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One of the characteristic features of twentieth-century mathematics is the
emergence of abstract mathematical tools, instruments and machines for
use in mathematics. Unfortunately, this feature has been totally ignored,
even denied, by philosophers. To wit:
A crucial part of the practice of empirical science is constructing means of
access to (many of) the objects that constitute the subject matter of that
science. Certainly this is true of theoretical objects such as subatomic particles,
black holes, genes, and so on. However analogous theoretical work in higher
set theory may seem to be to theoretical work in the empirical sciences, this
disanalogy remains. Empirical scientists attempt to interact with most of the
theoretical objects they deal with, and it is almost never a trivial matter to do
so. Scientific theory and engineering know-how are invariably engaged in such
attempts, which are often ambitious and expensive. Nothing like this seems to
be involved in mathematics. (Azzouni [1994], p. 5) [Emphasis mine.]

Our main purpose here is to show that there are tools and machines in
mathematics and that mathematical ‘theory and engineering know-how are
invariably engaged in...attempts’ to know better the theoretical objects
they deal with. Furthermore, we believe that this simple fact has im-
portant philosophical implications and even offers interesting philosophical
challenges. If all we achieve is to attract attention to the issues involved,
we will have attained our goal.

Abstract Tools and Machines: Setting the Stage

Mathematicians (almost) literally talk about instruments. They use this
expression in its primary sense: the instruments are certain constructions
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applied to certain ‘objects’ in a given context in order to obtain useful infor-
mation. The analogy with instruments in the empirical or factual sciences
is surprisingly close. It is a trivial fact that contemporary science depends
heavily on experimentation, which in turn depends heavily on instrumen-
tation. Science and technology join efforts in their cognitive enterprise.
In a way, mathematicians are nowadays in a similar position, at least in
some fields: there is now a vast body of mathematical instruments which
are used as tools to demonstrate certain results. Just as our evaluation of
the acceptability of a result in the empirical sciences depends crucially on
the instruments used and on our knowledge of the way they work and how
they were used, so too in the case of mathematics, a result will be seen as a
breakthrough if the community (of mathematicians) is convinced that they
understand the tools used and that they can verify that they were used
properly. Thus, mathematical progress also largely depends on ‘conceptual
technological’ innovations.!
Here is how a Fields Medalist presents the situation in an informal dis-
cussion:
I think one has to be quite specific, and say that there are two different atti-
tudes that a mathematician has towards mathematics. And one of them is, of
course, he has to create tools, exactly as Watson and Crick had to have the
electronic microscope, in order to observe things. So a mathematician has to
create tools, and he does a work of creation at this point. On the other hand,
until a mathematical tool has been used to unveil a part of this mathematical
reality that I am talking about, it is not really accepted by the mathematical
community. It is considered, but it is not really accepted until it has been
successfully used. This is something which is labelled a ‘breakthrough’, and
we understand what that is. So I think it is a mistake to talk only about
creation. I think there are the two aspects, and these two aspects are fairly
clearly separate when talking about physics, or when talking about biology.
However, in mathematics, they are more mixed together, and are more difficult
to separate, yet they are present.(Connes [1992], p. 99)2

There are many issues in this fascinating passage. Let us consider them
individually.
1. What are the tools created by the mathematicians Connes is referring
to? Here is a preliminary list of obvious candidates: spectral sequences,
homology theories, cohomology theories, homotopy theories, K-theories,
sheaves, schemes,? representation theory and character theory, commuta-

1 Even though I will emphasize the similarities between the two cases, I should imme-
diately point out that my goal is not to show that mathematics proceeds like the natural
sciences. In fact, it does not. I do believe that the analogy is very fruitful in this case,
but it is at bottom only that: an analogy.

2 As was pointed out to me by Colin McLarty, in fact Watson and Crick used X-ray
crystallography, not an electron microscope.

3 This is a fascinating case: Weil’s conjectures, proved by Deligne in the early 70’s
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tive algebra, graph theory in group theory, classical geometry in algebra,
especially field theory, model theory in algebra, in combinatorics, and in
analysis. Before we go any further, two important comments have to be
made about this enumeration.

a. The tools in the list do not merely refer to interactions between dis-
ciplines, e.g., analysis and number theory. The claim is not that results
from one theory can sometimes be used in a different theory and thus are
‘tools’. This would be a rather trivial claim which would not be of much
interest. The presence of tools becomes obvious only when we look at how
a discipline is related to another.

b. It is far from clear that even the above somewhat restricted list is
uniform, in the sense that the theories mentioned constitute tools in the
same way, e.g., compare homology theory in algebra to model theory in
algebra. It is not clear that mathematicians and logicians would put them
on the same footing.

2. ‘...until a mathematical tool has been used to unveil a part of this
mathematical reality that I am talking about, it is not really accepted by
the mathematical community. It is considered, but it is not really accepted
until it has been successfully used.” There are at least three elements here,
one ontological and three epistemological.

a. The ontological claim is that mathematics is divided into two distinct
ontological parts:* ‘real’ mathematics and the mathematical instruments
which were invented to study or to understand this ‘reality’ better. Just as
the natural sciences divide the (material) world into (at least) two funda-
mentally different categories of things, namely artefacts, i.e., constructed
instruments, and natural kinds, things which are ‘given’ or exist indepen-
dently of us, so too mathematics is divided into two similarly distinct cate-
gories of entities, namely artefacts, i.e., instruments which were constructed
and therefore possess properties which reflect some of our limitations, and
‘natural kinds’, entities which presumably exist as such independently of
us.

and Mordell’s conjectures, proved by Faltings in the 80’s, were proved with the help of
scheme-theoretic tools. Again, this is a case where a tool, or some would prefer to say a
‘language’, allows an extremely powerful unification, a phenomenon which is not without
ontological implications.

4 This is not without reminding us of Hilbert’s distinction between real propositions and
proofs and ideal propositions and proofs. It is therefore tempting to say that the tools we
are refering to are similar or even particular cases of Hilbert’s ideal elements. However,
the tools we are refering to here are more on the side of the ideal elements Hilbert was
refering to as an analogy with the ideal elements he was introducing, even though there
are noticable differences also. We will not enter the debate as to whether Hilbert was
an instrumentalist or not, or whether even these ideal elements were just as real as the
‘real’ elements. See Detlefsen [1986] and Hallett [1989] for different interpretations on
these issues.
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Epistemologically, we have the following facts:
b. Before a tool is accepted by the community it has to be ‘successful’,
which can mean various things, for instance, the tool does something which
was impossible before or greatly simplifies previous results;
c. A tool has to be used in a specific way, and thus comes with certain
norms;
d. Mathematics is divided into two distinct epistemological parts: roughly
speaking, just as in the natural sciences there are theories about instruments
and their use and theories about natural kinds and their properties, so too
in mathematics there are theories about instruments and their use and
theories about natural kinds and their properties.

