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Chapter 1

Introduction

This thesis seeks to investigate certain facets of the logical structure of oughts
— where “ought” is used as a noun, roughly meaning obligation. We do so
by following two lines of inquiry. The first part of the thesis places oughts
in the context of practical rationality. The second part of the thesis concerns
the rules of inference governing deontic arguments, and specifically the rule
of Reasoning by Cases. These two lines of inquiry, together, aim to expound
upon oughts in rationality and reasoning — thereby the title.

1.1 Oughts, Goals, and Enkrasia

In the first part of the thesis, we investigate oughts in the context of practical
rationality. Specifically, we address the rational balance between oughts, on
the one hand, and practical notions such as plans, on the other. The relation
between those concepts can be construed in different ways. Suppose an agent
believes sincerely and with conviction that she ought to X. For Gibbard, this
amounts, fundamentally, to planning to X. “As a first approximation [...]” —
he writes — “ought thoughts are like plans. Thinking what I ought to do
amounts to thinking what to do.” (Gibbard, 2008, p.19). There are further
complexities in Gibbard’s view. However, for our purposes, what is relevant
is that it constitutes one account of how oughts that are believed by an agent
relate to her plans. For Gibbard, believing one ought to X identifies with
(certain aspects of) planning to X.

As an implication, Gibbard’s view rules out the possibility of believing one
ought to X while planning to do something else. This point has already been
brought to attention by Bratman and Broome in their comments to Gibbard



2 Chapter 1.

(2008) (included in Gibbard, 2008, pp.95,106). Suppose I believe sincerely
and with conviction that today I ought to repay my friend Ann the 10 euro
she lent me. Yet, thinking about what to do today, I decide to spend all
my money on going to the movies. That appears defective but still possible
— contrary to Gibbard’s view. This observation suggests an alternative way
in which the relation between believed oughts and plans can be understood.
Following Broome, we can say that believing that one ought to X without
planning to X is not impossible, but rather irrational (Broome, 2013, p.175).
It is rationality that requires certain relations between believed oughts and
plans. The principle of rationality governing such relation is called Enkrasia,
and is the focus of the first part of this thesis.

Let us say that X-ing is a goal in an agent’s plan if X is something the agent
plans for in itself. Drawing on Bratman (1987), we understand goals in plans
as indicating what the agent is committed to achieve. Such a commitment
shapes the agent’s deliberation already before the agent starts to act, and
is independent to the question of whether the agent will in fact succeed in
achieving her goals.!

The starting point of our inquiry is Enkrasia in the following interpretation,
first suggested by Horty (2015): rationality requires that if an agent sincerely
and with conviction believes she ought to X, then X-ing is a goal in the agent’s
plan. Suppose I believe sincerely and with conviction that today I ought to
repay my friend Ann 10 euro. Rationality demands that if this is the case,
then repaying my friend is a goal in my plan, something I am committed to.
The first part of the present thesis is devoted to the analysis of the structure
of Enkrasia from a logical point of view. This is, to the best of our knowledge,
a largely novel project. We show that it can provide a conceptual and formal
contribution to the understanding of the logic of oughts in the context of
practical rationality.

Specifically, we address the following questions:

e What is the logical relation between believed oughts and goals?

!Specifically, Bratman (1987) identifies two relevant dimensions of commitment: (i) the
so-called wolitional dimension, which is related to affecting the agent’s conduct and moti-
vating her to take the first steps to fulfill her goal; and (ii) the so called reasoning-centered
dimension that concerns the role that goals in plans, thanks to their characteristic stability,
play in the agent’s deliberation in the period between their formation and their eventual
execution. Here we are mainly concerned with the reasoning-centered dimension of commit-
ment (cf. Bratman, 1987, pp. 15-18, 107-110). Moreover, a logical analysis of the (relative)
stability of goals in plans will be the focus of Chapter 3 of this thesis.
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e Do all believed oughts potentially correspond to goals?
e What is the dynamic relation between believed oughts and goals?
Our answers are summarized below.

What is the logical relation between believed oughts and goals? Chap-
ter 2 provides an answer to this question. To a first approximation, it is shown
that the relation between the oughts believed by the agent and her goals is
logically non-trivial. Our investigation begins by considering two further re-
quirements of rationality governing goals in plans: the principles of Internal
and Strong Consistency. These principles demand that goals are both logically
consistent, and consistent with what the agent believes to be possible. These
are standardly endorsed principles, ultimately grounded on the dimension of
commitment that goals carry. Oughts, on the other hand, are not necessarily
constrained by similar consistency demands. If we admit the possibility that
believed oughts can conflict, and thus do not obey internal or strong consis-
tency requirements, it follows that not all the oughts believed by the rational
agent correspond to her goals. Thus, there is a tension between Enkrasia, on
the one hand, and Internal and Strong Consistency for goals on the other.
In Chapter 2, we solve this tension by proposing a logic for oughts and goals
in which the principles of Internal and Strong Consistency are valid, while
Enkrasia is generally not. Importantly, it is formally shown that Enkrasia is a
principle of bounded logical validity.

Do all believed oughts potentially correspond to goals? Our second
question is also addressed in Chapter 2. In brief, we argue for a reply in the
negative. The key to such an reply lies in the conceptual distinction between
basic and derived oughts. Let us suppose that an episode of the agent’s delib-
eration begins with a given set of oughts the agent believes in. We think of the
oughts in such a set as basic oughts. Derived oughts are those implied — in
a sense to be made more precise — from basic oughts. While such distinction
between basic and derived oughts is not immediately related to Enkrasia, we
argue that it is (at least) with respect to Enkrasia that such a distinction be-
comes non-trivial. In fact, Enkrasia applies to one but not the other. Derived
oughts, even if believed by the agent, cannot correspond to goals the agent
plans for in themselves. The logic developed in Chapter 2 captures such con-
ceptual distinction both at the syntax (by having two different operators for
oughts) and at the semantic level (via neighborhood semantics).

