups G or
the category of based sets S) then C0 may satisfy axiom A but not
axiom A! so the duality principle does not allow us to deduce the truth
of T! in C0 even if the proof of the theorem T(C0) has been made
in category-theoretic terms. It may also happen that while theorem
T! does hold in C0 it is trivial or even vacuous there; and that the
interesting categories for the applications of theorems T and T! are
certainly not identical. Thus, for example, comultiplications with two-
sided units are definable only on the one-element sets of S and so are
totally uninteresting. However they are of great interest in G and in
the category Th of (based) spaces and homotopy classes, and thus the
theorems about multiplicative structures in general categories yield on
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dualization theorems of interest in group theory and homotopy theory47.
(Eckmann and P. J. Hilton, 1962, p. 228)

The last sentence of the foregoing quote now reflects their previous work. It is
interesting to see how the metamathematical and the mathematical is weaved to-
gether in that passage: categories are treated as mathematical objects, but duality
is about statements that are interpreted in these objects.

Let us mention the second advantage underlined by Eckmann & Hilton to
justify the use of a general category.

Since our theorems consist of assertions about categories in which cer-
tain constructions may be carried out, attention is naturally directed
to those functors which respect the constructions. Such functors effect
the transport of the structures we are studying from one category to
another. (Eckmann and P. J. Hilton, 1962, p. 229)

This is an explicit reference to Bourbaki’s ‘transport of structure’, thus to his
structuralism, but at the level of categories, something Bourbaki did not succeed
to include in his vision. It is also a recent development in the theory of categories.
They could not have taken this stance earlier, for now one includes automati-
cally, to a given abstract category, the functors that preserve the structure of this
abstract category. This is a clear difference that came already with Buchsbaum,
but whose central and general role became obvious with Grothendieck, Kan and
Morita. As we have already mentioned, Eckmann & Hilton do refer explicitly to
Kan’s theory of adjoint functors and there is a whole section, namely section 6,
of their paper that is devoted to make connections between their work and Kan’s
theory.

Let us now look at the content of the first paper more carefully and how
duality is articulated in it.

1.5.3 Structures and costructures in categories

First, the abstract framework, namely a category C with zero-maps, that is for
all objects X, Y of C, the set HomC(X, Y ) is non-empty and contains an element
0XY , such that

f # 0XY = 0 XZ for all Z and all f ( Hom(Y, Z);

0XY # g = 0 W Y for all W and all g ( Hom(W, X ).

47 Of course, Grothendieck had shown the way with his notion of abelian category satisfying
additional axioms, like AB5), which are not self-dual. As we have already pointed out, Eckmann &
Hilton refer to GrothendieckÕs work in a footnote added in proof. When they need a result about
categories in general, they refer to the Russian school, namely Kuro#, Liv#ic, and $ul«geùõfer (1960)
and Calenko (1960). I do not know what is the relation of the Russian school to GrothendieckÕs
work at the time. What I do know is that the Russian school was very well aware of Bourbaki.
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This type of abstract category remains nameless. We are simply supposed to as-
sume that all the categories in the papers are of this type from that point on. How
much of Eckmann & Hilton’s results depend on this structure? This is what this
series of papers tries to establish.

After this definition, the authors state a proposition which involves a category
and its dual. First, they state that a map f is an isomorphism in a category C if
and only if it is an isomorphism in Co. Second, that a map f is a monomorphism in
C if and only if it is an epimorphism in Co, and finally, that C possesses zero-maps
if and only if Co possesses zero-maps. Furthermore, the zero-map in HomC(X, Y )
coincides with the zero-map in HomCo (Y, X ).

The next section of the paper gives the definition of a (finite) product and
some of its properties, e.g. that it is defined up to a unique isomorphism, the
existence of the switching map, associativity of the product, the diagonal map,
etc. A category C with finite products is called a D -category48. Once this is done,
they introduce the dual concept, namely a category with finite coproducts, which
they call a I -category, since what we call a coproduct, they name an inverse
product. A category which has both products and coproducts is called a DI -
category and they state and prove some of the standard results about them. For
instance, they prove that in any DI -category, one has a canonical map X 1 3 á á á 3
X m ! Y1 " á á á " Yn

49. The section ends with a series of propositions about
properties of product preserving functors between D -categories and coproduct
preserving functors between I -categories.

Section 4 of the paper introduces what should be called the definition of
category-based structures, in analogy with set-based structures. The idea of us-
ing the categorical language to define directly in an arbitrary category a type of
structures was emerging at the beginning of the 1960s50. Of course, it is a direct
consequence of Mac Lane’s earlier work and the awareness that one could stipu-
late that an abstract category had the adequate resources to define such structures
directly, e.g. Cartesian categories have products. Whence the idea of defining an

48 What is now called a Cartesian category.
49 The term ÔcanonicalÕ is explicitly introduced by (Eckmann and P. J. Hilton, 1962, p. 237).

As we have seen, Grothendieck also used the same term. For a discussion on the role of canonical
maps in category theory, see Marquis (2017).

50 Mac Lane (1965) gives an overview of the state of the art in the fall of 1964, thus shortly
after the papers we are looking at were published. Eckmann & HiltonÕs papers appear in his
bibliography, as well as BŽnabou (1963) and BŽnabou (1964), who was developing similar ideas,
but with di!erent goals in mind. In parallel with Grothendieck, one of BourbakiÕs early members,
Charles Ehresmann was also investigating internal structures in categories and BŽnabou was one
of his students at the time. As Hilton remarked in his review of Ehresmann (1963), Òthe reader
is faced with the problem of sharing the authorÕs facility in interpreting them [that is, some
very general theorems in abstract categories]Ó. EhresmannÕs work was clearly more di"cult to
decipher. We have to point out that the Russian school is also referred to by Mac Lane: Calenko,
Fuks, Gelfand and ùSilov, Kuroùs and Livùsic are all there. We need a careful analysis of this
school and their contributions. For, it seems that they were the Þrst to systematize the theory
of categories. As we will see, a similar remark applies to the Japanese school, also mentioned by
Mac Lane.
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internal structure in a category C.
Eckmann & Hilton first define what they call a multiplicative structure in a

category C.

DeÞnition 16. Let C be aD-category (i.e. a Cartesian category) andX an object
of C. Then a multiplicative structure on X is a morphism m : X " X ! X .
The pair (X, m ) is called a M -object. If (X, m ) and (X ", m") are M -objects, then
a morphism g : X ! X " is called primitive or homomorphic with respect to the
given M -structures if the following diagram commutes:

X " X X

X " " X " X "

m

g%g g

m !

It is easy to see that the composition of primitive morphisms is a primitive
morphism. Furthermore, if h # g and h are primitive and h is a monomorphism,
then g is primitive.

One can therefore consider the category M of M -objects with primitive maps
in C. Eckmann & Hilton show that the category M has products. They then apply
the contravariant functor Hom(' , X ) : C ! S, where (X, m ) is an M -object and
for any object A ( C, the map m induces a multiplicative structure on Hom(A, X )
defined by

for all f, g ( Hom(A, X ), f + g = m{ f, g } : A ! X " X ! X. (  )

and the latter is thus an M -object in the category S of sets, or as they call it,
an M -set. Then, given any map h : A ! B in C, Eckmann & Hilton show
that Hom(h, X ) : Hom(B, X ) ! Hom(A, X ) is primitive with respect to the
M -structures in Hom(B, X ), Hom(A, X ) induced by the M -structure in X. Con-
versely, they prove that if for each object A ( C, an M -structure is defined on
Hom(A, X ) in such a way that Hom(h, X ) is primitive for every map h of C, then
X admits a unique M -structure m such that (  ) holds. In other words, given the
forgetful functor U : C ! S, there is a one-to-one correspondence between M -
structures m on X and contravariant functors Hom(m, X ) : C ! M such that
U # Hom(m, X ) = Hom(' , X ). All these dualize to co-M -structures.

It is of course interesting to provide an abstract framework to define this
structure. However, the real interest lies in the fact that there is a dual notion
that comes with it: the notion of a co-M -structure in a I -category (a coCartesian
category). Thus, a co-M -structure on X is a map m : X ! X 3 X and a pair
(X, m ) is called a co-M -object. If (X, m ) and (X ", m") are co-M -objects, then a
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map g : X " ! X is said to be primitive if the diagram

X " X " 3 X "

X X 3 X

m !

g g&g

m

It is possible to apply the duality principle to obtain dual results for co-M -
structure directly.

As such, an M -object and an co-M -object do not have a lot of structure. At
this stage, Eckmann & Hilton list a series of four axioms that can be satisfied,
first, by some of these M -objects. We give the list as it appears in the original
paper.

1. (Zero as unit) m{ 1, 0} = m{ 0, 1} = 1 : X ! X " X ! X ;

2. (Associativity) m #(m " 1) = m #(1 " m) : (X " X ) " X ! X " (X " X ) !
X " X ! X ;

3. (Existence of an inverse) there exists s : X ! X such that

m{ 1, s} = m{ s,1} = 0 : X ! X " X ! X ;

4. (Commutativity) m = m # ( : X " X ! X " X ! X.

With these, it is now possible to recover the various structures introduced in their
earlier papers. Thus, an M -structure satisfying axiom 1) is an H -structure; an
M -structure satisfying 1) and 2) is an AH -structure; an M -structure satisfying
1), 2) and 3) is a G-structure; adding 4) to the latter, one gets a CG-structure
and the combination of 1), 2) and 4) yields an ACH -structure. Needless to say, all
these axioms also apply to M -objects and M -sets. Notice that a G-set is another
name for a group G and a CG-set is an abelian group. The upshot is that these
are now defined in an abstract category, in other words an object in a category C
with the adequate structure can be a group.

Eckmann & Hilton then show that an M -object (X, m ) satisfies axiom i ,
1 1 i 1 4, if and only if the representable functor Hom(' , X ) satisfies axiom i ,
1 1 i 1 4. What they then show amounts basically to the fact that the repre-
sentable functor Hom(' , X ) has values in the category of groups and not only in
the category of sets. And all these hold for the dual constructions.

Section 4 of the paper ends with two results about categories that are Carte-
sian and coCartesian, what they call DI -categories. First, let (X, m 1) be a co-
H -object and (Y, m2) a H -object in a DI -category C, and let m1 induce the
H -structure + 1 in Hom(X, A ), m2 induce the H -structure + 2 in Hom(B, Y ).
Then + 1 = + 2 in Hom(X, Y ) and is a commutative H -structure. Second, let
! : X 3 X ! X " X be the canonical map and suppose it is an epimorphism.
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Then if X admits an H -structure, that structure is unique and commutative. If
also Y admits an H -structure, then every map in Hom(X, Y ) is primitive.

In the next section, Eckmann & Hilton look at specific categories. The list
is rather long, but impressive. First comes the category S of pointed sets. It is of
course a Cartesian and coCartesian category. A G-object is a group, CG-object a
commutative group. However, the notion of a co-H -object is trivial, since the only
co-H -objects are one-point sets. One then verifies that the situation occurs in the
category of pointed topological spaces.

In the case of the category HoT op! , the co-H objects, in fact the co-G-objects,
are the suspensions $ X . Of course, loop-spaces # , or more precisely the loop-
space functor # yields G-objects. In fact, every topological group is a G-object in
HoT op! . Also, if G is an internal group in HoT op! , then Hom(G, ' ) is also a group.
In particular, when one looks at the n-sphere Sn with its suspension structure,
then Hom(Sn , Y ) = ) n (Y ), the nth homotopy group of Y . Their abstract results
allow them to deduce that the only natural group structure that can be introduced
into the sets ) n (X ), n > 1 is the homotopy group structure. In the case of the
set ) 1(X ), it follows that there are only two natural group structures, namely
the fundamental group structure and its anti-isomorphic structure. Finally, each
sphere Sn , n > 1, admits a unique cogroup structure in HoT op! and for n = 1 , S1

admits only the usual cogroup structure. At this stage, Eckmann & Hilton did not
use the fact that the functor ) 1 is representable by the unit circle S1 and deduce
that it has a cogroup structure.

In the case of the category G of groups with group homomorphisms, Eckmann
& Hilton show that an internal group G in G is necessarily abelian. On the other
hand, a group G has a co-H -structure in G if and only if G is free, a result
that was originally proved by Kan in Kan (1958c). Now, if one takes the functor
) 1 : HoT op! ! G, which preserves (finite) products and (finite) coproducts, then
it follows that if X is a space of the pointed homotopy type of a CW-complex and
if X admits a co-H -structure, then ) 1(X ) is free.

In the category A of abelian groups, the product and coproduct of two abelian
groups coincide. It follows from their general result that all abelian groups G admit
a unique H -structure and a unique co-H -structure, the first one given directly by
the group operation, yielding a CG-structure, and the second one given by the
operation g ! (g, g), g ( G, and it is a co-CG-structure. The abelian structure
induced by these structures in the representable functors is the usual abelian group
structure.

Finally, they give the case of a functor category DC. They simply show that
if D is a Cartesian category, then so is DC, and as a direct consequence, the dual
statement. A special case of this construction is brought to the fore, namely the
morphism category which is nowadays presented as D¥'¥ , whose objects are mor-
phisms of D and whose morphisms are pairs of morphisms making the appropriate
squares commute. It is a category which plays an important role in mathematics
in general.

We now turn our attention to the last section of the paper, on adjoint func-
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tors. After giving Kan’s definition, Eckmann & Hilton turn their attention to a
special case already mentioned by Kan in Kan (1958b) and Kan (1958a), namely
the suspension functor $ , and the loop space functor # , both regarded as functor
HoT op! ! HoT op!

51. As Eckmann & Hilton observe, it is a direct consequence
of $ , # that $ preserves colimits and # preserves limits. It was well-known at
the time that every loop-space carries a natural multiplication. By using general
results about adjoints and the fact that they are dealing with Cartesian and co-
Cartesian categories, Eckmann & Hilton show that it follows that every suspension
has a natural comultiplication. In fact, this is duality at work, for their proof shows
that every image of the loop space functor has a multiplication and the duality
principle implies the result for the suspension functor.

The two companion papers, Eckmann and P. J. Hilton (1963a) and Eckmann
and P. J. Hilton (1963b), to the foregoing paper extend the same type of explo-
ration. In the second paper, Eckmann and P. J. Hilton (1963a), they introduce
the notion of equalizer and they prove a number of results about abstract cate-
gories satisfying some axioms. They simply mention at the beginning of the papers
that all results have a dual version, but will not bother to write them down. In
the third paper, Eckmann and P. J. Hilton (1963b), they explore the categorical
properties of the category of M -objects and primitive morphisms in an underlying
category C. This yields what they call a primitive category and they related the
latter notion to that of an additive category in their paper. The motivation is
now to identify the categorical structure that will then give results for a variety of
mathematical domains that fall under this structure. Duality is again implicitly
used.

Eckmann & Hilton pursued this line of research in the following years. For
instance, in Eckmann and P. J. Hilton (1964), they define the notions of kernel,
cokernel, union, for categories that are not necessarily abelian. Together with
Kan’s notion of homotopy in an abstract category, they give simple proofs in
the homotopy theory of CW-complexes, for instance for Brown’s representation
theorems for cohomology theories.

What we are witnessing in these papers is nothing less than mathematical
structuralism at work, in the spirit of Bourbaki. Indeed, some classical results are
directly derived from the categorical structure, as special cases of general theorems
proved directly from the properties of the abstract category. One has to identify
the various embodiments of the abstract notions at work and then simply see the
classical results, as well as new results, emerge. Notice that duality does play an
important part in the picture, for its leads to the identification of important struc-
tures that were not otherwise available. However, Eckmann & Hilton’s notion of a
primitive category simply did not take on52. They tried to identify the categorical

51 It is one of the few examples given by Kan in his paper on adjoint functors, namely example
5.10.

52 To my knowledge, there is only one paper afterwards that makes an explicit reference to
Eckmann & HiltonÕs notion, namely Frei (1965). There is another notion of primitive category
that comes up at the same time, but we will not look at it.
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structure that would cover not only the case of homotopy theory, but other cases
of algebraic topology, algebra and other domains as well. In a sense, in their work
at the beginning of the 1960s, they were as ambitious as MacLane was in the early
1950s. It can be argued that the underlying structure supporting the Eckmann-
Hilton duality is provided by Quillen’s notion of a model category, originated in
Quillen (1967), or a variant thereof, which is seen as giving an adequate set-up
to develop abstract homotopy theory. The latter notion is self-dual. Once in this
framework, Eckmann-Hilton duality can be broken up into two parts. The first
part is purely formal and is a direct consequence of the self-dual character of the
notion of a model category. It depends entirely on the categorical set-up, that
is, it is purely categorical or axiomatic, in Mac Lane’s sense. The second part is
responsible for the fact that Eckmann-Hilton duality is not entirely formal and
seen as a heuristic or requiring some “intuition”, or some previous knowledge of
specific facts about spaces and homotopy theory. For, there are cases where some
specific properties of specific objects in a given category have to be used to ensure
the duality. It may not be such a surprise, since, whereas a model category is
self-dual, the category HoT op! is not.

We have to mention that the Russian school tried in the early sixties to give
a more precise characterization of the Eckmann & Hilton duality via the notion
of a dual functor. (See Fuks (1961), Fuks and Švarc (1962), Fuks (1963), Svarc
(1963a), Fuks (1966), and Fuks (1967).) Their work then moved towards duality
in the theory of Banach spaces. (See Svarc (1963b), Semadeni (1963), Mitjagin
and Švarc (1964), and Pokazeeva and Švarc (1966). Linton presented the work of
the Russians and built on it in Linton (1965). For a more recent perspective, see
Castillo (2010).) These developments would deserve a whole chapter in themselves.

Eckmann-Hilton duality was and is nonetheless very important in algebraic
topology and in category theory. It is not a grandiose theorem, nor is it an architec-
tonic principle, but it did show that one could indeed apply Mac Lane’s program
successfully to parts of mathematics. That program was nonetheless constrained
to a large extent by the idea that one had to focus on a category, or within a
category. Of course, Eckmann & Hilton themselves progressively developed their
own work by focusing on functor categories, representable functors and adjoints,
thus working in the universe of categories, functors and natural transformations.

1.6 Developing Mathematics using Dual structures

In the foregoing sections, we have seen how the search for categorical structures to
clarify, generalize and apply various mathematical results developed in algebraic
topology and homological algebra. In almost all these cases, one’s focus was on
a category, either abstract or specific, whether the categorical structure itself or
internal structures defined within it. We had first the exploration of what Mac
Lane called axiomatic duality and, in the heads of Eckmann & Hilton, what one
might call morphism-based duality. The common thread here is that one works
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within an axiomatically given category, but the goals and the role of categories
are different.

Once the notion of equivalence of categories was available, a different route
could be taken and has been taken, namely by exploiting the equivalence between
categories in one way or another. The duality is now organized differently, and its
function also shifts. One could speak of functorial dualities to characterize those.
The very first appearance of this form of duality, namely in the work of Morita, lifts
some well known dualities between abstract algebraic structures to equivalences
between suitably defined categories. Known results are then shown to follow from
more abstract structures and new results are obtained with the help of the new
machinery.

1.6.1 Morita duality

Morita’s paper opens up with a cryptic remark :

The purpose of this paper is to develop a theory of dualities for mod-
ules and give some applications to the theory of rings with a minimum
condition for one-sided ideals. Dualities with which we are concerned
are functorial dualities based on the notion of functors in the sense of
Eilenberg and Mac Lane and not the axiomatic ones such as discussed
by Mac Lane and Buschbaum. (Morita, 1958, p. 1)

Thus, Morita is introducing a different kind of duality, different from Mac Lane’s
axiomatic duality. Morita then gives the definition of an equivalence of categories
given by a pair of contravariant functors and declares that this is what he means
by functorial duality. It is far from clear, at this stage, that it has anything to
do with the traditional acceptations of the term ‘duality’ ! Why is this functorial
relation called a duality? Mac Lane made a clear and explicit connection with
the case of projective geometry, showing how his conception of duality could be
seen as an extension of the traditional metamathematical notion. Morita is not
as eloquent as Mac Lane. As we will see, Morita is unifying various dualities
that appeared in algebra by using the functorial framework. He is constructing
a general theory of dualities which is entirely mathematical. There is no trace
of a metamathematical perspective in Morita’s work. Thus, we are dealing with
dualities that are directly comparable to the duality between a finite-dimensional
real vector space V and its dual V ! and double dual V !! , but lifted in the context
of functors between categories. Once again, Pontrjagin’s duality also provides a
paradigm case of analysis and Morita includes it in an appendix to his paper.
It seems clear that the reference to Eilenberg & Mac Lane indicates that Morita
conceives his work as somehow belonging to the same family or is in the same
spirit. Indeed, in the same way that Eilenberg & Mac Lane, Eilenberg & Steenrod
and Cartan & Eilenberg unified various notions and theories with the help of
categories, functors and natural transformations, Morita is doing the same for
duality in algebra.
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Morita’s approach seems to be entirely original in his categorical treatment
of duality. Morita is reading in Eilenberg and MacLane (1945) something that is
not explicitly there. The latter never tried to express a kind of functorial duality,
nor did they suggest that some of the classical dualities, like Pontrjagin’s, were
captured by the language of categories. As we have seen, they merely pointed out
that it was possible to write a kind of Pontrjagin’s duality in such a way that the
isomorphism between two groups was natural. Surprisingly, Morita’s definition of
duality is the definition of equivalence of categories and, as far as I can tell, was
obtained independently of Grothendieck. It is however clear that he is not aware,
at this stage, that he has identified the correct criterion of identity for categories.
It is the notion he needs to build his theory of dualities and he does not seem to
be aware of its central role in category theory in general. Thus, one can claim that
Morita is using categories to provide a unifying framework for known theorems
and that categories are not the center of his study. This is a clear case where the
language of categories and functors is useful, provides a unifying framework, sheds
new light on “classical” theorems, although almost all these theorems belong to
modern algebra, and yields a crop of new theorems on these classical structures.