Connes does not carefully distinguish the ontological element from the
epistemological ones in his claim. We believe they should be, for, in a sense,
they are largely independent of one another. Indeed, the ontological sep-
aration could well be inadequate and the epistemological separation could
nevertheless be correct. This should be particularly clear if we consider
the weight these distinctions carry in the context of the natural sciences.
It should be obvious that no matter what ontological status we attribute
to entities in general in this context, artefacts are just as real or unreal as
natural kinds. Indeed, it is crucial that they be related ontologically, that
they share some ontological ‘stuff’ and that the properties of the artefacts
be ‘derived’ from the properties of the natural kinds. The only difference
here is that artefacts would not exist without us, whereas natural kinds
presumably would, or at least could, come up ‘naturally’.

It should be just as obvious that artefacts and natural kinds differ
nonetheless considerably from the epistemological point of view. The main
property of an artefact is its function, and this depends partly on us. Thus,
in the context of the natural sciences, the distinction between artefacts and
natural kinds seems at first ontologically pointless but epistemologically
crucial.

We will now proceed as follows. We will first take a rather quick look at
what we take to be a generic case of the tools above, namely K-theory. Our
main objective here is to show that it is a tool and try to understand its
nature. We will afterwards compare the case of K-theory with a different
type of tool, namely notational systems. We hope that this will indicate,
among other things, how different tools can be in mathematics.

Before we take a close look at our generic tool it is useful to make some
remarks about tools in general, so that we can see why it is legitimate to call
these theories tools and how they differ from tools in the natural sciences
and other tools in mathematics.
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Tools in General and in Mathematics: Some Remarks

What is a tool in mathematics for mathematics? What is a tool in general?
Let us start by listing what we take to be the most fundamental properties
of material tools.

i) tools are built or at the very least, ‘prepared’; what this means is that
tools are not given as such; either they are made up or we take something
given and modify it so that it can serve as a tool;

ii) tools act on something or are acted upon by something; so we have
to have first a collection of objects which we want to investigate; whether
these objects or the collection of objects is ‘real’ or not is undecided at this
stage;

iii) tools ‘interact’ with the objects under study; this ‘interaction’ can
transform the given objects or it can leave them more or less as they are,
i.e., some are invasive, others are non-invasive;

iv) this ‘interaction’ is usually planned to some extent and it usually reveals
a property of the object or phenomenon under study, or its absence;

v) hence, tools have a function; they are used with a certain goal in mind,
either to construct something or to repair something or to make a diagnosis;
vi) in order to know whether this goal has been achieved, a norm has to
be applied, telling us whether the tool was efficient or not.

Clearly, to talk about mathematical tools is to make a metaphor: literally
speaking, a tool is a physical or concrete object created for the execution
of some task. More often than not, it has to be fixed, repaired, tinkered
with. None of our examples of mathematical tools are physical objects and
none ‘breaks down’ or suffers as a result of power failure. Hence, even
though our mathematical tools can be inappropriate, none can be said to
be dysfunctional.’

Thus, the tools we are considering here are abstract objects and proce-
dures. But, perhaps surprisingly, this is the main difference between our
class of mathematical tools and concrete tools. As we will try to show, they
possess all the other properties in the above list, even though some of them
have to be somewhat modified, e.g., clause ii). This similarity with concrete
tools will in fact help us to distinguish these tools from other mathemati-
cal tools, even though we cannot claim that we can provide in this way a
satisfactory classification of tools.

However, in order to guide us through the following steps, we should im-

5 Nowadays, only computers, given their role in mathematics, can literally be called
tools for mathematicians and again in a somewhat different sense. For computers do not
interact with mathematical objects, whatever that could mean, but with data or inputs
representing mathematical objects or properties. Computers, however, do transform
these data and do have a goal. What we still lack in this case is a norm of evaluation,
so that we can decide what type of tool we are dealing with; e.g., do we really have a
proof of the four-color conjecture?
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mediately point out that most of the tools we have in mind here should be
thought of as machines rather than as tools.® As we will try to show in the
next section, this is particularly clear—to mention just a few examples—in
the case of spectral sequences, homology and cohomology theories, homo-
topy theory, K-theory, and sheaves and schemes. It would be particularly
interesting, as we plan to do in a forthcoming paper, to compare the latter
with, say, character theory, which plays such an important role in contem-
porary mathematics. Furthermore, many of these machines really ‘take off’
when they are used together, e.g., sheaf theory with homological algebra,
K-theory with cohomology. It is for these machines that Connes’s analogy
with the electron microscope is especially appealing. Let us now take a brief
look at a particularly telling case of these machines, namely K-theory.

A Prototypical Tool: K-theory

In orthodox algebraic topology one breaks a space down into atomic parts

(cohomology or homotopy) and then tries to see how the atoms were put

together (operations or k-invariants). Now many of the spaces that turn up

in practice, e.g., homogeneous spaces, have such a regular structure that it is

a pity to break them right down. Instead, like the biochemist, we should look

around for large standard molecules out of which these spaces are built. It

would seem that the linear groups provide such standard molecules and that
this, in a philosophical sense, explains the success of K in homotopy theory.

(Atiyah 1962 [1988], p. 294)

The functor denoted by ‘K’, which stand for the German word Klasse, was
created in the fifties by A. Grothendieck to prove a generalized version of
the Riemann-Roch theorem in algebraic geometry. (See, e.g., Dieudonné
[1989], p. 599.) His construction was quickly adapted to the topological
context by Atiyah and Hirzebruch who then created, almost in a single
stroke, topological K -theory. From then on this theory has been developed,
generalized and applied in various ways. Very roughly, K-theory stipulates
how to associate certain abelian groups (and sometimes rings), denoted by
K or K; for some i, to a given class of objects, i.e., topological spaces or
rings, and ways of studying these groups. Let us now try to see how this
is done and why it is so useful. We will present in steps what K-theory is
and then look at some specific applications.

The first thing to consider is what is called the Grothendieck group of an
abelian semigroup. Given an abelian semigroup M, for instance the natural
numbers N with addition, its Grothendieck group F(M) can be constructed
in various equivalent ways. Here is one standard construction. Take the
product M x M and then form the quotient under the equivalence relation

(m,n) = (m',n') & Ipsuchthat m+n'+p=n+m' +p.