The remainder of Chapter 2 is devoted to the illustration of one further case
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in which the distinction between basic and derived oughts can be put to work.
In particular, we show that such a distinction can be fruitfully applied to the
debate surrounding the validity of deontic closure. Deontic closure is a family
of logical principles indicating that oughts are closed under implication: from
an ought to X, and from X implies Y, it derives an ought to Y. Some instances
of deontic closure appear to capture crucial features of deontic reasoning: this
is the case for the so-called Practical Inference, which allows one to reason from
one ought to an ought instrumental to it (Von Wright, 1963). Other instances
of deontic closure are more problematic and appear to lead to unacceptable
results: the so-called Ross’ Paradox is an emblematic example (Ross, 1941;
Hilpinen and McNamara, 2013). Until now, the trade-off appeared to be be-
tween an outright rejection of deontic closure (and thus a “too thin” logic) and
the unrestricted validity of deontic closure (and thus a “too thick” logic). We
argue that there is an intermediate way. The distinction between basic and de-
rived oughts indeed helps us discriminate between valid and invalid instances
of deontic closure. Specifically, we argue that deontic closure is valid whenever
the ought inferred is a derived ought, but not if it is a basic ought.

What is the dynamic relation between believed oughts and goals?
Chapter 3 explores one specific dynamic relation between believed oughts and
goals. There exist several relevant kinds of dynamics: for instance, oughts
and goals may change with the passing of time, or the agent might come to
believe different basic oughts, or the agent learns new facts of the world. We
restrict our attention to the latter kind of dynamics. In particular, we focus
on the changes that concern only the courses of events the agent believes are
open to her. We call this practical dynamics. Suppose the agent has a certain
plan for the day. To paraphrase Bratman (1987), an unanticipated obstacle
may restrict the agent’s options of action, while unexpected opportunities may
open new and better venues. Either case may trigger significant replanning.
Practical dynamics bears significant conceptual connections to the debate on
the stability of goals. Standardly, goals in plans are said to be relatively stable:
although not irrevocable, they tend to resist reconsideration (Bratman, 1987,
pp. 16,67). This implies that a goal will, in general, not be discarded with
every piece of incoming information. We formally investigate the conditions of
stability of goals under practical dynamics. It is shown that goals are in fact
more stable than derived oughts. However, goals may vary, and they do so in
a non-monotonic way. This closes the first part of this thesis.
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1.2 Oughts, Reasoning by Cases, and the Min-
ers’ Puzzle

Which inference rules should guide deontic arguments? This question can be
understood in various ways. For instance, we can ask which inference rules
best guide our deontic reasoning, given that we have limited cognitive powers
and that we are prone to reasoning errors. Or, starting from a certain ethical
conception of oughts, we can ask about the logical structure of appropriate in-
ferences involving those oughts. Alternatively, we can ask which rules govern
acceptable arguments involving deontic modals in natural language. These
are, in principle, different perspectives; here, we focus on the last two. In
fact, recent literature has shown that certain classical inference rules become
philosophically and linguistically problematic whenever applied to the deontic
domain — even supposing that those who draw such inferences are cognitively
ideal and fully rational agents. In the second part of the thesis, we investigate
one of those problematic classical rules: the rule of Reasoning by Cases. Our
investigation is carried out under certain idealized assumptions. Specifically,
we proceed by abstracting away from issues related to agents’ bounded cogni-
tive and rational capacities. Furthermore, we focus on a narrow conception of
reasoning. We use the term to indicate a certain deductive connection between
premises and conclusion, rather than a non-monotonic process from the former
to the latter (cf. Harman, 1986). “Reasoning”, “argument” and “inference” are
here used interchangeably.

Schematically, the inference rule of Reasoning by Cases moves from the premises
Ty or w9, Tif 1 then ¢ and Tif ¢y then 157 to the conclusion Ty or 1,7
For the sake of illustration, let us consider the following scenario — origi-
nally credited to Levesque, and appearing in (Brachman et al., 1992, pp.25-
26) and (Stanovich, 2011, p.106). We describe the scenario as reported in The
Guardian newspaper (Bellos, 2016): Jack is looking at Anne, but Anne is look-
ing at George. Jack is married, but George is not. Is a married person looking
at an unmarried person?

Anne’s marital status in unknown. Yet, the correct answer to the question is
yes. The following is an instance of Reasoning by Cases:
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Anne is married or Anne is unmarried
If Anne is married, then a married person looks at George
If Anne is unmarried, then Jack looks at an unmarried person

A married person looks at George or Jack looks at an unmarried person

B~ W N =

No matter whether Anne is married or not, in either case Reasoning by Cases
leads to the (correct) conclusion that a married person is looking at an un-
married person. In fact, Reasoning by Cases appears to be a crucial inference
rule especially in contexts of partial information, that is, in contexts in which
there is not enough information to determine which one of the disjuncts in the
first premise is true (and so to rule out the other disjunct, whenever exclu-
sive).

Reasoning by Cases, however, has received compelling criticism. Kolodny and
MacFarlane (2010) discuss the following example, known as the Miners’ Puzzle.
They describe the scenario as follows:?

Ten miners are trapped either in shaft A or in shaft B, but
we do not know which. Flood waters threaten to flood the shafts.
We have enough sandbags to block one shaft, but not both. If we
block one shaft, all the water will go into the other shaft, killing
any miners inside it. If you block neither shaft, both shafts will
fill halfway with water, and just one miner, the lowest in the shaft,
will be killed.