Morita’s references in category theory are Eilenberg and Mac Lane (1945),
Mac Lane (1950), Buchsbaum (1955), and Cartan and Eilenberg (1956). It is clear
even from the choice of notation itself that Cartan and Eilenberg (1956) is al-
ways in the background of Morita’s work. The other references are about rings,
modules and groups. Apart from Mac Lane’s and Buchsbaum’s papers, there is
one other paper which explicitly refers to duality, namely Tachikawa (1958), one
of Morita’s students. That paper, in turn, brings us back to Nesbitt and Thrall
(1946) and Morita and Tachikawa (1956). And the latter line originates from
Nakayama (1941) on rings and Frobenius algebras. Going further, one finally get
Wedderburn’s structure theory and Artin’s theorem on rings satisfying a minimal
condition. It is not necessary for us to look at the details of this history, although
there is certainly work to be done to unravel the various influences and interactions
that were at work. Morita also added in proof of his paper that some of his results
were obtained independently by Azumaya in his forthcoming Azumaya (1959)53.

Morita duality : talking general abstract nonsense

Morita’s paper is divided in three chapters. The first chapter sets up his general
theory of dualities for modules over a ring with unity. The second chapter moves
to a more specific case, namely dualities for modules over a ring with minimum
condition, a concept that goes back to E. Artin. Finally, the last chapter deals

53 Although AzumayaÕs paper intersects with MoritaÕs paper in as much as they prove some of
the same results, the framework is entirely di!erent. There is no reference to categories, functors
and natural isomorphisms in AzumayaÕs paper. However, there is an explicit reference to the
dual module of a module, a simple generalization of the dual space of a space, and theorems
connecting the two are referred as duality theorems. Thus, the source of the terminology is
exactly the same.
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with applications and shows the usefulness and power of the general theory. We
will concentrate on the general theory.

From the way Morita introduces his definition of duality, it seems that he
tried to generalize from the case of a finite dimensional real vector space to its
double dual, as well as the case of Pontrjagin’s duality to the more general cases of
rings and modules by using categorical language and found that it works! Indeed,
the general definitions are given by Morita in the introduction of his paper and at
the end of the very first section, after he has provided the definition of a natural
isomorphism, Morita states “Eilenberg and Mac Lane explained these notions by
taking the duality relation between finite-dimensional real vector spaces as an
example. In this paper [namely, Morita’s paper] we shall formulate dualities in
terms of these notions.”(Morita, 1958, p. 84)

Let R and S be two rings with unity. Let M R be the category of left (or right)
R-modules and M S the category of left (or right) S-modules. We then require
the functors T : M R ! M S to be additive, that is for any R-homomorphisms
f, g : M ! M ", where M, M " are R-modules, T(f + f ") = T(f ) + T(f "). The
notion of natural transformation and natural isomorphism are then stated in the
standard fashion.

The very first section of the introduction presents the definition of functorial
duality. We refrain from transcribing his definition directly into a contemporary
jargon to keep the original understanding. In particular, Morita does not indicate
that a functor is contravariant by using the dual of the domain of the functor. He
simply states that the functor is contravariant and we will follow his presentation
in this respect. Thus, whereas the dual category of a category C was always present
and used in the works that we have seen thus far, it is simply absent in Morita’s
paper.

DeÞnition 17. A functorial duality between the categoriesM R and M S is given
by a pair of functors (D1, D2), where D1 : M R ! M S and D2 : M S ! M R

are contravariant functors, such that the covariant functors D2 # D1 0 1M S and
D1 # D2 0 1M R making the usual diagrams commute. Such a pair of functors
(D1, D2) is called a duality.

Morita then says that whenever (D1, D2) is a duality, D1 (respectively D2) is
an anti-isomorphism from M R to M S (respectively from M S to M R ). Morita does
not point out that his notion of anti-isomorphism as he defines it here is different
from the notion of an isomorphism of categories as it is defined, for instance, in
Eilenberg and MacLane (1945).

Now, although Morita has mentioned Eilenberg & Mac Lane’s example of a
finite-dimensional real vector space and its dual, he has a more general example in
mind which he presents in section 3 of the introduction. It is an important example,
since not only does it motivate a large part of his work developed in his paper,
but it is also directly connected to Pontrjagin’s original duality, thus providing
a direct conceptual and mathematical link to duality as it was then understood.
In fact, as Morita points out, it is the algebraic analogue of Pontrjagin’s case,
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for character modules are the algebraic analogues of character groups of locally
compact commutative groups.

Let N be a R-S-bimodule and M a (left) R-module and M " and (right)
S-module.

DeÞnition 18. The N -character module of M , CharN (M ), is deÞned by

CharN (M ) = HomR (M, N )

where HomR (M, N ) is the right S-module of all R-homomorphisms ofM into N
with the usual compositions54.

The N -character module of M ", CharN (M ") = HomS(M ", N ) is defined sim-
ilarly. Of course, it follows from general abstract nonsense that these are con-
travariant additive functors. What we have here is certainly more than merely an
analogy with the case of finite-dimensional real vector spaces. The next step stays
in tune with the latter situation. For, given a left R-module M , we get a natural
homomorphism

) N (M ) : M ! CharN (CharN (M ))

by putting [) N (M )(m)]( ' ) = ' (m), for m ( M and ' ( CharN (M ). The obvious
question to ask is: under what conditions are these natural transformations in fact
natural isomorphisms? And one of the main theorems of Morita’s paper states that
whenever CharN is a duality in the foregoing sense, then the morphisms ) N (M )
and ) N (M ") are isomorphisms55.

There are of course natural variations of the foregoing situation to explore.
For instance, Morita considers the case when D : M R ! M R and D 2 0 1M R ,
with the standard commutative square and the conditions the module N has to
satisfy for the foregoing theorem to hold. Finally, there is also the case where D1

and D2 are covariant functors, in which case D1 and D2 are called isomorphisms
between the appropriate categories. The rest of the introduction explains what will
be proved in the various sections. Let us now look briefly at some of the results
that are relevant to our purpose.

The first chapter opens with the following theorem.

54 Again, given the importance of the functor Hom in Cartan and Eilenberg (1956) Ð one of
the fundamental additive functors with the tensor product Ð and in PontrjaginÕs duality, it is not
so surprising to Þnd it play such an important role in this development and others during this
period. We have to point out Ohkuma (1958), an early attempt at constructing a general theory
of duality. Although Ohkuma does not use the language, he is in fact using categories and the
functor, again without the name, Hom plays a central role in his analysis. In a sense, MoritaÕs
work, as well as what we call YonedaÕs lemma, were there to be found by competent and daring
mathematicians. One has to have a motivation to look at the material in a certain way, that is,
one has to look at various pieces from a certain perspective, something that is never trivial.

55 Again, we need to emphasize that this is the connection with traditional duality. It is, for
instance, the same connection that is made in Tachikawa (1958), although the latter does not
move to the context of categories.
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Theorem 3. Any duality (D1, D2) betweenM R and M S is equivalent to a dual-
ity which assigns to each module inM R and M S its N -character module with a
suitable two-sidedR-S-module N . (Morita, 1958, p. 88)

The proof of the theorem is four pages long and, as an immediate conse-
quence, Morita proves that, given a two-sided R-S-module N such that the functor
CharN determines a duality between M R and M S , the natural homomorphisms
) N (M ) and ) N (M ") are all isomorphisms for M ( M R and M " ( M S .

In section 2, Morita moves to what is nowadays called Morita duality. Instead
of looking at functors between the categories M R and M S , he looks at subcate-
gories that are closed under direct sums, submodules and quotient modules of R
and N (respectively S and N "). He then proceeds to prove various theorems that
establish a connection between the equivalence of the subcategories and isomor-
phisms between certain R-modules and S-modules. We will get back to the details
in the next section.

In section 3 of the same chapter, Morita proves a variant of his very first
general theorem which is quite interesting from the point of view of the history of
category theory.

Theorem 4. Let (T1, T2) be isomorphisms betweenM R and M S, that is T1 : M R !
M S and T2 : M S ! M R such that T2 # T1 0 1M R and T1 # T2 0 1M S satisfying
the standard commutativity conditions. Then the functorsT1 and T2 are naturally
equivalent to functors HomR (N ", ' ) and HomS(N, ' ) respectively with a suitable
two-sidedR-S-module N " and a suitable two-sidedS-R-module N . (Morita, 1958,
p. 96)

Nowadays, we would say that Morita proves that the functors T1 and T2 are
representable, but he did not have this concept at his disposal nor does he see
that he is in fact dealing with a general concept. But the proof relies heavily on
properties of these functors. In fact, many of Morita’s proofs in the first section
rest a lot on general abstract nonsense, although the latter is literally mixed in
with more specific results.

This leads to the main theorem of chapter one, which is a classification the-
orem.

Theorem 5. Let D = ( D1, D2) and E = ( E1, E2) be two dualities betweenM R and
"M S. Suppose that there exists aS-isomorphism ( : N 0 N ", that is, ( : D1(R) 0
E1(R). Then there exists a ring-automorphism* of R such that

( (* (r )n) = r (( (n)) , 4r ( R, n ( N.

In this case, two dualities D and E are equivalent if and only if * is an inner
automorphism. (Morita, 1958, p. 103)

It then follows that two dualities D and E are equivalent if and only if N
and N " are isomorphic as R-S-bimodules.

The previous theorem can also be proved in the opposite direction.
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Theorem 6. Let * be an automorphism of the ringR. Let D be a duality between
M R and M S. Then there exists a dualityE betweenM R and M S such that there
exists a S-isomorphism ( : D1(R) 0 E1(R) such that ( (* (r )n) = r (( (n)) , 4r (
R, n ( N . (Morita, 1958, p. 103)

We thus have a complete answer to the question “when are the categories M R

and M S equivalent?” In the remaining chapters and sections of that paper, Morita
looks at more specific cases. In the last section of chapter one, he considers the
case when R is a commutative ring and applies the machinery he has developed
previously. Then in chapter two, he moves to the case of modules over rings with
minimum conditions, a well-known and important context. The proofs use results
obtained in the first chapter at key places, but they rely on a lot of ring theory. In
this chapter, Morita also establishes that the functors HomR (N, ' ) and N + S ' are
adjoints, in fact yield an equivalence of categories when restricted to the categories
of all finitely generated left R-modules and the category of all finitely generated left
S-modules. This yields a theorem that is usually associated with Morita duality:

Theorem 7. Let R and S be two rings satisfying the minimum condition for left
ideals. Then there exists an isomorphism between the categories of all (Þnitely
generated) leftR-modules and of all (Þnitely generated) leftS-modules if and only
if the basic rings R0 and S0 of R and S are isomorphic. (Morita, 1958, p. 114)

The theorems that follow are more familiar. For instance, let us denote by
R M fg (respectively M fg

S ) the category of all finitely generated left R-modules
(resp. right S-modules). Let R be a quasi-Frobenius ring. Then R M fg 0 M fg

S if
and only if the basic rings of R and S are isomorphic. A similar result is proved for
algebras over a commutative field K . These results are usually what people have in
mind when they think of Morita duality. But when we only look at the statement
of these theorems, it is hard to see what they have to do with the traditional type
of duality. But of course, all these results rely in the end on the general theory
where the duality in the sense described at the beginning – namely through the
concept of the character module – sits right at the center of the constructions.

Of course, what is impressive are the applications that Morita is able to
extract from his general theory. Chapter three of the paper is entirely dedicated
to show how fruitful the general framework is by obtaining new proofs of well
known theorems. We will not go through these, although they certainly played
a key role in the rhetoric and they would be the focus of attention in a paper
dedicated to the history of Morita duality.

It is worth our while to look at the appendix of Morita’s paper. Indeed, in the
latter, Morita connects directly his general theory of duality with the well-known
case of Pontrjagin duality. We will merely follow Morita’s presentation, since it is
crystal clear.

The result is very simple. Let GLC be the category of locally compact com-
mutative groups with continuous homomorphisms. A (Morita) duality is then a
contravariant functor D : Go

LC ! GLC such that D # D o 0 I G LC and for any
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G, G" ( GLC , the map Hom(G, G") ! Hom(D (G), D (G")) is continuous, where
Hom(G, G") is the topological space with the compact-open topology. Morita then
shows that there is essentially a unique duality for GLC , meaning that any (Morita)
duality D in the above sense is equivalent to the Pontrjagin duality.

Morita first shows that the traditional Pontrjagin duality is a (Morita) du-
ality. Indeed, let P be the additive group of real numbers modulo 1. As expected,
we set Char(G) = Hom(G, P), the usual contravariant functor. The natural trans-
formation

) (G) : G ! Char(Char(G))

can be shown to be a topological isomorphism and this is the classical Pontrjagin
duality. It is immediate that we also have a (Morita) duality. Now, to get the result
about the uniqueness of the (Morita) duality, Morita uses one of the theorems of
his paper and the crux of the proof consists in defining the appropriate locally
compact commutative group to apply his theorem. Once this is done, the result
follows directly.

This result certainly reinforces the idea that Morita is indeed proposing a
general theory of duality. The connection with Pontrjagin duality is direct. What
is surprising is that Morita himself did not push this terminology afterwards. In-
deed, in Morita (1962), Morita basically presents his theory again together with
new applications to quasi-Frobenius rings, but the title of that paper is Category-
Isomorphisms and endomorphisms of rings of modules, which does not mention
duality at all56. Furthermore, this paper appears in the Transactions of the Ameri-
can Mathematical Society, whereas his original paper was published in the Science
Reports of the Tokyo Bunrika Daigaku57. Observe that Morita still talks about
category isomorphism, although he added an hyphen between the two terms and
talks about category-isomorphisms now and does not refer to the literature. What
is even more striking is that Morita defers all mention of duality to the sixth
section of the paper and his definition of duality, namely as a pair of covariant
functors naturally equivalent to the identity functor, is relegated to a footnote!
In other words, Morita is no longer framing his work in the context of a general
theory of duality. There is no mention of Pontrjagin duality either.

With hindsight, what is striking about Morita’s work is that he did not
extract from his set-up the purely category theoretical components of it, in contrast
with, say Kan and Grothendieck. Of course, the proofs of the first chapter of his
paper contain a lot of general abstract nonsense, but as we saw, Morita stumbled
upon core features of category theory without extracting them from his particular
context. Of course, the results obtained are more than remarkable, but they clearly
show how Morita was not interested in the general theory as such, but only as a
tool to shed a new light on important results. But in a way, it also obscured how

56 In fact, it is impossible to read and understand Morita (1962) without Þrst reading Morita
(1958). Many of the proofs in the former refer to results and proofs of the latter.

57 I was unable to determine how widely available and read the latter was in the late 1950s and
early 1960s.
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duality could be articulated in general in his theory.

Morita duality and Morita equivalence

It is commonly said that Morita’s general theory of duality was made widely ac-
cessible by a series of lectures given by Hyman Bass at the University of Oregon in
1960 and made afterwards available to the community in the form of mimeograph
notes in Bass (1960). These notes are extremely interesting in many respects. It is
undoubtable that Bass had a keen vision of category theory already at that point
and that by lecturing of Morita’s theorems, he not only made the latter available
to a wide audience in a clear and readable format, but that he also delivered a
message about category theory itself. It is worth quoting a long passage of his
introduction:

Virtually all algebraic notions in category theory are a parody of their
parents in the most “classical” of categories, A M , the category of (left)
A-modules. Granting the interest and importance of categories, there-
fore, – perhaps the most presumptuous of our assumptions, to many
– it is natural to ask, when is A M 0 B M ? Isomorphism problems of
this generality generally admit either a trivial, or no humanly manage-
able, solution. The present instance, however, must be regarded either
as exceptional, or, on closer scrutiny, as acquiring depth in virtue of
the formidable mélange of trivialities which the solution meaningfully
organizes. Indeed, the solution is so overwhelmingly complete that it
permits a classification of all isomorphisms from A M to B M , and, in
particular, a computation of Aut(A M ). (Bass, 1960, p. 1)

Bass does not quite follow Morita in his presentation and his goal is to show how
the general theorems about categories allow to reorganize the classical theorems
about algebras and rings. Thus, it is not so much the categorical machinery that is
seen as important in itself, but rather how it helps to organize and prove classical
results in a systematic way, almost from, as he says himself, trivialities. However,
whereas it is possible to understand why Morita presents his theorems as dualities,
Bass’s presentation is not as clear, and indeed he chose to call his lessons “Morita’s
theorems” and not “Morita’s dualities”. For his presentation does not rely on the
character module of a module M nor the Hom functors. He goes a different route.

There is another passage on the second page of Bass’s presentation that is
worth quoting. After he has given the definition of a (additive) category C and that
of a (additive) functor, Bass moves on to the notion of isomorphism of categories,
again using the term “isomorphism” when we would now use the term “equivalence”.
It is also worth mentioning that all functors in Bass’s notes are covariant. There
is no trace of the dual Co of a category C in his text.

If S : A ! B is a functor we call S an isomorphism when there is a
functor T : B ! A such that S # T 0 I B and T # S 0 I A , where I A

and I B are the identity functors, and 0 denotes a natural equivalence
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of functors. A property of an object or a morphism in A will be called
categorical if it is shared by the image under any isomorphism. (Bass,
1960, p. 2)

As far as I know, this is the first explicit passage where someone points out that the
notion of equivalence of categories is the notion that is relevant from a structural
point of view, that is a categorical property is a property that is invariant under
any equivalence.

Let us point out that neither Morita’s results nor Bass’s notes are mentioned
in Freyd (1964). Of course, the latter was focusing on abelian categories, and, as
such, it certainly did not have to include a chapter on Morita duality. But we take
it as an indication that in the early 1960s, Morita’s theory and its presentation
by Bass were clearly received as results in algebra and not in category theory, and
thus, did not have to be included in a textbook on the latter. We should also point
out that Morita’s paper is in the bibliography of Mac Lane (1965), but that Mac
Lane does not mention it in his text. It is hard to understand why he left it in the
bibliography.

Nowadays, one finds a distinction between Morita equivalence and Morita
duality. Thus, in Müller (1984), a Morita duality is defined as “a contravariant
equivalence between full sub-categories of S-left- and R-right-modules, which are
closed under submodules, factormodules [sic] and finite direct sums, and contains
the modules S and R respectively.”(Müller, 1984, p. 396) Thus, Müller moves
directly to a much more specific case than Morita did originally. As we have
mentioned, it is a case covered in Morita’s original paper, but only one specific
case. Immediately after, it is clear that Müller distinguishes Morita duality from
Morita equivalence. Indeed, we read: “Morita showed that a duality is representable
by a bimodule SUR which is a faithfully balanced injective cogenerator on either
side. The rings S and R are semiperfect, .... They determine each other uniquely
up to Morita equivalence, and hence up to isomorphism if we assume...”(Müller,
1984, p. 396) We find a similar distinction in Xue (1996):

If R C and DS are two full subcategories of R-Mod and Mod-S, respec-
tively, there there is a duality between R C and DS in case there are con-
travariant additive functors F : R C ! DS and G : DS ! R C such that
GF 0 1C and F G 0 1D; moreover this duality is called a Morita duality
in case R C and DS are closed under submodules and factor modules,
and contain all finitely generated modules. Unlike Morita equivalence,
for no rings R and S is there a duality between R-Mod and Mod-S.
(Xue, 1996, pp. 278–279)

Koike (2009) gives exactly the same definition. Thus, algebraists have now re-
stricted the use of the term ‘Morita duality’ to specific cases of equivalences be-
tween categories of modules satisfying additional conditions. The duality is still
linked with the dual module of a module, in the way done originally by Morita
himself.
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Pierre (Peter) Gabriel and Abelian categories : Grothendieck meets Morita

Starting in 1958, Pierre Gabriel gave three talks on abelian categories, two in the
sŽminaire Dubreil-Pisot and one in the sŽminaire J.-P. Serre in Paris. Under the
supervision of Jean-Pierre Serre, he submitted his thesis in 1961, entitled “Des caté-
gories abéliennes”, the published version, Gabriel (1962) appeared in the Bulletin
de la SociŽtŽ MathŽmatique de France58. He went on to work with Grothendieck
and collaborated on Grothendieck’s SŽminaire de gŽomŽtrie algŽbrique du Bois
Marie (SGA) . He also wrote an influential unpublished manuscript which led to
the publication of Gabriel and Ulmer (1971), which, as we will see, played an im-
portant role in the 1960s in the formulation of classical dualities in the language
of category theory.

But it is more than relevant to discuss a few elements of Gabriel’s thesis.
For one thing, as far as we know, it is the first published document in which one
finds the expression ‘duality’ expressing an equivalence between a category C and
the dual of a category D. Second, the latter is explicitly connected to Morita’s
duality. Thus, whereas Morita himself backs off from the expression, Gabriel uses
it without reservation in his own text. There are, in fact, four duality theorems in
Gabriel’s thesis and they are simply stated as being such.

When we look more closely at the content of Gabriel’s thesis, the connection
with Morita’s work is less surprising. Indeed, the goal of Gabriel’s research is to
develop Grothendieck’s theory of abelian categories and apply it to the study of
modules. However, the tools used by Gabriel to prove some of Morita’s results are
completely different. Gabriel uses the full power of category theory.

