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_______________________________________________________________________ 

Abstract 
 
A case is made that Mach’s principle of “economy of thought”, and therefore usefulness, is 

related to the compressibility of data, but that a mathematical expression may compress data for 

reasons that are sometimes coincidental and sometimes not.  An expression, therefore, may be 

sometimes explainable and sometimes not.  A method is proposed for distinguishing 

coincidental data compression from non-coincidental, where this method may serve as a guide 

in uncovering new mathematical relationships.  The method works by producing a probability 

that a given mathematical expression achieves its compression purely by chance. 

_______________________________________________________________________ 
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Introduction 
 
 The following equation produces a value that differs from 20 by just 0.000900020…. 

 

  ...7919.9990999=− ππe    ,     (1) 

 

(see Almost Integer, in Weisstein, 1999).   Equation (1) is in fact very suggestive.  It hints at a 

relationship between π and e different from the well-known 01 =+πie , but distinct in that Eq. 

(1) is independent of the complex plane..  But so far Eq.(1) has led to no new interesting 

infinite series for π and stands aloof from the remainder of mathematics. 

 The following two equations, which employ π, e, and the golden ratio ( ) 2/51 +=φ , 

also produce values that are close to integers: 

 

...99977884736743.43 =πe  , and,    (2) 

 

    ...122.9918
2

51
10

10 =








 +
=φ      (3) 

 

 On the surface, these equations also appear to be coincidental and therefore 

mathematical dead ends.  Only careful study reveals that, for values of p equal to 2, 3, 5, 11, 

17, and 41, the expression 14 −peπ  has a profound relationship with the complex prime numbers 

of Gauss (Conway and Guy, 1996; see also j-Function, Almost Integer, Gauss’s Class Number 
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Problem, and Prime-Generating Polynomial, in Weisstein, 1999).  The non-coincidental nature 

of Eq. (2) is strongly implied by noting that for p equal to 11, 17, and 41 the expression 

14 −peπ  produces 

   

      744960...99977884736743. 31114 +≈=−×πe  ,    (4a) 

 

7445280...43.99999861471979527 31174 +≈=−×πe   , and ,   (4b) 

 

744640320...925999999999940768743.92625374126 31414 +≈=−×πe   ,  (4c) 

 

which Conway and Guy (1996) describe as “suspiciously close to integers”.  (Note: Eq. (4c) is 

the last of this unusual sequence and is sometimes referred to as the Ramanujan Constant 

(Weisstein, 1999)). 

 The non-coincidental nature of Eq. (3), which raises the golden ratio φ to the power of 

10, is even more decisively confirmed by observing that 

 

    ...122.991810 =φ    ,      (5a) 

 

...3315126.999920 =φ    ,     (5b) 

 

...9999461860497.9930 =φ    ,    (5c) 
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...9999999956228826126.40 =φ   , and,   (5d) 

 

...996442.99999999281437531250 =φ    ,   (5e) 

 

which are ever nearer to integers for reasons that must be non-coincidental.  In fact, given that 

for f(n) = φn,  f(10) =  122.9918…, f(11) = 199.0050…, f(12) = 321.9968…, f(13) = 

521.0019…, f(14) = 842.9988…, and f(15) = 1364.00073…, it appears that for increasing 

values of n, the values produced are not merely ever closer to integers, but from alternating 

directions.  (Note: this mystery is partially resolved by noting that ( ) nnnf −φ−+φ=)( produces 

integers for all integer values of n.)  

 In contrast, note that that non-integers raised to high powers typically do not produce 

numbers that are at all close to integers.  Accordingly, .93648.04..10 =π ,  ....08876995679620 =π , 

...02749.58821289330430 =π , .22026.46..10 =e ,  ...40485165195.20 =e , and 

...1524.46106864745830 =e  all produce no interesting sequences of 9s or 0s to the right of the 

decimal place, by coincidence or otherwise.   

 Clearly, it would be desirable to possess a general method for determining whether Eq. 

(1) is coincidental, or if, like Eqs. (2) and (3), it has general significance.  This issue is brought 

into sharper focus when considering π approximations such as 

 

     
7
22

≈π  ,      (6a)
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113
355

≈π  , and,      (6b) 

 

     4
1

22
2143







≈π   .      (6c) 

 

(see Pi, in Weisstein, 1999).  Are these ever more precise approximations also coincidental?  

And what precisely does it mean to ask this question?   

 Equations (6a)-(6c) appear to be useful in the sense that they serve as handy 

compressions of data and serve the psychological function of aiding a researcher with a limited 

memory.  In this sense they are of at least limited “scientific” value, in the broad sense of the 

term used by Mach, for whom all equations, and all laws, were summaries of data (Mach, 

1988).   

 But Eq. (1) and Eqs. (6a)-(6c) remind us that some equations or laws are more 

important than others.  Some go beyond mere summary and are foundations for a still greater 

understanding.  So which are they?  Do they represent a blind alley?  And is their initial 

success, though real, something that has no general significance?  

One approach to answering these questions involves applying information theory to 

assess whether a given expression compresses data.  The idea is that if an expression simplifies 

data significantly, then it probably does so for some important underlying reason that ultimately 

may be discovered .   
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Using Information Theory to Distinguish Coincidence from Non-Coincidence 
 

The simplest way to assess compression is to see whether a given approximation 

employs fewer digits than the value it approximates.  So  22 / 7 has three digits, and it produces 

accurately just three digits of π (so, 22 / 7 = 3.1428…, where only the underlined integers are 

correct).  In the same way 355 / 113 contains six digits, and it produces accurately just seven 

digits of π (so 355 / 113 = 3.14159292…).  Lastly, Eq. (6c) has makes use of 8 digits in order 

to produce 9 digits of π (or 3.1415926525…).  This method, though crude, demonstrates the 

underlying difficulty of compressing data by putting it in a new form.  The more digits one 

accounts for via the new representation, the more digits that are needed to carry it out.  This 

suggests that if a particular approximation uses far fewer digits than the number of digits it 

correctly reproduces, some explanation of this feat may be possible.  

As it is, the above crude measure can be improved upon by employing a more 

sophisticated means of assessing information content than merely counting decimal digits.  

Such an improvement is badly needed as 0.999999 is obviously a good approximation of 

1.000000, and yet has no digits in common with it.   

The most obvious improvement would be to substitute binary digits for decimal digits; 

this would be the equivalent of employing a ruler with a finer scale.  A still more sophisticated 

method is to employ log2( closeness ), where closeness equals 
R

q
p

q
p

qp
R

−
=

−1

1 , and  
q
p  is an 

approximation of R, where p and q are positive integers.  So the expression 


















π−
7
22

7
22

log2  
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yields the number of bits of π produced by the expression 
7
22 .   This solves the problem posed 

by 0.999999 and 1.000000. 

Note that there are at least two other expressions that one might use to measure 

closeness: 

R
qp

−1

1  and 

q
pR −

1 .  The advantage that 

qp
R

−1

1  has over these alternatives is that 

later it will be tied directly to an important proof concerning what is achievable in rational 

approximations. 

Having achieved an improvement in the measurement of the effectiveness of the 

approximation, the next logical step is to assess more precisely the “overhead” present in the 

approximating expression.  This task is much more difficult because it is open-ended: there is 

literally no limit to the number of ways that one value may be approximated by another.  It is 

also difficult because there is no single agreed upon set of rules for assessing the complexity of 

mathematical expressions. 

For Eq. (6a), the information content of the expression 
7
22  might be estimated as 

( ) ( )7log22log 22 +  bits.  Why, you may ask, use the sum of logarithms?  The answer is that 

these logarithms represent the cost or overhead, expressed in binary digits, incurred in 

reproducing π;  a simple sum of these costs yields a total cost, or score, that lends itself to easy 

comparison with other scores that will be generated by other approximations. So the value 

log2(7) equals roughly the number of bits that it takes to represent 7 as a binary number. 

 But why should binary digits hold the key to a consistent scoring method for the 

complexity of mathematical expressions?  The answer may derive from communications 
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theory, where the simplest communications schemes involve sending messages composed of 

mere 1s and 0s.  If one wishes to use these 1s and 0s to create an unambiguous identifier for 

each of 2n messages, then n binary digits (or bits) are the minimum number required.  So, for 4 

messages, A, B, C, and D,  log2(4) = 2 binary digits, or bits, are needed to pair each uniquely 

with its own identifier:   

 

     00 ↔ A ,  

     01 ↔ B ,  

     10 ↔ C ,  

     11 ↔ D .  

 

 Using the method introduced earlier, the closeness of 
7
22 to π equals 

   bits. 3.11

7
22

7
22

log2 ≈



















−π
     (7a) 

 

And the cost, or overhead, incurred by 
7
22  in approximating π equals 

 

    ( ) ( ) bits. 3.77log22log 22 ≈+         (7b) 
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We see that the approximation 
7
22  compresses π significantly (11.3 – 7.3 = 4.0 bits).  This 

clearly shows why 
7
22  might prove to be a helpful approximation: it simplifies the data it 

represents.   

 Similarly, given that 

   bits 5.23

113
355

113
355

log2 ≈



















−π
,     (7c) 

and 

 

    ( ) ( ) bits 3.15113log355log 22 ≈+ ,    (7d) 

 

the approximation 
113
355  accomplishes substantial compression  (23.5 – 15.3 = 8.2 bits).  

Because it significantly compresses the data it represents, 
113
355  is also clearly useful.   