(Kolodny and MacFarlane, 2010, p.115)

You do not know in which shaft the miners are in. On the one hand, blocking
the shaft the miners are in results in saving all ten miners. On the other,
blocking the shaft the miners are not in results in killing all the miners. Block-
ing neither shaft, finally, guarantees that nine miners are saved. What to do?
You can reason from the following premises:

P1: The miners are in A or they are in B

2Kolodny and MacFarlane (2010) report to have taken the example from Parfit (1988)
who, in turn, refers back to Donald Regan. A structurally identical scenario is also known in
the literature as the Jackson’s Ezample. See (Mason, 2013, p.2, ft.4) for further references.
A similar scenario, known as the Gambling Problem, can be found in (Horty, 2001, p.55).
We will come back to (a variation of) Horty’s scenario in Chapter 4 of the thesis.
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P2: If they are in A, T ought to block A
P3: If they are in B, I ought to block B

The premises of the above argument appear to all be acceptable. Let us
consider them in turn. Premise P1 simply expresses a feature of the scenario:
you assume the miners are in one of the two shafts A or B. Premises P2 and
P3 register that, under the supposition that the miners are in a specific shaft
(in turn, shaft A or shaft B), the right thing to do is indeed blocking that shaft
— as this allows to save all ten miners.

But here is the puzzle. From the above premises, it follows via Reasoning by
Cases:

C: I ought to block A or I ought to block B

But this conclusion strikes us as unacceptable. In fact, given your uncertainty
about the position of the miners, neither of the disjuncts in the conclusion
hold. Tt is not the case that, unconditionally, you ought to block shaft A — as
you cannot rule out that the miners are actually in shaft B. Nor is it the case
that, unconditionally, you ought to block shaft B — again, you cannot rule out
that the miners are actually in shaft A. Following Kolodny and MacFarlane
(2010); Willer (2012); Carr (2015); Cariani et al. (2013); Bledin (2015), you
might even say that:

P4: T ought to block neither of the shafts

As this guarantees that nine miners are saved. P4 contradicts C, thus the
unacceptability of C remains.

Let us summarize the main aspects of the Miners’ Puzzle. It is a characteristic
feature of the scenario that you have only partial information about where the
miners actually are. The position of the miners is already settled, but you do
not know where. Hence, we can think of the above argument as an example of
reasoning under uncertainty. Importantly, reasoning by case distinction might
go wrong under uncertainty. The above argument is an example in which the
application of the inference rule of Reasoning by Cases leads from acceptable
premises to an unacceptable conclusion.

How could the Miners’ Puzzle be solved? Some possible reactions consist in
(i) accepting the conclusion, (ii) rejecting the acceptability of one (or more)
of the premises, or (iii) taking issue with the inference rule of Reasoning by
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Cases.? Let us illustrate them.

One possible reaction consists in taking issue with the apparent unacceptability
of the conclusion C. In fact, there is an ethical conception of oughts for which
C turns out to be acceptable. These are the so-called objective oughts (see
Gibbard, 2005). Crucially, objective oughts are not tied to the information
an agent possesses. Thus, in determining what you objectively ought to do,
your uncertainty about the miners’ position plays no role. Imagine, for the
sake of illustration, that the miners are actually in shaft A. In light of this
fact, what you objectively ought to do is block shaft A. Hence, under some
plausible assumptions on the meaning of disjuction, it indeed follows that you
(objectively) ought to block A or you (objectively) ought to block B. Hence the
puzzle is (dis)solved: under the objectivist reading of oughts, C is acceptable
(as are P1, P2, and P3). Dowell (2012) develops a Kratzerian semantics for
oughts in natural language that accounts for such an objectivist conception
of oughts. Other ways to incorporate the objectivist reading in a semantics
for oughts in natural language are discussed by Silk (2014a). We will come
back to the scope of the objectivist solution to the Miners’ Puzzle in Chapter
4.

A second possible way out of the Miners’ Puzzle consists in challenging the
acceptability of the argument’s premises, and in particular of premises P2 and
P3. von Fintel (2012), for instance, denies that P2 and P3 are acceptable,
and explains away their apparent acceptability by means of an enthymematic
interpretation. According to such interpretation, if a sentence like “If the
miners are in X, then I ought to block X” seems acceptable in the Miners’
scenario, it is because it is elliptical for “If the miners are in X and I know it,
then I ought to block X”. Therefore, P2 and P3 are not literally acceptable.
Under the elliptical (and acceptable) reading, on the other hand, the form
of premises P1, P2 and P3 would not license the application of the inference
rule of Reasoning by Cases. Criticisms to this line of response to the Miners’
Puzzle can be found in Carr (2015) . Furthermore, the treatment of oughts
as informational modals (defended by Kolodny and MacFarlane (2010); Bledin
(2015); Carr (2015), and adopted in Chapter 5 of this thesis) can predict the
truth of sentences like “If the miners are in X and I know it, then I ought to

3This list is not complete. For instance, it could be argued that the logical form of
the premises P1, P2 and P3 is not such to warrant the application of the inference rule
of Reasoning by Cases. Critical responses to such solution can be found in Kolodny and
MacFarlane (2010); Charlow (2013) and, more generally, in Silk (2014b). We will come back
to this in Chapter 5.
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block X” in the Miners’ scenario. It does so, however, via semantic mechanisms
and without postulating any elliptical, non-literal reading of P2 and P3.

Finally, the third possible response to the Miners’ Puzzle takes issue with the
inference rule of Reasoning by Cases via which the conclusion C is derived from
premises P1, P2 and P3. Kolodny and MacFarlane (2010); Willer (2012); Carr
(2015); Cariani et al. (2013); Bledin (2015), among others, take the Miners’
Puzzle as a genuine counterexample to Reasoning by Cases, and use it to draw
conclusions about the logical validity of such an inference rule. The Miners’
Puzzle, it is argued, shows that Reasoning by Cases is an invalid inference rule
in the deontic domain: for oughts in natural language as well as in ethics.*Tt
is this debate the present thesis seeks to contribute to.