6 ‘One might say that Algebra is a machine for solving certain types of problem but
that abstract Algebra is a machine for making machines’ (Atiyah 1977 [1987], p. 269).
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This quotient yields the Grothendieck group F(M) of M. There is a nat-
ural semigroup homomorphism ¢ from the abelian semigroup M to the
Grothendieck group F(M).

It is easy to verify that when M = N, the natural numbers, then
F(M) 2¢ Z, the ring of integers, and this is indeed a familiar way to con-
struct the integers out of the natural numbers, except that in the case of N,
there is no need for a p in the definition of the equivalence relation because
N satisfies the cancellation law. In general, the semigroup is not embedded
in the constructed group. The latter happens only when the cancellation
law already holds in the semigroup. Indeed, consider the abelian semi-
group (Z,x), consisting of the integers under multiplication. In this case,
F(Z) =0, the trivial group with one element.”

The foregoing construction is functorial and associates to any abelian
semigroup a commutative group ‘in the best possible way’. This means
that for any group G and homomophism 6 : M — G there is a unique
homomorphism % : F(M) — G such that ¢¢ = 6.

The motivation behind this construction is eminently practical, for ‘semi-
groups without cancellation are usually very hard to handle; yet in many
cases their Grothendieck groups are fairly tractable’ (Rosenberg [1994],
p. 5). Indeed, K-theory is based on this passage from semigroups to groups
and is so useful because some problems become tractable.

Let us now move to elementary topological K-theory and see how and
when the above construction comes in. We start with a category of compact
spaces with continuous functions between them. These spaces are our ob-
ject of study in this case.® They are what is given to us, the ‘reality’ we are
trying to understand. Our goal is to obtain some information about these
spaces in a uniform manner, so that we can classify them in some way, or
have a better understanding of their structure. This can be done in many
ways, and in fact constitutes a large portion of algebraic topology. One tries
to associate algebraic structures to spaces in a uniform way. In the case of
K-theory, the first step associates to each space X and continuous function
f a commutative semigroup and semigroup homomorphism in a uniform
manner so that the latter ‘captures’ some of the interesting properties of
these spaces. In other words, we ‘translate’ topological properties into al-
gebraic properties. Once this is accomplished, we apply the above functor
to the commutative semigroups to obtain groups, denoted by K(X) for a

7 This is in fact a general phenomenon: it suffices that the monoid has an element co
such that for any other m € M, m 4+ 0o = o0o. In the case of the multiplicative monoid
of integers, this element is 0.

8 These spaces are worthy of interest, for the set of solutions in projective space of an
equation or a set of equations in many variables constitute such a space. It turns out
that some of the qualitative properties of this space reflect important properties of the
equations themselves, in particular of their solutions.
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given X, which represent in an algebraic manner and in a context where
we can handle these representations ‘effectively’,—i.e., we are doing linear
algebra—some of the topological properties of the spaces. As we will see, it
is this information that allows us to obtain various important results about
the structure of these spaces. This is basically the same strategy which is
used in algebraic K-theory, even though in this case the construction of the
higher K-groups is not as direct as in the topological case.? In algebraic
K-theory, one starts with the category of rings and ring homomorphisms,
then associates to each ring a commutative semigroup and to each ring ho-
momorphism a semigroup homomorphism, then applies the above functor
to end up in the category of abelian groups and group homomorphisms, and
thus obtains information about some of the structural properties of these
rings. Let us now try to make this process more specific, again in the case
of topological K-theory.

We are given, say, the category of compact spaces and continuous maps
between them. The first step in the construction is to associate in a uniform
manner an abelian semigroup to each space. This is done with the help of
vector bundles.!® Roughly speaking, a vector bundle over a space X is a
continuous family of vector spaces parametrized by the points of X. It is
formally defined as follows. Let X be a topological space.

First, a family of vector spaces over X is a topological space E together
with:

i) a continuous surjective map p: E — X;

ii) a real vector space structure of finite dimension in each E, = p~1(z),
z € X compatible with the topology on E, induced from E.

Given two families of vector spaces over X, p: E - X andg: F - X, a
morphism ¢ : E — F is a continuous map such that

i) gp=p;

ii) for each z € X, ¢ : E, — F, is a linear map of vector spaces.
Whenever ¢ is bijective and ¢~ is continuous, ¢ is said to be an isomor-
phism.

Let V be a finite-dimensional real vector space. Then F = X x V with
p: E — X, the projection onto the first factor, is a family of vector spaces
over X, called the product family with fiber V. If F is a family which is
isomorphic to a product family, then F is said to be trivial

9 It is interesting to note some of the differences existing in the development of topologi-
cal K-theory and algebraic K-theory. In the topological context, all the higher K-groups
were defined early on by Atiyah and Hirzebruch [1961]—see Atiyah [1988]—but the road
was considerably steeper for the higher algebraic K-groups. It took almost 10 years
before Quillen finally convinced everyone that he had found the right definition. See
Quillen [1974]. We should also mention that there are some differences between real
K-theory and complex K-theory, the latter being somewhat easier to handle in general.

10 We should here emphasize that vector bundles were not introduced for that purpose.
They were introduced as early as 1935 by Whitney in the context of differential geometry.
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Let Y be a subspace of X and p: E — X a family of vector spaces over X.
Then the map p~1(Y) — Y, called the restriction of E to Y and denoted
by E1Y, is a family of vector spaces over Y.

A vector bundle with base X is a family of vector spaces over X such that
each z € X possesses a neighborhood U such that F|U is trivial. Thus, a
vector bundle over X is a family of vector spaces which is locally trivial.

Here are two standard examples. First the trivial bundle p : X xR" — X,
where p is the projection on the first factor. For the second example, let X
be the 2-sphere S = {z € R**! : ||z|| = 1}, ||—]| being the usual norm. For
every point z of S? we choose E; to be the real vector space orthogonal to z.
Then E = UE,, the union being disjoint, is naturally a subspace of S2 x R3,
and together with the induced topology and the appropriate projection is
the tangent bundle of the sphere. The latter example easily generalizes to
any dimension n. Note that the tangent bundle of the sphere of dimension
greater than or equal to 2 is not a trivial family. If it were, then there
could be an everywhere non-zero vector field on the sphere, contradicting
the infamous ‘hairy-ball’ theorem.