 The above reasoning may be generalized to produce a formula for the number of binary 

digits of compression achieved by an approximation 
q
p  of R 

 

         ( ) ( )qp

q
pR

q
p

nCompressio 222 logloglog −−





















−
=   ,   (8a) 
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



















−×
=





















−××
=

q
pRq

q
pRqp

q
p

2
22

1loglog     , 

 

where p and q are integers, and R, p, and q are all greater than 0.   

 Note that there exist infinitely many approximations 
q
p  to any real number R that 

satisfy 

 

             
25

1
qq

pR ≤−   ,     (8b) 

 

(Conway and Guy, 1993; Hardy and Wright, 1980).  This supports the conclusion that for any 

R, an approximation 
q
p  may be found such that 

 

     ( )5log1log 2
2

2 ≥





















−×
=

q
pRq

ncompressio    .   (8c) 

 

 Note that it is only when 
q
p approximates R that Eq. (8c) can yield high values for 

compression, and that the smaller values of q also tend to yield higher compression scores.  The 
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difficultly is in finding small 
q
pR −  accompanied by small q.  Typically, if 

q
pR −  is to be 

made smaller, q must grow. 

 Note that Eq. (8c) assures that a compression of at least ( ) bits  1.1609...5log2 =  is 

possible for any R.  In Figure 1, an instructive puzzle is introduced that makes use of the 

principle behind Eq. (8b).   

 Tables I-III, and Figures 2-5, help demonstrate that limited compressibility is always 

possible to some degree, in this case for φ, e, and π.  But Tables I-III and Figures 2-5 also 

illustrate the difficulty of finding really good approximations.  Only π ≈ 22 / 7 and π ≈ 355 / 

113, along with some of their multiples (e.g., 710 / 226), achieve even a single decimal digit of 

compression (a decimal digit equals about log2(10) ≈ 3.32 bits), even though denominators 

were tested as high as 10,000.   

The Origin of Good Rational Approximations 

 Good approximations may arise for reasons of luck (which must necessarily be 

infrequent), or because some underlying relationship has been exploited.  This is made clearer 

by investigating simple continued fractions, which for x assume the form  

 

       

...
1

1
1

1

4
3

2

1

0

+
+

+
+

+=

a
a

a
a

ax   ,    (9a) 

 

which may be written more compactly as 
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         ,...],,,,[ 43210 aaaaax =   ,    (9b) 

 

where the positive integers 0a , 1a , 2a , 3a , and 4a  are the first five partial quotients of x.   

 So π, written as a simple continued fraction, equals 

 

       

...292
11

115

17

13...363.14159265

+
+

+
+

+==π   ,   (9c) 

 

or more simply 

 

       π = 3.1415926536... = [3, 7, 15, 1, 292, 1, ...]  .   (9d) 

 

 It is now possible to use simple continued fractions to understand the origin of the 

effectiveness of 355 / 113 and 
4
1

22
2143







 .  For the first five powers of π we have the following 

simple continued fractions 

 

   π1 = 3.1415926536...     = [3, 7, 15, 1, 292, 1, ...]  ,   (9e) 

   π2 = 9.8696044011...     = [9, 1, 6, 1, 2, 47, ...]  ,    (9f) 

   π3 = 31.0062766803...   = [31, 159, 3, 7, 1, 13, ...]  ,    (9g) 
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   π4 = 97.4090910340...   = [97, 2, 2, 3, 1, 16,539, ...]  , and,   (9h) 

   π5 = 306.0196847853... = [306, 50, 1, 4, 60, 1, ...]  ,   (9i) 

 

with their larger partial quotients appearing in boldface.   

 Now a key point is that an effective approximation for π may be achieved by truncating 

the continued fraction just before a large partial quotient.  E.g.,  

 

    113
355

1
115

17

13 =

+
+

+≈π     .     (9j) 

 

So, in Figure 5, the large peak in the center of the graph occurs because π ’s simple continued 

fraction may be truncated just before the fraction 1 / 292, thereby yielding the extremely good 

approximation 355 / 113.   

 It follows that the partial quotient 16,539 offers an especially good opportunity to create 

a good approximation.  This expectation is justified as Eq. (6c) is successful because it chops 

off the continued fraction of Eq. (9h) at just the right spot 

 

   22
2143

1
13

12

12

197 340...97.40909104 =

+
+

+
+≈=π   .  (9k) 
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The approximation 
22

2143  achieves a very high compression of  π4  (29.5 – 15.5 = 14.0 bits).  

 Note that it is not a coincidence that log2(16,539) ≈ 14.0 bits, just as it is not a 

coincidence that log2(292) ≈ 8.2 bits, about the compression achieved by 
113
355 .  It follows that 

for a large partial quotient k one may construct an approximation achieving log2(k) bits 

compression. 

 It is now clear that to ask whether the effectiveness of 
113
355 is due to chance is to ask 

whether the large term 292 occurs by chance in the simple continued fraction [3, 7, 15, 1, 292, 

1, ...].  And to ask whether the effectiveness of 
22

2143  is due to chance is to ask whether 16,539 

occurs by chance in the simple continued fraction [97, 2, 2, 3, 1, 16,539, ...]. 

  As it is, the probability that an individual partial quotient of a randomly-generated 

number between 0 and 1 will equal or exceed k  is 





 +

k
11log2  (Khinchin, 1964).  So, there is 

only a 1 in 11,464 chance that an individual quotient will equal or exceed 16,539, and only a 1 

in 202 chance that it will equal or exceed 292 (though one should not assume that these two 

probabilities are independent).  It follows that, for a randomly-generated number between 0 and 

1, the probability P(n) of achieving n bits of compression by truncating its continued fraction 

just before a partial quotient chosen at random is 

 

     





 +≈ nnP

2
11log)( 2   .      (9l) 
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 Note that the presence of even a single “high compression” approximation, such as 

113
355 , may provide a strong enough “signal” to justify an expectation that a non-coincidental 

relationship has been identified, that that some form of explanation of it may be possible.  The 

use here of term “signal”, borrowed from communications theory, is deliberate.  Identifying the 

non-coincidental nature of a mathematical relationship may be seen as analogous to extracting 

a signal from noise.  When a possible non-coincidental signal is identified, further work may, 

or may not, confirm it as non-coincidental. 

Finding Approximations that Achieve a Predetermined Degree of Accuracy 

 It is important to note that it is easier to find a high compression approximation if one 

merely accepts the degree of accuracy produced by those approximations that happen to be 

effective.  This is the situation with regard to 355 / 113, where π’s continued fraction has been 

truncated at just the right point to obtain a good approximation.  If one instead decides in 

advance that the approximation has to reproduce π to, say, 1 part in 109, then the likelihood of 

finding a good approximation by truncating  π’s continued fraction depends on the luck of π 

possessing a large partial quotient in just the right place.   But such an expectation has already 

been shown not be to justified: large partial quotients are relatively rare. 

 By way of example, a brute force computer search finds that eleven digits are required 

to reproduce π to 1 part in 109: 

 

          11...3.14159265
32876

103283
=≈π   ,    (10a) 
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This approximation therefore cannot serve as a handy substitute for π’s first nine digits, as it 

uses two more digits than it reproduces, and yet no value qp with fewer digits can faithfully 

reproduce the first nine digits of π.  This issue will become important in the next example 

where the data to be approximated are known as a result of physical experiment, and 

consequently one might want an approximation that fits the data to within its limits of 

experimental error. 

 The number of bits of data produced by the above π approximation is  

 

     ( ) bits. 30.31300497890log

32876
103283

32876
103283

log 22 ≈=



















π−
   (10b) 

 

 Now compare this against the number of bits of information used in the approximation 

 

    ( ) ( ) bits. 31.732876log103283log 22 ≈+      (10c) 

 

The approximation fails to accomplish any compression, as its score is negative (30.3 – 31.7 = 

–1.4 bits).  If one disallows the “score inflation” that results from over-fitting π to better than 1 

part in 109, then, with ( ) bits, 9.2910log 9
2 ≈  the score reduces to 

 

   ( ) ( ) ( ) . bits 8.132876log103283log10log 22
9

2 −≈−−    (10d) 
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 In fact, without score inflation through over-fitting it is possible to state an important 

empirical rule, found with the aid of a computer:  The probability P(n) that a number in the 

interval (π – 0.1, π + 0.1) around π may be approximated by qp  to an accuracy of better than 

1 part per billion, while achieving n bits of compression, is  

 

     8.02
1)( +≈ nnP  .       (11a) 

 

where n ≥ 0.  Computer testing performed by the author verified this only for  n < 10, but when 

the required accuracy was altered from 1 ppb to 100 ppb, it did not undermine its approximate 

validity; nor did substituting φ for π.  Equation (11a) says that there is a 50 % likelihood of 

achieving better than 0.2 bits of compression (n = 0.2). 

 Remarkably, if instead of defining the number of bits of information overhead in an 

approximation as log2(p) + log2(q), we instead use    )(log)(log 22 qp + , where we write  x  for 

the smallest integer greater than or equal to x, then Eq. (11a) simplifies to  

 

           22
1)( +≈ nnP  .     (11b) 

 

Note that Eq. (11b) assigns a 25 % likelihood of achieving positive compression (n = 0). 