In particular, we set out to investigate the following questions:

e [s the invalidity of Reasoning by Cases in the deontic domain limited to
situations of reasoning under uncertainty?

e When is Reasoning by Cases valid?
Below we outline our answers.

Is the invalidity of Reasoning by Cases in the deontic domain lim-
ited to situations of reasoning under uncertainty? An answer to this
question is provided in Chapter /. The answer is, briefly put, a negative one.
More specifically, we show that the invalidity of Reasoning by Cases is not
ultimately rooted in the epistemic nature of the Miners’ scenario. There ex-
ists indeed an interpretation of objective oughts for which a Miners-like puzzle
emerges. Where the original Miners’ Puzzle is an example of reasoning under
uncertainty, the new puzzle is an example of reasoning under indeterminacy.
The relevant indeterminacy here is indeterminacy of the future, and the objec-
tive oughts for which the new puzzle emerges are future-dependent objective
oughts. The rest of the chapter is devoted to investigate the semantics of those
special objective oughts.

When is Reasoning by Cases valid? Chapter 5 answers this second ques-

4For what concerns the invalidity of Reasoning by Cases for deontic modals in natural
language, see for instance Cariani et al. (2013). For what concerns oughts in ethics, Carr
(2015) focuses on an interpretation of oughts as subjective, and argues that Reasoning by
Cases is invalid for such ethical interpretation. Finally, Kolodny and MacFarlane (2010);
Willer (2012); Bledin (2015) appear to draw conclusions about the invalidity of Reasoning
by Cases in natural language as well as in ethics. To our understanding, their frameworks
are intended to capture a very general structure of oughts, which is common between natural
language and ethics.
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tion. In fact, counterexamples to Reasoning by Cases go beyond the deontic
domain. Bledin (2014) proposes a counterexample to Reasoning by Cases
involving certain epistemic modals, while Carr (2015) discusses a counterex-
ample involving probabilistic modals. Chapter 5 brings all those counterex-
ample together. Again, the contribution made here is to be situated within
the literature that takes those counterexamples as genuine counterexamples to
Reasoning by Cases. The chapter pursues two tasks. The first task is diag-
nostic. Although the counterexamples proposed in the literature thus far all
involve modals (be they deontic, epistemic or probabilistic), we argue that the
failure of Reasoning by Cases is not strictly speaking due to the presence of
modals. The problem has a more general nature. To show this, we defend a
novel counterexample involving only indicative conditionals. Afterwards, we
turn to a more positive proposal. The second task of the chapter is indeed
an investigation of the boundaries within which Reasoning by Cases is valid.
We propose a sufficient criterion: Reasoning by Cases is valid if it involves
sentences that are — in a sense to be specified — stable with respect to in-
formation loss. Our proposal predicts the validity of Reasoning by Cases in a
wide array of contexts. This, if correct, is (largely) positive news for classical
reasoning. This concludes Chapter 5 and, with it, the present thesis.

1.3 Sources of the Chapters

This thesis builds on earlier work, some co-authored, that has been published
or is undergoing submission. The large majority of Chapter 2 and Chapter 3
is currently in the process of production in Studia Logica as Klein and Marra
(2019), and is reproduced here with Springer’s permission — which is gratefully
acknowledged. Chapter 2 extends the first part of the paper Klein and Marra
(2019), and relates to some ideas already appeared in Marra and Klein (2015).
Chapter 3 extends the second part of the paper Klein and Marra (2019). In
Klein and Marra (2019), authors are listed in alphabetic order, and contributed
to the output equally. The standard disclaimer applies: all remaining errors
are mine. Finally, Chapter 4 extends Marra (2016), while Chapter 5 is based
on Marra (2018).

This thesis is divided into two main conceptual parts. Chapter 2 and Chapter
3, which together constitute the first part of the thesis, are the continuation of
each other. In particular, Chapter 3 presupposes familiarity with the formal
framework introduced in Chapter 2. Chapter 4 and Chapter 5 constitute the
second part of the thesis. They address, from two different perspectives, the
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same general conceptual problem. They are, however, self-contained and can
be read independently.
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Chapter 2

From Oughts to Goals. Part I

This chapter focuses on (an interpretation of) the Enkratic principle of ratio-
nality, according to which rationality requires that if an agent sincerely and
with conviction believes she ought to X, then X-ing is a goal in her plan. We
analyze the logical structure of Enkrasia and its implications for deontic logic.
To do so, we elaborate on the distinction between basic and derived oughts,
and provide a multi-modal neighborhood logic with three characteristic opera-
tors: a non-normal operator for basic oughts, a non-normal operator for goals
in plans, and a normal operator for derived oughts. We illustrate how this
setting informs deontic logic by considering issues related to the filtering of in-
consistent oughts and the restricted validity of deontic closure. The following
chapter provides a dynamic extension of the logic by means of product updates,
and investigates the stability of oughts and goals under dynamics.

2.1 Introduction

Suppose I believe sincerely and with conviction that today I ought to repay
my friend Ann the 10 euro that she lent me. But I do not make any plan for
repaying my debt: Instead, I arrange to spend my entire day at the local spa
enjoying aromatherapy treatments. This seems wrong.

Enkrasia is the principle of rationality that rules out the above situation. The
principle plays a central role within the domain of practical rationality, and
has recently been receiving considerable attention in practical philosophy.*
In its most general formulation, Enkrasia is the principle according to which

!See the works of Broome (2013); Kolodny (2005); Shpall (2013); Horty (2015). For a
complementary account of the relation between oughts and plans, see Gibbard (2008).