It is easy to verify that vector bundles over X form a category. Moreover,
and this is now the crucial fact, it is possible to define standard algebraic
operations on vector bundles. The most important for our purpose is the
so-called Whitney sum: ifp: F — X and g : F — X are two vector bundles
over X, their Whitney sum is defined by

E®F={(z,y):z € E,y € F,p(z) = q(¥))}

We can ‘picture’ this sum in the following way: over any point = of X, the
vector space (E @ F); combines a copy of E; with one of F; ‘orthogonal’ to
it. This sum satisfies the following properties: EQ{FOG) X (E®F)® G
and EGF>2FQE.

The set of isomorphism classes of the vector bundles over a space X,
denoted by Vect(X), is an abelian semigroup. One can therefore apply the
above functor and obtain an abelian group, called the K-theory K(X), or,
for reasons we will mention in a short while, K°(X), of the space X. Thus,
roughly speaking (and very roughly, for it is not quite true), the computa-
tion of KO(X) amounts to the computation of the isomorphism classes of
vector bundles over X. This constitutes an important item of information
about X. For instance, and this is the simplest case, for a one-point space
P it is easy to show that K9(P) is isomorphic to the integers.!! Indeed,
a vector bundle over P is merely a finite-dimensional vector space, and so

11 For Ky, the algebraic construction runs in parallel. Given a ring R, one constructs the
appropriate semigroup by taking the isomorphism classes of finitely generated projective
modules over R and then applies the functor K. It is easy to see that in this case,
when the ring R is in fact a field, then the finitely generated projective modules over
it are simply the finitely generated vector spaces over R and the only isomorphism
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is determined up to isomorphism by its dimension. Thus, the dimensions
are the isomorphism invariants of Vect(P) and hence Vect(P) = N and
K(P)=Z.

Again, this last example suggests that the semigroup can be embedded
in the group. For in the case of a one-point space, two vector bundles, £
and F, will be equal in K (P) if and only if they are isomorphic. The general
case is somewhat different, and this is why K%(X) does not quite reflect
the isomorphism classes of vector bundles over X. In fact, it reflects the
relation of being stably equivalent, which we now briefly describe. Let us
denote by T}, the trivial bundle of rank n over X, where the rank of a trivial
bundle is simply the dimension of the fibers of the bundle. Two bundles E
and F over X are said to be stably equivalent if and only if E®T, = F®T,
for some n. This means that two bundles might not be isomorphic but can
become so when an adequate degree of freedom is ‘added’ to them. For
instance, let E be the tangent bundle of the sphere S? and let F = T5.
We have already noted above that F is not isomorphic to F. But, as one
can easily check, E® Ty} = T, & Th, that is, E & (5% x IRI) ~ §2 x RS,
This example can again be easily generalized to an arbitrary dimension
p. Whenever two vector bundles are stably equivalent they are equal in
K9(X). Thus, E and F above will be identified in K°(SP). This is again a
concrete case in which the semigroup is not embedded in its Grothendieck
group.

It is also important to note that these functors are not ‘fine-grained’, in
the sense that K°(X) = K°(Y) when the spaces X and Y are homotopy
equivalent.!? Thus, when some K-groups of two spaces are not isomorphic,
the spaces are not homotopy equivalent and, a fortiori, not homeomorphic.
Here is an easy illustration: the circle S? is not a contractible space. For,
vector bundles over a one-point space are all trivial. If the circle were
contractible, and thus homotopy equivalent to the one-point space, all its
vector bundles would be trivial. But the Moebius band over the circle is a

invariant of the modules are the dimensions, and thus the semigroup is the set of natural
numbers N and the group completion the integers Z. It is interesting to note that only
finitely generated projective modules are considered. The reason is that when arbitrary
projective modules are considered, then the group completion becomes trivial, i.e., any
valuable information is lost. (See Rosenberg [1994] for a detailed argument.)

12 Two spaces X and Y are said to have the same homotopy type if there is an ho-
motopy equivalence between them, i.e., if there are continuous maps f : X — Y and
g : Y — X such that the composites fg and gf are homotopic to the identities, idx
and idy respectively. This means that the two spaces can be ‘deformed’ into each other
continuously, i.e., by stretching, contracting, smashing points together but without tear-
ing. Notice that two homeomorphic spaces will have the same homotopy type but that
homotopy equivalent spaces need not be homeomorphic, e.g., a contractible space is ho-
motopy equivalent to a one-point space but need not be homeomorphic to it. It follows
ﬁ-%m this and from the observation that K(P) 2 Z that for any contractible space X,
K(X)x>1z.
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non-trivial vector bundle and thus the K-groups are not isomorphic.

One key aspect of the construction is that it is functorial: K is a con-
travariant functor from the category of topological spaces to the category
of abelian groups. Furthermore, two homotopic maps fo,f; : X — Y are
sent to the same homomorphism K°(Y) — K°(X).

These are just the first preliminary steps. Some results have to be proved
for K-theory really to get off the ground. In particular, it is when the higher
groups K™, for n an integer, and the connecting homomorphisms have been
defined that K-theory becomes a generalized cohomology theory, that is, it
satisfies all the axioms of Eilenberg and Steenrod except one, the dimension
axiom, and can be used as such.!3

What matters here is how K-theory is used in practice. As M. Atiyah
put it, K-theory is a way of ‘codifying qualitative information in algebraic
form’ (quoted by Booss & Bleecker [1985], p. 218) and whereas ‘the usual
algebraic topology destroys the structures [of manifolds] too much..., K-
theory (‘comparable to molecular biology’ (Atiyah)), searches for the essen-
tial macromolecules which make up the manifold’ (Booss & Bleecker [1985],
p. 245). Basically, as we have already mentioned, the groups constructed
via K-theory are sometimes easier to compute, which in turn makes possi-
ble simpler definitions and proofs. Here we will just mention two important
applications of K-theory. One of these applications is the simplification of
the proof of Adams’s theorem on Hopf invariants, which is used to prove
that the dimension of a finite-dimensional real-division algebra is 1, 2, 4,
or 8. (These are the reals, the complex numbers, the quaternions, and the
octonions or Cayley numbers, respectively.) The other application is to the
Atiyah-Singer index theorem which, like all index theorems, exhibits deep
relations between analysis and topology.

In connection with the first of these applications we note that Adams’s
theorem on Hopf invariants was first proved by means of cohomology theory,
and then the proof was simplified with the help of K-theory. The theorem
states: let n be an even integer and let f : $?2"~! — S™ be a continuous
map with Hopf invariant an odd number. Then n = 2, 4 and 8. (See
Atiyah [1967], Husemoller {1966], p. 201, Mahammed et. al. {1980}, p. 36,
or Karoubi (1978], p. 272.)