Approximations of Values from Particle Physics 

The role that information theory might play in revealing the accidental character of 

approximations is clarified by the following examples derived from particle physics.  
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According to 2002 CODATA (which is calculated by the National Institute of Standards), the 

experimental value of the muon-electron mass ratio is 206.7682838 with a one-standard-

deviation uncertainty of ±0.0000054.  The neutron-electron mass ratio equals 1838.6836598 

with a one-standard-deviation uncertainty of ±0.0000013 (Mohr and Taylor, 2003).  The 

following approximations were discovered by a brute-force computer search designed to find 

two approximations that reproduce these mass ratios to within four times their one-standard-

deviation uncertainties, while sharing the same denominator: 

 

        
2883

596113
≈

electron

muon

M
M        (12a) 

and  

        
2883

5300925
≈

electron

neutron

M
M  .     (12b) 

 

The number of bits of data they reproduce, with no allowance for over-fitting, is expressed by  

  

        . bits 651.
0.00000134

 981838.68365log
0.00000544

8206.768283log 22 ≈







×
+








×
     (12c) 

 

Now compare this value against the number of bits of information that Eqs. (12a) and (12b) 

contain  

 

                    ( ) ( ) ( ) bits. 53.02883log5300925log596113log 222 =++        (12d) 
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Note that in the above equation the expression ( )2883log2  weights for both occurrences of 

2883.  Clearly, despite the economy achieved by their sharing the value 2883, and despite their 

having originated from a brute-force computer search, the approximations fail to accomplish 

any compression: the score produced is negative (51.6 – 53.0 = –1.4 bits).   

 Alternative numbers found via the same computer search do no better.  So  

 

        
2943

608519
≈

electron

muon

M
M        (13a) 

and  

        
2943

5411246
≈

electron

neutron

M
M  .     (13b) 

 

achieve a score of 51.6 – 53.1 =  –1.5 bits, a value remarkably close to that achieved by Eqs. 

(12a) and (12b).   

 This illustrates what may perhaps be a general principle: If a result is random or 

coincidental, what it accomplishes may be nearly reproducible by other, unrelated means.  That 

is to say the best and second-best alternatives may prove equally plausible, with little to 

recommend one over the other, and nothing in common between them.  In contrast, should the 

best case stand apart from a cluster of alternatives, this in itself might be taken as evidence for a 

non-coincidental result.   

 Before moving on, it is interesting to compare the simple continued fractions of the 

particle mass ratios against those for the powers of π: 
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            1838.6836598... = [1838, 1, 2, 6, 4, 1, 6, 1, ...]  ,      

               206.7682838... = [206, 1, 3, 3, 5, 1, 15, 1, ...]      

 

Unlike the continued fractions for the powers of π, these continued fractions offer no large 

partial quotients to exploit, which helps explain the failure of Eqs. (12a), (12b), (13a), and 

(13b) to achieve positive compression scores.   

Evaluating Complex Expressions 

 For equations that are not simple ratios, difficult challenges are posed in assessing 

weight.  We met this situation before with the π approximation 4
1

22
2143







 .  This approximation 

is not a rational approximation of π, but rather is the fourth root of a rational number.  In 

assessing the overhead of this expression, presumably some weight must be assessed for the 

exponent 
4
1 .  We skirted this issue earlier by treating 

22
2143  as a rational approximation of π4.  

In this way, the issue of what weight to apply to 
4
1  did not arise.  In what follows, this evasion 

will no longer be possible. 

 Consider the following mass ratio equations, which also produce the above mass ratios 

to within four times their one-standard-deviation uncertainties (Markovitch, 2003): 

 

             5

3
3

10/41

10
10
41

3
−

−







≈

−

µ

eM
M

       (14a) 

and 
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( )

5

3
3

10/410

10106
10
41

3
−

+×+







≈
e

n

M
M    .    (14b) 

   

 With no allowance for over-fitting, the number of bits of data they reproduce is exactly 

the same as before: 51.6.  But it is not clear how to assess the overhead or weight of these 

complex equations, which make repeated use of the same numbers.  What is needed is a new, 

more flexible, way to assess the weight of mathematical expressions. 

 Ideally, any such weighting method should lead to a probability equation as convenient 

as the empirical Eqs. (11a) and (11b).  Accordingly, an attempt has been made to create a 

weighting method where the most compact approximation of a random real number will 

achieve n bits of compression with a probability of less than 





 + n2

11log2 , which follows Eq. 

(9l).  As before, the approximation must achieve a predetermined degree of accuracy, with no 

allowance of  score inflation from over-fitting.  The hope is that such a probability can act as a 

guide in determining whether an approximation under study should be examined more closely 

to understand why it works.  It is a key goal of this article to produce such a probability. 

  It is important to realize that the following weighting scheme need not produce exactly 

correct probabilities in order to be useful.  In cases where the probabilities produced are very 

large, say 1 in 10,000 against coincidence, it matters little if the probability is in reality 1 in 

1000, or even 1 in 100.  In either case, a strong case against coincidence has been established.   

A Weighting Method for Complex Expressions 

 The weighting method to be used is as follows: 
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1)  Well known values, such as π and e, as well as operations such as ln(x), will be 

weighted 2 bits.  Values that have already appeared once in an equation will also 

be weighted at most 2 bits for each additional appearance.  An exception will be 

made for any expression that is used in an identical way in two separate 

equations, as are the denominators of Eqs. (12a) and (12b), in which case the 

second use will receive no weight.  This is justified as the second use would 

disappear entirely if the two equations were combined into a single function. 

2)  All remaining values, excepting exponents, will be weighted by their length in 

binary digits plus 1. Accordingly, as the value 10 when written in base 2 has 

four binary digits 10102, it will be weighted 5.  So the weight applied to k will 

be  )(log2 k  + 1.   

3)  Exponents will be weighted by their length in binary digits.  Furthermore, reused 

exponents will be weighted 1.  So an exponent of  –1 will be weighted 1 bit; an 

exponent of 4 will be weighted 3 bits; and an exponent of 
4
1  will be weighted 1 

+ 3 = 4 bits.  So the weight applied to  the exponent k will be  )(log2 k .   

Testing the Weighting Method  
 
 The following examples will show that this method meets its goal of maintaining 

negligible compression for the mass equations already examined.  We begin, however, by 

examining a π approximation from Simon Plouffe (see Pi, Weisstein, 1999).  This 

approximation will demonstrate that a weighting of 2 bits for repeated terms is sufficient to 

discourage chance compression of π.  The approximation is 
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







≈π

396
689ln

396
689

  .      (15a) 

 

 And the closeness it achieves equals  

   bits, 7.25

396
689ln

396
689

396
689ln

396
689

log2 ≈









































−π









    (15b) 

 

while an audit of its overhead reveals  

 

   11 +    /  for the first use of 689 

   10 +                /  for the first use of 396 

   2 +    /  for reuse of 689  

   2 +    /  for reuse of 396 

   2 +     /  for ln() 

    = 27 bits.        (15c) 

       

So despite reusing two large terms, under the above weighting scheme of 2 bits for repeated 

terms, the above approximation only achieves a score of 25.7 – 27 =  –1.3 bits.  The failure of 
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this approximation to achieve even a single bit of compression, even though there was no 

requirement of a predetermined degree of accuracy, provides evidence that the weighting 

scheme assigns sufficient weight to repeated terms, as well as operations such as ln(). 

 Additional evidence that the weighting scheme is sufficiently conservative becomes 

apparent from examining the consequences of rewriting 2883 (from Eqs. (12a) and (12b)) as 2 

× 103 + 8 × (102 + 10) + 3.  In this new form it would receive a weight of 

 

   3 +    /  for 2 

   5 + 2 +    /  for the first use of 10 to the 3rd power 

   5 +    /  for 8 

   2 + 2 +    /  for reuse of 10 raised to the 2nd power 

   2 +    /  for reuse of 10 

   3 +     /  for 3 

    =  24 bits,        (16a) 

 

which is a much larger weight than log2(2883) = 11.5 bits.  Such rewriting achieves no 

compression. 

 Similarly, if one tries to reduce the weighting for 5300925 (from Eq. (12b)) by rewriting 

it 23052 – 1102, it would receive a weight of 

 

   13 + 2 +   /  for 23052 

   8 + 1    /  for 1102 

    =  24 bits,        (16b) 
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which is greater than log2(5300925) = 22.3 bits. 

 And, similarly, if 2943 from Eqs. (13a) and (13b) is rewritten as 33 + (2 × 33)2: 

 

   3 + 2 +    /  for the first use of 33 

   3 +     /  for  2  

   2 +    /  for reuse of  3 to the 3rd power 

   2     /  for the exponent 2 

 

    =  12 bits,        (17a) 

which achieves no compression, as log2(2943) = 11.5 bits. 

 It is true, however, that if one tries to reduce the weighting for 2883 by rewriting it as 3 

× 312, it would receive a weight of 

 

   3 +             /  for 3 

   6 + 2    /  for 312 

    =  11 bits,        (17b) 

 

slightly smaller than log2(2883) = 11.5 bits, because it takes advantage of a large square present 

in 2883. 

 As it turns out, the new scoring method when applied to the above equations only leads 

to equations that still produce no compression, which gives some justification for regarding the 

above weighting scheme as conservative means of assessing complex expressions.   
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 So the new score for Eqs. (12a) and (12b), when taking advantage of  3 × 312, is still 

negative (51.6 – ( log2(596113)  + 1 +  log2(5300295)  + 1) – 11 = 51.6 – 56 = –4.4 bits);  

while the score for Eqs. (13a) and (13b) ) is also negative (51.6 – ( log2(608519)  + 1 +  

log2(5411246)  ) – 12 = 51.6 – 57.0 = –5.4 bits).  The new scores for Eqs. (12a), (12b), (13a), 

and (13b) continue to suggest that they are purely coincidental, with little reason to prefer one 

set of mass equations over the other.  Table IV summarizes these results.  (Note: see Appendix 

A for the application of the above weighting technique to 
32876

103283  and a slightly better scoring 

version of 4
1

22
2143







 .) 