The thesis has six chapters. The first one is an introduction to category
theory. When read with the first sections of Grothendieck (1957), it gives the
first systematic treatment of category theory, done systematically and explicitly
in a Grothendieck universe. The first chapter goes over the basic definitions of
categories, functors, natural transformations (“morphisms of functors”, as they
are called), additive categories, abelian categories, abelian categories satisfying
Grothen-dieck’s additional axioms, especially AB5, and, interestingly, adjoint func-
tors and equivalence of categories59. Adjoint functors and equivalence of categories
are defined in the way they are today. We should point out that Gabriel links im-
mediately adjoint functors and representable functors in proposition 10 of chapter
1:

58 In the Math Reviews, T.-Y. Lam opens up his review by saying ÒIn this deÞnitive work
on category theory, the author discusses abelian categories in the framework of Grothendieck
universes.Ó (Lam, MR023821) Needless to say, GabrielÕs thesis is nowadays not seen as a deÞnitive
work on category theory, although it is widely referred to in the literature. The MathReviews
have 549 references to it, whereas FreydÕs book on abelian categories, to which we will come
back, has 65.

59 Gabriel refers to Shih (1959) for the concept of adjoint functors, which is based on Kan
(1958c). ShihÕs presentation is direct and is restricted to applications to cohomology of simplicial
sets. He uses duality in his paper, but there is no mention of adjoints as being duals or dualities
more generally.
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Theorem 8. Let F : C ! D be a functor. The following propositions are equivalent:

1. F has an adjoint functor;

2. For every objectY in D, the functor which assigns toX in C the setHomD(F (X ), Y )
is representable. (Gabriel, 1962, p. 340)

Gabriel does not distinguish between “left” and “right” adjoints, nor between
being an adjoint of the left or the right, technical nuances that will acquire im-
portance soon afterwards.

Chapters two and three deal with properties of abelian categories, the second
chapter focusing on functor categories and the third on localization of abelian
categories. We will not go over them. It is in the fourth section of the fourth
chapter that we find the first explicit usage of the notion of a duality between
categories. The full title of the section reads as follows: “Duality between locally
finite categories and pseudo-compact modules”. The theorem is precisely what one
would now expect from a duality theorem in a categorical context. Here is the
theorem as it is formulated by Gabriel:

Theorem 9. Let I be an injective object of a locally Þnite categoryA, A the ring of
endomorphisms ofI and F the functor M )! Hom(M, I ). The functor F deÞnes,
by going to the quotient, an equivalence betweenA/KerF and the dual of the
category P C(A) of pseudo-compact modules overA. (Gabriel, 1962, p. 398)

Gabriel does not explain nor comment on the fact that he calls this theorem
a “duality”.

Let us now look at the link with Morita’s work, where we find more duality
theorems. Fix a ring R with unity. The category of right modules over R will be
denoted by M R . Of course, the latter is an abelian category. Let B be an abelian
category and U an object of B. Let + : R ! Hom(U, U) be a ring homomorphism.
For each object M of B, there is a (bilinear) map from HomB(U, M ) " R to the
set HomB(U, M ), which takes a morphism f : U ! M and an element r ( R, that
is a pair (f, r ) to the composition f # +(r ). With this map, Hom(U, M ) becomes
an R-module. We thus have a (additive) functor

HomB(+U, ' ) : B ! M R .

Gabriel then proves the following theorem:

Theorem 10. Let R be a ring, B an abelian category andG : B ! M R an additive
functor. Then the following propositions are equivalent.

1. G has an adjoint F : M R ! B;

2. There exists a ring homomorphism+ : R ! HomB(U, U), for an object U in
B, satisfying the following two conditions: 1) G is isomorphic to the functor
HomB(+U, ' ); 2) every family of objects isomorphic toU has a direct sum
(a coproduct). (Gabriel, 1962, p. 403)
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The proof of the theorem relies on the properties of an adjoint functor and
the foregoing theorem that relates adjoint functors to representable functors. The
existence of the adjoint is inferred from the fact that the functor HomM R (M, G (' ))
is representable.

One particular case of this theorem is underlined by Gabriel, namely when B
is the category of modules over a ring S. In this case, the homomorphism + turns
U into an R-S-bimodule (R to the left and S to the right). The functor F is then
the tensor product M )! M + R U. Gabriel thus arrives at a corollary which he
attributes to Morita (1958).

Corollary 1. Let R and S be rings andU an R-S-module. The following claims
are equivalent.

1. The functor (' + R U) : M R ! M S, which sendsM to M + R U is an
equivalence of categories;

2. The functor HomB(U, ' ) : M S ! M R , deÞned by, for everyS-module N ,
HomB(U, N ), is an equivalence of categories;

3. US is a projective S-module of Þnite type; the map that sendsr to r U is an
isomorphism from R to the ring of endomorphisms ofUS. (Gabriel, 1962,
p. 406)

This is essentially what Morita proves in theorem 3.2, lemma 3.3 and theorem
3.4 in Morita (1958), which occupy a central role in the whole paper. Morita’s
proofs are long and intricate, whereas Gabriel’s proof, now relying on the notions
of adjoint and representable functors are short and direct.

Gabriel then proves a lemma, which is also explicitly stated as a duality
theorem.

Lemma 1. If M is a projective right R-module of Þnite type, the leftR-module
HomR (M, R r ) is projective and of Þnite type. The functor M )! HomR (M, R r )
deÞnes a duality between the rightR-modules, projective and of Þnite type and the
left R-modules, projective and of Þnite type. (Gabriel, 1962, p. 407)

Rr is the right module underlying the ring R. Finally, there is another propo-
sition, proposition 14 in Chapter V, page 434, on the applications to modules,
which states a duality between a category and the dual of another category.

Thus, when Gabriel published his thesis in 1962, he had linked together
the basic concepts of category theory together with a specific understanding of
duality that goes back to Morita’s work60. When we move to Grothendieck’s school
in algebraic geometry, we find equivalence of categories at the very core of the
enterprise, but dualities, as Morita and Gabriel used the term, are nowhere to be
found.

60 Of course, since Morita (1962) was submitted at the same time that Gabriel submitted his
thesis, it is no surprise to see that Morita does not acknowledge it. But it is surprising that there
is no reference to GabrielÕs work in Morita (1965) or to abelian categories in general.
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1.6.2 GrothendieckÕs foundations of algebraic geometry

Before we look at the foundations of algebraic geometry61, it is probably relevant
to mention that Grothendieck’s first publications stemmed from questions related
to duality in functional analysis, more specifically in Schwartz’s theory of distribu-
tions. This fundamental work, compiled in Grothendieck (1955), is not based on
the ‘functorial language’, to use the expression adopted by Grothendieck quickly
afterwards.

However, when he moved to the foundations of algebraic geometry, Grothen-
dieck was completely immersed in the functorial language, and he expressed di-
rectly in that language the notions of sheaf and of scheme. Grothendieck did not
work in a vacuum and the notions of sheaf and of scheme were based on previ-
ous work done by Weil, Zariski, Leray, Cartan, Chevalley, Nagata and especially
Serre. In fact, as far as I know, it is in Serre (1955) that one finds the first explicit
cases of an adjoint situation and of an equivalence of categories which refers to
the categorical language, even though it is not, as such, written explicitly in that
language62. In ¤59 of that paper, Serre proves a special case of an adjoint situa-
tion and in ¤65, he proves that for coherent sheaves, the two functors defined in
¤59 yield an equivalence of categories63. Of course, Serre does not use the gen-
eral abstract concepts nor the terminology, but all the ingredients and proofs are
explicitly there64.

Grothendieck combined in a completely novel manner the two components
that we have seen in the foregoing sections, namely the opposite or dual Co of
a category C, together with the notion that he himself put forward, namely the
notion of equivalence of categories. As we have indicated in the previous section,
in the early sixties, some mathematicians started to understand that the notion
of equivalence of categories was the “right” criterion of identity for categories, in
the sense indicated by Bass above, namely that an equivalence of categories pre-
serves and reflects categorical properties. It is precisely this fact that Grothendieck
started to exploit systematically in his approach to algebraic geometry. The second

61 We have already mentioned the impact of GrothendieckÕs work in homological algebra and
how it convinced certain mathematicians of the fruitfulness of category theory. And as we also
mentioned, GrothendieckÕs work in homological algebra was a required step in his search for a
Weil cohomology, the strategy suggested by Serre to solve the Weil conjectures. GrothendieckÕs
foundations of algebraic geometry is inseparable from the Ôfunctorial languageÕ, as we will see.
But we must mention the advent of K-theory, also introduced by Grothendieck in the late 1950s,
and it also convinced other mathematicians of the relevance of category theory to mathematics,
especially after Atiyah-Hirzebruch build topological K-theory. See Weibel (1999).

62 This may sound odd, but Serre uses the word ÒfunctorÓ, but only that word, in his paper.
63 As I mentioned, Serre explicitly talks about comparing functors, although the word Òcate-

goryÓ is nowhere to be found in the paper! Thus, Serre published special cases of both notions
before Kan (1956b), but it was left to Kan, in Kan (1958a), to excavate the notion of adjoint
functors and understand its role in the theory, and to Grothendieck to give expression to the
notion of equivalence of categories in Grothendieck (1957).

64 Grothendieck himself emphasized how important SerreÕs paper was for algebraic geometry in
his address to the International Congress of Mathematics in 1958 where he stated that Òmost of
them [his ideas] originated in or were suggested by SerreÕs paper.Ó(Grothendieck, 1960a, p. 103)
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step is the observation that when one deals with a category of algebraic structures,
then its opposite, or its dual category, can often be considered to be a category
of spatial or geometric structures. Notice that this is not true in general and that
historically, it could not have been seen easily. Indeed, as we have seen previously,
it is possible to move from a homology theory to a cohomology theory simply
by moving from a category to its dual, and there is nothing there that suggests
that one is moving from an algebraic to a geometric context. In the same spirit,
self-dual categories, like Grothendieck Abelian categories do not exemplify this
passage from an algebraic context to a spatial context. Thus, there has to be
something different, more specific about the categories one works with and their
relationship. Be that as it may, it is safe to say that the examples of equivalences
that lead to Grothendieck’s definition of the notion of equivalence of categories
came from sheaf theory where the interplay between the algebraic and the spatial
is inescapable.

We will not rehearse all the required notions involved in the definition of
schemes, for we are not interested here in the specific details of the latter notion. A
brief look at the table of contents of the infamous ƒlŽments de gŽomŽtrie algŽbrique
shows how much work it takes to finally come to the definition of (affine) schemes
: 96 pages of technical notions and results scroll in the reader’s brain before the
latter comes to the definition of a scheme. And the book presupposes a working
knowledge of category theory, commutative algebra and topology. As far as we
are concerned, the key passage appears on pages 96 and 97 of Grothendieck and
Dieudonné (1960) when Grothendieck finally introduces affine schemes. Here is
the definition (our translation):

DeÞnition 19. A ringed space(X, OX ) is called an affine scheme if it is isomorphic
to a ringed space of the form(Spec(A), "A), where A is a (commutative) ring;
%(X, OX ), which is canonically identiÞed with the ringA, is then said to be the
ring of the a!ne scheme (X, OX ), and it is written A(X ) when no confusion
ensues. (Grothendieck and DieudonnŽ, 1960, p. 96)

In fact, this definition hides the truly important facts with respect to our
narrative. For, the main result of that section consists in proving a theorem that
leads to the caracterization of the morphisms of affine schemes. We thus get a
category A!Sch of affine schemes, together with two functors, namely Spec :
CRing ! A!Sch o and % : A!Sch o ! CRing . Then, Grothendieck simply
states that these data yield an equivalence between the category of commutative
rings (with units) and the dual category of affine schemes and refers back to his
Grothendieck (1957) for the definition of equivalence65.

It is interesting to note that immediately afterwards, Grothendieck proves
that if B ! A is a surjective homomorphism of commutative rings, then the cor-
responding morphism of ringed spaces is a monomorphism. This illustrates imme-
diately how the equivalence of categories is used concretely: to establish properties

65 Or course, Grothendieck also builds an equivalence of categories for formal a"ne schemes in
¤10.2 of EGA1 .
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of schemes, look at the category of rings, prove a property of the morphisms of
rings and transfer it, by reversing the arrows appropriately, to the schemes. It
becomes a standard way of working in EGA. To put it succinctly, the equiva-
lence yields directly the categorical properties of the category of affine schemes.
Grothendieck is exploiting a new layer of inter-relations between the algebraic and
the geometric. It is not only that the objects of algebraic geometry, the algebraic
varieties, are given by algebraic data; that by working within an algebraic struc-
ture, one can solve geometric problems; the new abstract layer reveals that the
structural properties of the morphisms between the geometrical data can be read
off the structural properties of the morphisms between the algebraic data. It is lit-
erally a new transfer principle and a powerful one at that. The general categorical
set-up is simple: it is given by a categorical equivalence between a category C and
the dual of a category D, that is by two functors:

C Do

F

G

satisfying the conditions of the definition of an equivalence of categories presented
above. Apart from the presence of the dual of the category D, it is hard to see
how this simple functorial situation can lead to a genuine mathematical duality,
at least when one has a classical interpretation of dualities in mind. As we have
seen, this is precisely what Gabriel uses to construct dualities in the context of the
theory of modules, and the additional structure brought about by the latter con-
text is essential. Grothendieck himself does not talk about dualities. Grothendieck
exploits the full power of the categorical framework to develop algebraic geometry,
not to do category theory or cast in the latter general mathematical phenomena.

Looking at the SŽminaire de gŽomŽtrie algŽbrique, one finds dualities every-
where, since one of the goals is to prove a generalized form of Poincare’s duality.
These dualities are given in terms of a natural isomorphisms between certain func-
tors, depending on the context. We have found only three explicit references to
dualities in a more general sense in the early volumes.

1. One finds the notion of an autoduality in a category in the SŽminaire de
gŽomŽtrie algŽbrique1, which was held in 1960-1961. Here is how Grothendieck
puts it:

We call autoduality in a category C, a functor D : C ! Co and
an isomorphism u : DD o ! Id C such that u and the isomor-
phism uo : D oD ! Id Co make (D, D o) a pair of adjoint functors.
(Grothendieck and Raynaud, 1971, p. 187)[our translation]

2. In the SŽminaire de gŽomŽtrie algŽbrique2, which took place in 1962, there
is a direct reference to Gabriel’s thesis on page 54 and, on the same page,
there is a note which refers to Morita (1958), to indicate that the method of
injective enveloppes is probably due to Morita. However, there is no reference
to categorical dualities. The focus in the SGA 2 is the notion of local dualities.
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3. In the SŽminaire de gŽomŽtrie algŽbrique3, from 1962 to 1964, in the section
on Cartier’s duality, there is a footnote that rehearses Grothendieck’s notion
of a duality for a category or an autoduality:

A duality for a category C is a pair (D, " ) constituted by a con-
travariant functor D from C to C and a functorial isomorphism
" : Id C ! DD such that the isomorphisms " #D : D ! DDD and
D # " : DDD ! D are reciprocal to one another. (Demazure and
Grothendieck, 1970, p. 432)[our translation]

Interestingly enough, this is in a chapter written by Gabriel himself! There
is no indication that it should be regarded as a special case of a more general
duality between two categories, in the way that Gabriel used the term in his
thesis.

We have not been able to find in Grothendieck’s writing a usage of duality
between categories themselves. Of course, this does not mean that it isn’t there.
But as far as we can tell, it was not named by Grothendieck or his students as
such. Be that as it may, with Grothendieck’s work in the foundations of algebraic
geometry and the rise of a genuine theory of categories, functors and natural
transformations, the abstract set-up to reformulate classical dualities in a general
framework was accessible. But it had to be conceived as such.

1.7 Explaining Dualities from a Higher point of View

We now come to the period when the various pieces of the puzzle are finally put
together and one can see the picture as a whole. I want to emphasize that in order
to see the classical components as being part of a more abstract, global picture,
a cognitive shift is required. One has to transpose at a higher level of abstraction
the data of the classical results. The language changes, the concepts involved
are new and the structural correspondence is described explicitly at a different
level of abstraction. The isomorphisms that were seen as the core of the classical
dualities become consequences of new identities between new abstract entities,
namely categories themselves. It is also necessary to see how the new context can
be interpreted as being a genuine conceptual generalization of the old set up. If one
does not keep in mind that this change of perspective has to be performed, then
it is too easy to come to the conclusion that the new point of view was already
present in earlier works, like Mac Lane does when he looks at Stone’s work from
the categorical point of view in his Mac Lane (1970) and is puzzled as to why
it took more than ten years for mathematicians to spot the concepts of adjoint
functors and equivalence of categories with all these specific instances staring at
them. It is one thing to describe how a Boolean algebra corresponds to a Boolean
space and how a homomorphism of Boolean algebras corresponds to a continuous
function of Boolean spaces, it is another thing to see this as a special case of an
abstract situation expressed in the language of category theory. Mac Lane suggests
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that there were cognitive obstructions between 1946 and 1956 that impeded the
discovery of the notion of adjoint functors (and of equivalence of categories as
well). In his own words: “Investigation of concepts as general as those of category
theory were heartily discouraged, perhaps because it was felt that the scheme
provided by Bourbaki’s structures produced enough generality.”(MacLane, 1970,
p. 234) Mac Lane may be correct that generality and abstraction were heartily
discouraged, but I did not find in the literature of that time any explicit claim to
that effect, and so I simply cannot evaluate his claim about the specific Zeit Geist.
A few remarks seem to be nonetheless necessary.

1. It is far from clear that the scheme provided by Bourbaki’s structures were
seen as producing enough generality. Again, I did not find any explicit claim
to that effect in the literature of the time, although it is easy to find claims,
for instance in the reviews of Bourbaki’s publications at the time, that pertain
to the fact that Bourbaki always tries to find the most general context to
prove theorems.

2. It is clear that mathematicians were busy trying doing mathematics in Bour-
baki’s style, that is from abstract structures. After all, Bourbaki had started
publishing in 1940, during WWII, and it is fair to say that it is only in the
1950s that the community at large started to feel and understand the im-
pact of doing the whole of mathematics in this style66. There was a lot to do
and, indeed, as Mac Lane suggests, it was far from clear that a new level of
abstraction was called for.

3. Be that as it may, what one doesfind in the Bourbaki archives are attempts
by Bourbaki themselves to accommodate categories in their structural frame-
work, even with the help of Eilenberg, but to no avail67.

4. Categories were seen, for a long time, as convenient and simply offering the
means to clarify other mathematical notions. It is indeed interesting to note
that in the fundamental work Cartan and Eilenberg (1956), there is absolutely
nothing about categories themselves or functors in general. The language is
assumed from the start and no general theorems about categories, functors,
natural transformations, etc. are used.

5. If one had to consider categories as objects, then one had to decide whether to
treat them as metamathematical devices or as genuine mathematical objects.
Given that they could not, in general, be treated as sets, it was tempting to
push them in the background, as a convenient metamathematical device.

6. It is only when functor categories became unavoidable, as emphasized in
the work of Grothendieck (1957) and Kan (1958b) and Kan (1958a), and
functors between categories and functor categories had to be explored, that
a cognitive shift started to take place. One of the important components of

66 For more on BourbakiÕs style, see Marquis (Forthcoming).
67 For more on this, see Kršmer (2006) and Marquis (2020).
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this shift was the idea that mathematical objects could be defined as being
functor categories, for instance sheaves, to mention but the most obvious
candidate. From that moment on, functor categories moved center stage,
they were treated as legitimate mathematical entities, despite the difficulties
to insert them in a standard ZF-based set-theoretical universe.

Thus, in the early sixties, the trees were there, but one had to see the forest,
and the new conceptual ecology that came with it. One had first to see category
theory as a genuine branch of abstract mathematics, as something more than:
1. a convenient language for algebraic topology, homological algebra and alge-
braic geometry; and 2. an organizational tool useful for describing links between
mathematical fields. One had to understand that category theory yields genuinely
new mathematical concepts. Second, one had to see how these concepts could
be used to recreate mathematics and create new mathematics. In that respect,
Grothendieck showed the way. Grothendieck’s work served as a paradigm for oth-
ers to emulate. For not only did Grothendieck show how to recreate on fertile
grounds algebraic geometry and homological algebra, but he also showed how to
create new mathematics, like K -theory, abelian categories, derived categories, tri-
angulated categories, toposes, motives, etc.

1.7.1 Topology and algebra

Before we take a look at the shift that occurred in the 1960s, we need to step
back in time a little to show that the components of dualities between algebra and
topology were already on the stage, but they were not seen as forming a whole.

When discussing duality between topology and algebra, one should start with
Stone duality as it appeared in M. H. Stone (1934), M. Stone (1936), and M. H.
Stone (1937), and Birkhoff (1940). We will not discuss Stone’s orignal work and we
refer the reader to the contribution by Ralf Krömer on the topic in this volume.
We want to focus on the shift that occurred in the early sixties that lead to a
transposition of Stone’s work and others into the framework of category theory.
It is interesting to note that this transposition did not come automatically and
directly, even to those who were working on extensions of Stone’s work in the late
1950s.

Indeed, in the 1930s, 1940s and 1950s, various mathematicians were trying
to characterize the concept of topological space in such a way that it would not
be grounded on a set of points, but rather the latter would be derived from the
structure of the space. In these approaches, the lattice of open (or closed) sets and
its properties is seen as the carrier of properties68. Stone duality is not used in
these works, rather topology is developed directly in the context of lattice theory
or some modification thereof.