It may be useful to recall that a real algebra is a real vector space V
with a ‘multiplication’ V x V' — V such that (az + 8y)z = a(zz) + B(yz)
and z(ay + B2) = a(zy) + B(xz) hold for all @, S in Rand all z, y, z in
V, and a real division algebra V is a non-trivial real algebra such that z, y
in V with zy = 0 implies either =0 or y = 0.

Now we come to the Atiyah-Singer index theorem. As we have already
mentioned, index theorems connect in an unexpected and very fruitful way

13 See Rotman [1988], p. 231, for a presentation of the axioms.
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questions related to the existence of systems of differential equations, i.e.,
questions of analysis, with questions connected with the topology of a cer-
tain space (and its K-theory). And here, as Atiyah has said ‘K-theory
is just the right tool to study the general index problem’ (1973 [1988b),
p. 492). Following this work of Atiyah, many index theorems have been
proved. Each of these theorems has provided an important bridge between
a certain sector of analysis and a certain sector of topology with important
applications in physics. (See, for instance, Blaine, Lawson & Michelson
[1989] and Connes [1990].)

The index is a simple property of an operator. It can be defined very
easily, but its computation is a different matter. The importance of the
index is that, on the one hand, it is an invariant property of an operator
(a fact that can turn out to be important for its computation) and on the
other hand the index of a family of operators ‘dissects’ the space of these
operators into connected components. To see what all this means, we have
to introduce the context of functional analysis.

Let H be a separable Hilbert space. Let T : H — H be a bounded linear
operator. T' is called a Fredholm operator if ker T = {u € H : Tu = 0} and
coker T' = H/im(T') are finite-dimensional. Now, for any such operator, the
index of T is defined by

indexT := dim ker T' — dim coker T.

The definition is simple enough. The index captures a ‘rough’ property
of an operator. Literally speaking, it measures the ‘relative “size” ’ of the
space of solutions of an operator, the kernel of the operator, with respect
to the space ‘uncovered’ by this operator, the cokernel of the operator.
Given a specific operator T, the computation of the index can be very
cumbersome: one has to investigate the space of solutions of the operator,
i.e., solve certain differential equations or, more frequently in this case
integral equations, and compute the non-zero values of the operator. One
way to simplify these matters is to rely on the invariance of the index.

The index is invariant in the following sense: for an important class of
operators K, called ‘compact’ in the literature, it can be shown that index
(T + K) = index T whenever T is Fredholm. This means that the index
of an operator T with unknown eigenvalues can sometimes be computed
by calculating the index of T + K, for K a compact operator, which is
sometimes feasible.

The index can itself be seen as a map with domain the space F of Fred-
holm operators defined on a Hilbert space H, with the ‘natural’ topology,
and codomain the integers, e.g., index: F — Z. As Dieudonné has shown,
the index is locally constant, which is equivalent to saying that it is constant
on connected components of the space F.
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Now that we have introduced the space F of Fredholm operators, it is
natural to investigate its properties as a topological space. As usual, one
way to do this is to explore the images of known topological spaces X in F.
The image of a continuous map 7 : X — F, from a compact space X, is a
(continuous) family of Fredholm operators in a Hilbert space H. Whenever
X is connected, Dieudonné’s result implies that index T'(x) = index T'(z’)
for all z, ' in X. It is then possible to define vector bundles, called Ker T
and Coker T, over X, in a natural way. Thus:

KerT := Uzex{z} x ker T(z),

snd similarly for the Coker T. Hence Ker T and Coker T belong to the
category of vector bundles over X, and we can consider their isomorphism
class [Ker T'] and [Coker T. It is then possible to define the index bundle
of T by:

index T := [Ker T'] — [Coker T,

where this difference is now taken in K(X).

When the space X is a point, then the index bundle is the usual index. It
is thus a proper generalization of the classical index, and is usually called
the analytical index. It can take more specific forms whenever the class
of operators considered is specified, for instance the so-called Wiener-Hopf
operators or, more generally, elliptic operators of various kinds. Using
K-theory, Atiyah and Singer have found a different, purely topological,
definition of the index, called the topological index of an operator. This
definition is what is referred to in the literature as the ‘Atiyah-Singer index
formula’. The index theorem then shows that the two definitions agree. -

K-theory as an Instrument

Let us first try to capture abstractly the previous construction. It can be
separated into two phases: the preparation or the set up and the ‘transfor-
mation’ proper. Steps 1 and 2 below constitute the preparation and steps
3 and 4 the transformation.

Step 1: We start with a given object or structure, a type of topological
space or ring. We associate to this given object an object of a different
type, say a vector bundle or a finitely generated projective module. These
latter objects depend on the given one in a systematic fashion.

Step 2: We move to the collection of all these objects of the new type,
together with the morphisms between them. This gives us a category. We
then move to the isomorphism classes and thus get a new object, namely a
semigroup. This latter object has been constructed in a systematic fashion
from the given object. It is now this contructed object that we will ‘project’
or ‘transform’ into a different object which we can manipulate or understand
better.
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Step 3: We now define a whole family of functors, the K* or K;s, which
are the ‘projection’ of our set up into the analyzable ‘screen’. This is the
first part of the ‘experimentation’ proper. The important fact is that the
K*? or K;s are systematically related to one another by the connecting
homomorphisms. '

Step 4: The projections themselves are (abelian) groups, that is objects
which we know well and can usually manipulate easily. It is at this stage
that many results about K-theory become relevant and useful, since they
tell us how to ‘read’ the ‘data’.

We can now easily see in what sense K-theory can be thought of as an
instrument. We are in a position at least to show that the properties of the
instruments we have listed above can be attributed to it, modulo the fact
that it is not a concrete object.