Evaluating the Mass Ratio Equations that Use 41 / 10 

  The above method may be used to audit the number of bits of overhead in the mass 

ratio Eqs. (14a) and (14b), which exploit the value 41 / 10: 

 

   3 +    /  for 3 

   7 + 5 +  2  +            /  for ( 41 / 10 )3 

   2 + 1 +    /  for reuse of 10 raised to the –3rd 

   4 +     /  for 6  

   2 + 1  + 2 +   /  for (103 + 10)  

   2 +    /  for reuse of 10  

   2 +    /  for 1  

   4 +    /  for 4  
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   2 + 3    /  for reuse of 10 raised to the –5th  

     = 42 bits.      (18) 

 

 Because 42 is significantly smaller than 51.6 (51.6 – 42 = 9.6 bits), this is clear cut 

evidence that Eqs. (14a) and (14b) are non-coincidental.  Note that earlier, under this new 

scoring method, Eqs. (12a), (12b), (13a), and (13b) achieved no compression.  Given that Eqs. 

(14a) and (14b) achieve 9.6 bits compression, this yields a probability of 
500
1

2
11log 6.92 ≈






 +  

that such an approximation might occur by coincidence (this calculation makes use of Eq. (9l), 

the equation that the weighting scheme was designed to support). 

 The negative compression scores of Eqs. (12a), (12b), (13a), and (13b), and the high 

compression scores of Eqs. (14a) and (14b), lead to the following key question:  Do the values, 

596113, 5300925, and 2883 from Eqs. (12a) and (12b), or 608519, 5411246, and 2943 from 

Eqs. (13a) and (13b), or 41 / 10 from Eqs. (14a) and (14b), appear anywhere in the physics 

literature? 

 Not surprisingly, a search on the Internet reveals no physics papers indexed by the 

highly distinctive integers 596113, 5300925, 2883, 608519, 5411246, or 2943.  However, a 

study of the physics literature does reveal that the values 41 and 10 do appear in some physics 

equations in the form of the coefficient b1 = 41 / 10.  This is remarkable, as the terms 41 and 10 

are fairly distinctive, and one would not necessarily expect to find such idiosyncratic terms 

playing an important role in any physical equation relating to particle mass. 

   Specifically, b1 figures prominently in the initial version of grand-unified theory (GUT), 

where it serves as a coefficient that helps regulate how the strength of electromagnetic force 
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varies with distance (Georgi and Glashow, 1974;  Georgi, Quinn, and Weinberg, 1974;  

Dimopoulos, Raby, and Wilczek, 1991;  Zwirner, 1992), and thereby affects a particle’s mass 

through self-interaction (Feynman, 1985).  As it is easy to simplify Eqs. (14a) and (14b) by 

using 3
1b  in place of powers of 41 and 10, the option of using 1b reinforces the possibility that a 

physical explanation lies waiting to be discovered behind the mass ratio Eqs. (14a) and (14b).  

(See Endnote for how the fine structure constant inverse, an important value affecting the 

strength of electromagnetic force and therefore particle self-interaction, also may be neatly 

described with the aid of powers of 10.) 

Evaluating the Mass Ratio Equations That Use b1 

 Simplified with the aid of 3
1b , Eqs. (14a) and (14b) become 

 

             5

33
1

10/41
10

3
−

−
≈

−
µ b

M
M

e
       (19a) 

and 

         ( )
5

33
1

10/410
101063

−
+×+

≈
b

M
M

e

n    .     (19b) 

 

As before, the two equations differ chiefly in the second term of their numerators.  Because 

other grand-unified theories assign different values to 1b , it will be weighted 3 bits.  An audit 

of the number of bits of information represented by Eqs. (19a) and (19b) yields: 

 

   3 +    /  for 3 
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   3 + 2 +    /  for 3
1b  

   5 + 1 +    /  for 10-3  

   4 +     /  for 6  

   2 + 1  + 2 +   /  for (103 + 10)  

   2 +    /  for reuse of 10  

   2 +    /  for 1  

   4 +    /  for 4  

   2 + 3    /  for reuse of 10 raised to the –5th  

     = 36 bits.      (20) 

 

 

 The value 36 is significantly smaller than 51.6 (51.6 –  36 = 15.6 bits).  This 

compression of 15.6 bits is considerably greater than the 9.6 bits of compression achieved by 

Eqs. (14a) and (14b), and vastly more than the negative compression achieved by Eqs. (12a), 

(12b), (13a), and (13b).  This underscores the possibility that Eqs. (19a) and (19b) may be more 

than merely handy aids to memory: they may have a physical origin.  (See Table IV for a 

summary of these results.)   

 But how should one regard the apparent probability of 





 + 6.152 2

11log , roughly 1 in 

34,000, that Eqs. (19a) and (19b) are coincidental?  Although the complex weighting scheme 

just applied was devised to meet the goal of producing less than a 





 + n2

11log2 probability of 

achieving n bits of compression by chance, there can be no guarantee that it succeeds.  This 

issue of how seriously one should take this probability is unclear, partly because the weighting 
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for the above equations is more complex than that applied to the earlier 1 ppb π approximation, 

and partly because there are literally an infinite number of ways of constructing an 

approximation.  Despite these uncertainties, the probability of 1 in 34,000 is so large that, even 

allowing for significant error in its calculation, it must strongly suggest a physical, rather than 

coincidental, origin for effectiveness of b1.  (See Appendix B for the results of a computer-

driven search for approximations of randomly-generated numbers, where the program attempts 

to find approximations that do better than the above weighting scheme is designed to allow.  

And see Appendix C for a versions of the mass equations that treat mass as a membrane 

stretched over the surface.  These equations, because of their symmetry, are arguably simpler 

than Eqs. (19a) and (19b).  Appendix D contains the source code for the above program.) 

 Lastly, how should we regard the decision to assign the expression b1 a weight of just 

log2(8) = 3?  Is this done on the assumption that there are a total of 8 plausible values that 

might be used in its place?  Or is it to be justified by saying that, for a physicist familiar with 

grand-unified theory, the “psychological overhead” of remembering 1b  is just 3 bits, 1 bit more 

than was assigned to π? 

 This latter type of reasoning appears to follow Ernst Mach’s concept of “economy of 

thought”.   For Mach, theories partly serve the psychological function of summarizing and 

condensing data.  Whether or not an equation meets Mach’s goal therefore depends on the mind 

of the person involved;  for a GUT physicist for whom b1 is already a “given”, presumably the 

psychological overhead of  memorizing and recalling 41 / 10 is significantly less than the 

burden imposed by  41 / 10 for the layman, who necessarily lacks this prior knowledge.   
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Conclusion 
 
 Finally, what are we to make of the original question regarding Eq. (1)?  Is it 

coincidental?   We can calculate the information content of Eq. (1) by using the techniques 

outlined above.  First, note that 

 

    ( ) 




 −×+π≈π

2210/3102ln      (21a) 

and 

     
( )

( )
bits. 7.31

10/3102ln

10/3102ln
log

22

22

2 ≈


















π−




 −×+π






 −×+π

     (21b) 

 

 An audit of the information content of Eq. (21a) reveals that  

 

   2 +    /  for ln() 

   2 +                /  for π 

   3 +    /  for 2  

   5 +    /  for the first use of 10 

   3 + 2 + 2 + 1   /  for ( 3 / 102 )2  

    = 20 bits.       (23c) 
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The value 20 is far less than 31.7 (31.7 – 20 = 11.7 bits).  The above compression score, while 

clearly suggesting non-coincidence, does little to shed light on the “why” of Eq. (21a).  But 

perhaps one day this mystery will be resolved.   

 Of course, estimation is involved in saying that the informational content of π and ln() 

warrants a value of log2(4) = 2 bits, which is the same weight given to 3.  But how else is one to 

proceed?  One obvious alternative is to turn the problem over to psychologists who could 

experimentally decide which is easier to memorize: π or 3? a particular approximation, or the 

digits that approximation faithfully reproduces?  Ernst Mach, with his principle of “economy of 

thought”, might approve, as simplicity, like beauty, must ultimately lie in the eye of the 

beholder. 

Endnote 
 
 Powers of 10 may also be used to reproduce neatly at least one other well-known 

physical constant, the fine structure constant α, which within the limits of error equals 

1/137.036 (Mohr and Taylor, 2003; Feynman, 1985).  This value may be elegantly reproduced 

as follows 

 

       999.99
3

999.9991010
3

1010036.1371
3

32
3

33

+=−+
−

=≈
α

−
−

  .   (24) 
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 Table I.  All integer ratio approximations of ( ) 2/51 +=φ , where the compression as 
defined by Eq. (8a) is positive, and the denominator is less than 10,000.  The numerators and 
denominators in columns 1 and 2 turn out to be the Fibonacci numbers.  For the larger 
Fibonacci numbers the compression achieved in column 4 is close to ( ) ...1.160964045log2 = . 
 

Numerator Denominator Approximation of  
Golden Ratio 

Compression in  
Binary Digits 

2 1 2 1.388483882 
3 2 1.5 1.082725763 
5 3 1.6666667 1.192005157 
8 5 1.6000000 1.149281502 

13 8 1.6250000 1.165451527 
21 13 1.6153846 1.159253716 
34 21 1.6190476 1.161617875 
55 34 1.6176471 1.160714388 
89 55 1.6181818 1.161059380 

144 89 1.6179775 1.160927653 
233 144 1.6180556 1.160977960 
377 233 1.6180258 1.160958767 
610 377 1.6180371 1.160966039 
987 610 1.6180328 1.160963297 

1597 987 1.6180344 1.160964370 
2584 1597 1.6180338 1.160964012 
4181 2584 1.6180341 1.160964012 
6765 4181 1.6180340 1.160964251 

10946 6765 1.6180340 1.160963297 
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Table II. All integer ratio approximations of e, where the compression as defined by Eq. (8a) 
is positive, and the denominator is less than 10,000.    
 