68 See, for instance, Wallman (1938), Menger (1940), Milgram (1940), and Nšbeling (1954).
For a brief history, see BŽlanger and Marquis (2013).
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A more categorical approach was initiated by the French geometer, Charles
Ehresmann in Ehresmann (1957) and Ehresmann (1959), where he reconstructed
his work done in Ehresmann (1952) and Ehresmann (1953) on local structures in a
categorical framework, leading to the notions of differential and topological cate-
gories. These papers did not have an impact at the time. One of his students, Jean
Bénabou, and two of Frank Smithies’s students who were in Paris in 1957/1958
and attended Ehresmann’s seminar in differential geometry, namely Dona Papert
and Seymour Papert, published papers inspired by his work on topological and
local structures, which they explicitly refer as being ‘pointless topology’. In D. Pa-
pert and S. Papert (1959), Dona and Seymour Papert explored the basic concepts
of topology explicitly in a categorical framework by considering functors between
the category of what they call ‘paratopologies’, nowadays locales, and the dual of
the category of topological spaces and they refer to categorical notions introduced
by Grothendieck in his seminar on homological algebra given in Paris in 1957.
Bénabou in Bénabou (1959) looks at what he calls ‘local lattices’, which are again
locales, and essentially proves representation theorems for them. Both papers were
reviewed by Isbell in the Mathematical Reviews (MR0121773 and MR0121774).

Notice that these were done right before the discovery of adjoint functors
and equivalence of categories. They use the functorial language, but could not see
the global conceptual machinery at work69.

1.7.2 LawvereÕs work and program

One look at Lawvere’s thesis is enough to note an important conceptual shift in
the making70. The introduction already contains important clues:

We also give attention to certain functors between algebraic categories,
called ‘algebraic functors’, which are induced by maps between alge-
braic theories, and show that all such functors have adjoints (Theorem
IV.2.1). [...] There is a certain analogy with sheaf theory here. Namely,
our ‘prealgebras’ of a given type form a category of unrestricted func-
tors, whereas ‘algebras’ are prealgebras which commute with a specified
class of inverse limits. The analogy with sheaf theory is further seen in
the theorem IV.1.1 which results. (Lawvere, 1963, p. 24)

Notice that Lawvere is systematically looking for adjoints to certain given functors.
Notice also that he sees an analogy with sheaf theory, and Lawvere refers to Gode-
ment (1958), which is based on Grothendieck. Furthermore, functor categories are
omnipresent: “Algebraic functors and algebraic categories are actually themselves

69 For more on the history of locales and its role in Stone duality and its variants, see Johnstone
(1982) and Johnstone (2001).

70 The following analysis does not do justice to the magnitude of the conceptual shift proposed.
For one thing and as is now well known, Lawvere put the category of categories at the basis of his
project. The description of the latter from the Þrst chapter of his thesis and was later published
in Lawvere (1966). For more on LawvereÕs contribution during that period, see Marquis (2009)
and Marquis and Reyes (2012).
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values of a certain functor G which we call semantics.”(Lawvere, 1963, p. 24) One
could claim that the bulk of the thesis resides in the proofs of the existence of
adjoint functors to define functors between a category and a functor category, or
between functor categories. Dual categories are also used casually throughout. We
will not go over the whole thesis, for most of the results are not directly relevant
to our goal. In fact, a very large portion of his thesis deals with the category of
categories and its properties. We will concentrate on algebraic theories and alge-
braic categories, more specifically the functors which Lawvere called ‘semantics’
and ‘structure’. These were clearly influential and they constitute instances of the
abstract framework used later to analyse dualities71.

Given its impact and its importance in our story, we will rehearse some of
the key definitions and results that are relevant72. Start with the category Set f

of finite sets. In fact it can be skeletal, that is we take its objects to be the finite
ordinals and only the finite ordinals, as usually defined. We will denote it by N .
Here is Lawvere’s definition (Lawvere, 1963, p. 61):

DeÞnition 20. Let A be a category andA : N ! A be a functor. For n an object
of N , we denote byn A the value of n at A. For the speciÞc mapsi : 1 ! n,
1 1 i 1 n, in N , we write ) n

i for the value at i of A. For an arbitrary map 1 ! n,
for any n in N , the corresponding map1A ! n A is an n-ary operation of A.
Thus, in particular, each ) n

i , 1 1 i 1 n, is an n-ary operation.

Notice that we haven’t defined an algebraic theory just yet. Lawvere defines
directly the categoryof algebraic theories. It is a subcategory of a category, denoted
by ({N } , Cat ), that is defined as follows73. Its objects are pairs (A, A), where
A : N ! A, as in the foregoing definition. A morphism f : (A, A) ! (B, B) is a
functor such that the following diagram commutes:

N

A B

A B

f

DeÞnition 21. The category of algebraic theories T is the full subcategory of

71 Michael Barr tells me that the community was nothing less than shocked that Lawvere could
capture the notion of an algebraic theory as a category and a model of that theory as a functor.
Personal communication.

72 In his review of Lawvere (1968) in the MathReviews, Gonshor invites mathematicians to
read, alongside LawvereÕs paper, P. M. CohnÕs bookUniversal Algebra , but he also warns them
that Ôalthough the latter [CohnÕs book] is an abstraction from what is often regarded as ÒabstractÓ
algebra, it is concrete by the standards of this paper [LawvereÕs paper].Õ (Gonshor, MR ). Michael
Barr tells me that, at least for him, LawvereÕs presentation was more concrete than universal
algebra. (Personal communication)

73 We are not being entirely faithful to Lawvere here nor are we entirely rigorous. Lawvere
is much more careful about the various categories of categories involved. He distinguishes the
category of small categories from the category of large categories. We ignore questions of size.
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({N } , Cat ) determined by those objectsA : N ! A such that A preserves Þ-
nite coproducts and |A| is an isomorphism. An algebraic theory, which we will
now denote directly byA, is an object of T . (Lawvere, 1963, p. 62)

One word about the notation used by Lawvere. The term |A| denotes the
underlying sets of the functor A. Saying that it is an isomorphism merely means
that the objects of A in the image are basically the ‘same’ as the natural numbers.
In fact, one could stipulate from the beginning that the categories A, B, etc., have
the same objects as N . All this amounts to saying that the objects of an algebraic
theory are all of the form n A and that n A = n á1A, that is every object is the
n-fold coproduct of 1A with itself.

Lawvere proves a series of results about the category of algebraic theories T ,
e.g. it is complete, and there is a section on the notion of a presentation of an
algebraic theory, which we will simply ignore. The next step is to introduce the
semantics. As we have already mentioned above, an algebraic theory is a formal
object and when it is interpreted in the category of sets, for instance, one gets
what is usually understood as an algebra, e.g. a specific group. More precisely, let
A be an algebraic theory. An algebra is a product preserving functor Ao ! Set .
We denote the category of such product preserving functors by Set (Ao ) . A category
C is said to be algebraic if and only if for some algebraic theory A, C is equivalent
to the category of product preserving functors Set (Ao ) . The latter are really at
the core of Lawvere’s thesis, for they constitute the conceptual part of algebraic
theories. Category theory is directly used to prove some elementary results about
the algebraic category Set (Ao ) . For instance, he proves that the underlying set
functor UA : Set (Ao ) ! Set has a left adjoint F : Set ! Set (Ao ) , taking a set X
to the free A-algebra over X .

Lawvere introduces the semantic functor: informally, it should assign to each
algebraic theory A its category of algebras Set (Ao ) , in other words it assigns to each
theory its category of models. Thus, it should be a functor from the category T of
algebraic theories to a subcategory of Cat , the category of categories. Notice that
we are now fully in a category of categories, thus in what is called a 2-category, but
we will ignore this fact for the moment. The semantic functor is accompanied by
the structure functor: it assigns to each category of models of an algebraic theory
an algebraic theory. It could be argued that the main result of Lawvere’s thesis
is the proof that the semantic functor and the structure functor form an adjoint
pair. It is relevant to describe the latter situation more precisely.

Here is in a nutshell Lawvere’s definitions. Let (Cat , { Set } ) be the category
of functors over sets, i.e. the objects are functors U : X ! Set . Morphisms
are the obvious functors making triangles over Set commute. We take the full
subcategory K of (Cat , { Set } ) whose objects are those functors U : X ! Set
such that Hom(Un , U) are small for every finite set n.

DeÞnition 22. The functor sem : T o ! K is deÞned bysem(A) = UA : Set (Ao ) !
Set and, for f : A ! B in T , sem(f ) = Set ( f o ) : UB ! UA, more preciselySet ( f o )
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is the morphism making the following triangle commutes:

Set (Bo ) Set (Ao )

Set

Set ( f o )

UB UA

Lawvere is aware that the semantic functor does not assign the category
of models of a theory, but rather the underlying functor of that category to the
category of sets. He does so for purely technical reasons: “Thus intuitively the
semantics functor assigns to each algebraic theory the category of algebras of
which it is a theory. However, we find it necessary to include the underlying set
functor UA as part of the value at A of S [the semantic functor], because the
left continuity of semantics, [...], would be destroyed if we defined S (A) to be
Set (Ao ) ...”(Lawvere, 1963, p. 77) As it turns out, it is a very important piece
of information. For notice immediately that if the theories A and B are related
logically, for instance the latter obtained from the former by adding axioms of the
given theory, then we can get one and the same underlying set supporting two
theories, one in Set (Ao ) and one in Set (Bo ) .

We now have to define the structure functor struc : K ! T o. How do we
assign to a category of models a category which corresponds to its theory? Lawvere
observes that there is a unique functor N o ! SetX from the dual of the category
N to a functor category which preserves finite products and sends 1 to U. Thus,
given an object U : X ! Set of K , struc(U) is defined to be the algebraic theory
N ! A, where A is the dual of the full image of the unique functor N ! SetX .
We will not give the definition of the functor struc on morphisms. Lawvere then
proves that the functor struc is a left adjoint to the functor sem. Lawvere does not
use the term ‘dual’ in his thesis, but following Kan’s usage and as Lawvere himself
will say later, in this framework, the syntax and the semantics are codependent.

Duality in logic and the foundations of mathematics

Lawvere’s thesis was the basis of what became a program and a view of mathemat-
ical knowledge that drove his work and research. His thesis is but one incarnation
of that overall program which Lawvere presented and published later in Lawvere
(1969).

That pursuit of exact knowledge which we call mathematics seems to
involve in an essential way two dual aspects, which we may call the
Formal and the Conceptual. For example, we manipulate algebraically
a polynomial equation and visualize geometrically the corresponding
curve. Or we concentrate in one moment on the deduction of theorems
from the axioms of group theory, and in the next we consider the classes



64 An Historical Perspective on Duality and Category Theory

of actual groups to which the theorems refer. Thus the Conceptual is
in a certain sense the subject matter of the Formal. (Lawvere, 1969,
p. 281)

The “dual” aspects, the formal and the conceptual, do not constitute a duality
in the traditional mathematical sense. The term ‘dualism’ might be more apt or
even ‘dialectic’, a term much closer to Lawvere’s frame of mind74. The ‘duality’
Lawvere has in mind finds a mathematical expression in terms of adjoint functors,
thus bringing back Kan’s original language and extending it: “This paper will
have as one of its aims the giving of evidence for the universality of the concept
of adjointness, which was first isolated and named in the conceptual sphere of
category theory, but which also seems to pervade logic.”(Lawvere, 1969, p. 282)
And indeed, the bulk of the paper consists in the description of adjoint situations
in logic.

In the second section, Lawvere defines categories, functors and natural trans-
formations in “geometric” terms, that is by emphasizing the usage of arrows in the
language itself. Functor categories are introduced immediately after, together with
a ‘calculus’ of functors on functor categories. Once this is done, the core notion,
the notion of an adjoint situation, is given, both in the traditional way and in
a form that does not depend on Hom-sets, the characterization used by Lawvere
himself in his thesis. Important properties and examples of adjoint situations are
provided, most of which also come directly from his thesis. In the third section,
Lawvere introduces cartesian closed categories, a notion that is given by stipulat-
ing that certain adjoint functors to elementary functors exist. It is followed by the
notion of an hyperdoctrine, which is a cartesian closed category with additional
structure, and in particular Lawvere introduces quantifiers as special adjoints func-
tors. Hyperdoctrines are explicitly related to type theories or higher-order logic at
this point and examples are presented.

We then get to section IV, which is the section we need to focus on here.
Lawvere starts by recalling the notion of a Galois connection75: a Galois connection
between two partially ordered sets (O1, 1 ) and (O2, 1 ) is given by Lawvere by
two homomorphisms F : Oo

1 ! O2 and G : O2 ! Oo
1 such that for all x ( O1

and all y ( O2

F (x) 1 O 2 y 56 x 1 O 1 G(y).

74 Here is but one example of the presence of dialectic in LawvereÕs thinking.

In early 1985, while I was studying the foundations of homotopy theory, it
occurred to me that the explicit use of certain simple categorical structure
might serve as a link between mathematics and philosophy. The dialectical
philosophy, developed 150 years ago by Hegel, Schleiermacher, Grassmann,
Marx, and others may provide signiÞcant insights to guide the learning and
development of mathematics, while categorical precision may dispel some of
the mystery in that philosophy. (Lawvere, 1996, p. 167)

See also (Lawvere, 1994). It would be easy to multiply the variations on the theme throughout
LawvereÕs career, although it took various forms and colors.

75 LawvereÕs notion of a Galois connection comes directly from (Ore, 1944).
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Lawvere then observes that (O1, 1 ) and (O2, 1 ) can be seen as trivial categories
and that a Galois connection is nothing but a special case of an adjoint situation.
He then observes that “recently it has begun to appear that the basic examples of
Galois connections are really just fragments of more global adjoints which involve
non-trivial categories and which carry more information.”(Lawvere, 1969, p. 294)
In other words, adjoint situations are generalized Galois connections and the latter
are at the core of many mathematical dualities. This is a new connection and
presents adjunctions as generalizations of Galois connections. Lawvere then gives
a short description of Galois theory itself in terms of an adjoint situation. More
interestingly, Lawvere moves to algebraic geometry in the spirit of Galois theory
and describes a specific case of Grothendieck’s approach to the latter, that is when
one looks at the adjoint situation between the category of polynomial rings over a
field k and the category of schemes over k, as the sets of solutions of the equations
in the product set kn . Lawvere describes this adjunction by the following diagram:

Algo
k Schemek

spec

$

Lawvere claims that one ought to have adjoint situations in the foundations of
mathematics too, in particular between the syntax and the semantics, thus coming
back to his opening set-up. These adjunctions would in general have the following
form:

Theorieso Cat/Set I
semantics

structure

where, on the right, one has the comma category of categories over the category
SetI . This is taken directly from Lawvere’s thesis and subsequent works. But it
is a very general claim. It is fair to say that Lawvere’s vision provided a clear
goal for the development of categorical logic for the following years. Furthermore,
it puts everything in the framework of duality/dualism/dialectic. Last but not
least, it indicates clearly how the classical Galois connections, which are at the
core of various mathematical dualities, e.g. Stone duality, can be seen as being
based on more general dualities, namely specific types of adjunctions. It therefore
seemed possible to express classical dualities in general directly at the level of
categories and adjunctions and thus obtain a unified framework for dualities in
mathematics, as well as discovering new dualities directly. Notice immediately,
however, that adjoint situations, although generalizations of Galois connections,
do not, in general, share all the important properties of the latter. Thus, for
adjoint situations to serve as the appropriate context to express general Galois
connections, more work is required, additional structure has to be involved. This
is precisely what category theorists started to do in the mid 1960s.
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1.7.3 Putting the pieces together: 1965-1972

It is important also that Lawvere used to stress adjoint connections as

a generalization of Galois connections of order theory; that is the only

antecedent of this paper (that I know of) in which two categories

enter symmetrically, and it impressed me.

John Isbell, General Functorial Semantics

In the mid 1960s, one notices what is the conceptual equivalent of a chemical
precipitation. On the one hand, Lawvere (1963), Freyd (1964) and, in a differ-
ent spirit Ehresmann (1963), cleared the foundational landscape of unnecessary
ingredients and brought forward the purely structural components at work in-
volved in logic and universal algebra, opening the way to very general and purely
abstract investigations of various dualities. Noteworthy publications in the imme-
diate trail of these publications include Bénabou (1963), Bénabou (1964), Freyd
(1966), Linton (1966), Bénabou (1968), Linton (1969), Pultr (1970), and Isbell
(1972b). On the other hand, numerous works on the relations between topology
and algebra developed further, but not necessarily by using categorical methods
or language. Among the significant publications belonging to that family, one
finds Thron (1962), Drake and Thron (1965), S. Papert (1964), Semadeni (1965),
Dowker and D. Papert (1966), and Speed (1971). Towards the end of the 1960s
and in the early 1970s, these two threads converged.

Despite this convergence, there are nonetheless crucial epistemic differences
between these trends. The first trend works at the level of category theory. It is fair
to say that the mathematicians in this family focused on category theory, while
trying at the same time to show how it yields new mathematics and metamath-
ematics. Thus, they are the very first generation of category theorists and they
try to do mathematics and metamathematics by purely categorical means. They
are often forced to start from scratch and very simple, basic questions. A good
illustration is given by Freyd in the opening paragraphs of his paper on (universal)
algebra:

I began with a simple question: What is an algebra in the standard
category, that is, the category of sets? My answer must be formulated
in category theory predicates — objects and maps, but no elements.
When so formulated, it can be applied to an arbitrary category. (Freyd,
1966, p. 89)

There is a conscious effort to do mathematics in a certain way. Of course, the ex-
pression ‘but no elements’ does not mean ‘without sets’, but that the language and
the methods have to be purely categorical. The underlying mathematical universe
is the universe of categories, at least from a purely methodological point of view.
The goal is very often to emulate what has been done with abelian categories or
algebraic categories, namely give a purely categorical characterization of a type of
abstract category. In these papers, the examples provided illustrate how ‘classical’
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results are instances of general abstract nonsense. Sometimes, even the examples
are still general and difficult to decipher. The point is not merely to rewrite ‘classi-
cal’ mathematics in a new language, but to rise to a higher level of abstraction and
give a purely structural characterization of a type of mathematics, in the spirit of
Grothendieck and others.

The second trend uses categories and functors to prove results about topo-
logical spaces and lattices. The concrete cases are always upfront and guide the
work. The goal is not to develop category theory for its own sake, to characterize
a mathematical concept at the level of categories, nor are categories presented as
providing an adequate foundational framework. The languageof categories and
functors was incorporated progressively, mostly because of its convenience. The
language provided a uniÞed treatment of the various dualities, a clear conceptual
benefit, but the goal in this case is not to identify a new abstract structure.

We take Isbell (1972b) and Gabriel and Ulmer (1971) as representing the
culmination of the first trend and K. H. Hofmann and Keimel (1972) as the cul-
mination of the second trend76. However, the core ideas related to dualities in a
categorical context emerged first in Freyd (1966), Pultr (1970), Isbell (1971) and
Isbell (1972b) and an unpublished manuscript by Gabriel also dated from 1966,
called ‘Rétracts et catégories algébriques’, which led to Gabriel and Ulmer (1971).
Be that as it may, from that moment on, the basic categorical framework to ex-
press dualities will be extracted and become standard. We will concentrate on the
first group of papers and then briefly show how the second trend build on the first.
We will not present the individual papers in detail. Rather, we will extract the
main elements from the various papers and indicate how they appear in each case.

Adjointness, representable functors and duality

One of the striking features of the publications involved in our story in the mid-
1960s is the clarification, exploration and developments of the interactions between
basic concepts of category theory, namely the notion of limits (and colimits),
adjoint functors, representable functors and monads (or triples). In particular,
the interactions between representable functors and adjoint situations play an
important role in the discovery and clarification of dualities in the categorical
context.

Let us first recall some of the notions and results that were used or in the
background of all the papers that lead to the reconstruction of dualities. Abelian
categories quickly became one of the center of attention of mathematicians inter-
ested in homological algebra, algebraic topology and algebraic geometry in the
late 1950s and early 1960s. Some of the key notions were naturally introduced by
Grothendieck himself in Grothendieck (1957).

We now need the dual of the notion of a generator, mentioned explicitly by
Grothendieck, namely a cogenerator: an object U for a category C is a cogenerator

76 Isbell (1972a) belongs to both trends! It develops what Isbell has done in Isbell (1972b) and
applies it to lattices and topological spaces.
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if for every distinct parallel pair h, h" : A ! B , there is a morphism u : B ! U
such that u áh &= u áh".

We do not know who introduced the following concept, but it appears in
(Freyd, 1964, p. 84) in the following form77:

DeÞnition 23. A category is well-powered if it shares with the category of sets the
property that the family of subobjects of any object is a set.

The interplay between adjoint functors, representable functors and limits and
colimits is a fundamental part of pure category theory. The exploration of this
interplay, at the abstract level, more or less gave birth to pure category theory. It
could be said that in the 1960s, category theory became the study of the algebra of
functors. One of the early players in the latter game was Peter Freyd who, already
in his undergraduate honors thesis, under Buchsbaum’s supervision, introduced
the notion of reflective subcategory and explored properties of limits in categories.
He then proved what are now called Freyd’s adjoint functor theorem and Freyd’s
special adjoint theorem. All these played a role in our story. We will therefore
introduce some definitions, as they are given by Freyd in Freyd (1964).

Freyd

Let us start with the notion of a reflective subcategory.

DeÞnition 24. Let C be a subcategory ofD and let Y be an object ofD. The
reflection of Y in C (if it exists) is an object Y together with a morphismY ! Y
satisfying the following property: for any objectZ in C and morphism Y ! Z in
C, there is a unique morphismY ! Z such that

Y Y

Z

commutes.
Whenever every object ofD has a reßection inC, C is said to be areflective

subcategory. In this case, there is a functorR : D ! C deÞned byR(Y) = Y and
such a functor is called areflector. (Freyd, 1964, p. 79)

When C is a reflective subcategory of D, then the reflector R is the left-adjoint
of the inclusion functor C ! D78.