(i) As we have said, K-theory (of schemes) was invented by Grothendieck;
he was quickly followed by Atiyah and Hirzebruch who developed topolog-
ical K-theory; but, these historical facts aside, it should be clear from the
presentation above that K-theory is more or less an assemblage of different
operations; it is a systematic construction;

(ii) The construction has a starting point. Outputs given by the machine
are constructed from something and the latter can be viewed as being what
the tool ‘acts’ upon. In the topological case, it is a category of topological
spaces, in the algebraic case, it is a category of rings, in the algebraic-
geometry case, it is a category of schemes; etc. Notice though, that from
an abstract point of view, K-theory can be used as soon as a certain type of
category is available; indeed in applications, K is applied to a given category
which is usually constructed from another category, e.g., the category of
isomorphism classes of vector bundles on a space;

(iii) Strictly speaking, we cannot say that K-theory ‘interacts’ with these
objects, certainly not causally; however, it should be clear that these ob-
jects are used and in a way transformed or translated into different objects.
As Atiyah said, the K in a way ‘decomposes’ the given objects into some
of their components and it codifies in an algebraic form some of the prop-
erties of the objects. An interesting aspect of the situation here is that the
causal chain is replaced by a sequence of operations which certainly has
an algorithmic flavor. However, the operations involved are not elemen-
tary and the algorithm looks more like a series of ‘macro’ operations in a
programming language than a Turing machine;

(iv) This is obvious: the construction, being a systematic construction, is
planned and carried out in a certain order;

(v) It clearly has a function, in fact it could be said that it has numerous
functions, depending on how one looks at it. For it could be said that its
first and foremost function is to allow more elementary proofs of important
results, e.g., Bott’s periodicity. But as we have indicated, its function, as
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a tool, is rather to reveal important properties of the objects studied, and
only these properties;

(vi) This is an interesting and difficult question: the presence of norms.
Here a close study of the development of algebraic K-theory, in particular
of higher-order algebraic K-theory, would be revealing. Here are some of
the norms we have in mind (some have already been mentioned by Connes
in the quotation).

1. Clearly, mathematicians can come up with all kinds of constructions, as
any scientist can; only those which are useful in one way or another will be
admitted. This raises the question of the characterization of the epistemic
utility of a tool.

Detlefsen [1986] has given a list of properties that a tool must have to be
accepted. It is interesting to try to apply these properties in our context, for
it turns out that they are not very revealing here. Of course, Detlefsen was
trying to generalize from the properties of Hilbert’s program, or rather the
properties that Hilbert’s ideal mathematics had to have to be considered a
valuable tool, and thus came up with properties fitted to this tool; however
they do not generalize to the tools we are discussing.'4

The two basic properties he presents are efficiency and acuity. Here is
what he has to say about them:

At its heart lies an analysis of the notion of epistemic utility which sees the
epistemic utility of an instrument as being composed of two distinct ingredi-
ents: namely efficiency and acuity.

What we are here calling efficiency has to do with how rapidly or easily a
device D generates conclusions about a given subject-matter. D’s efficiency
as a guide to truths concerning a subject-matter S will be determined by how
many conclusions regarding S are generated by D per unit time and/or effort.
And we will say that device D; is more efficient than device D2 as a guide to
truths concerning S just in case D, generates more conclusions regarding S
per unit time/effort than D> does.

On the other hand, what we are terming acuity is itself to be thought of
as an amalgam ot two elements: perspicacity and reliability. We shall say of
an instrument D that it is a perspicacious guide to the truth regarding S just
in case it succeeds in generating as outputs a significant body of the truths

14 Detlefsen’s properties do not apply to some claims Hilbert made before he came up
with his program. ‘In perhaps most cases when we fail to find the answer to a question,
the failure is caused by unsolved or insufficiently solved simpler and easier problems.
Thus all depends on finding the easier problem and solving it with tools that are as perfect
as possible and with notions that are capable of generalization’ (D. Hilbert [1900]; quoted
by Booss & Blecker [1985], p. 218). Or again: ‘In answer let me point out how thoroughly,
by the very nature of the mathematical sciences, any true progress brings with it the
discovery or more incisive tools and simpler methods which at the same time facilitate
the understanding of earlier theories and eliminate older more awkward developments.
By acquiring these sharper tools and simpler methods the individual researcher succeeds
more easily in orienting himself in the different branches of mathematics. In no other
science is this possible to the same degree’ (ibid., p. 103.)
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regarding S. And we shall consider an instrument D a reliable guide to the

truths concerning S to the extent that the only conclusions regarding S that

it generates are truths. Finally, an epistemic instrument is acute to the extent

that it is perspicacious and reliable. (Detlefsen [1986], pp. 28-29).

It should be clear that it is not very revealing to use efficiency as charac-
terized by Detlefsen, at least for K-theory. For, by using K-theory we can
sometimes prove some results more simply, in the sense that the proofs are
considerably shorter than those using other means. But there is a price to
pay, which some might consider quite high, i.e., it takes quite a long time
and effort to master the tools and understand them. However, this is not
what is considered to be the advantage of K-theory as a tool. It is not
that all proofs using K-theory are considerably shorter and easier to find
than proofs relying on different tools. But before we say more about what
makes it so valuable, let us turn to the other two properties discussed by
Detlefsen.

Perspicuousness does not fare much better: again, it is too quantitative.
K-theory does allow proof of a substantial body of truths regarding topol-
ogy, algebra or arithmetic, if only because it is very general. But this is too
‘rough’. We need, on the one hand, a more qualitative measure: K-theory
allows proof of ‘important’ results. Of course, this in turn can mean many
different things. On the other hand, Detlefsen’s property only applies to
instruments used in proofs. As we have seen, K-theory is also used to define
invariants which are then used in proofs.

Finally, reliability works for logical tools, but not for the type of tools
we are discussing. It does not make much sense to say that K-theory
‘generates truths and only truths’ about a subject matter. It is not that
K-theory could generate falsities, even when properly used, but we can
certainly think of cases where it would be irrelevant or pointless.!®

Consequently, a different way to characterize the epistemic utility of the
tools used by mathematicians has to be found. We take as our guide some
properties of concrete tools and adapt them to the present context. We
submit faithfulness, handiness, power, and robustness, characterized thus:
a. We say that a tool is faithful whenever it ‘fits’ the objects it is supposed to
act upon in the right way. In the case of a concrete tool, e.g., a screwdriver,
it amounts to a certain correspondence between the object acted upon and
the tool. In the case of topological K-theory, this amounts roughly to
the fact that the K-functors are homotopy invariant. This tells us how
‘well’ they fit. Here, we can certainly compare, for instance, K-theory with
other cohomology theories and discuss their faithfulness relative to certain
objects.

b. We say that a tool is handy if it simplifies a task in one way or another.