Numerator Denominator Approximation of  
e 

Compression in  
Binary Digits 

3 1 3 1.827675462 
5 2 2.5 0.195736066 
8 3 2.6666667 1.106136322 

11 4 2.7500000 0.978546560 
19 7 2.7142857 2.352476597 
38 14 same as above 0.352476627 
87 32 2.7187500 1.060675144 

106 39 2.7179487 0.980907083 
193 71 2.7183099 2.823138714 
386 142 same as above 0.823138654 

1264 465 2.7182796 1.033987284 
1457 536 2.7182836 0.989045382 
2721 1001 2.7182817 3.179216623 
5442 2002 same as above 1.179216743 
8163 3003 same as above 0.009291716 

23225 8544 2.7182818 1.021727085 
25946 9545 2.7182818 0.992906749 
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Table III. All integer ratio approximations of π, where the compression as defined by 
Eq. (8a) is positive, and the denominator is less than 10,000.  In column 4, all values 
that achieve at least a single decimal digit of compression (about 3.32 bits) are shaded. 
 

Numerator Denominator Approximation of  
π 

Compression in  
Binary Digits 

3 1 3 2.8867153 
6 2 same as above 0.8867153 

19 6 3.1666667 0.1362694 
22 7 3.1428571 4.0119391 
44 14 same as above 2.0119391 
66 21 same as above 0.8420141 
88 28 same as above 0.0119391 

333 106 3.1415094 0.0969140 
355 113 3.1415929 8.1975736 
710 226 same as above 6.1975736 

1065 339 same as above 5.0276486 
1420 452 same as above 4.1975736 
1775 565 same as above 3.5537174 
2130 678 same as above 3.0276486 
2485 791 same as above 2.5828638 
2840 904 same as above 2.1975736 
3195 1017 same as above 1.8577236 
3550 1130 same as above 1.5537174 
3905 1243 same as above 1.2787104 
4260 1356 same as above 1.0276486 
4615 1469 same as above 0.7966942 
4970 1582 same as above 0.5828638 
5325 1695 same as above 0.3837924 
5680 1808 same as above 0.1975736 
6035 1921 same as above 0.0226480 
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Table IV. Compression scores achieved for various approximations in descending 
order of bits compressed.  Rows representing apparently chance compression appear 
shaded.  All scores are calculated using the weighting method designed to handle 
complex expressions. 
 

   Approximation Compression 
(without over-fitting) 

Compression 
(allowing over-fitting) 

Mass Equations (19a) and 
(19b) using b1 

15.6 bits ― 

( ) 




 −+π≈π

2210/320ln  ― 11.7 bits  

4
1

22
1011101 






 −+≈π  ― 10.5 bits 

Mass Equations (14a) and 
(14b) without b1 

9.6 bits  ― 









≈π

396
689ln

396
689

  ― –1.3 bits 

Mass Equations (12a) and 
(12b) using 3 × 312  

–4.4 bits 
 ― 

32876
103283

≈π  –5.1 bits 
(to 1 ppb) –4.7 bits 

Mass Equations (13a)  
and (13b) using 33 + (2 × 33)2 

–5.4 bits  
 ― 
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Figure 1.  The role of continued fractions in finding effective rational approximations (Conway 
and Guy, 1993). 

 
 
A formula called payout is supplied by me 

 

q
pRq

q
p

q
pRqp

qpRpayout −×=
−××

= 2),,(   . 

 
 I agree to surrender to you payout(R ,p ,q ) × 1000 dollars under the following terms:  
  
You must first supply the value R, a real number greater than 0.  
 
I then get to choose p and q, which must be positive integers.  Only then will all three 

values be plugged into the formula to determine the payout to you.  I am free to choose 
whatever values minimize my payout to you, and consequently minimize your profit. 

 
Question:  What value should you choose for R, given that you know in advance that I 

will choose p and q so as to approximately equal R, and thereby reduce my payout to the 
lowest possible amount? 

 

Answer:  It appears that you should choose the golden ratio 
2

51 +
=φ .   Then, in order 

to minimize my payout to you, I should choose 2 and 1  for p and q .  You will then get paid 

exactly 1000
1
2

2
5112 ×−

+
× dollars, or about $381.96. 

 
Why the golden ratio?  The answer lies in the golden ratio expressed as a continued 

fraction 
 

...1
11

11

+
+

+=φ    . 

 
 
 Effective rational approximations arise whenever large terms appear in the continued 

fraction for a value.  For the golden ratio, these terms are the lowest possible–they always 
equal 1.  For this reason, when you select the golden ratio, I find it difficult to reduce my 
payout.  Had you chosen π, however, then by my letting p and q equal 355 and 113, you would 
collect just $3.40. 
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Figure 2.  Data from Column 4 of Tables I-III, representing all approximations of e, π, and φ 
that achieve positive compression as defined by Eq. (8a), and which have denominators less 
than 10,000.   
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Figure 3.  Data from Column 4 of Table I, representing all approximations of φ that achieve 
positive compression as defined by Eq. (8a), and which have denominators less than 10,000. 
The highest compression (about 1.3884… bits ) is achieved by approximating the golden ratio 
with 2 / 1 (see below).  Other compression values are achieved by the use of ratios of the 
Fibonacci numbers. 
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 Figure 4.  Data from Column 4 of Table II, representing all approximations of e that achieve 
positive compression as defined by Eq. (8a), and which have denominators less than 10,000.  
The pattern formed by successive peaks in the graph is not coincidental.  The terms of the 
simple continued fraction for e form the sequence 2, 1, 2, 1, 1, 4, 1, 1, 6, …, and an effective 
approximation for e is achieved by truncating the fraction just before a large term. 
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 Figure 5.  Data from Column 4 of Table III, representing all approximations of  π that achieve 
positive compression as defined by Eq. (8a), and which have denominators less than 10,000.  
The pattern formed by successive peaks in the graph appears to be coincidental, as the terms of 
the simple continued fraction for π  form the chaotic sequence 3, 7, 15, 1, 292, 1, 1, 2, 1, 3 ….  
An effective approximation for π is achieved by truncating the fraction just before a large term.  
The large peak in the center of the graph occurs because π ’s continued fraction may be 
truncated just before the term 1 / 292, thereby yielding the extremely good approximation 355 / 
113. 
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Appendix A:  Two Examples of the Weighting Scheme 
 
 It is possible to gain some perspective on the weighting method for complex equations 

by revisiting the earlier attempt to find a 1 ppb π approximation that achieves positive 

compression.   

 Note that  

 

   …=





 −+=






 2583.14159265

22
1011101

22
2143 4

1
4
1

    (A1) 

 

is a variant of Eq. (9h).  This rewriting will allow a slightly higher compression.  Like Eq. 

(10a), Eq. (A1) produces π within 1 ppb.    

 An audit of its overhead yields 

 

   8 +    /  for the first use of 101 

   2 +    /  for 1 

   2 +    /  for reuse of 101 

   5 +             /  for 22 

   1  +  3    /  for the exponent 1 / 4  

     = 21 bits.      (A2) 

 

With over-fitting allowed this produces a score that is overwhelmingly positive (31.5 – 21 = 

10.5 bits).   
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 Lastly, with the above weighting method the nine-digit π approximation’s 

compression score produced by Eq. (10a) is substantially worse (29.9 – 35 = –5.1 bits.  With 

over-fitting allowed its new score is 30.3 –  35 = –4.7 bits).    
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Appendix B:  Computer-Driven Test of Weighting Scheme 
 
 A computer program employed the weighting/probability scheme that was used to 

create Table IV to search for effective approximations of real numbers randomly-generated in 

the interval (0,1).  When reduced to their simplest form (a reduction that the program does not 

carry out), the following expressions achieve the compression scores indicated.  The scores are 

within the margin allowed for by the weighting/probability scheme, but there remains the 

possibility that a computer program that carried out a more comprehensive search–which is 

certainly possible–might be able to achieve scores higher than the scheme is supposed to allow.  