77 There is a surprising humor in that book, somewhat reminiscent of what one Þnds in Bour-
bakiÕs archives. For instance, one reads after the deÞnition of a well-powered category that ÔProp.
3.35 says, then, that an abelian category with a generator is well-powered. Electrifying.Õ

78 (MacLane, 1971) says that a subcategory is reßective whenever its inclusion functor has a
left-adjoint.
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Let us now move to the special adjoint theorem, as it appeared on page 89
of Freyd (1964)79.

Theorem 11. Let C be a well-powered, left-complete category with a cogenerator
and F : C ! D a covariant functor. Then F has a left-adjoint if and only if it
preserves limits and for all Y in D, there is an X in C and Y ! F (X ).

Recall that a category is left-complete (has all small limits it today’s termi-
nology) if it has all small products and equalizers (Freyd, 1964, p. 26).

Let us turn our attention to Freyd (1966), which is the written version of a
talk delivered in September 1964 in Warsaw. It deals with algebra valued functors
and it applies and develops results that are in the exercices of Freyd (1964) to the
case of algebra. We are thus is the same ballpark as we were with Lawvere80. But
there is a shift of perspective, for Freyd is clearly trying to convince his audience
and readers of the usefulness and power of categorical concepts and methods. As
far as we can tell, it contains the first explicit case of what will be known as a
“schizophrenic object” much later.

We fix an equational algebraic theory T , for instance the theory of groups.
The usual presentation of an equational algebraic theory is used by Freyd, although
he knows Lawvere’s purely categorical approach and he is aware of the advantages
offered by the latter. But as he says himself: “The elegant definition is that used
by Lawvere in his dissertation, [...]. I reject his formulation for expository reasons
peculiar to our times — the language of categories is still too new.” (Freyd, 1966,
p. 91) Therefore, a theory is not identified with a functor from a small category
to another category81.

Given a category C with products, it still makes sense, however, to talk about
a T -algebra in C: it is an object X of C with a T -structure, that is the operations
of the theory are interpreted as maps in the category C in the obvious way. Once
we have a T -algebra X in a category C, the functor Hom(' , X ) : Co ! Set in
fact yields also a T -algebra, but now in the category of sets. This is an example
of what Freyd calls a representable algebra valued functor. Of course, the fact
that Hom yields an algebraic structure is far from new, but it is now seen as a
representable functor, as a piece of category theory, thus to be linked with the other
pieces of the theory. The next step is also predictable : consider the category of
T -algebras in Set , denoted by SetT . The functor hX = Hom(' , X ) : Co ! SetT

is representable.
Freyd then mentions a theorem which connects adjointness and representable

functors, in a way reminiscent of what we have seen in Gabriel’s thesis. Let C

79 We still stick to the original formulation and the original deÞnitions. It is interesting to com-
pare FreydÕs formulation with Mac LaneÕs in MacLane (1971). Of course, Mac LaneÕs formulation
is equivalent, but he places the concepts di!erently.

80 To the extent that Freyd is considering algebraic structures in arbitrary categories, there are
connections with Eckmann & Hilton, and, indeed, some of the examples given by Freyd intersect
with those of Eckmann & Hilton. There is no explicit mention of the latter in FreydÕs book.

81 (MacLane, 1971, pp. 124Ð125) gives a detailed presentation which is fairly close to Freyd. It
is also presented in (Freyd, 1964, pp. 61Ð62).
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be a small complete category and F : C ! SetT a contravariant functor. F is
representable if and only if it has an adjoint on the right. Freyd then combines
this with his special adjoint theorem.

Theorem 12. Let T 1 and T 2 be equational algebraic theories andF : SetT 1 !
SetT 2 be a contravariant functor. F is representable if and only if

1. For every set { Bi } in SetT 1 there is a natural isomorphism

F (
#

i

Bi ) !
$

i

F (Bi ).

2. Let f : A ! A" in SetT 1 be an onto homomorphism,K = { (a1, a2)|f (a1) =
f (a2)} , and pi : K ! A be deÞned bypi (a1, a2) = ai

82.

Then F (f ) : F (A") ! F (A) is one-to-one and the image ofF (f ) is the set { x (
F (A)|F (p1)x = F (p2)x} .

Freyd goes on to say that there are not too many familiar examples of con-
travariant representable functors, and that the most interesting are the covariant
ones. To illustrate the power of the foregoing theorem, Freyd uses it to construct
injective modules, and in that illustration, one finds a particular fact that will turn
out to be decisive for the upcoming developments83. An injective object is defined
for algebras thus: given a theory T and an algebra A ( SetT , A is injective if for
every B ( SetT and a subalgebra B " 7 B and homomorphism f : B " ! A, there
is an extension øf : B ! A such that øf |B ! = f . Freyd then points out that 1) A is
injective if and only if Hom(' , A) carries one-to-one maps into onto maps; 2) A
is a cogenerator if and only if Hom(' , A) is a one-to-one functor. We then get to
the specific example.

Le T 1 be the theory of left R-modules, T 2 the theory of abelian groups. As
is well known, Q/ Z is a divisible group, as well as an injective object (assuming

82 We are following FreydÕs presentation here. The formulation clearly indicates that he was
not writing for category theorists.

83 It is impossible not to mention a methodological aspect underlined by Freyd at this point.
He says ÒBut as an example of the power of such a theorem let me indicate how it can be used
to construct injective modules, a task Þrst performed by Reinhold Baer using nothing but his
own ingenuity and the ordinal numbers.Ó (Freyd, 1966, p. 92) This idea that we can replace the
ingenuity of a mathematician by using instead an abstract framework that delivers the same
result automatically is a recurring theme in the 1940s, 1950s and 1960s. For instance, one reads
in (Bourbaki, 1950, p. 227):

The ÒstructuresÓ are tools for the mathematician; as soon as he has recognized
among the elements, which he is studying, relations which satisfy the axioms
of a known type, he has at his disposal immediately the entire arsenal of
general theorems which belong to the structures of that type. Previously, on
the other hand, he was obliged to forge for himself the means of attack on his
problems; their power depended on his personal talents and they were often
loaded down with restrictive hypotheses, resulting from the peculiarities of
the problem that was being studied.
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the axiom of choice), and a cogenerator in SetT 2 . Consider now the forgetful
functor SetT 1 ! SetT 2 which forgets the module structure and keeps only the
underlying group structure. It satisfies the foregoing theorem (modulo the fact that
it is covariant). We also have the contravariant functor Hom(' , Q/ Z) : SetT 2 !
SetT 1 which is representable, thus also satisfies the foregoing theorem. We can
compose these two functors, which yields a representable functor, say by an object
A ( SetT 1 and also satisfies the foregoing theorem. Since the two functors are
one-to-one, it follows that A is a cogenerator. Since the forgetful functor carries
one-to-one maps into one-to-one maps and Hom(' , Q/ Z) carries them into onto
maps, we can conclude that A is injective.

Now, this is a very nice argument which is grounded on purely categorical
structures and, as such, Freyd was right that it might convince skeptics and show
them that there is genuine mathematics coming out of category theory. But we
want to point out a simple fact that will become central soon afterwards. The
object Q/ Z “lives” in the category SetT 1 and the category SetT 2 , so to speak,
and its presence is essential to the result. Of course, the last statement is vague
and it needs to be clarified to make any sense, a task that turns out to be more
delicate than one might think.

After he has introduced the notion of tensor product for theories, thus com-
bining together two structures, Freyd brings in the notion of a coalgebra: T is a
coalgebra in C if T is an algebra in Co. Freyd is more explicit and introduces the
notion of a costructure, simply obtained by inversing the arrows of a structure84.
It is interesting to note that in that paragraph, Freyd gives the example of a co-
group in the category of spaces with base points and homotopy classes of maps,
but does not refer to Eckmann & Hilton85.

The notion of a coalgebra allows Freyd to define covariant representable
functors: a covariant functor T : C ! SetT is representable if there exists a
coalgebra A in C such that T is naturally equivalent to the functor Hom(A, ' ).
This is then used to formulate the following theorem:

Theorem 13. Let C be a complete category,T an equational algebraic theory, and
T : C ! SetT a covariant functor. T is representable if and only if T has a
left-adjoint. (Freyd, 1966, p. 99)

One obvious question about the statement of this theorem is how far it can
be generalized, a question that will be considered quickly afterwards by Pultr.

Freyd defined what he called a Lawvere functor thus:

DeÞnition 25. A Lawvere functor is a functor T : SetT 1 ! SetT 2 which preserves
underlying sets.

84 Of course, this is not what is now meant by the term ÔcoalgebraÕ, which is now tied to the
theory of monads or triples. But it makes perfect sense to generalize from the notion of a cogroup
to a coalgebra the way Freyd does here.

85 I do not know when and where the general notion of a coalgebra was introduced, that is as
a concept that made sense in general.
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Thus, Lawvere’s semantic functor is a Lawvere functor, according to this
terminology. In Lawvere’s notation, the definition simply means that such a functor
takes a T 1-algebra A and sends it to a T 2 algebra T(A), in such a way that |A| =
|T(A)|. Freyd then provides a non-category theoretical introduction to Lawvere’s
structure functor.

Notice also that what really ties together the object Q/ Z in the categories
of the example used by Freyd is precisely the fact that is has the same underlying
set. For as a left R-module and as an abelian group, it is only characterized up to
isomorphism and any such isomorphic object would do the job. Notice also that
the object Q/ Z is a cogenerator, a fact that is also relevant.

There is no mention of dualities, e.g. Pontrjagin or Stone, in Freyd’s paper.
Of course, the whole paper is, in some sense, within Lawvere’s general seman-
tic/structure ‘duality’, but it is not explicitly connected to traditional mathemat-
ical dualities. However, the main elements to reconstruct the traditional dualities
are there to be extracted. Freyd’s result was generalized soon afterwards, almost
simultaneously by Pultr and Isbell, both abstracting the conceptual ingredients
required. But it is Isbell who connected the conceptual framework with traditional
dualities86. Let us look at Pultr first, since he nonetheless identified the abstract
structure involved.

Pultr

In his Pultr (1970), Pultr explicitly states that the goal of his paper is to generalize
theorems from Freyd (1966). But in order to do so, he sets up the general categor-
ical framework required. There is no attempt at connecting the results to specific,
main stream mathematical theorems. It is a work that places itself unabashedly
in pure category theory.

Pultr starts with the concept of a universal adjunction.

DeÞnition 26. Let A, B be categories. Auniversal AB-adjunction is given by a
category C and functors

L : A " C ! B, R : Co " B ! A

such that

1. Hom(L (' , ' ), ' ) and Hom(' , R(' , ' )) are naturally equivalent;

2. If for some categoryK and functors L " : A " K ! B, R" : Ko " B ! A, there
is a natural equivalenceHom(L "(' , ' ), ' ) 0 Hom(' , R"(' , ' )) , then there
is a functor H : K ! C such that L " 0 L # (1 " H ) and R" 0 R # (H " 1).

Following this definition, Pultr remarks that if (C, L, R ) is a universal AB-
adjunction, and if L " : A ! B, R" : B ! A is a pair of adjoint functors, then

86 It is very possible that GabrielÕs unpublished work helped Isbell Þnds his way, but until we
Þnd this manuscript, we cannot tell.
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there is an object C ( C such that L " 0 L(' , C) and R" 0 R(C, ' ). Pultr then
proves two general theorems: the first one is purely categorical and the second is
the promised generalization of Freyd’s theorem. It is interesting to note that the
generalization is based on a notion explicitly attributed to Gabriel by Pultr.

First, the general theorem.

Theorem 14. Let (C, L, R ) be a universal AB-adjunction, let A0 be a reßective
subcategory ofA, let J : A0 ! A be the inclusion functor, P : A ! A0 be the
reßection. Let C0 be the full subcategory ofC generated by the objectC ( | C| such
that R(B, C ) ( A0 for every B ( B, and denote byI : C0 ! C the inclusion.
DeÞne

L 0 : A0 " C0 ! B, R0 : Co
0 " B ! A0

by
L 0 = L # (J " I ), J # R0 = R0 # (I " 1).

Then (C0, L 0, R0) is a universal A0B-adjunction.

Of course, this theorem is set-up so that it can be applied to the case at
hand, namely the notion of a relational theory, the notion attributed to Gabriel.

DeÞnition 27. A relational theory T is a couple(T, D), whereT is a small category
and D a class of functorsD : DD ! T having limits in T87.

Let SetT be the full subcategory of SetT generated by those functors pre-
serving all the limits of functors from D. Let A be a cocomplete category. We
denote by T A the full subcategory of ATo

generated by the functors preserving
the colimits of all D o : B o ! To. The generalization of Freyd’s theorem reads as
follows:

Theorem 15. Let T = ( A, D) be a relational theory andB a cocomplete category.
Then there existsL 0, R0 such that (T B, L 0, R0) is a universal SetT B-adjunction.

There is no mention of duality in Pultr’s paper, nor does he give concrete
examples coming from various areas of mathematics. He gives some very abstract
examples. Isbell, who proves a theorem akin to the generalization proposed by
Pultr, will be the first one to make the connection explicit, although in a sibyllin
fashion at first.

Isbell

Although published in the early 1970s, his Isbell (1972b) was announced much
earlier, in fact at a congress which took place in India in 1966 and which led to
the companion paper (Isbell (1971)). Both papers build on Grothendieck (1957),

87 In todayÕs terminology, we are dealing with locally Þnitely presentable categories which is
part of Gabriel-Ulmer duality. Given what Gabriel had done in his thesis, it is likely that he
even called some of the results in his unpublished manuscript duality theorems. But we are
speculating.
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Bénabou (1959), Lawvere (1963), Freyd (1964), Freyd (1966), Linton (1966), and
Linton (1969) and heavily on Peter Gabriel’s unpublished manuscript which led
to the publication of Gabriel and Ulmer (1971)88. It also relies on Isbell’s previous
work in Isbell (1964), Isbell (1966), Isbell (1968a), and Isbell (1968b). Both papers
are long and difficult to read: the terminology is idiosyncratic, the exposition is
abstract and dense, there are only a few examples. They are in that regard typical
of numerous papers published during that period. Pultr and Isbell stay as much
as possible within the realm of pure category theory and merely list a number
of examples. The ride is rough, at least for those who are not immersed in pure
category theory, which was certainly the case of the majority of mathematicians
at the time.

Whereas Isbell (1971) focuses on the category of topological spaces, the goal
of Isbell (1972b) is to study the process of modeling theories in Lawvere’s sense,
by considering certain categories as theories in Lawvere’s sense, but by relaxing
the categorical constraints, for instance by taking any category having all limits
instead of binary products89. But in both cases, the core of the papers explores in
the most general terms how to move from adjoint situations to what Isbell calls
Galois connections. The very first sentence of the introduction of Isbell (1972b)
deserves to be quoted:

The taproot of the general (or free-form) functorial semantics of this
paper is the observation that an adjoint connection between two cat-
egories is normally induced by an “object living in both categories”.
(Isbell, 1972b, p. 535)

Although cryptic, this sentence truly summarizes the focus of both papers: the
observation that an adjoint connection between two categories is normally induced
by an “object living in both categories”. The notion of adjoint connection is simply
a part of general abstract nonsense. But, as Isbell himself remarks afterwards, “to
explain an object living in two categories takes longer.” (Isbell, 1972b, p. 536)
And, indeed, the presentation is rather tortuous in both cases.

Isbell is reformulating, generalizing, abstracting from Lawvere’s work. He is
doing metamathematics and investigates the algebra of adjoint functors in that

88 Interestingly enough, Isbell reviewed the latter. In his long review, he compares his work to
Gabriel and Ulmer. Thus, one reads:

Comparison with the reviewerÕs [Isbell] functorial treatment of relational theo-
ries (indebted to the Þrst authorÕs manuscript [that is Gabriel], and published
after the present paper [...] may be helpful. Very roughly, the authors go for
the center of the Þeld [like manifolds] and describe the main features by ad
hoc means if need be. The reviewer built a single, relatively cumbersome se-
mantic machine that associates a distinguished theory, almost never small,
with each concrete category. (Isbell, MR0327863)

.
89 Isbell is well aware of questions of size and works explicitly in Grothendieck universes. As

we will see, he is also aware that everything is going on in 2-categories, but he restricts himself
to 1-categories nonetheless.
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context. But he finds a connection, no pun intended, to classical dualities, via
what he calls a character theory.

The categorical structure needed is one among the four basic declensions of
adjointness has, namely the notion of an adjunction on the right (already in Freyd
(1964)90).

DeÞnition 28. Let F : C ! D and G : D ! C be contravariant functors. F and
G are adjoint on the right if there is a natural isomorphism HomD(Y, F(X )) 0
HomC(X, G (Y )) .

This is simply a specific type of adjunction, but given its importance in his
study, Isbell suggests to call it a connection. For reasons that are not entirely clear,
the terminology and the concept of adjoint on the right (and its mirror image of
adjoint on the left) has been abandoned soon afterwards and is nowhere to be found
in contemporary textbooks on the subject. And here we are back to a categorical
formal game with categories and their duals or the opposites, as they slowly became
to be known. We submit that Mac Lane is responsible for that loss. Indeed, in
(MacLane, 1971, p. 34), Mac Lane uses only covariant functors and contravariant
functors are systematically presented as going from the opposite of the domain
category to the codomain category91. Mac Lane explains, in (MacLane, 1971,
p. 89), that any pair of contravariant functors (F, G) adjoint on the right can be
replaced by two covariant functors such that G is right adjoint to F (or, of course,
F is left adjoint to G). Simply take the usual covariant functors92 F : Co ! D
and G : Do ! C and the “dual” F o : C ! Do. The natural isomorphism between
them then becomes HomDo (F o(X ), Y ) 0 HomC(X, G (Y )) and we get the desired
adjunction.

Now, we have seen that an algebra can be thought of as a contravariant func-
tor T ! D, where D is an adequate category, that is a category which allows for
the construction of required limits and/or colimits, like Set . Since these functors
preserve (limits?), they have an adjoint on the right and therefore yield a connec-
tion in the sense of Isbell. In fact, the converse is also true: given a connection in
the sense of Isbell, it is possible to reconstruct the category of T -algebras in D.
Thus, as Isbell remarks in (Isbell, 1971, p. 144), the category of T -algebras in D
is equivalent to the category of connections between T and D.

Instead of considering (equational) algebraic theories, Isbell wants to look
at more general theories, for instance the theory of topological spaces, and the
theory of topological groups. The latter is especially interesting, since it combines
an algebraic theory with a non-algebraic theory. Let us concentrate on this last
example, like Isbell does himself in Isbell (1971). Isbell denotes the category of

90 I do not know whether this is the Þrst published appearance of the notion. I suspect it must
have been deÞned earlier in print.

91 And we are back to Eilenberg and Mac Lane (1945) usage of the dual category!
92 Peter Freyd told me that Samuel Eilenberg claimed in the early sixties that one could do away

with contravariant functors in this manner. Eilenberg apparently changed his mind when Freyd
mentioned that if one were to adopt this convention, then one could not deÞne the endofunctor
that is an anti-involution.
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topological groups by the tensor product Top + Grp 93. One can define it by say-
ing that its objects are groups G in Top . Furthermore, groups and topological
spaces are set-based structures, that is a group (respectively a topological space)
is a set together with additional data. Thus, we have two canonical forgetful func-
tors U : Top ! Set and U" : Grp ! Set . Furthermore, these two forgetful
functors preserve limits, satisfy Freyd’s solution set condition and are thus repre-
sentable94, that is in each category, there is an object, respectively X and G such
that U 0 Hom(X, ' ) and U" 0 Hom(G, ' ). Although, Isbell uses the term ‘for-
getful functor’, it is clearly meant in a more general sense than the usual canonical
forgetful functors. It is very important to keep this element in mind. So, we will
put the term ‘forgetful functor’ between quotes. Furthermore, there are ‘forgetful
functors’ U1 : Top + Grp ! Top , taking a topological group to its underly-
ing topological space, and U2 : Top + Grp ! Grp , taking a topological group
to its underlying group. These ‘forgetful functors’ compose to yield the following
diagram:

Top + Grp Top

Grp Set

U1

U2 U

U !

This means that, starting with a topological group G, moving from the top right
and going down, we should get a set (U # U1)(G) which should be naturally iso-
morphic to the set we get by going down and then left, (U" # U2)(G)95. Thus,
since we are dealing with ‘forgetful functors’ and they all preserve limits, they
are representable, and therefore there is an object P in the category Top + Grp
representing the composites. This is roughly the idea on an object living in two
categories, what will be called later a ‘schizophrenic object’.

To make the idea more precise, Isbell abstracts immediately from this situ-
ation. Let D1 and D2 be two “well-behaved” categories, both given with a distin-
guished object, P1 ( D1 and P2 ( D2. It is useful to think of them as theories in
the sense of Lawvere, which is precisely what Isbell is trying to generalize. The
category D1 + D2 can be defined as the category of D1-objects C in D2. Thus,
we can think of these objects as functors C : Do

1 ! D2. We can now compose
with the ‘forgetful functor’ U2 : D2 ! Set and then U2C is a D1-set on the set
S = U2C(P1), and C(P1) is an object of D2 on the same set S. Now, switching

93 Of course, this is no coincidence. In the general set-up, Isbell works in a monoidal category,
following Eilenberg and Kelly (1966), which had just come out.

94 Isbell touches upon the question of forgetful functors in general and claims that for any
functor to be considered a forgetful functor, it should at least preserve limits and thus be repre-
sentable. The question is whether this condition, which seems to be necessary, is su"cient. It does
not seem to be and as far as we can tell, there does not exist a su"cient condition characterizing
forgetful functors.