13
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rationality requires that if an agent sincerely and with conviction believes she
ought to X, then she intends to X. There might be several ways in which such
an intention to X is to be understood. Inspired by Bratman (1987), here we
consider the agent’s intention to X as indicating that the agent is committed
to achieve X, and thus has, in some sense, a plan for X-ing. When this is the
case, we say that X-ing is a goal in the agent’s plan. Combining these aspects,
we can understand Enkrasia as the principle of rationality requiring that if an
agent sincerely and with conviction believes she ought to X, then X-ing is a
goal in the agent’s plan. Such interpretation of Enkrasia was first suggested
by Horty (2015), and constitutes the starting point of the present chapter. To
avoid confusion, we drop the term “intention” altogether.

This and the following chapters pursue two aims. Firstly, we want to analyze
the logical structure of Enkrasia in light of the interpretation just described.
This is, to the best of our knowledge, a largely novel project within the lit-
erature. Much existing work in modal logic deals with various aspects of
practical rationality starting from Cohen and Levesque’s seminal 1990 paper.
The framework presented here aims to complement this literature by explicitly
addressing Enkrasia. The principle, in fact, bears some non-trivial conceptual
and formal implications — which might be of interest to the practical philoso-
pher as well as the modal logician. This leads to our second aim. We want
to address the repercussions that Enkrasia has for deontic logic. To this end,
we elaborate on the distinction between so-called “basic oughts” and “derived
oughts”, and show how this distinction is especially meaningful in the context
of Enkrasia. Moreover, we address issues related to the filtering of inconsistent
oughts, the restricted validity of deontic closure, and the stability of oughts
and goals under dynamics.

In pursuit of these two aims, we introduce a multi-modal neighborhood logic
for Enkrasia. The logic has three characteristic operators: a non-normal oper-
ator for basic oughts, a non-normal operator for goals in plans, and a normal
operator for derived oughts. Finally, we provide a dynamic extension of the
logic by means of product updates.

This chapter proceeds along the following general lines. First, we clarify its
philosophical foundations by introducing Enkrasia’s main characteristics and
its connection with two principles of rationality requiring goals in plans to be
consistent (Section 2.2). We then introduce two challenges that illustrate the
relevance of Enkrasia for deontic logic (Section 2.3). After discussing some
core features and design choices of our approach (Section 2.4), we present a
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static logic for Enkrasia (Sections 2.5-2.7). This concludes the first part of our
investigation. The second part will be devoted to a dynamic extension of the
logic for Enkrasia, and will constitute the focus of the next chapter.

2.2 Enkrasia and the Consistency of Goals

The starting point of our investigation is the Enkratic principle of rationality,
in the following interpretation:

ENKRASIA. If an agent believes she ought to X, then X-ing is a goal in
the agent’s plan.

Such interpretation is inspired by Horty (2015). This section introduces ENKRA-
SIA’s main components and emphasizes its connection with two principles of
rationality governing goals in plans. Let us stress before continuing that the
aim pursued here is not to engage in a direct defense of ENKRASIA (for this,
the interested reader can consult Broome, 2013 and Horty, 2015). Rather, this
section is meant to lay the groundwork for our formal analysis of ENKRASIA’s
structure and of its position within the domain of practical rationality.

Let us begin with the oughts to which ENKRASIA applies — where “oughts”
is used as a noun, roughly meaning obligations. It should be stressed that
ENKRASIA does not take as antecedents all possible oughts. For one, ENKRASIA
applies only to those oughts that are believed by the agent — in fact, this
straightforwardly follows from the above formulation of the principle. However,
further constraints are in place. We take inspiration from Broome (2013), and
require that the oughts that fall within the scope of ENKRASIA have at least
two further properties: They are normative and ascribed to the agent
herself. These constraints are better illustrated via examples, so let us briefly
consider them in turn.

One constraint limits the scope of ENKRASIA to normative oughts. These are
the oughts that have to do, for instance, with morality, law or prudence. “I
ought to repay my friend (as morality demands me so)” is an illustrative exam-
ple of a normative ought. Contrariwise, examples of non-normative oughts are
often to be found where oughts are used to express what is typically expected
to be the case (see Yalcin, 2016), as in “I ought to have heard from the landing
module ten minutes ago” (Broome, 2013, p.9). It would make little sense to
say that hearing from the landing module is something I plan for. Indeed,
ENKRASIA does not apply there.
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The other constraint demands that the agent ascribes the oughts to herself. We
can put this point in various ways: We can say this constraint demands that
the agent believes the ought is required of her, that she recognizes it is her job
to bring about the ought, or that she believes she is the “owner” of the ought
(cf. Broome, 2013, p. 22). Examples of oughts ascribed to the agent herself
are “I ought to get a sun hat” (Broome, 2013, p.12), and “I ought to see to it
that the kids are alright”. An ought that is not ascribed to the agent herself is
“T ought to get a punishment”, in a (natural) context where it is not on me to
ensure that I receive this punishment. As long as getting a punishment is not
my job, it would be incorrect to say that I fall short of rationality if getting
punished is not a goal in my plan. This is why we demand ENKRASIA to apply
only to oughts that are ascribed to the agent herself.

We have just identified a way in which ENKRASIA is constrained: It applies
only to the oughts that enjoy the three properties above, namely, that are
believed by the agent, normative, and ascribed to the agent herself. In our
formal framework, we will implicitly assume that the oughts of ENKRASIA
are of that kind. This is not to mean, however, that all oughts with those
properties will correspond, via ENKRASIA, to goals in the agent’s plans. In
fact, in the next section, we will suggest that ENKRASIA needs to be further
weakened.