 The approximations produced were required to achieve 16 bit accuracy.  Proper 

allowance was made in the scoring for repeated terms and opportunities for reduction.  The 

following is the raw output from the program: 

 

SEED=[104] COMP=[16] VAL MAX=[25] EXPS MAX=[6,3] VAL WT=[1,2,2] EXP WT=[0,1,1] 
0.97061144 = {[ 1^1 - ( 5/9 )^6] /  1^1}^1: Compression = 16 - 14 = +2 bits 
0.90962267 = {[12^1 + (12/14)^2] / 14^1}^1: Compression = 16 - 16 = +0 bits 
0.76040668 = {[ 3^1 + ( 1/24)^1] /  4^1}^1: Compression = 16 - 14 = +2 bits 
0.22610559 = { 5^5 / [24^3 - ( 3/1 )^1]}^1: Compression = 16 - 18 = -2 bits 
0.44202356 = { 2^2 / [ 9^1 + ( 2/9 )^2]}^1: Compression = 16 - 15 = +1 bits 
0.06997305 = { 7^1 / [10^2 + ( 1/3 )^3]}^1: Compression = 16 - 16 = +0 bits 
0.53631785 = {[ 7^1 - ( 1/6 )^2] / 13^1}^1: Compression = 16 - 15 = +1 bits 
0.87684198 = {11^1 / [11^1 + (12/11)^5]}^1: Compression = 16 - 17 = -1 bits 
0.99360318 = {[ 1^1 - ( 2/25)^2] /  1^1}^1: Compression = 16 - 13 = +3 bits 
0.74868211 = {[ 3^1 - ( 4/23)^3] /  4^1}^1: Compression = 16 - 17 = -1 bits 
0.10174560 = { 5^1 / [ 7^2 + ( 1/7 )^1]}^1: Compression = 16 - 13 = +3 bits 
0.10696970 = {[ 7^1 - ( 2/13)^1] /  2^6}^1: Compression = 16 - 17 = -1 bits 
0.15502914 = { 1^1 / [ 2^1 + ( 6/7 )^4]}^2: Compression = 16 - 16 = +0 bits 
0.87812215 = {[ 2^2 + ( 5/8 )^2] /  5^1}^1: Compression = 16 - 17 = -1 bits 
0.30410115 = {[ 4^1 + ( 4/7 )^6] /  6^1}^3: Compression = 16 - 19 = -3 bits 
0.47901246 = {[13^1 - ( 1/15)^1] /  3^3}^1: Compression = 16 - 16 = +0 bits 
0.82098128 = {[ 1^1 - ( 5/11)^3] /  1^1}^2: Compression = 16 - 15 = +1 bits 
0.00341615 = { 6^1 / [ 5^1 + ( 5/2 )^5]}^2: Compression = 16 - 18 = -2 bits 
0.49146059 = {12^1 / [ 5^2 - ( 7/12)^1]}^1: Compression = 16 - 17 = -1 bits 
0.99462779 = { 6^4 / [ 6^4 + ( 7/1 )^1]}^1: Compression = 16 - 14 = +2 bits 
Percent Above One = 25.00 Highest Compression = +3.00...Done... 
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Appendix C:  Toroidal Versions of the Mass Equations 
 
 One way to interpret particle mass is as a membrane stretched over the surface of one or 

more toruses, with mass proportional to the surface area of these toruses.  Toroidal versions of 

Eqs. (19a) and (19b) are particularly interesting as the torus is a candidate for the shape of the 

extra dimensions of space in string theory, and, in some versions of string theory, a membrane 

stretched over a torus is a candidate for mass.    

 A torus is uniquely specified by its outer radius R , and its inner radius r  measured 

from the torus’s center point.  Its surface area is then equal to  

 

       ( )( ) ( )2222),( rRrRrRrRS −π=−+π=  .      (C1) 

 

Now the Eqs. (19a) and (19b) may be rewritten to employ the function ),( rRS .   In these 

equations the values 
10
41

1 =b and 
10
1~

1 =b  are the beta coefficients of the extra-dimensional GUT 

described by Dienes, Dudas, and Gherghetta, 1998.   The added use of 
10
1~

1 =b  allows the 

muon-electron mass ratio equation in particular to achieve an interesting symmetry. 
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Appendix D:  Source Code for Program to Find Approximations 
 
#include "stdafx.h" 
 
#include <assert.h> 
#include <stdio.h> 
#include <stdlib.h> 
#include <stddef.h> 
#include <string.h> 
#include <math.h> 
#include <time.h> 
#include <limits.h> 
#include <ctype.h> 
#include <float.h> 
#include <errno.h> 
#include <signal.h> 
#include <locale.h> 
#include <setjmp.h> 
#include <stdarg.h> 
 
#ifdef DOCUMENTATION 
 
/*-------------------------------------------------------------------------*/ 
// 
//  Written by J. S. Markovitch 
// 
//  Copyright (c) 2004  J. S. Markovitch  All rights Reserved. 
// 
// find best (most compact) approximation of a number in the form: 
// 
// {[ dwFraction1Numer^a + dwSign * ( dwFraction2Numer / dwFraction2Denom )^c ] / dwFraction1Denom^b }^d 
// 
// or 
// 
// { dwFraction1Numer^a / [ dwFraction1Denom^b + dwSign * ( dwFraction2Numer / dwFraction2Denom )^c ]}^d 
// 
/*-------------------------------------------------------------------------*/ 
 
#endif 
 
/*-------------------------------------------------------------------------*/ 
 
#define TOTAL_TRIALS     20 
 
/*-------------------------------------------------------------------------*/ 
 



#define MAX_BITS_COMPRESSION_START  16.0 
#define MAX_BITS_COMPRESSION_END  16.0 
 
#define MAX_VALUE      25 
 
#define MAX_POWER      6 
#define MAX_OVERALL_POWER    3 
 
//--------------------------- WEIGHTING METHOD ---------------------------- 
 
// NON-EXPONENTS 
 
#define WEIGHT_ADDED_FOR_FIRST_USE  1 
#define WEIGHT_FOR_REUSE    2 
#define WEIGHT_FOR_ONE     2  
 
// EXPONENTS 
 
#define WEIGHT_ADDED_FOR_EXPONENT  0  
#define WEIGHT_FOR_EXPONENT_REUSE  1 
#define WEIGHT_FOR_NEG_ONE_EXPONENT  1 
 
/*-------------------------------------------------------------------------*/ 
// speed things up by skipping cases where scores must be negative? 
 
#define SPEED_SEARCH     0   
#define SPEED_SEARCH_THRESHOLD  (-0.0)   
 
/*-------------------------------------------------------------------------*/ 
/*-------------------------------------------------------------------------*/ 
/*-------------------------------------------------------------------------*/ 
 
void SetRandom( unsigned long  ulValue ); 
double GetRandom( void ); 
double GetRandomTestValue(); 
 
/*-------------------------------------------------------------------------*/ 
 
double SearchForApproximation( double dwMaxBitsCompression, double dwTestValue, double dwNumer1Limit, double dwDenom1Limit, double dwNumer2Limit, double dwDenom2Limit ); 
 
double NumberOfBits( double dwVal ); 
double NumberWeight( double dwVal ); 
 
/*-------------------------------------------------------------------------*/ 
/*-------------------------------------------------------------------------*/ 
/*-------------------------------------------------------------------------*/ 
 
int main(int argc,char *argv[]) 
{ 



 double dwCompression = 0.0, dwMaxBitsCompression; 
 double nTotalTrials = TOTAL_TRIALS; 
 double dwAboveOne = 0.0, dwHighestCompression = 0.0; 
 short nSeed; 
 time_t ltime; 
     
/*-------------------------------------------------------------------------*/ 
 
 time( &ltime ); 
 //nSeed = (int) (ltime & 0xff); 
 nSeed = 104;  
 SetRandom( (unsigned long) nSeed ); 
 
 if( SPEED_SEARCH ) 
  printf("SPEED_SEARCH on (so the best score may not be found if it is less than %1.0f.)\n",  
   (float) SPEED_SEARCH_THRESHOLD ); 
 
//------------------------------------------------------------------------- 
 
 
 dwAboveOne = 0.0; 
 dwHighestCompression = -100000.0; 
 
 for ( dwMaxBitsCompression = MAX_BITS_COMPRESSION_START; dwMaxBitsCompression <= MAX_BITS_COMPRESSION_END; dwMaxBitsCompression += 2 ) 
 { 
  printf("SEED=[%d] COMP=[%1.0f] VAL MAX=[%1.0f] EXPS MAX=[%1.0f,%1.0f] VAL WT=[%1.0f,%1.0f,%1.0f] EXP WT=[%1.0f,%1.0f,%1.0f]\n",  
 
   (int)nSeed, 
    
   (float) dwMaxBitsCompression, 
 
   (float) MAX_VALUE,  
 
   (float) MAX_POWER,       
   (float) MAX_OVERALL_POWER,    
 
   (float) WEIGHT_ADDED_FOR_FIRST_USE,   
   (float) WEIGHT_FOR_REUSE,    
   (float) WEIGHT_FOR_ONE,       
 
   (float) WEIGHT_ADDED_FOR_EXPONENT,   
   (float) WEIGHT_FOR_EXPONENT_REUSE,   
   (float) WEIGHT_FOR_NEG_ONE_EXPONENT    
   ); 
 
  for( nTotalTrials = 0; nTotalTrials < TOTAL_TRIALS; nTotalTrials++ ) 
  { 
   dwCompression = SearchForApproximation( dwMaxBitsCompression, GetRandomTestValue(), MAX_VALUE, MAX_VALUE, MAX_VALUE, MAX_VALUE ); 
 



   if( dwCompression > dwHighestCompression ) 
    dwHighestCompression = dwCompression; 
   if( dwCompression > 1.000001 ) 
    dwAboveOne++; 
  } 
 } 
 
 printf( "Percent Above One = %5.2f Highest Compression = %+5.2f...Done...\n" ,  
  (float) (100.0 * ( dwAboveOne / TOTAL_TRIALS )), 
  (float) dwHighestCompression 
  ); 
 