95 It is not strictly speaking a commutative diagram, since it lives in a category of categories,
thus at least a 2-category.
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indices, we get the perfectly symmetric statement: the category D1 + D2 can be
defined as the category of D2-objects C in D1. Thus, we can think of these ob-
jects as functors C : Do

2 ! D1. We can now compose with the ‘forgetful functor’
U1 : D1 ! Set and then U1C is a D2-set on the set S = U1C(P2), and C(P2) is
an object of D1 on the same set S. This is the symmetry that striked Isbell and
that he attributed to Lawvere.

In the abstract set-up, we get isomorphic sets, not the same underlying set.
When we move to specific cases, then additional conditions yields the same under-
lying set, for instance in the case of topological groups, we should get a topological
space P1 and a group P2 on the same underlying set.

But we are not quite done yet. For Isbell wants to connect semantic functors
Sem and structure functors Str in such a way that the composite Sem Str Sem is
equivalent to Sem. For this, Isbell introduces the notions of a Galois connection
and of a universal connection.

Here are the formal definitions (Isbell, 1972b, p. 548):

DeÞnition 29. 1. Let F : Co ! D be a contravariant functor having a adjoint
on the right G. F is a Galois connection if the natural transformations $ :
1 ! GF and , : 1 ! F G yield natural isomorphisms , # F and $ # G.

2. A connection F is universal if $ : 1 0 GF and , : 1 0 F G.

Of course, a Galois connection satisfies the condition Isbell is after for func-
torial semantics, and a universal connection is an equivalence of categories. This is
it. That is the basic categorical dynamics underlying the classical Stone type du-
alities, as we will see. Given these definitions, Isbell then shows the following
theorem.

Theorem 16. Every Galois connection F : Co ! D is naturally equivalent to a
connection IF 0R, where R is a reßector upon a full subcategory,F0 is a universal
connection and I embeds a full reßective subcategory.

In Isbell’s paper, it is one among many theorems and it is not brought forward
as having a singular status.

Isbell then gives various conditions that are satisfied by Galois connections.
The remaining parts of the papers explores the various theories and their categories
of models for which one can state and prove that the semantic functor is a Galois
connection.

Let us pause to see what this says. Basically, we have a specific type of
adjunction between two categories which is, in a sense, generated by an object
‘living in two categories’, a ‘schizophrenic object’. The duality arises when the
adjunction is restricted to full subcategories on both sides, the I and R in the
foregoing theorem, having the objects whose unit, respectively counit, components
are isomorphisms. The ‘schizophrenic object’ can be informally described thus: we
have a set A, usually an object in the category of sets, that has what we can call
a left-structure, call it L and say it is in C, and a right-structure, call it R and say
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it is in D; we have ‘forgetful functors’ L : Co ! Set and R : D ! Set such that
L (L) = A and R (R) = A and what the theorem ‘says’ is that the left-structure
on the ‘set’ A commutes with the right-structure on A.

Isbell does not apply his theorems to Pontrjagin or Stone dualities. He merely
mentions them in both papers. It is worth quoting the two passages where Pon-
trjagin duality shows up. In Isbell (1971), Isbell links the classical dualities to
universal connections, thus to equivalences of categories.

So I prepared that answer, intending to remark that nevertheless uni-
versal connections of concrete interest, such as Pontrjagin duality and
Stone duality, tend also to be objects of special interest in the category
of connections. But they seem to tend to be objects of the same sort of
special interest: cogenerators. Pontrjagin duality connects the categories
Ab of abelian groups and Cab of compact (Hausdorff) abelian groups.
Ab + Cab is again Cab (in fact, with the usual forgetful functors, the
forgetful functor from the tensor product to the second factor is an
equivalence). The Pontrjagin object is a circle, a cogenerator. (Isbell,
1971, p. 150)

In Isbell (1972b), the reference to Pontrjagin appears in the first paragraph of the
introduction. It is rather cryptic.

Consider an example to begin with, Pontrjagin duality. I mean the du-
ality between compact and discrete abelian groups; the semantics of the
generally locally compact version is too complex to begin with. In the
compact-discrete setting, one needs only consider the circle S to appear
as a compact group S1 and also as a discrete group S2. The character
group of a compact group X 1 or of a discrete group X 2 has the underly-
ing set Hom(X i , Si ); its structure (as discrete group or compact group
respectively) is found by regarding that set as a subset of a power of
the other aspect S3$ i of S. As a subset, it determines a subobject, the
character of X i . (Isbell, 1972b, p. 535)

And then, Isbell adds in the next paragraph: “Note that this description of the
duality is not particularly relevant to showing that it is a duality. That fact is a
theorem of topological groups. That character groups yield an adjoint connection
is a theorem of category theory.”(Isbell, 1972b, p. 535) Thus, for Isbell, Pontr-
jagin duality is still a theorem that belongs to the theory of topological groups.
The fact that the Hom functor is a connection is a theorem of category theory.
One wonders whether this is not a subtle distinction between mathematics and
metamathematics. For clearly the work done by Isbell in these papers belongs to
metamathematics, at least in the sense that Lawvere framed it. The focus of Is-
bell’s papers is not dualities, but a certain type of adjoint situation in the context
of metamathematics.

When we get to Isbell (1972a), the notion of Galois connection is put to work
directly to the specific case at hand. To see this, we need a preliminary definition.
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DeÞnition 30. A local lattice L is a complete lattice in which Þnite meets distribute
over all joins, that is for every family { bi } i # I of elements ofL , and for all a ( L ,

a 8
%

i # I

bi =
%

i # I

(a 8 bi ).

A morphism of local lattices preserves Þnite meets and all joins96. (Isbell, 1972a,
p. 5)

We thus have a category Loc , and it is an equational category. Bénabou
has shown in Bénabou (1959) (which, as we have indicated, Isbell reviewed) that
free local lattices exist. Thus, the category Loc is varietal. Isbell then claims that
the category Loc of local lattices is connected to the category Top by a Galois
connection. Isbell first points out that both categories are over Set , that is by the
forgetful functors Top ! Set and Loc ! Set . Furthermore, two structures can
be put on the set 2 = { 0, 1} : 1. a topology, simply by stipulating that the set { 1}
is open (together with the empty set and the whole space); 2. a (complete) lattice
structure, by stipulating that 0 < 1. Thus, the set 2 is schizophrenic. Then two
contravariant functors T : Top o ! Loc and P : Loc o ! Top , can be defined
thus: for every topological space X ,

T(X ) = Hom(X, 2);

and for every local lattice L ,

P(L) = Hom(L, 2).

Hom(X, 2) is a local lattice and Hom(L, 2) is a topological space. Isbell then ex-
plicitly mentions that this situation ought to be compared with the circle in Pontr-
jagin duality, which he calls the ‘Pontrjagin connection’. Of course, he could have
also mentioned the same set 2 and Stone duality. Be that as it may, it can then
be verified that T and P are adjoint on the right and a calculation shows that
T P T(X ) 0 T(X ) and P T P(L) 0 P(L). Isbell does consider the dual category
Loc o and calls it the category of localesand it is that latter category which is the
object of investigation of his paper. There are no explicit connections with duality
in that paper. Notice that we are squarely in mathematics and the key link is
the fact that the theory of local lattices is varietal. We thus apply the framework
developed in general functorial semantics to the case at hand.

Hofmann & Keimel

It is very tempting to say that Pultr and Isbell were working from the top down,
whereas Hofmann & Keimel were working from the bottom up. Comparing the
titles of both works push us in that direction at first. Isbell is interested in gen-
eral functorial semantics, the notion of Galois connections in categorical terms,

96 Nowadays, local lattices are called frames and the spaces are called locales.
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thus high up in category theory, even in higher dimensional categories97, whereas
Hofmann & Keimel put the emphasis on character theory, clearly suggesting a gen-
eralization of Pontrjagin duality to partially ordered sets and lattices. We might
even say that we are dealing with different styles of mathematics. But, this might
be misleading. It would probably be more accurate to say that Freyd, Pultr and
Isbell are dealing with theories seen as categories, categories of models of these
theories and the algebra of adjoints between those. We are squarely in metamath-
ematics. In the case of Hofmann & Keimel, we are in mathematics. That frontier
between mathematics and metamathematics will be blurred, as we will see. But
we are getting ahead of ourselves.

Hofmann & Keimel’s very first paragraph could not be more clear:

We use characters of lattices (i.e. lattice morphisms into the two el-
ement lattice 2) and characters of topological spaces (i.e. continuous
functions into an appropriately topologized two element space 2) to
obtain connections and dualities between various categories of lattices
and topological spaces. The objective is to present a unified treatment
of various known aspects in the relation between lattices and topologi-
cal spaces and to discover, on the way, some new ones. (K. H. Hofmann
and Keimel, 1972, p. iii)

Like their predecessors, Hofmann & Keimel use Pontrjagin duality between
compact abelian groups and discrete abelian groups to introduce the reader to the
functorial algebra underlying their analysis. The notation and terminology used
by Hofmann & Keimel is straightforward and direct. Let cAb be the category
of compact abelian groups and dAb the category of discrete abelian groups, A1

the circle group R/ Z with the usual compact topology, B1 the circle group with
its discrete topology, and two contravariant functors ch : cAb ! dAb o, Ch :
dAb o ! cAb defined by, for any compact abelian group A,

ch(A) = HomcAb (A, A 1);

and for any discrete abelian group B ,

Ch(B ) = HomdAb (B, B 1);

and ch(A) is a discrete abelian group whose structure is induced by the fact that it
is a subset of B A

1 , a discrete abelian group, and Ch(B ) is a compact abelian group
whose structure, notice the symmetry, is induced by the fact that it is a subset
of AB

1 , a compact abelian group. Hofmann & Keimel then observe that ch is left
adjoint to Ch with unit (which they call the “front adjunction”) $ : 1 ! Ch ch
and counit (which they call the “back adjunction”) , : 1 ! ch Ch. Notice that

97 Indeed, in Isbell (1971), Isbell explicitly says, commenting on a speciÞc situation, ÒThis makes
it a 2-dimensional diagram with a 2-cell # (Òhigher dimensional abstract nonsenseÓ: a necessary
study, systematically begun in BŽnabou (1967).Ó Isbell reviewed BŽnabouÕs cited work for the
Math Reviews.
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Hofmann & Keimel simply talk about ch being a left adjoint to Ch. Pontrjagin
duality now becomes the claim that the unit $ and the counit , are isomorphisms,
more explicitly, we have

G 0 HomcAb (HomdAb (G, B1), A1);

G 0 HomdAb (HomcAb (G, A1), B1).

Needless to say, mathematicians seldom write these isomorphisms in that form.
They rather introduce a notational convention and usually write something like
G 0 G%%. It lightens the reading, but hides the content.

At that point, towards the end of the 1960s, there was enough empirical
evidence, namely various duality theorems translated into the language of category
theory, and a better understanding of the algebra of adjoints, to believe that there
was an abstract algebra at work in dualities.

It appears, then, that the categorical background is the adjunction of
contravariant functors and that the actual duality arises from the special
circumstances. Since numerous conventional duality theories [...] upon
closer inspection reveal the same general features, one is naturally led
to ask the question whether the appearance of characters is something
inherent in the situation of a duality and, more generally, of a dual
adjunction. (K. H. Hofmann and Keimel, 1972, p. 3)

Hofmann & Keimel present their generalization straightforwardly, although they
too introduce some idiosyncratic terminology.

DeÞnition 31. A category C is said to be naturally grounded if there is an object
A0 ( C such that the Hom-set functor X )! Hom(A0, X ) is faithful, i.e. the
category C has a representable grounding functor. (K. H. Hofmann and Keimel,
1972, p. 4)

Hofmann & Keimel naturally observe that if what they call the grounding
C ! Set has a left adjoint F , then the object A0 = F (1), where 1 is a terminal
object of Set , provides a grounding, since HomC(A0, A) = HomC(F (1), A) 0
HomSet (1, |A|) 0 | A|.

Consider now the following diagram:

C Do

Set

F

Hom C(A 0 ,$ )

G

Hom D(B 0 ,$ )

where F is left adjoint to G. Here is the main architectonic theorem of their book.

Theorem 17. Let C and D be naturally grounded categories and suppose thatF :
C ! Do is left adjoint to G : Do ! C. Then
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1.
HomC(A0, G(B0)) 0 HomD(B0, F (A0));

2.
HomD(B0, F (' )) 0 HomC(' , G(B0))

HomC(A0, G(' )) 0 HomD(' , F (A0));

3. if D has products then there is a monic natural transformationF ! F (A0)Hom C(A 0 ,$ )

of functors C ! Do. (K. H. Hofmann and Keimel, 1972, p. 4)

As Hoffman & Keimel point out themselves, the first condition expresses the
idea of an object living in both categories, which is at best a metaphor, as we
have seen. It is more precisely stated as saying that two different structures can
be endowed on the same underlying set. The second condition is translated by
saying that the functors F and G are corepresentable and the third says that they
inherit their structure from a power object. This is clearly equivalent to Isbell’s
analysis given previously, but in a purely abstract fashion. Gone is the concept
of adjoint on the right. Furthermore, we are no longer talking about theories and
their models, semantics and structures. And, of course, it does not give us directly
a duality like Pontrjagin duality. For this, we need to get to the unit and the counit
and determine that they are naturally isomorphic, as was done in the analysis of
the example itself.

Notice that in the above theorem, the first condition gives an isomorphism
between two sets, whereas in many specific cases, we want to identity a common
underlying set supporting the two structures. This is clarified immediately after
thus:

Theorem 18. 1. Let X 1 be a set and deÞne functorsF : Set ! Seto and G :
Seto ! Set by F (X ) = Hom(X, X 1) = G(X ). Then F is left adjoint to
G relative to the unit $X : X ! G F (X ) given by $X (x)( f ) = f (x). The
isomorphism ' XY = Hom(X, G(Y )) ! Hom(Y,F (X )) is given by

' XY = ( f )(y)(x) = f (x)(y).

2. If the hypothesis of the foregoing theorem is satisÞed, then we may assume, by
the Þrst condition of the theorem, thatHom(A0, G(B0)) = Hom(B0, F (A0)) ,
and setX 1 = Hom(A0, G(B0)) , which gives us the underlying set of the object
living in two categories.

Thus, Hofmann & Keimel separates two components of the situation that
interact to yield the dualities they are after: the general adjoint situation between
two categories on the one hand, and the fact that these are over sets, which yields
the isomorphism ' that is the classical duality.

There is one final component to state. We will stick to the way Hofmann &
Keimel present it, which is again somewhat idiosyncratic. In general, one starts
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with an adjoint situation between categories C and D and then moves to certain
adjunctions, even equivalences, of subcategories of C and D. The general context
identified by Hofmann & Keimel is as follows.

Lemma 2. Let

C D C

C D C

F G

P

F

Q

G

P

be functors satisfying the following conditions:

1. F is left adjoint to G with unit $ and counit , ;

2. There are monic natural transformations

i : QF ! F P ;

k : PG ! GQ.

3. There are natural transformations

$ : I ! GF ;

, : F G ! I.

such that

$P = ( Gi )(kF )(P$);

Q, = ( ,Q )(F k)( iG).

4. P and Q are faithful.

Then F is left adjoint to G with unit $ and counit , .

This seemingly complex presentation serves the purpose of talking about
reflective and coreflective subcategories of given categories, which, as we have
seen from Isbell, arise naturally in this context. In fact, what we have just seen
is a systematic presentation of Isbell’s ideas in the context of concrete dualities.
Isbell’s approach was more ambitious.

The remaining hundred pages or so of their book are devoted to applications
of the general theory of adjoint functors and the data presented to the category
Top of topological spaces and the category Poset of partially ordered sets and
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some of their subcategories. As in Isbell, the characters of a space X is given
by HomTop (X, 2) and the characters of a poset L is given by HomPoset (L, 2)
and these provide the basic functors underlying the whole framework. The first
theorem which is labelled a duality theorem appears on page 46:

Theorem 19. (4.17. The First Duality Theorem) Let Co be the subcategory of
C = CLat , whose objects are the semiprime lattices, and letTop o be the full
subcategory ofTop whose objects are the spectral spaces. Then these categories
are dual under the functor equivalences

SpecC : Co ! Top o
o and O : Top o

o ! Co.

The composite functorsSpecC # O : T op ! T opo and O # SpecC : C ! Co are
coreßections, and the natural transformations

-SpecC(L ) : SpecC(L ) ! SpecC(O(SpecC(L )))

and
. O(X ) : O(X ) ! O(SpecC(O(X )))

are natural isomorphisms. (K. H. Hofmann and Keimel, 1972, p. 47)

We will not give the technical details involved in this theorem. What we want
to emphasize is that what Hofmann & Keimel call a duality theorem, Isbell called,
in this case, a specific Galois connection. Thus there is at that point a consensus
as to what constitutes a duality theorem in category theory. The other duality
theorems, on pages 50-52, 54, 55, 62, 80, 97-98, 100 are either of this form or
present equivalent formulations for specific cases.

Needless to say, Stone’s duality theorem between Boolean algebras and Boolean
spaces is derived as a special case (K. H. Hofmann and Keimel, 1972, p. 55). But
they also prove various duality theorems, e.g for categories of partially ordered
semi-groups or semi-lattice semi-groups, etc.

In their brief historical survey added at the end of their book, Hofmann &
Keimel present the link between category theory and dualities in a rather surpris-
ing manner.

It is, of course, well known to category theoreticians that adjoint situ-
ations constitute the appropriate generalisation of equivalence of cate-
gories, and that, accordingly, dual adjunctions then generalize [sic] du-
alities in precisely the right fashion. It is readily observed that most of
the classical duality theories are given by cofunctors which are based
on hom-sets into a fixed object which, in a vague sense, belongs to both
categories. (K. H. Hofmann and Keimel, 1972, pp. 103–104)

This is typical: once a mathematical notion has been understood, it is hard to
imagine that it did not come up naturally early in the history of the field. This is
certainly the case for all the concepts they mention in this quote! It is as if Hofmann
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& Keimel assume that all these notions were already in Eilenberg and Mac Lane
(1945), even if they are barely ten years old. But as we have seen, adjoint situations,
equivalence of categories, dual adjunctions did not arise immediately in category
theory and their connections to classical duality theories were finally emerging
explicitly when they wrote their manuscript! They write as if these concepts do
not have a history, in contrast with what they say immediately after, namely:

However, as far as dual adjunctions (or connections in the sense of
Isbell) of complete categories and equational algebraic theories or even
of theories of relational systems are concerned there is a rich history, to
which we were introduced by the referee. (K. H. Hofmann and Keimel,
1972, p. 104)

We are willing to bet that the referee was Isbell! Indeed, Hofmann & Keimel report
afterwards the following comment from the referee:

Our referee points out that Pultr’s theory “covers immediately or nearly
immediately most of the situations treated in this paper in the First
through Eight Special Adjunction Theorem, for they are dual adjunc-
tions between the category of models of a “Pultr” theory and a suitable
category Co, and are thus, by Freyd-Pultr, represented by a model in
Co”. (K. H. Hofmann and Keimel, 1972, p. 105)

Very very few people could have made such a precise comment at the time. Notice
how the referee is taking the whole theory back into metamathematics, whereas
Hofmann & Keimel were clearly in mathematics. The latter also refer to the ‘func-
torial point of view’ as somewhat different from their point of view. Be that as it
may, from that moment on, it was possible to tackle dualities from a categorical
point of view head on, something neither Freyd nor Pultr nor Isbell had done,
since that was not what motivated them in the first place, and try to develop
the general abstract algebra of adjoints before looking at specific cases, some-
thing Hofmann & Keimel were reluctant to do. What we are witnessing is an
interplay between structures belonging to different levels of abstraction, namely
categorical structures given by the algebra of adjoints, and set-based structures,
reflected by the presence of representable functors and what came to be known
as ‘schizophrenic objects’. In a way, this is not entirely surprising, for dualities, in
the end, refer to identities of structures through certain kinds of transformations
of these structures.

1.7.4 The abstract functorial form of concrete dualities

It can certainly be said that from the mid-1970s until the beginning of the 1980s,
the field was ripe for a global synthesis. The latter was carried out in different
ways and with different purposes by Lambek & Rattray, Porst, and Johnstone.
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Lambek & Rattray

Lambek and Rattray (1975) is surprisingly close to Gabriel (1962) in some ways,
but they are clearly not aware of that. For Lambek & Rattray are interested in
duality in additive categories. Here is how they introduce the notion of duality in
their paper:

By a duality between two categories we shall mean an equivalence be-
tween one and the opposite of the other. We propose to establish a
common categorical setting for a number of well-known duality theo-
rems in mathematics. While we do not claim that the proof of any one of
these theorems will thus be simplified, the categorical approach should
help the lazy mathematician who is interested in more than one of these
classical results. As a byproduct of our machinery we also obtain some
new duality theorems. (Lambek and Rattray, 1975, p. 87)

It is quite revealing that they actually take the time to specify that a duality is
an equivalence between a category and the opposite of the other. As we have seen,
this is far from being a new situation, but to call it a duality is to put it in a very
specific conceptual context. It is very hard not to read some irony in the way they
justify their work. The proofs are not simplified by going to the abstract set-up.
But you get a sweeping generalization and thus, if you are lazy, you won’t have
to look at many different but simpler proofs. And, by the way, there will be new
results. It is hard not to smile while reading these lines. Interestingly, although
they do refer to Morita, Gabriel and Mitchell in their paper, there is no explicit
reference to specific articles by these authors. Moreover, some of the dualities that
they prove are referred to in the bibliography and most of them go back to the
late 1950s and early 1960s in algebra, which is not a surprise since both Lambek
and Rattray were first and foremost algebraists.