So much for oughts. Let us now turn to another crucial component of ENKRA-
SIA: Goals in plans. Drawing from Bratman (1987), when saying that X-ing is
a goal in the agent’s plan, we mean that the agent is committed to achieve X,
which includes figuring out (to an appropriate degree) how to do so. To put it
more succinctly, we mean that the agent has a plan for X-ing. For instance,
repaying my friend is a goal in my plan only if [ am committed to do so: I have
a plan for repaying my friend which, minimally, for me rules out all the op-
tions (such as spending all my money, leaving the country, etc.) that I believe
would make it impossible to achieve my goal. Those options become, given
my commitment to repay my friend, no longer admissible. In this context,
goals in plans differ from mere desires or wishes, which lack such a dimension
of commitment (Thomason, 2000; Cohen and Levesque, 1990). Those notions
should be kept apart here.

Furthermore, goals in plans are future-directed: The most natural reading of
“X-ing is a goal” is the one in which X is something that still has to happen (see
Bratman, 1987, p.4). Indeed, when talking about having a goal, we generally
refer to something we are committed to do in the future (by the end of today,
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tomorrow, next month, etc.). In line with these considerations, we will assume
X to include an element of futurity.

The literature imposes constraints on goals in plans. For instance, Broome
suggests a property that — paraphrased in our own terms — amounts to
requiring that the agent has the ability, via forming the goal to X, to have
an impact on X-ing (Broome, 2013, pp.162-163). Although we find such a
suggestion worth further (formal) analysis, we do not follow this direction
here. Rather, we focus our attention on two minimal principles of rationality
governing goals in plans. These principles of rationality require goals in plans
to be consistent, in the following two senses of the term:

INTERNAL CONSISTENCY. If X-ing, Y-ing, ... are goals in an agent’s
plans, then it is logically consistent to X and Y and ... .

STRONG CONSISTENCY. If X-ing, Y-ing, ... are goals in an agent’s plans,
then the agent believes it is possible to X and Y and ... .

Both principles reflect the idea that it should be possible for goals in plans
to be successfully achieved: INTERNAL CONSISTENCY demands that goals in
plans be jointly logically consistent, while STRONG CONSISTENCY requires that
goals in plans be jointly consistent with respect to the agent’s beliefs. Their
motivation is ultimately rooted in the dimension of commitment that goals in
plans have: I could not truly be committed to repaying my friend and, at the
same time, be committed to spending all my money to see the movies, while
believing that these two things are incompatible — let alone jointly logically
impossible (see Bratman, 1987; Cohen and Levesque, 1990; Horty, 2015).

Straightforward consequences of the above consistency principles are that if X-
ing is a goal in a plan, then not X-ing is not a goal in a plan (from INTERNAL
CONSISTENCY ), and that if X-ing is a goal in a plan, then the agent believes it
is possible to X (from STRONG CONSISTENCY). That is to say, goals in plans
should neither be contradictory, nor believed to be impossible to achieve.

This is perhaps the right moment to mention some aspects of the current de-
bate surrounding ENKRASIA — and the principles of rationality, more generally
— that we will not address. The first has to do with the debate on whether
principles of rationality are of wide or narrow scope. Consider ENKRASIA. Un-
der the narrow scope, if the agent believes she ought to X, rationality requires
that X-ing is a goal in the agent’s plan. Under the wide scope, on the other
hand, rationality requires that if the agent believes she ought to X, then X-ing
is a goal in her plan. The two readings lead to different pictures of rationality.
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Under the narrow scope reading, rationality requires a particular attitude of
the agent. Under the wide scope, rationality only requires a particular relation
between the agent’s attitudes, typically leaving the rational agent leeway to
either adopt X-ing as a goal in her plan or to revise her belief that she ought
to X.2 Since the focus of the project is not on operators akin to “rationality re-
quires that”, we take our contribution to be largely independent of the question
whether ENKRASIA is a narrow or wide scope principle of rationality.

A second issue to which the present work does not contribute is whether prin-
ciples of rationality are synchronic or diachronic. Consider again ENKRASIA,
now enriched with time-indexes: If the agent believes at ¢ that she ought to
X, then X-ing is a goal in the agent’s plan at t’. Diachronically, ¢ precedes
t’. Synchronically, ¢t and ¢’ refer to the same time. Thus, under the diachronic
reading, believed oughts can be thought of gemerating corresponding goals;
while, under the synchronic reading, believed oughts and goals coexist at the
same time. For reasons of simplicity, we follow Broome (2013) and focus on
the synchronic interpretation of ENKRASIA. We hold, however, that both in-
terpretations have a certain appeal, especially from a logical perspective.

2.3 Challenges

We now introduce two (of the three) challenges surrounding ENKRASIA that
are apt to illustrate the relevance such a principle holds for deontic logic. The
third challenge will be considered in the following chapter.

2.3.1 Challenge I: From Inconsistent Oughts to Consis-
tent Goals

There is a potential tension between ENKRASIA and the principles of IN-
TERNAL and STRONG CONSISTENCY for goals in plans. Consider the fol-
lowing;:

Example 2.1. Suppose I believe I ought to repay 10 euro to my friend Ann. 1
also believe I ought to go to the movies with Barbara (I have promised her so).
However, money s scarce, and I believe it is impossible to do both.

It is safe to suppose that the oughts in Example 2.1 are of the kind to which

2See, among others, Broome (2013); Kolodny (2005) and Shpall (2013). Broome (2013)
defends the wide scope reading, and Kolodny (2005) the narrow scope one, while Shpall
(2013) proposes a “conciliatory view” between the two camps of the debate.
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ENKRASIA may apply (i.e., they enjoy all three properties introduced in Section
2.2). Now if ENKRASIA were in fact applied to those oughts, I would need to
plan for both repaying the money to Ann and for going to the movies with
Barbara — ending up with two goals I believe to be inconsistent, and so
violating STRONG CONSISTENCY in this specific case.