//------------------------------------------------------------------------- 
//------------------------------------------------------------------------- 
//------------------------------------------------------------------------- 
 
 return 0; 
} 
 
/*-------------------------------------------------------------------------*/ 
/*-------------------------------------------------------------------------*/ 
/*-------------------------------------------------------------------------*/ 
 
double SearchForApproximation( double dwMaxBitsCompression, double dwTestValue, double dwNumer1Limit, double dwDenom1Limit , double dwNumer2Limit, double dwDenom2Limit ) 
{ 
 double dwNumer1, dwNumer2, dwDenom2, dwDenom1, dwNumer1Power, dwNumer2Power, dwDenom1Power, dwDenom2Power, dwSign; 
 double dwBestNumer1 = 0.0, dwBestNumer2 = 0.0, dwBestDenom2 = 0.0, dwBestDenom1 = 0.0, dwBestSign = 0.0; 
 double dwFraction1Numer, dwFraction1Denom, dwFraction2Numer, dwFraction2Denom; 
 double dwTmp, dwApproxN, dwApproxD, dwError, dwErrorN, dwErrorD, dwCompression; 
 double dwBestCompression = -100000.0; 
 
 int    nTmp, nNumer1Power, nDenom1Power, nFraction2Power, nOverallPower; 
 int    nBestNumer1Power = 0, nBestDenom1Power = 0, nBestFraction2Power = 0, nBestOverallPower = 0; 
 
 bool   bRecipricalInNumer, bBestRecipricalInNumer, bFraction2IsFraction; 
 bool   bDenom1PowerIsDuplicate, bFraction2PowerIsDuplicate, bOverallPowerIsDuplicate; 
 
  
 // -------------------------------------------------------------------------------------------- 
 // --------Outer part of nested for loop------------------------------------------------------- 
 // -------------------------------------------------------------------------------------------- 
 
 // --------Loop thru all possibilities 
 // --------Must do powers last, as they use variables from earlier loops 
 
 for( dwNumer1 = 1.0;  dwNumer1 <= dwNumer1Limit; dwNumer1++ ) 
 for( dwDenom1 = 1.0;  dwDenom1 <= dwDenom1Limit; dwDenom1++ ) 
 for( dwNumer2 = 0.0;  dwNumer2 <= dwNumer2Limit; dwNumer2++ )  // only Numer2 starts at 0 
 for( dwDenom2 = 1.0;  dwDenom2 <= dwDenom2Limit; dwDenom2++ ) 



 { 
  // -------------------------------------------------------------------------------------------- 
  // --------Speed things up by skipping cases where scores must be negative?-------------------- 
  // -------------------------------------------------------------------------------------------- 
 
  if( SPEED_SEARCH &&  
    
   // check for repeats 
 
   dwNumer1 != dwDenom1 &&  // not a fraction equal to 1 
   dwNumer2 != dwDenom2 &&  // not a fraction equal to 1 
 
   dwNumer1 != dwNumer2 &&  // no other repeats 
   dwNumer1 != dwDenom2 &&  // no other repeats 
 
   dwDenom1 != dwNumer2 &&  // no other repeats 
   dwDenom1 != dwDenom2 &&  // no other repeats 
 
   dwNumer2 != 0    // fraction2 will not be zero-ed out 
   ) 
  { 
   // no repeats, so we may easily anticipate whether it's score is going to be too large 
   if( NumberWeight( dwNumer1 ) +  
    NumberWeight( dwDenom1 ) +  
    NumberWeight( dwNumer2 ) +  
    NumberWeight( dwDenom2 ) > dwMaxBitsCompression + SPEED_SEARCH_THRESHOLD ) 
    continue;  // score would have to be below SPEED_SEARCH_THRESHOLD 
  } 
 
  // -------------------------------------------------------------------------------------------- 
  // --------Inner part of nested for loop------------------------------------------------------- 
  // -------------------------------------------------------------------------------------------- 
 
  for( nOverallPower = 1; nOverallPower <= MAX_OVERALL_POWER; nOverallPower++) 
  for( dwSign = -1; dwSign <= 1; dwSign += 2 ) 
  for( nNumer1Power = 1, dwNumer1Power = 1.0; nNumer1Power <= MAX_POWER; nNumer1Power++, dwNumer1Power *= dwNumer1 ) 
  for( nDenom1Power = 1, dwDenom1Power = 1.0; nDenom1Power <= MAX_POWER; nDenom1Power++, dwDenom1Power *= dwDenom1 ) 
  for( nFraction2Power = 1, dwNumer2Power = dwDenom2Power = 1.0;   nFraction2Power <= MAX_POWER;  
    nFraction2Power++, dwNumer2Power *= dwNumer2, dwDenom2Power *= dwDenom2) 
  { 
   // -------------------------------------------------------------------------------------------- 
   // ---------Compute powers--------------------------------------------------------------------- 
   // -------------------------------------------------------------------------------------------- 
    
   // compute powers: make 1st fraction out of these: 
 
   dwFraction1Numer = dwNumer1 * dwNumer1Power; 
   dwFraction1Denom = dwDenom1 * dwDenom1Power; 
    



   // compute powers: make 2nd fraction out of these: 
 
   dwFraction2Numer = dwNumer2 * dwNumer2Power; 
   dwFraction2Denom = dwDenom2 * dwDenom2Power; 
 
   // -------------------------------------------------------------------------------------------- 
   // ---------form of formula searched for------------------------------------------------------- 
   // -------------------------------------------------------------------------------------------- 
   // 
   // {[ dwFraction1Numer^a + dwSign * ( dwFraction2Numer / dwFraction2Denom )^c ] / dwFraction1Denom^b }^d 
   // 
   // or 
   // 
   // { dwFraction1Numer^a / [ dwFraction1Denom^b + dwSign * ( dwFraction2Numer / dwFraction2Denom )^c ]}^d 
   // 
   // -------------------------------------------------------------------------------------------- 
   // -------------------------------------------------------------------------------------------- 
 
   // -------------------------------------------------------------------------------------------- 
   // -----Decide whether putting 2nd fraction in numerator or denominator yields best score------   
   // --------------------------------------------------------------------------------------------   
 
   dwTmp = dwApproxN = (dwFraction1Numer + (dwSign * dwFraction2Numer) / dwFraction2Denom) / dwFraction1Denom;    
   for( nTmp = nOverallPower; nTmp > 1; nTmp-- ) 
    dwApproxN = dwTmp * dwApproxN; 
 
   dwTmp = dwApproxD =  dwFraction1Numer / (dwFraction1Denom + (dwSign * dwFraction2Numer) / dwFraction2Denom);   
   for( nTmp = nOverallPower; nTmp > 1; nTmp-- ) 
    dwApproxD = dwTmp * dwApproxD; 
 
   dwErrorN = fabs( dwApproxN - dwTestValue ); 
 
   dwErrorD = fabs( dwApproxD - dwTestValue ); 
 
   bRecipricalInNumer = (dwErrorN < dwErrorD); 
   dwError = (bRecipricalInNumer) ? dwErrorN : dwErrorD; 
 
   // -------------------------------------------------------------------------------------------- 
   // --------Does it surpass threshold?---------------------------------------------------------- 
   // -------------------------------------------------------------------------------------------- 
 
   if( (log( dwTestValue / dwError ) / log(2) - dwMaxBitsCompression) > 0 ) 
   { 
    // -----Compute score-------------------------------------------------------------------------- 
 
    dwCompression = dwMaxBitsCompression;  // do not allow score to be inflated by over-fitting  
 
    // -------------------------------------------------------------------------------------------- 
    // -----Powers--------------------------------------------------------------------------------- 



    // -------------------------------------------------------------------------------------------- 
 
    // adjust for powers 
    // powers of 1 receive no weight, but -1 may be weighted 
    // duplicate values and exponennts are weighted according to rules 
 
    // identify duplicated powers 
    // start with nNumer1Power first, so it cannot be duplicate 
 
    bDenom1PowerIsDuplicate = bFraction2PowerIsDuplicate = bOverallPowerIsDuplicate = 0; 
 
    if( nDenom1Power == nNumer1Power ) 
     bDenom1PowerIsDuplicate = 1;   // duplicates earlier power 
 
    if( nOverallPower   == nNumer1Power ||  
     nOverallPower   == nDenom1Power   
     ) 
     bOverallPowerIsDuplicate = 1;   // duplicates earlier power 
     
    if( nFraction2Power == nNumer1Power ||  
     nFraction2Power == nDenom1Power ||  
     nFraction2Power == nOverallPower  
     ) 
     bFraction2PowerIsDuplicate = 1;   // duplicates earlier power 
 
    if( nNumer1Power > 1) 
     dwCompression = dwCompression  
      - NumberOfBits( (double) nNumer1Power )  
      - WEIGHT_ADDED_FOR_EXPONENT; 
 
    if( nDenom1Power > 1 &&  
     !(dwNumer2 == 0 && nNumer1Power == nDenom1Power) )  // do not weight duplicated power if Fraction2 is missing 
     dwCompression = dwCompression  
      - ((bDenom1PowerIsDuplicate)    ?  
       WEIGHT_FOR_EXPONENT_REUSE   :  // duplicates earlier power 
       NumberOfBits( (double) nDenom1Power )    + WEIGHT_ADDED_FOR_EXPONENT ); 
 
    if( nFraction2Power > 1 && dwNumer2 > 0 && dwNumer2 != dwDenom2  ) 
     dwCompression = dwCompression  
      - ((bFraction2PowerIsDuplicate) ?  
       WEIGHT_FOR_EXPONENT_REUSE   :  // duplicates earlier power 
       NumberOfBits( (double) nFraction2Power ) + WEIGHT_ADDED_FOR_EXPONENT ); 
 
    if( nOverallPower > 1) 
     dwCompression = dwCompression  
      - ((bOverallPowerIsDuplicate)   ?  
       WEIGHT_FOR_EXPONENT_REUSE   : // duplicates earlier power  
       NumberOfBits( (double) nOverallPower )   + WEIGHT_ADDED_FOR_EXPONENT ); 
 



    // -------------------------------------------------------------------------------------------- 
    // ----------Fraction2------------------------------------------------------------------------- 
    // -------------------------------------------------------------------------------------------- 
 