They attribute to K. H. Hofmann and Keimel (1972) the insight that adjoint
functors play an important role in duality theorems, but in contrast with the latter,
Lambek & Rattray place themselves squarely in the algebra of adjoints, with an
additional element that was introduced some years later, namely the ‘standard
construction’, as it was called by the French school, or triples, as Lambek & Rattray
call them, or monads, as they are called now98. First, we need to rehearse a few
definitions.

Given an endofunctor M : C ! C, it is certainly possible to compose it with
itself M 2 = M # M : C ! C and M 3 = M # M 2 : C ! C. Given a natural
transformation µ : M 2 ! M with components µX : M 2(X ) ! M (X ) for each
X ( C, the notation Mµ : M 3 ! M 2 refers to the natural transformation with

98 I was told by Michael Barr that the term ÔmonadÕ was chosen at a meeting in Oberwolfach
in the summer of 1966. But it took some time to be adopted by the community and MacLane
(1971) probably helped convince the majority, although not Lambek & Rattray. Barr sticked
to ÔtriplesÕ mostly because when used in the title of his joint monograph with Wells, Toposes,
Triples and Theories , also known as TTT, it contains a number of witty allusions that were
impossible to resist.
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components (Mµ )X = M (µX ) : M 3(X ) ! M 2(X ) and µM : M 3 ! M 2 has
components (µM )X = µM (X ) .

DeÞnition 32. A monad M = ( M, $, µ) in a category C is given by an endofunctor
M : C ! C and two natural transformations

$ : 1C ! M, µ : M 2 ! M

such that the following diagrams commute

M 3 M 2

M 2 M

Mµ

µM µ

µM

M M 2 M

M

&M

µ

M&

A comonad is defined dually.
Here is the opening theorem of their paper which provides the general frame-

work.

Theorem 20. Let F : C ! D and U : D ! C be a pair of adjoint functors with
unit $ : 1 ! UF and counit , : F U ! 1. DeÞne the two full subcategories:

Fix(UF, $) = { X ( C|$X is iso}

of C; and
Fix(F U, , ) = { Y ( D|, Y is iso}

of D. Then, there is an equivalence of categories betweenFix(UF, $) and Fix(F U, , ),
and the following statements are equivalent:

1. The monad (UF, $, U,F ) on C is idempotent;

2. $U is a natural isomorphism;

3. The comonad(F U, ,, F $U ) is idempotent;

4. ,F is a natural isomorphism.

If these conditions hold, Fix(UF, $) is a reßective subcategory ofC and Fix(F U, , )
is a coreßective subcategory ofD. (Lambek and Rattray, 1975, p. 87)

Notice that there is no mention of duality in this theorem. It is a statement
about the algebra of adjoints pure and simple. There is nothing about mathemat-
ical theories, models of mathematical theories, or naturally grounded categories
or anything of that sort. Of course, Lambek and Rattray immediately add that if
we let D = Eo, then F : C ! Eo is left adjoint to U : Eo ! C and this implies
that Uo : E ! Co is left adjoint to F o : Co ! E, which is entirely symmetric.
When we read the theorem with these specific parameters in place, then we have
two idempotent monads and the conclusion of the theorem does indeed assert a
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duality, in the sense chosen by Lambek and Rattray, between the fixed subcate-
gories. Lambek & Rattray also point out that in the specific case just enunciated,
conditions 2) and 4) of the theorem correspond to what Isbell called a ‘Galois
connection’99.

Lambek & Rattray’s theorem gives us a general abstract scheme to look for
dualities in mathematics. First, start with an adjoint situation between a category
and the opposite of a category. Second, identify the two fixed subcategories in-
volved. And third, show that one of the monads is idempotent (that the other one
is follows). In practice, they claim that the simplest route is to start by looking
for idempotent monads, for there is a general theorem that gives a recipe to find
idempotent monads from given monads (Lambek and Rattray, 1975, p. 89). It is
instructive to compare Lambek & Rattray’s set-up with Hofmann & Keimel, in
particular with respect to the identification of the subcategories involved.

In the remaining parts of that paper, Lambek & Rattray consider the case
when the category C is an additive category. We will only mention one theorem
and one of its corollaries, since they tie up with some of the results we have been
discussing.

Theorem 21. Let C be a cocomplete additive category,P a +-projective small object,
E its ring of endomorphisms. Then the functorU = Hom(P, ' ) : C ! ModE , the
latter being the category of right modules overE , has a right adjoint F , (F U, , ) is
an idempotent comonad onC, (UF, , ) is an idempotent monad onModE , and U
induces an equivalence betweenFix(F U, , ) and Fix(UF, $). (Lambek and Rattray,
1975, p. 90)

There is no need to define the notion of a +-projective small object. Let us
move directly to a corollary of this theorem:

Corollary 2. An additive category is equivalent to a module category if and only if it
is cocomplete Abelian and has a small projective generator. (Lambek and Rattray,
1975, p. 92)

This is a version of the Freyd-Mitchell-Lubkin-Heron representation theorem
for abelian categories, although Lambek & Rattray attribute it to Mitchell and
Gabriel. Now, if we put C = ModR , then it yields Morita equivalence. Moreover,
putting C = cAb o, with P = R/ Z in the foregoing theorem, the corollary gives us
Pontrjagin duality. As we have seen, Lambek & Rattray are well aware that the
proofs they provide are not simpler than the known proofs of these results.

Lambek and Rattray (1979) is much closer to Isbell’s and Hofmann & Keimel’s
work. They acknowledge Isbell (1972b) in that paper. In a loose sense, they now
consider adjoint functors between ‘algebraic’ categories or, as they say, of algebraic
type, and full reflective subcategories of the category of topological spaces. The
usual, technical, algebraic categories are treated as a special case in their paper,
for the set-up is slightly more general.

99 It should be noted that they cite only Isbell (1971) and not Isbell (1972b).
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They start with a category C over Set , that is a category C together with
a functor H : C ! Set . More specifically, they consider concrete categories, that
is the functor H has to be faithful. An n-ary operation, for any n, is a natural
transformation H n ! H , where H n (X ) = ( H (X ))n . This can be generalized to
an arbitrary set I : an I -ary operation is a natural transformation / : H I ! H . A
function f : H (X ) ! H (X ") is said to be an H -homomorphism from X to X " if
it preserves all operations, that is the diagrams

H (X )I H (X ")I

H (X ) H (X ")

f I

' X ' !
X

f

commute for all operations / . A category (C, H ) with a functor H : C ! Set is
said to be operational if it is concrete and if every homomorphism from X to X " is
of the form H (g) for some g : X ! X ". It is clear that this is related to the notion
of an equational category. In fact, an operational category is any concrete category
equivalent (as a concrete category) to a full subcategory of an equational category
(in the sense of Linton (1966), thus in the most generalized sense, including in-
finitary operations). The category of compact Hausdorff spaces is operational, so
is the category of normed vector spaces (real or complex) with norm-decreasing
linear mappings. The category of normed algebras (real or complex) with norm-
decreasing morphisms is operational and, finally, the categories of Banach spaces
and Banach algebras are operational. However, the categories of topological and
uniform spaces are not operational.

The main theorem about the algebra of adjoints is slightly more general
than the main theorem in Lambek and Rattray (1975). We have a pair of functors
U : Co ! D and F : D ! Co, F left adjoint to U, with the same unit and counit.
Fix(UF, $) and Fix(F U, , ) are defined as before. A duality is again defined to be
an equivalence between a category and the opposite of a category. The theorem is
formulated as follows:

Theorem 22. 1. The functors U and F restrict to a duality

Fix(F U, , )o " Fix(UF, $);

2. The following conditions are equivalent:

(a) $UF is an isomorphism, that is Fix(UF, $) = ImageUF; (this condition
is equivalent to saying that(UF, $) is an idempotent monad.)

(b) $U is an isomorphism, that is Fix(UF, $) = Image U;

(c) ,FU is an isomorphism, that is Fix(F U, , ) = Image F U;
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(d) ,F is an isomorphism, that is Fix(F U, , ) = Image F ;

(e) UF is (after restricting its codomain) a reßector from D into Image UF
with reßection maps$Y ;

(f ) F U is (after restricting its codomain) a reßector from C into Image F U,
with reßection maps , X .

(Lambek and Rattray, 1979, p. 4)

Notice that according to this theorem and the foregoing in Lambek and Rat-
tray (1975), a duality might very well be empty! There might not be an equivalence
of subcategories with the required properties.

Lambek & Rattray then reconstruct Hofmann & Keimel’s analysis, that is
when the categories C and D are concrete and thus the functors H : C ! Set
and K : D ! Set are representable. Hence, there are objects A0 in C and B0 in
D such that H 0 HomC(A0, ' ) and K 0 HomD(B0, ' ). Thus, we go back to the
following basic situation, adapted to Lambek & Rattray’s formulation:

Co D

Set

U

Hom C(A 0 ,$ )

F

Hom D(B 0 ,$ )

In other words, for all Y in D,

HomC(A0, F (Y )) 0 HomD(Y, U(A0))

and for all X in C,

HomD(B0, U(X )) 0 HomC(X, F (B0)) .

In particular, we have HomC(A0, F (B0)) 0 HomD(B0, U(A0)) and, therefore,
U(A0) and F (B0) have canonically isomorphic underlying sets.

The main bulk of (Lambek, 1979) focuses on the case when D is the category
of topological spaces and C is concrete or operational. But before they look at
these cases, Lambek & Rattray consider more general situations, in particular
Hofmann & Keimel’s theorem.

Theorem 23. Let U : Co ! D and F : D ! Co be an adjoint pair, F left adjoint
to U and such that :

1. (C, H ) and (D, K ) are concrete categories withK 0 HomD(B0, ' );

2. HF 0 HomD(' , U(A0)) .

Then:
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1.
KU 0 HomD(B0, U(' )) 0 HomC(' , F (B0))

and
HF (B0) 0 HomD(B0, U(A0)) 0 K (U(A0)) .

2. For any x ( H (X ), (H, X )(x) is in HF U (X ) 0 HomD(U(X ), U(A0)) , and
has as underlying set mapKU (X ) ! K (U(A0)) ;

If D has products (necessarily preserved byK ), then the morphism
' (X ) : U(X ) ! U(A0)H (X ) , such that ) (x)' (X ) = ( H, X )(x) for all X
in H (X ), has as underlying set mapKU (X ) ! K (U(A0)H (X )) .

Hence ' (X ) is a monomorphism.

3. For any y in K (Y ), (K$ Y )(y) is in KUF (Y) 0 HomC(F (Y ), F (B0)) and
has as underlying set mapHF (Y) ! H (F (B0)) .

If C has products andH preserves them, then the map0(Y ) : F (Y ) !
F (B0)K (Y ) , such that ) (y)0(Y ) = ( K$ Y )(y) for all y in K (Y ), has as un-
derlying set mapHF (Y) ! H (F (B0)K (Y ) .

Hence 0(Y ) is a monomorphism.

(Lambek and Rattray, 1979, p. 7)

Among the theorems proved by Lambek & Rattray in the same section, two
stand out in the present context, since, as they point out themselves, they are
generalizations of results found in Freyd (1966), Pultr (1970), and Isbell (1972b),
namely the results we have singled out in previous sections.

Theorem 24. Let (C, H ) be an operational category andD be a complete category.
If F : D ! Co is a functor with HF 0 HomD(' , J ), then F has a right adjoint U
and eachU(X ) is the equalizer of a pair of maps between powers ofJ . (Lambek
and Rattray, 1979, p. 8)

This a reformulation of a theorem of Freyd (1966). For the next theorem,
recall that an equational theory is a product preserving functor T : Seto ! T ,
which is one-one on objects and product preserving. A T -algebra in D is a functor
P : T ! D such that the composite PT preserves products. Homomorphisms of
T -algebras are given by natural transformations. Thus, we get the category DT

of T -algebras in D, and evaluation at T(1) is a faithful functor DT ! D. When
D is the category Set of sets, SetT is therefore a concrete category, where the
‘forgetful functor’ is given by the evaluation at T(1). SetT is called an equational
category and it is called varietal if its forgetful functor has a left adjoint100.

Theorem 25. Let C be an equational categorySetT with forgetful functor H , and let
D be complete. Then the categoryP of adjoint pairs (F, U) such that U : Co ! D
and F : D ! Co, with HF representable is equivalent toDT .

100 Note that it might not have one. For T might be such that Hom T (X, Y ) is a proper class.
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In the remaining sections of the paper, Lambek & Rattray assume that the
category D is the category Com of compact Hausdorff topological spaces, (C, H )
is a concrete category, that C has limits and H preserves them, that the functors
F : Co ! Com and U : Com ! Co are adjoints, with F left adjoint to U with
adjunctions $ and , .

Lambek & Rattray then obtain the classical dualities by considering special
cases of the concrete category C, for instance when it is an algebraic category,
when UF and F U are idempotent and special objects in C. For instance, they
prove the following generalization of Stone’s duality theorem, attributed to T.-K.
Hu (1969) and T. K. Hu (1971).

Theorem 26. Let (C, H ) be an algebraic category andI a primal algebra in C. Then
there is a duality between the category of Boolean Spaces and the equational closure
of I in C. Moreover, the latter consists precisely of the subalgebras of powers ofI .
(Lambek and Rattray, 1979, p. 26)

Other dualities are obtained by restricting the category Com .

Porst

In parallel with Lambek & Rattray, Porst published a series of papers on the topic
in the 1970s. Porst (1976) adresses head on the question of how classical dualities
can be analysed in a categorical framework.

In this paper we start to answer the following more general questions
[...]: What are exactly the conditions such that there exists a duality
between suitable nice categories? How a duality may be constructed, if
it should exist? Why “all” dualities have to be constructed in the same
way? (By duality we always think of a duality “in both directions”.)
(Porst, 1976, p. 1)

One of the aspects that we have not underlined enough at this point of our study
is the type of categories one ought to talk about or try to characterize in under-
standing duality theories from a categorical point of view. Indeed, as we have seen,
and as it is explicitly mentioned in Porst’s title, dualities arise in the context of
concrete categories, that is categories with a faithful functor into the category Set
of sets. Whereas the notions of additive, abelian, cartesian, (Barr) exact categories
are abstract, in the study of dualities, we shift towards an algebra of adjoints over
the category Set101.

The answer to the first question given by Porst is essentially the same that
we have seen in Hofmann & Keimel and Lambek & Rattray, and we defer its
presentation when we will cover his survey paper. As to the second question,
whether there is an algorithm to construct such dualities, Porst builds on Linton’s
work. The main new element in Porst (1976) is a slight generalization of the set-up

101 Of course, the question arises as to what extent the latter can be replaced by an arbitrary
topos, that is when the notion of concreteness is itself rendered abstract.
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which allows him to include in the general framework dualities that were excluded,
e.g. Tannaka duality.

Let I be a set. Denote by Set I the I -fold power of Set and let pi : Set I ! Set
be the canonical projection functors. A pair (C, U) with U : C ! Set I , U faith-
ful, is called an I -concrete category. Whenever the functors pi U are representable,
(C, U) is said to be representable. Note that when I = 1 , we get back the usual no-
tion of concrete category. Porst then proceeds to extend the results about dualities
for representable I -concrete categories.

Porst (1979) is explicitly a survey of the results recently harvested at the time
and offers a kind of classification. Porst suggests to organize the issues related to
duality theories in three non-exclusive groups. The first group pertains to general
results and dualities as restrictions of adjunctions, which we could call the gen-
eral abstract forms of dualities. As usual in category theory, the excavation of an
abstract categorical form does not guarantee its existence, thus the second group
has to do with precisely these aspects of duality: their existence and construction.
The third group of issues has to do with lifting and extending dualities and here
Porst has but one specific example in mind, namely the work of Hofmann and
Roeder on lifting and extending Pontrjagin duality to various categories by cate-
gorical means. Thus, in the end, we see that from a categorical point of view, we
are left with two distinct components. First, identifying the general abstract form
of the algebra of adjoints involved in dualities. Second, finding how to construct
and establish the existence of dualities in specific cases. There is thus a purely
formal, structural component and a constructive, combinatorial component. The
latter distinction is a general fact of category theory itself.

The presentation of the general abstract framework is crystal clear and sum-
marizes perfectly everything we have seen thus far. We will simply reproduce it.
First, an informal description of the main elements involved. Let C and D be con-
crete categories. If there is a duality between C and D, then, the following holds
:

1. There is an C-object I and a D-object J such that, for every X in C and
every Y in D, the dual object of X is given by HomC(X, I ) and the dual
object of Y is given by HomD(Y, J); moreover, the objects I and J have the
same underlying sets, i.e. |I | = |J |;

2. In the category D, the object HomD(Y, J) is a subobject of a suitable power
of J .

3. There is a natural transformation

$X : X ! HomC(HomC(X, I ), I )

defined by ($X (x))( f ) = f (x), for any x ( X , f ( HomC(X, I ).

These facts are consequences of a specific categorical situation, which can be
described as follows.
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Theorem 27. Let (C, U) and (D, V ) be concrete categories, where the functorsU
and V are representable withU = HomC(A1, ' ) and V = HomD(B1, ' ), then the
following assertions hold for any duality, that is for any adjoint functorsS : Co !
D and T : D ! Co:

1. There exist cogeneratorsI in C and J in D such that:

V S = Hom(' , I ), UTo = HomD(' , J ), UI = V J;

2. If D has products, then there is a natural transformation µ : S ! J U ($ )

which is pointwise a monomorphism;

3. The unit $ of the adjunction T , S serves as a natural equivalence, and the
following formula holds for any objectY in D, f ( HomD(Y, J) = UT B,
y ( HomD(B1, Y ) = V Y:

U[(V $Y )(y)]( f ) = f # y = ( V f )(y).

Porst then presents Lambek & Rattray’s results. In the following section,
Porst considers what type of concrete categories yield genuine or contentful dual-
ities, e.g. when the concrete category C is algebraic and /or when D is a category
of topological spaces. He then surveys the existing literature and its relations to
the general forms given in the theorem.

Johnstone

Although not strictly speaking a book on duality theories, Johnstone’s book, John-
stone (1982), has certainly become the standard reference for the presentation of
various classical dualities in a categorical framework, and for good reasons. Its main
aim is to present the various mathematical consequences of the Stone representa-
tion theorem. Thus, it takes a mathematical stance and not a metamathematical
one. Furthermore, the presentation is not historically organized, since it starts with
locales instead of topological spaces. Johnstone builds up the presentation of du-
alities progressively, starting with lattices, frames and locales and the categorical
concepts are introduced as they are needed. A duality is defined as a categorical
equivalence between a category and the opposite of a category. The presentation
is thoroughly categorical. Each chapter ends with notes that present, among other
things, the main historical threads that are linked to the results proved in that
chapter. The development is therefore an interplay between the concrete examples
and the abstract framework. We will focus on section 4 of chapter VI, namely the
section discussing and presenting general concrete dualities102.

102 We ignore the section 3 of the same chapter, although it covers what Johnstone calls ÒStone-
type dualitiesÓ. A Stone-type duality theorem, according to Johnstone, is a duality obtained by a
systematic extension from a duality between Þnite structures, for instance between Þnite sets and
Þnite Boolean algebras. The core ideas involved in these cases are based on the completion and
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The presentation of the general abstract conditions underlying the classi-
cal concrete dualities is systematic and weaves together the various strands in a
clear pattern. At this point, we understand that general considerations about the
situation represented thus:

C Do

Set

H

UC

G

UD

where G and H is an equivalence of categories and UC, UD both have left adjoints
FC and FD, respectively. Notice that we are taking Do here. Thus, UC and UD are
representable, and hence the composite functors UCG and UDH are also repre-
sentable. It follows that there are objects, denoted by K C and K D by Johnstone,
such that

UC(K C) 0 HomC(FC(1), K C) 0 HomD(FD(1), K D) 0 UD(K D),

which gives us our underlying set K = |K C| = |K D|.
Johnstone therefore sets-up the context as follows. Given two categories C

and D, in order to determine whether there is a duality between them, it seems
reasonable to look for such an object K . Assuming we have found such an object
K , the functors HomC(' , K C) : Co ! Set and HomD(' , K D) : Do ! Set can be
lifted to functors H : Co ! D and G : Do ! C such that H and G are adjoint on
the right, that is, for objects X in C and Y in D

HomC(X, G (Y )) 0 HomD(Y, H(X )) .

This implies that there are unit maps $X : X ! G(H (X )) and 1Y : Y !
H (G(Y )) . More specifically, these maps are defined as follows: for all x ( X ,
$X (x)( f ) = f (x), and for all y ( Y , 1Y (y)(g) = g(y), for $X (x) is a morphism
H (X ) = HomC(X, K C) ! K D in D and similarly for 1Y (y) (Johnstone, 1982,
p. 255). Whenever $ and 1 are isomorphisms, we have a duality. Of course, that
these units are indeed isomorphisms has to be shown in each particular case.
And that is possible only after one has chosen specific categories, a choice of
schizophrenic object and functors between these categories. Notice that, in prin-
ciple, there might not be any duality between two categories and there might be
more than one duality between two categories.

Johnstone gives an interesting and simple example of how the foregoing might
fail, that is the units are not isomorphisms in the end. Let C = D = Set , the

the cocompletion of a category. We should point out that Johnstone obtains in this way various
dualities proved by Hofmann & Keimel, although the latter used, as we have seen, di!erent
methods, in fact those that are presented in section 4 of chapter VI of JohnstoneÕs book on
which we will concentrate. This is another choice we had to make in our study.