How to solve this tension? One way is to assume oughts are always consis-
tent, both from a logical viewpoint and from the perspective of the agent’s
beliefs (see Broome, 2013). This assumption certainly solves the problem.
But consider again the example above. Especially when oughts originate from
different sources, it seems a viable possibility that these may end up being
jointly inconsistent.

In what follows, we investigate another strategy to solve the tension between
ENKRASIA, INTERNAL and STRONG CONSISTENCY. In a nutshell, this strategy
is not to rule out the possibility of inconsistent oughts, nor to abandon the
consistency principles for goals in plans, but rather to weaken ENKRASIA. The
rationale for maintaining both INTERNAL and STRONG CONSISTENCY is rather
pragmatic: In the face of a normative conflict about how to act, the least I
can do is to assure that whatever I commit to is achievable.

Allowing for oughts, but not goals, to be inconsistent has several major con-
sequences. Firstly, since oughts are possibly inconsistent but goals are not, it
straightforwardly follows that not all oughts can correspond to goals in plans.
In fact, this makes ENKRASIA a logically inwvalid principle. Secondly, it is nat-
ural to ask if not all, then which oughts do correspond to goals in plans. The
challenge consists then in formally determining how oughts can be filtered out,
in order to move from inconsistent oughts to consistent goals.

2.3.2 Challenge II: Basic Oughts and Derived Oughts

The second challenge revolves around a family of logical principles and infer-
ence rules that goes under the name of “deontic closure under implication” —
for short: deontic closure. A longstanding tradition in deontic logic rejects the
validity of deontic closure, arguing that it leads to unacceptable conclusions.
An example is given by Ross’ Paradox (Ross, 1941; Hilpinen and McNamara,
2013): Suppose I ought to mail the letter; now, since mailing the letter logi-
cally implies mailing the letter or burning it, deontic closure would imply that
1 ought to mail the letter or burn it — which is intuitively implausible.

The issue is that even if we accept that deontic closure is in fact problematic



20 Chapter 2.

and should not be generally valid, an outright rejection of deontic closure would
not constitute an adequate solution. For one, it would lead to miss out also
on deontic inferences that are intuitively plausible.

To see this, consider the following example, which we owe to Horty (2015). For
this example, let us forget about my promise to go to the movies with Barbara,
and simply assume that going to the movies is something I like:

Example 2.2. Suppose that I ought to repay Ann 10 euro. Now suppose that
I would also like to go to the movies, but I do not have a lot of money. In fact,
I believe that unless I refrain from going to the mouvies it is impossible to repay
Ann. So, I conclude, I ought not go to the movies.

Such a conclusion strikes us as impeccable. Following Von Wright (1963),
we call the above piece of reasoning practical inference, and schematically
represent it as:

(P1) I ought to repay Ann
(P2) Necessarily, repaying Ann implies not going to the movies
(C) Therefore, I ought not go to the movies

Practical inference is the cornerstone of instrumental reasoning.® Yet, practical
inference — just as Ross’ Paradox— is a variant of deontic closure (specifically,
deontic closure under necessary implication). An outright rejection of deontic
closure would have the effect of also blocking the above derivation.

The challenge then takes the following shape: FEven assuming that deontic
closure is not generally valid, a deontic logic should be “thick” enough to li-
cense crucial deontic inferences — including those instances of deontic closure
that are valid. In the remainder of this section, we explore the boundaries be-
tween valid and invalid instances of deontic closure, and show that ENKRASTA
provides us with the conceptual tools to do so.

All we need is to fix one set of oughts to start with. This set functions as
input for the agent’s deliberation. We do not impose any requirements on this
set other than demanding that all oughts enjoy the three properties described
in Section 2.2, i.e., being believed by the agent, normative, and ascribed to
the agent herself. It follows, hence, that these are oughts to which ENKRASIA
may apply. We call the oughts in this set basic oughts. Apart from what we

3Typically (P2) expresses a practical necessity, which might vary with the circumstances
or the agent’s beliefs thereof, cf. Von Wright (1963, p.161).
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just said, there is nothing intrinsically special about these. We do not assume
basic oughts to have any particular surface grammar, nor do we assume they
share any further commonalities. In fact, we even admit the possibility that
basic oughts are jointly inconsistent.> Once the set of basic oughts is fixed, we
call derived oughts those oughts that are implied by basic oughts.

The distinction between basic and derived oughts is crucially meaningful in
relation to ENKRASIA, and helps us to discern valid from invalid instances of
deontic closure. Let us take practical inference as a case study. The central
observation — originally noticed by Horty (2015) — is that the oughts in (P1)
and in (C) interact differently with ENKRASIA. Suppose I deliberate about
my day and I take as input that I ought to repay Ann (P1). In the absence
of conflicts, this basic ought leads via ENKRASIA to the goal of repaying Ann.
Something that I plan for in itself. From there, via deontic closure, I do well
in deriving that I ought not go to the movies (C). However this derived ought
does not interact with ENKRASTA in the same way: refraining from going to the
movies is not a goal in its own right. Rather, it is something I necessarily have
to do in order to fulfill my goal of repaying Ann. In other terms, the derived
ought registers the necessary (though possibly not sufficient) conditions for
the fulfillment of such a goal (see also Brown, 2004).