15 1, for one, would be surprised to find out that the K-theory of Boolean rings has
important applications in logic.
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The task here could be a proof, a computation, as in the Riemann-Roch
theorem or the definition of an object. Again, this is trivial for concrete
tools and we can find concrete indicators of simplicity in terms of effort,
energy, etc. It is not so easy for mathematical tools. It remains to be seen
whether logical complexity can be of any help here. Understanding might
be more relevant.8
c. We say that a tool is powerful whenever it helps to solve an important
problem and by doing so can be adapted to many different fields and thus
allows a surprising unification of mathematics. (This is related to Detlef-
sen’s perpicuousness. )
d. Finally, we say that a tool is robust whever it allows vast generalizations,
that is, it remains useful when we try to enlarge the context of its original
employment. It may even sometimes suggest how to generalize certain
results.

This is only a tentative list. We cannot claim that it is complete or
exhaustive, nor are we sure that it is adequate. More work has to be done
before we can be sure of this.

2. There has to be a norm for the proper application of an accepted tool;
one has to be able to tell when a tool has been used properly, for a given
proof might be unacceptable whenever a tool has not been used adequately
at one point or another in it (one can fix something with a tool by trial
and error, but the whole thing might fall down or be unsafe). This norm
is crucial for it is only when we know that the tool has been used properly
that we can adopt a certain epistemological attitude towards a result proved
with its help. Compare this with the norm accompanying the use of, say
first~order, logic in proofs: then we can verify whether each step is an
application of one of the given rules or if it is simply a given hypothesis of
the problem.

In the case of K-theory, some of the implicit norms seem to be these:
(i) the different K*s are functors;
(ii) the different K*s are related to one another in a systematic fashion,
i.e., we have to be able to define a connecting morphism between them;
(iii) the different K*s are related to other functors in a systematic fashion,
i.e., the fundamental groups, more generally the homotopy groups, the
general linear groups of the spaces, standard cohomology groups, etc.
Again it is far from clear that this is the correct list, even partial, of the
norms at work. There are probably others, e.g., K° presupposes an additive
category. In a sense, the purpose of the theory surrounding a given tool

16 «Since Adams’s original proof involved the development of the subtle Adams spectral
sequence relating cohomology to stable homotopy and a deep study of secondary coho-
mology operations (Adams’s final paper in Annals of Mathematics occupied 80 pages!),
it is a signal triumph of K-theory to produce a proof which only requires a knowledge
of certain very natural primary operations in K-theory (Hilton [1971], p. 2).
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is to make these norms explicit so that one learns how and when to apply
the tool. In their turn, these norms guarantee a form of objectivity, a
form of methodological objectivity.!” It might be useful to think about
concrete tools and try to transfer whatever can be extracted from them to
the mathematical context. Moreover, it is hard to see at this stage how
these norms can be generalized to all the tools in the family, unless it is
precisely these norms which can serve as a basis of a proper classification
of tools. But this is sheer conjecture.

Be that as it may, there are mathematical theories which are tools or
intruments in the sense that their objects satisfy the properties of instru-
ments in general and, moreover, they satisfy these properties in a specific
way. To see this, we can compare them with one other type of tool: nota-
tional systems.8

Notational systems can be considered as tools. Notice, however, that
this is not unproblematic. Indeed, a strict formalist would certainly not
consider them as such: quite the contrary. For her, notational systems are
what mathematics is about and not something useful to help us understand
and do mathematics. But we do believe that they are first and foremost
tools, instruments of thought and communication.!® Does a notational
system satisfy the six properties in our list?

(i) It certainly satisfies the first property: they are undoubtedly construc-
tions.

(ii) This is the crucial difference. Notational systems do not act on objects,
at least not in the sense that we use this expression for concrete instruments
and not in the same way that K-theory could be said to depend directly
on a given category of objects. A notational system is a tool inasmuch as
it is related to something else, inasmuch as it stands for something else in a
systematic fashion. However, this ‘standing for’ is radically different from
what the K-groups stand for. Whereas the K-groups are built up from

17 This might be the only form of objectivity in mathematics. See Bunge [1974], p. 169,
for a characterization of methodological objectivity in mathematics.

18 Another interesting case study is the axiomatic method, which seems to have caused
great pain towards the end of the nineteenth century and at the beginning of the twen-
tieth, even to Russell.

19 1t is clear that Frege first thought of his Begriffsschrift as a tool (he even compares
it to a microscope!): ‘This ideography, likewise, is a device invented for certain scientific
purposes, and we must not condemn it because it is not suited to others. If it answers to
these purposes in some degree, one should not mind the fact that there are no new truths
in my work. I would console myself on this point with the realization that a development
of method, too, furthers science. Bacon, after all, thought it better to invent a means by
which everything could easily be discovered than to discover particular truths. ..’ (Frege
1879, 1967, p. 6). In his Foundations of Arithmetic, Frege states that ‘it is possible, of
course, to operate with figures mechanically, just as it is possible to speak like a parrot:
but that hardly deserves the name of thought. It only becomes possible at all after the
mathematical notation has, as a result of genuine thought, been so developed that it
does the thinking for us, so to speak’ (Frege 1883 [1980], p. iv).
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the objects studied and thus depend directly on these objects, a notational
system does not have to depend on the objects it denotes. We do not devise
a notational system for arithmetic by manipulating the numbers themselves
in a systematic fashion, whatever that could mean.

(iii)  Similarly, the K-groups can be seen to encode genuine properties of
the objects whereas it is much harder to claim that symbols of a notational
system encode genuine properties of the denoted objects. There is usually
very little in the symbols themselves which encodes a property of the de-
noted object whereas a K-group has to be seen as the algebraic encoding
of a specific property of a given object.

However, we now know that a notational system, rather a deductive
system, can capture within its own structure part of the structure of the
operations definable on the objects studied, as for instance in the case of
a positional system for number theory. Thus, notational systems may cap-
ture as a whole properties of the objects studied as a whole. This is after
all a large part of the interest in and the usefulness of mathematical logic.
Of course, in doing so, we shift from the point of view of notational sys-
tems as tools in their specific applications, e.g., computations, to notational
systems as tools inasmuch as they capture, as representations, fundamental
properties of the things they talk about. This shift is more drastic than first
appears. For by doing it, we consider the notational (deductive) system as
an abstract system, whereas as a computational tool, it is rather some of
its concrete properties, that is the manipulation of symbols, which make it
an interesting tool.2® When we consider a notational system as a whole,
we treat it as an abstract structure which captures or encodes properties of
something else, as the K-groups do. The main point here is that there is
no comparable shift for K-theory. For instance, it does not make any sense
to introduce a type-token distinction in K-theory whereas it makes perfect
sense when we deal with a notational system.