96 An Historical Perspective on Duality and Category Theory

category of sets, and let K = 2 = { 0, 1} . Notice that K is an injective cogenerator
in Set , and the latter category is complete and cocomplete. We can now take the
contravariant power set functor 2 : Set ! Seto for both H and G103. Then, the
unit $X is the inclusion X )! 2(2(X )) , which sends x to the set { S 9 X |x ( S} .
It is easy to convince oneself that $X can never be an isomorphism, no matter
which set X one starts with. So, there is no duality here. But it is well-known that
there is one, provided we replace the category Set by the category of complete
atomic Boolean algebras. So, what is the problem?

Johnstone claims that “the problem here is that C and D do not ‘have enough
structure’ between them.”(Johnstone, 1982, p. 255) In fact, there is a general way
to transform the original context so that we end up with a duality. This is expressed
by the following lemma:

Lemma 3. SupposeK is a schizophrenic object of the categoriesC and D, and let
E = DT , where T is the monad onD induced by the adjunctionH : Co ! D and
G : Do ! C described above. Suppose further thatC has equalizers, and that the
forgetful functor C ! Set has a left adjoint. Then K has a canonical enrichment
to a schizophrenic object ofC and E. (Johnstone, 1982, p. 257)

The main point here is that whereas K D might not have the right or enough
structure to generate the duality given the adjoint functors, by moving to K E, the
latter object in the enriched category does have enough structure. In the example
of the adjoint situation given by the contravariant functors 2 : Set ! Seto and
2 : Seto ! Set , the monad T on Set induced by the adjunction yields the
category of algebras SetT which is equivalent to the category of complete atomic
Boolean algebras. We therefore get a duality Seto 0 CABool , between the dual
of the category of sets and the category of complete atomic Boolean algebras.

Thus, we have a case where a single application of the lemma yields a concrete
duality. There is no guarantee that this will always be the case. Notice, though,
that the lemma can be iterated as many times as one wants and in different ways,
that is by applying it alternately to the two sides of the adjunction. Again, there
is no guarantee that these processes will stop or converge to a duality. However,
there is an important case when it does, and it is precisely the main theorem of
Lambek and Rattray (1975), which we will not repeat here.

Johnstone presents a list of examples that fall under the general abstract
analysis. (Johnstone, 1982, pp. 260–261) The first category of examples is given
by dualities in which the underlying set of the schizophrenic objects is the set
2 = { 0, 1} . This set can be endowed with many different types of structures,
whence the number of different concrete dualities associated with it.

103 Note that we can indeed take one functor as $ : Set " Set o but the other will have to
be going from Set o to Set and thus, strictly speaking, they are di!erent functors, since their
source and target are di!erent. Clearly, the category Set is di!erent from the category Set o .
This simple fact would be obvious were we to formalize the situation in a dependent type theory,
as we should. Be that as it may, this observation does not constitute an obstruction to the next
steps, which is probably why it is always ignored.
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1. There is an adjoint situation given by the functors HSet : Seto ! CBool ,
which associates to a set X its power-set 2(X ), and the functor HCBool :
CBool o ! Set , which sends a complete Boolean algebra B to the set of
complete homomorphisms f : B ! 2. It can be verified that this is an
idempotent adjunction and the fixed objects of CBool are the complete
atomic Boolean algebras. The resulting duality is thus Seto 0 CABool .

2. When we consider the structure of a compact Hausdorff Boolean algebra on
2, we get a duality Seto 0 StoneBool , the latter being the category of Stone
topological Boolean algebras.

3. The set 2 is also the underlying set of the Sierpinski space. In this case, we get
a duality SLoc o 0 Sob, between the dual of the category of spatial locales
and the category of sober spaces.

4. It is also possible to put the structure of a complete semilattice on 2. We ob-
tain a duality between the dual of the category CSLat of complete semilattice
and the category CSLat of complete semilattice, that is CSLat o 0 CSLat .

5. Of course, as we have already mentioned, Stone’s original duality is a special
case of this general framework. In this case, as a topological space, we put
the discrete topology on the set 2. We have a pair of adjoint functors: given a
topological space X , one functor sends X to its lattice of clopen subsets, and
given a Boolean algebra B , the other functor sends it to its space of prime
filters. We then get a duality between the dual of the category of Boolean
algebras and the category of Stone spaces, i.e. compact Hausdorff and totally
disconnected spaces.

6. The various generalizations of Stone duality are also instances of the general
framework. Its extension to distributive lattices can be done in two different
ways. When we put the discrete topology on 2, we can consider an adjunc-
tion between the dual of the category Lat of lattices and the category OSp
of partially ordered topological spaces, which yields a duality between the
dual of the category DLat of distributive lattices and the category OStone
of ordered Stone spaces. Considering 2 as the Sierpinski space instead, we
have an adjunction between the dual of the category Lat of lattices and the
category CohSp of coherent spaces. By applying the theorem, we obtain the
desired duality between the dual of the category of distributive lattices and
the category coherent spaces.

And the list could be extended. It might not be so surprising since the set 2 = { 0, 1}
is, in many contexts, a cogenerator (or a separator), which is a key component of
the whole framework.

The set 2 = { 0, 1} is not the only one which can carry different types
of structures and be a cogenerator. Another well-known and important case is
the set R of real numbers. (Johnstone, 1982, pp. 261–262) When we take this
set as the underlying set of the schizophrenic objects, we get Gelfand duality.
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In this case, the two structures involved are, on the one side, the commutative
ring structure and, on the other side, the topological structure. Given a topo-
logical space X , there is a contravariant functor sending it to the commutative
ring HomTop (X, R) and an adjoint contravariant functor sending the latter to the
space HomCRng (HomTop (X, R), R). We thus get functors Top ! CRng o ! Top
forming a dual adjunction and the monad induced by it is idempotent. Thus, the
adjunction restricts to a duality between the category of real compact spaces and
the full subcategopry of CRng of rings of the form HomTop (X, R).

Johnstone points out at this juncture one case of a duality that is not lifted
from representable functors. Indeed, there is a functor C%(' ) : KHausTop o !
CRng , which takes a compact Hausdorff topological space X and send it to C%(X )
the commutative ring of bounded real-valued functions. However, that functor is
not a representable functor and thus, although there is a duality between the full
subcategory of the category of commutative rings consisting of rings of the form
C%(X ) and the category of compact Hausdorff topological spaces, the latter does
not fall under the general abstract form given by the foregoing theorem.

Of course, one can also consider the case when the complex numbers C are
taken with two different structures: the commutative ring structure and the topol-
ogy. One then gets complex Gelfand duality.

We have to end with one last but inescapable case: when the underlying set
is the circle, or rather the circle group T = R/ Z. This yields, of course, Pontrjagin
duality. To prove that T is a cogenerator is a deep theorem of compact topological
abelian groups, namely the so-called Peter-Weyl theorem. This is familiar by now.
We have an adjoint situation given by the two following functors: 1. given an
abelian group G, the set HomAbGp (G, T) of all homomorphisms can be turned
into a compact Hausdorff abelian group, seen as a subspace of TG and it is a
functor in the standard way; 2. given a compact Hausdorff Abelian group H ,
the set HomKHausAbGp (H, T ) can be turned into a discrete abelian group and
it is a functor. The fact that these are adjoints is a theorem of category theory.
(See (Johnstone, 1982, pp. 262–265).) The fact that the units are isomorphisms is
precisely what is called Pontrjagin duality, as Isbell pointed out early on.

Before we leave Johnstone, a few remarks about the historical notes are in
order. Although exhaustive and remarkable for the most part, there seems to have
been one blind spot in Johnstone’s history, namely the role played by the French
school, in particular the discovery of the concept of equivalence of categories,
representable functors and, more generally in this specific story, the role played
by Gabriel in the sixties104.

Johnstone’s book certainly closes a chapter in the history of category theory
and duality. But it did not kill the subject, to use an expression employed by
mathematicians. As we have mentioned, in contrast with Lambek (1979), John-

104 Apparently, this has escaped the attention of most people, including myself. Lawvere told
me that there was a seminar at Columbia on GabrielÕs work on abelian categories in the early
sixties and that he had numerous discussions with Gabriel in the ensuing years about categories
and physics which inßuenced him. (Personal communication)
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stone’s approach is squarely mathematical, even though he is entirely aware that
Stone’s representation theorem is equivalent to the completeness theorem for var-
ious propositional logics, i.e. coherent propositional logic, intuitionnistic propo-
sitional logic, classical propositional logic and even modal logics. In a series of
papers, the logician Makkai lifted Stone’s theorem to first-order logic. We men-
tion this result since it lifts Stone duality also and the remarkable thing is that
there is, even in this 2-categorical framework, a schizophrenic object, namely the
category Set of sets! Thus some of these classical concrete dualities can be lifted
to higher dimensional categories and the higher dimensional results have a clear
metamathematical content and a clear mathematical content. See Makkai (1987),
Makkai (1988), and Makkai (1993).

The literature on dualities and category theory keeps growing to this day.
Restricting ourselves to papers that are direct descendants of the Gabriel-Lawvere-
Freyd-Isbell lineage, one immediately finds at least Adámek and Rosický (1994),
Adámek, Lawvere, and Rosický (2003), Adámek, Rosický, and Vitale (2011), Barr,
Kennison, and Raphael (2008), Börger et al. (1981), Clark and Davey (1998),
Davey (2006), Dimov and Tholen (1989), Dimov and Tholen (1993), Erné (2004),
Fujii (2019), Herrlich and Hušek (1990), D. Hofmann (2002), D. Hofmann (2013),
D. Hofmann and Nora (2018), Lurie (2019), Makkai (1987), Makkai (1988), Makkai
and Paré (1989), Makkai (1993), Marra and Reggio (2017), Pedicchio and Rovatti
(2004), and Porst and Tholen (1991). And that is only one branch of a complex
tree.

A different branch in the study of dualities from the categorical point of view
was initiated by (Dold and Puppe, 1980), following (Becker and Gottlieb, 1976).
This analysis focuses on dualities in algebraic topology and related fields and is
based on monoidal categories. It touches upon Eckmann & Hilton duality, but it
focuses on what the authors call “strong duality”, which includes a large class of
dualities that are central to algebraic topology, starting with Poincare’s duality up
to Verdier’s duality and more. Adjoint functors also occupy a central role in this
analysis. As far as I can tell, it is an independent historical strand that would have
to be covered in another paper. It is nonetheless interesting to note that it was
proposed at about the same time than the framework for the classical dualities we
have discussed. For a brief presentation, see Becker and Gottlieb (1999).

1.8 Dimensions of Duality

The interplay between duality theories and category theory is a deep undercur-
rent that propels the development of mathematics. Like two dancers moving to
a dialectical conceptual tango, categories and duality move together to form new
patterns, and give new rhythms to mathematics.

Indeed, questions related to duality were at the center of attention of math-
ematicians using category theory from very early on. It could be argued that the
birth and the growth of category theory, as opposed to the use of the categorical
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language, is directly attributable to issues related to duality. From the perspective
of the usage of the categorical language, the dual category was merely a device to
eliminate contravariant functors. It thus gave a unified treatment of functors and
it could, as such, be seen as a way to cut work in half, which it was, for instance
in Buchsbaum’s treatment of derived functors.

The search for a self-dual category introduced a shift. The notion of the dual
of a category was no longer a convenient device. It was a genuine abstract mathe-
matical structure, that became the soil from which a domain of mathematics could
grow. Mac Lane saw the possibility of exploring new mathematical structures by
systematically looking at the dual of certain concepts. Going back to a particular
category, Eckmann & Hilton exploited this idea in a creative and productive fash-
ion, thus introducing, for instance, the concept of a cofibration. However, these
results were limited to algebraic topology and homological algebra, and in the case
of Eckmann & Hilton, it seemed to depend on the mathematician’s intuition or
‘hunch’. It was more a trial and error than a systematic method or plan. The in-
troduction of genuine categorical concepts, e.g. functor categories, equivalence of
categories, adjoint functors, representable functors, monads, bicategories, etc. in
the late 1950s and early 1960s, completely redefined and reconfigured the field, in-
dicating how versatile and powerful its concepts could be. Category theory made
possible the birth of two important tools for mathematics: homological algebra
and K -theory, with applications in numerous classical disciplines. It lead to the
restructuration of algebraic geometry and the birth of homotopical algebra. In
turn, it showed how category theory could be used to obtain genuine, powerful
mathematical theorems. The search for self-dual categories for their own sake, for
instance %-autonomous categories, turned out to be useful and fruitful. Finally,
the development of category theory, of the algebra of functors and adjoint situa-
tions allowed the generalization and abstraction of important classical concepts,
for instance sheaf theory, Galois connections, and even logic, metamathematics
and the foundations of mathematics. The algebra of adjoints in the context of
metamathematics naturally led to the abstract formulation of classical dualities
in a uniform and systematic conceptual framework.

From what we have seen in this paper105, we have at least these three types
of dualities showing up:

1. Axiomatic duality : this is the metamathematical duality, the so-called dual-
ity principle, in line with duality for projective geometry or boolean algebras.
It is of course related to the dual category of a category and, more gener-
ally, the search of self-dual categories. From a mathematical standpoint, it
is not a priori clear that the dual of a category is of any use. From a meta-
mathematical standpoint, the principle of duality is already productive. It is
interesting to note that the axioms of a category are self-dual106. Extending

105 It should be clear from our remark at the end of the last section and our remarks about
%-autonomous categories that there are other forms of duality that should be included in an
exhaustive conceptual analysis. But since we havenÕt looked at it, we will ignore it.

106 It is remarkable that the language of categories can be used for the so-called # -categories
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this symmetry to categories with additional structures and properties led to
important discoveries and the rise of a new abstract level of mathematics. A
variant of this search gave birth to the second form of duality.

2. Morphism based duality : this is the procedure initiated by Mac Lane which
consists in inverting arrows in the search for concepts, theorems and, in some
cases, even proofs of theorems in specific categorical contexts. This is usually
seen as being purely heuristic and it does not correspond, as such, to a duality
in the proper sense of that expression (if it has one). Eckmann & Hilton’s
work is the best illustration of this ‘duality’. There is one aspect of their
work that has to be underlined. Eckmann & Hilton were focusing on the
homotopy category of topological spaces, the paradigmatic example of an
abstract category in the sense of Freyd, e.g. Freyd (1970a), Freyd (1970b),
and Freyd (1973). This is relevant, since, as we have seen, many classical
dualities take place in the context of concrete categories (also in the sense
of Freyd). Thus, it takes place in a completely different conceptual plane.
It may end up being a higher-dimensional form of axiomatic duality or a
higher-dimensional variant of the type that we will discuss next, but this is
sheer speculation107. As we have indicated, the notion of a Quillen model
category is self-dual and it encapsulates some of the notions developed by
Eckmann & Hilton, e.g. the notion of cofibration and various exact sequences.
The development of higher-dimensional category theory might reveal some
surprises in that respect.

3. Functorial dualities or adjoint based concrete dualities: this type of duality
is usually identified, as we have seen, with an equivalence of categories, in
which one finds the dual of one of the categories. Thus, the notion of a dual
of a category plays a key role in the mathematical content of these results,
but it does not automatically yield a full axiomatic duality. One should im-
mediately add that these equivalences arise from a specific adjoint situation
between concrete categories and in which the algebra of adjoints satisfy cer-
tain particular properties. Note that these dualities take place in a 2-category.
It is a fascinating case of an interplay between a 2-dimensional identity and
1-dimensional identities, namely what we have been calling the classical du-
alities, like Pontrjagin, Gelfand, Stone, etc. As Isbell had already observed,
these two dimensions are clearly identifiable and play complementary roles.
One first needs a specific adjoint situation between concrete categories. Then,
one needs what Isbell called a ‘theory of characters’. This amounts to the ex-
istence of a specific object in the categories having the right structure in

as it is and that the passage from C to Co is still relevant. See Cisinski (2019).
107 There is one important precedent here: the notion of triangulated category introduced by

Verdier. It is an important notion but VerdierÕs axiom always seemed to be somewhat idiosyn-
cratic. Lurie has shown in (Lurie, 2017, pp. 22Ð28) that every stable # -category is triangulated.
It is more than remarkable that VerdierÕs axiom turns out to be a consequence of a higher
dimensional structure.
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each case and satisfying certain properties. The proof that this object exists
in specific cases and that it has the required properties is not a purely cat-
egorical result. Note also that mathematicians have decided that instead of
having two isomorphic sets underlying the two types of structure, the two
isomorphic sets could be identified and be replaced by one, fixed, underlying
set. This last move hides the 2-dimensional character of the situation and the
fact that these results are really about abstract sets. The existence of this
‘schizophrenic’ object then yields the theory of characters and rests on the
fact that the functors involved are representable by structured objects that
are attached to this common abstract set.

In many cases, functorial dualities involve a category of ‘algebraic’ struc-
tures and a category of ‘spatial’ structures. But this might be too restrictive.
Lawvere suggested that the category of ‘algebraic’ structures be thought of
as being abstract and the ‘spatial’ categories as being ‘concrete’, these terms
now being left undefined and, in some sense, relative to the context. There is
certainly a sense in which a formal system is an abstraction, that the formal
theory of groups is abstract, whereas the category of groups, based on sets,
is concrete (and we are back to a more specific technical sense, since in this
case it does correspond to Freyd’s definition of being concrete).

Be that as it may, it is clear that the concept of adjoint functors and, in
particular, of equivalence of categories is at the core of any reflexion on duality
and categories. The notion of equivalence is the proper criterion of identity for
categories. When there is an equivalence between a category and the opposite or
dual of a category, not necessarily distinct from the first one, it says more than
that the two share the same abstract structure. It does not say, for instance, that
a certain category of algebraic structures is the same as a category of topological
spaces, for that would ignore the fact that it is the dual of one of those which is
part of the equivalence. The equivalence reveals that the dual of a category of a
certain type is essentially a category with genuine mathematical content and not
merely a handy formal construct.

There is a sense in which one might think that the dual of a category is less
concrete than the other category, and in particular that the dual of a given con-
crete somehow as a different ontological and epistemological status than the orig-
inal category. But in some cases, the dual of a given category is just as “concrete”
as the given category, e.g. the dual of the category of sets is the category of com-
pletely atomic Boolean algebras, not to mention the numerous cases of self-dual
categories108. From the point of view of the practice of mathematics, an equiva-
lence between categories allows one to transfer properties of different natures, e.g.
algebraic properties are systematically translated into topological properties and
vice-versa, and it is therefore possible to use one or the other to solve a problem,

108 Thus, our analysis di!ers on this particular point from the analysis o!ered by CorÞeld &
Kršmer, who suggest that a category of the form Co could be considered as ÒidealÓ in some sense.
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clarify a given situation or compute a formula. Although this is not a strict meta-
mathematical principle, it is a systematic transfer that can provide the key to the
solution of a problem.

One of the key aspects of dualities, from a philosophical point of view, is the
codependence of concepts which is lifted at the level of a symmetry. For instance,
it is easy to convince oneself that the concepts of point and line can be codepen-
dent in some sense, e.g. two distinct points generate a line, but for two lines to
always meet at a point, one has to introduce the structure of a projective space.
And the symmetry arises then. In a sense, a similar phenomenon arises when clas-
sical dualities are reconstructed in the context of category theory. We have seen
in the work of Lambek & Rattray, Porst and Johnstone that specific conditions
have to be satisfied by a pair of adjoints functors between concrete categories to
yield a Stone type duality. The adjoint situation introduces the codependence be-
tween the concepts. When the various conditions are satisfied, the symmetry is
completed with the unit and the counit of the equivalence capturing the classical
isomorphisms. We submit that all dualities exhibit a kind of codependence be-
tween concepts or abstract structures captured by a symmetry, more specifically
an involution (when the correct type of identity is used).

What the categorical framework reveals is not only the structural unity un-
derlying these various duality theories, but also their systematic character, the fact
that they follow a pattern that can be rendered explicit. This is an incommensu-
rable epistemic gain. In many cases, the introduction of the categorical machinery
simplifies certain mathematical situations. In other cases, certain mathematical
contexts would simply not exist without the categorical machinery. What we are
witnessing in the case of concrete dualities is a different phenomenon. As Lambek
& Rattray themselves have noticed, the proofs are not made simpler and these
dualities existed before the advent of category theory. But there are real epistemic
gains. First, and this seems to us to be essential, a large part of the machinery
of dualities is now founded on a purely formal structure. It may be more com-
plicated, but it is explicit and, to the extent that it is formal, mechanic in some
sense. The algebra of adjoints is literally a kind of logic at work that exhibits
the conceptual codependencies underlying various conceptual systems. Second, it
allows for the discovery and the construction of new concrete dualities. This was
also emphasized by Lambek and Rattray (1975), Johnstone (1982) but also by
Barr, Kennison, and Raphael (2008) and Barr, Kennison, and Raphael (2009). As
we have already indicated, it also led Makkai to the proof of a higher-dimensional
Stone duality, whose basic structure consists in lifting the lower-dimensional case.
One last example has to be mentioned. Again, starting with Ehresmann, but re-
ally launched by Isbell (1972a), one finds the theory of locales, thus a theory of
spaces, as being based on a duality between the category of frames, thus algebraic
structures, and its dual. This framework has been recently lifted by Anel and Joyal
(2019) to provide a higher-dimensional framework for Grothendieck toposes.

Does the categorical analysis of dualities lead to an insightful view on the
latter? Does category theory, in particular the algebra of adjoints, provide an
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explanation of dualities? If providing an explanation amounts to giving a concep-
tual unifying framework, an abstract conceptual structure in which known specific
cases can be derived, then in this precise sense, it can be said that indeed cat-
egory theory provides an explanation. Some would rather say that it shows the
natural character (no pun intended) of dualities in mathematics, that the algebra
of adjoints unravel the necessary structuralist components for dualities to arise
“automatically” or “necessarily”. And in all cases, as we have seen in the specific
formal details, Hom is where the heart is.
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