    // -------------- is Fraction2 really a fraction? -------------- 
 
    // or is it really just 0 or 1? 
    // this must be answered to know whether to discount for repeats  
 
    if( dwNumer2 == 0 || dwNumer2 == dwDenom2 ) 
     bFraction2IsFraction = 0;  // Fraction2 is really 0 or 1; do NOT allow it to be used for repeats 
    else 
     bFraction2IsFraction = 1;  // Fraction2 not 0 or 1; allow it to be used for repeats 
 
    // -------------- calculate weight for Numer2 -------------- 
 
    if( dwNumer2 == 0 ) 
     dwCompression -= 0;  // Fraction2 is unused 
    else if( dwNumer2 == dwDenom2 ) 
     dwCompression -= WEIGHT_FOR_ONE;  // Fraction2 is just 1 
    else if( dwNumer2 == 1.0 ) 
     // in effect, a negative exponent 
     // if it equals -1, we adjust weight here 
     dwCompression -= ( 1 == nFraction2Power ) ? WEIGHT_FOR_NEG_ONE_EXPONENT : 0 ;   
    else 
     dwCompression = dwCompression - (NumberWeight( dwNumer2 )); 
 
    // -------------- calculate weight for Denom2 -------------- 
 
    if( dwNumer2 == 0 ) 
     dwCompression -= 0;  // Fraction2 is unused 
    else if( dwDenom2 == 1.0 || dwNumer2 == dwDenom2 ) 
     dwCompression -= 0;  // Denom2 is uneeded 
    else 
     dwCompression = dwCompression - (NumberWeight( dwDenom2 )); 
     
    // -------------------------------------------------------------------------------------------- 
    // ----------Fraction1------------------------------------------------------------------------- 
    // -------------------------------------------------------------------------------------------- 
 
    // -------------- calculate weight for Numer1 -------------- 
    // allow that Numer1 may already have been weighted for in Fraction2 
    // or that a numerator of 1 may be replaced by -1 exponent 
 
    if( dwNumer1 == 1.0 && !bRecipricalInNumer && nOverallPower == 1) 
     dwCompression -= WEIGHT_FOR_NEG_ONE_EXPONENT;  // in effect an exponent of -1 
    else if( dwNumer1 == 1.0 && !bRecipricalInNumer && nOverallPower > 1) 
     dwCompression -= 0;  // in effect an exponent of -nOverallPower, weighted for elsewhere 
    else if ( bFraction2IsFraction && (dwNumer1 == dwDenom1 || dwNumer1 == dwNumer2 || dwNumer1 == dwDenom2) ) 



     dwCompression -= WEIGHT_FOR_REUSE;  // weight for repeat 
    else 
     dwCompression = dwCompression - (NumberWeight( dwNumer1 )); 
 
    // -------------- calculate weight for Denom1 -------------- 
    // allow that Denom1 may already have weighted for in Fraction2 
 
    if( dwDenom1 == 1.0 && bRecipricalInNumer ) 
     dwCompression -= 0;  // Denom1 is uneeded 
    else if ( bFraction2IsFraction && (dwDenom1 == dwNumer2 || dwDenom1 == dwDenom2) ) 
     dwCompression -= WEIGHT_FOR_REUSE;  // weight for repeat 
    else 
     dwCompression = dwCompression - (NumberWeight( dwDenom1 )); 
   }  
   else 
   { 
    dwCompression = -100.0; 
   } 
 
   // is it best score so far? 
 
   if( dwBestCompression < dwCompression ) 
   { 
    // save score 
 
    bBestRecipricalInNumer = bRecipricalInNumer; 
 
    dwBestNumer1 = dwNumer1; 
    dwBestNumer2 = dwNumer2; 
    dwBestDenom2 = dwDenom2; 
    dwBestDenom1 = dwDenom1; 
 
    dwBestSign   = dwSign; 
 
    nBestNumer1Power = nNumer1Power; 
    nBestDenom1Power = nDenom1Power; 
    nBestFraction2Power = nFraction2Power; 
    nBestOverallPower = nOverallPower; 
    dwBestCompression = dwCompression; 
   } 
  } 
 } 
 
 // -------------------------------------------------------------------------------------------- 
 // -------print score of best approximation found---------------------------------------------- 
 // -------------------------------------------------------------------------------------------- 
 
 if( bBestRecipricalInNumer ) 
  printf( "%10.8f = {[%2d^%1d %s (%2d/%-2d)^%1d] / %2d^%1d}^%d: Compression = %d - %02.0f = %+02.0f bits\n", 



 
   (float) dwTestValue, 
   
   (int) dwBestNumer1, 
   (int) nBestNumer1Power, 
 
   (dwBestSign > 0) ? "+" : "-", 
 
   (int) dwBestNumer2, 
   (int) dwBestDenom2,  
   (int) nBestFraction2Power, 
 
   (int) dwBestDenom1,  
   (int) nBestDenom1Power, 
   (int) nBestOverallPower, 
 
   (int) dwMaxBitsCompression, 
   (float) dwMaxBitsCompression - (float) dwBestCompression, 
   (float) dwBestCompression 
  ); 
 else 
  printf( "%10.8f = {%2d^%1d / [%2d^%1d %s (%2d/%-2d)^%1d]}^%d: Compression = %d - %02.0f = %+02.0f bits\n", 
   
   (float) dwTestValue, 
   
   (int) dwBestNumer1, 
   (int) nBestNumer1Power, 
 
   (int) dwBestDenom1,  
   (int) nBestDenom1Power, 
 
   (dwBestSign > 0) ? "+" : "-", 
 
   (int) dwBestNumer2, 
   (int) dwBestDenom2,  
   (int) nBestFraction2Power, 
   (int) nBestOverallPower, 
 
   (int) dwMaxBitsCompression, 
   (float) dwMaxBitsCompression - (float) dwBestCompression, 
   (float) dwBestCompression 
  ); 
 
 return dwBestCompression; 
} 
 
/*-------------------------------------------------------------------------*/ 
 
// number of bits in integer 



// guard against failure to round up correctly 
 
double NumberOfBits( double dwVal ) 
{ 
 // ceil( x + 0.00000001 ) rounds up all x INCLUDING integers 
 
 return ceil( log( dwVal ) / log(2) + 0.00000001 );  
} 
 
double NumberWeight( double dwVal ) 
{ 
 return NumberOfBits( dwVal ) + WEIGHT_ADDED_FOR_FIRST_USE; 
} 
 
double NumberWeight2( double dwVal ) 
{ 
 double dwExtraWeight; 
 
 if( dwVal <= 2 ) 
  dwExtraWeight = 0; 
 else if( dwVal <= 15 ) 
  dwExtraWeight = 1; 
 else if( dwVal <= 63 ) 
  dwExtraWeight = 2; 
 else  
  dwExtraWeight = 3; 
 return NumberOfBits( dwVal) + dwExtraWeight; 
} 
 
/*-------------------------------------------------------------------------*/ 
/*-------------------------------------------------------------------------*/ 
/*-------------------------------------------------------------------------*/ 
 
double GetRandomTestValue() 
{ 
 return GetRandom(); 
} 
 
/* starting values for random generator */ 
 
/* See Computer Language, Dec. 1989 for info. on random numbers */ 
 
#define RANDOM_MOD_DIV1 32771L 
#define RANDOM_MOD_DIV2 32779L 
#define RANDOM_MOD_DIV3 32783L 
 
#define RANDOM_MULT1 179L 
#define RANDOM_MULT2 183L 
#define RANDOM_MULT3 182L 



 
#define RANDOM_SEED1 7397L 
#define RANDOM_SEED2 29447L 
#define RANDOM_SEED3 802L 
 
#define RANDOM_TOP ( 32000L  ) 
 
static unsigned long ulSeed1; 
static unsigned long ulSeed2; 
static unsigned long ulSeed3; 
 
// Note: Generally use 0 seed 
 
void SetRandom( unsigned long  ulValue ) 
{ 
    ulSeed1 = ulValue + RANDOM_SEED1; 
    ulSeed2 = ulValue + RANDOM_SEED2; 
    ulSeed3 = ulValue + RANDOM_SEED3; 
 
    ulSeed1 = ulSeed1 % RANDOM_TOP; 
    ulSeed2 = ulSeed2 % RANDOM_TOP; 
    ulSeed3 = ulSeed3 % RANDOM_TOP; 
 
    if( 0L == ulSeed1 ) 
        ulSeed1 = 1L; 
    if( 0L == ulSeed2 ) 
        ulSeed2 = 1L; 
    if( 0L == ulSeed2 ) 
        ulSeed2 = 1L; 
} 
 
double GetRandom( void ) 
{ 
 double dwTemp; 
 
    ulSeed1 = RANDOM_MULT1 * ulSeed1; 
    ulSeed2 = RANDOM_MULT2 * ulSeed2; 
    ulSeed3 = RANDOM_MULT3 * ulSeed3; 
 
    ulSeed1 = ulSeed1 % RANDOM_MOD_DIV1; 
    ulSeed2 = ulSeed2 % RANDOM_MOD_DIV2; 
    ulSeed3 = ulSeed3 % RANDOM_MOD_DIV3; 
 
 do { 
  dwTemp =  
   (((double) ulSeed1) / ((double) RANDOM_MOD_DIV1          )) - // assure number is not simple ratio by 
   (((double) ulSeed2) / ((double) RANDOM_MOD_DIV2 * 1000.0)) + // making small downward adj. and 
   (((double) ulSeed3) / ((double) RANDOM_MOD_DIV3 * 1000.0));   // making small upward adj. 
 } while ( dwTemp <= 0.0 || dwTemp >= 1.0 ); 



 
    return dwTemp; 
} 
 
/*-------------------------------------------------------------------------*/ 
 