(iv, v) As to the planning and the function, there is no doubt that the
situation is again different. As we have seen, the fundamental purpose of
K-theory is to allow the definition of invariants which are then useful in
various ways in proofs. The point of contact here is definability theory: a
notational system certainly must allow certain definitions, but it is far from
clear that this is its sole and principal function.

(vi) Clearly, a notational system comes equipped with rules and thus
with norms of application which are in general purely local. As we have
already mentioned, these norms are different from the norms inherent in
K-theory.

20 Think of the different notational systems for derivatives, e.g., Newton’s versus Leib-
niz’s.



TOOLS AND MACHINES 269

Notational systems are tools inasmuch as they allow an automatic co-
ordination of thought, but of the sensory-motor type, that is of the direct
input-output mode. We believe that this is particularly clear in the agcquisi-
tion of the basic arithmetical operations, including the division algorithm.
Thus, very quickly, most of the notational operations are carried out ‘with-
out thinking’. Hence a notational system is considered to be a good tool
whenever it takes over some of the thinking required in the solution of
problems. Another good example of this is the graphical notational system
used in category theory, for some proofs are obvious when one looks at the
proper diagram.

Thus, notational systems, although they are tools, are not tools in the
same way as the machinery we are talking about. As we have just indicated,
the major and crucial differences occur at points (ii) and (iii).

There is one further element worth mentioning. As soon as we talk about
tools and instruments we let the knowing subject and his capacities enter
the picture.?! For a tool is always used by someone with certain capacities
and its design and success also depend on these capacities. For instance,
K-theory makes the computation of certain invariants easier than other
cohomology theories, and this is because it allows us to ignore irrelevant
information and we find it easier to compute them. Similarly, crucial fea-
tures of notational systems are consequences of our cognitive make up. But
again, there are important differences between the two cases. It is reason-
able to claim that the reason why the K-groups are easier to compute is
because they are, as groups, ‘coarser ’ than other cohomology groups. (Re-
call Atiyah’s claim above.) It is as if we used an optical microscope instead
of, say, an electron microscope. Thus, it is not because the K-groups fit
our cognitive apparatus better than other groups, but because they encode
the properties differently. I submit that in the case of notational systems,
in their concrete applications and not as abstract structures, their use as
tools depends more heavily on the way they fit our cognitive needs and
constraints. Frege’s notation for logic, as a concrete notational scheme, is
too far from our standard notational practice to be insightful.

Conclusion

We hope that we have convinced the reader that it makes perfect sense to
say that contemporary mathematics contains abstract tools and machines.

21 ¢As beings suffering such limitations [e.g., limited amounts of time and energy to
expend in the pursuit of epistemic goals], we are naturally concerned that our methods
of epistemic acquisition be maximally efficient; i.e., that no alternative methods available
to us yield a higher return on the expenditure of our limited epistemic resources than
the ones we have adopted. The Hilbertian defense of the ideal methods of classical
mathematics, as we have presented it, is a proposal in this general spirit’ (Detlefsen
[1986], p. 83). However, different tools might reveal different aspects of a problem, each
one leading to different and revealing generalizations for instance.
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Once this is established, the number of issues that one has to address be-
comes daunting. We would like to conclude by emphasizing only three of
them.

Firstly, the mathematical universe is not as uniform as is usually thought.
If we admit that there are instruments and machines within this universe,
then we grant the fact that there are mathematical ‘natural kinds’ and
mathematical ‘artefacts’. We are then faced with the problem of providing
criteria for the natural kinds or for the artefacts. This seems to me to be a
particularly difficult problem for realists. But it also raises the question of
the adequacy of the various intrumentalist positions in mathematics. We
will come back to these issues in a forthcoming paper.

Secondly, a general classification scheme for mathematical tools and ma-
chines should be provided. Concrete analysis of specific tools can only go so
far. A general classification scheme would be extremely useful for the epis-
temology of mathematics. It is far from clear how this should be tackled.
A logical approach might be a good start if only one knew where to start.
It is rather stunning to see that, at least to my knowledge, we don’t even
have the proper logical tools to effect a logical analysis of, say, algebraic
topology. All the logical tools we have at our disposal are devised for a
theory and not for the interaction of theories.

Finally, and this is closely related to the previous point, it is clear that
the tools and machines we have been considering here possess an algorithmic
dimension. One wonders whether a proper logical analysis 4 la Turing could
not be provided for some of them, thus revealing important aspects of ‘the
technique of our thinking’?2? Are there any logical reasons underlying the
success of these tools? Some progress has been made very recently on this
question. Indeed, Sergeraert’s work [1994] establishes the computability

22 This expression comes from a famous passage in Hilbert’s paper on the foundations
of mathematics. The whole passage runs as follows:
For this formula game is carried out according to certain definite rules, in which the
technique of our thinking is expressed. These rules form a closed system that can
be discovered and definitively stated. The fundamental idea of my proof theory is none
other than to describe the activity of our understanding, to make a protocol of the
rules according to which our thinking actually proceeds. Thinking, it so happens,
parallels speaking and writing: we form statements and place them one behind an
other. If any totality of observations and phenomena deserves to be made the object of
a serious and thorough investigation, it is this one. .. [Hilbert 1928, 1967, p. 475].
In a way, the tools we have exhibited make this thinking, which parallels speaking and
writing (in Hilbert’s words), less obvious: for the tools, even though they certainly help
our thinking, do so by organizing some objects and their properties in a particularly
transparent way, so that this organization guides our thinking. It might very well be
that Hilbert’s proof theory comes closer to describing our activity of justification and
misses large parts of our activity of understanding. For there are very often many
different proofs of one and the same result. Many mathematicians feel that often one
of these proofs provides ‘the real reason’ for a result (see Mac Lane [1986]), or ‘gets to
the heart of the problem’, as Atiyah is supposed to have said about his new proof with
R. Bott of the periodicity theorem.
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of many groups of algebraic topology and even opens the door to a new
analysis of some K-groups. This work seems to capture the algorithmic
aspect of these constructions and thus establishes an explicit link with real
machines. But this will have to be examined elsewhere.
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ABsTRACT. In this paper, we try to establish that some mathematical theories, like
K-theory, homology, cohomology, homotopy theories, spectral sequences, modern
Galois theory (in its various applications), representation theory and character
theory, etc., should be thought of as (abstract) machines in the same way that
there are (concrete) machines in the natural sciences. If this is correct, then many
epistemological and ontological issues in the philosophy of mathematics are seen
in a different light. We concentrate on one problem which immediately follows the
recognition of the particular status of these theories: the demarcation problem
between ‘natural kinds’ and ‘artefacts’.