It is with respect to ENKRASIA that the different roles played by basic and de-
rived oughts become evident. This motivates taking basic and derived oughts
as two separate kinds of oughts in this context. Once these are understood as
two separate oughts, having different logical meanings, it becomes non-trivial
to say that there are instances of deontic closure that move from basic oughts
to derived oughts. These instances will be valid in our logic. As elaborated
above, this bears crucial implications for practical inference. Similar consider-
ations apply to Ross’ Paradox. Acknowledging the different roles of the oughts
involved, I do well in deriving that I ought to mail the letter or burn it only
to the extent that this expresses no more than the (logically) necessary — but
not sufficient — conditions for the fulfillment of my goal of mailing the letter.
In other terms, my inference is only valid to the extent that I ought to mail

4Various interpretations can be imposed on the set of basic oughts. Horty (2015) thinks
of basic oughts as those oughts directly generated by normative requirements. Alternatively,
one may think of basic oughts as those exzplicitly believed by the agent.These interpretations
are compatible with our characterization of basic oughts. An alternative characterization of
basic oughts is provided by Nair (2014).

5This is why we have stressed that basic oughts are oughts to which ENKRASIA may
apply. Since basic oughts are possibly inconsistent, while goals are not, it follows that not
all basic oughts correspond to goals. See our discussion in Section 2.3.1.
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the letter or burn it is a derived ought.

2.4 Introducing the Framework

We can turn now to the first aim of this work: providing a logical framework
for ENKRASIA. For the analysis, we posit a set of minimal requirements
about basic oughts, goals in plans, and derived oughts. The reader may find
these incomplete. However, our aim here is not to reveal the full logical prin-
ciples governing oughts or goals. Rather, we aim for a minimal set of axioms
strong enough to identify relations between basic oughts, goals and derived
oughts that result from our analysis of ENKRASIA. Working towards a more
complete logic of oughts and goals, additional axioms could be added in the
future, validating further theorems. In such a stronger logic, the relationships
identified here would continue to hold.

Despite the intended minimalism, devising a logic for ENKRASIA requires a
variety of conceptual and formal choices. Some of these are core features of
the framework developed. Others are mere design choices that could be altered
easily. The following discussion details both.

2.4.1 Core Features

Basic oughts, goals and derived oughts. The framework’s first core com-
ponent is three main logical operators: A modal operator for basic oughts, one
for goals in plans, and finally one for derived oughts. We implicitly assume
basic oughts to satisfy the three conditions identified in Section 2.2: they are
believed by the agent, normative, and ascribed to the agent herself. Moreover,
we take oughts and goals to be future-looking, referring to future states of
affairs to be brought about.

Information states. The framework focuses on a single moment in time,
specifically, where the agent deliberates on what to do. The choice options
represented in the logic are those believed possible by the agent; they form,
in some sense, her information state.% In fact, the framework with its various
components is fully relative to the agent’s beliefs, and so can do without any

6Unlike in most epistemic frameworks, this information state does not list epistemic
possibilities the agent cannot distinguish between, but a set of possible options the agent
can choose from.
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explicit doxastic operators.

A thin logic for basic oughts and goals. The starting point of the frame-
work is a set of basic oughts. At present, the logic governing basic oughts
remains thin. We do not assume basic oughts to have any logical structure
such as being closed under implication or pairwise intersections, nor do we
require the content of a basic ought to be satisfiable, even in principle. The
only requirement made is that basic oughts are independent of their exact
description, i.e., the agent’s set of basic oughts is closed under replacement
of logically equivalent formulas.” The logic of basic oughts, hence, will turn
out weaker than normal in the logical sense: it will be a neighborhood modal
logic (cf. Pacuit, 2017). Similar considerations apply to goals. The set of goals
in the agent’s plans will be a consistent subsets of her basic oughts. Hence,
also the goal modality will turn out to be a non-normal neighborhood operator.

A thicker logic for derived oughts. While assuming the logic of basic
oughts and goals to be thin, the resulting neighborhood logic is strong enough
to license crucial deontic inferences. Derived oughts play a central role in such
reasoning. To illustrate how these are represented in the framework, we first
note that the agent may be committed to multiple goals in parallel. Following
the principles of INTERNAL CONSISTENCY and STRONG CONSISTENCY, these
goals are required to be jointly consistent. Put formally, this means that
there must exist some possible course of events that satisfies all of the agent’s
goals. We call such courses of events admissible. Derived oughts, then, denote
those properties that all admissible courses of events have in common. In
other words, derived oughts indicate the necessary (but possibly not sufficient)
conditions for the fulfillment of all the agent’s goals. Derived oughts, unlike
basic oughts, hence follow a normal modal logic.

2.4.2 Design Choices

Branching temporal trees. Oughts and goals, we have said, are future-
looking. Correspondingly, the agent’s relevant choices when deliberating on
what to do are between possible future courses of events. In the present frame-

"We are arguably omitting certain structural properties of basic oughts. For instance, a
plausible further requirement to impose on basic oughts could be what Cariani (2016) calls
“weakening”: Op A Op F O(¢ V 1). Nevertheless, we will show that the present framework
contains sufficient structure for a logical analysis of ENKRASIA.
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Figure 2.1: Left: The subtree compatible with the satisfaction of the agent’s
basic ought and goal that ¢ (gray). Middle: The subtree compatible with the
satisfaction of agent’s basic ought and goal that ¢ (gray). Right: Interaction
of both basic oughts and goals (dark gray). Bold arrows denote the admissible
subtree, i.e., the courses of events compatible with the satisfaction of both
goals ¢ and .

work a fine-grained perspective on such future courses of events is assumed,
representing the relevant temporal structure explicitly. To this end, all possi-
ble future unfoldings of the world are recorded in a temporally branching tree,
where each maximal branch — each history — corresponds to a possible future
course of events. For an illustration of a branching time setting, see Figure
2.1.

In accordance with this fine-grained perspective, oughts and goals need to
be expressed in an adequate formal language rich enough to capture their
temporal structure. To this end, the framework involves a temporal logic that
can express, for instance, that certain states of affairs should always be avoided,
reached at least once or maintained throughout.

Notably, representing possible courses of events as temporally extended histo-
ries is not strictly necessary. For the static part of the logic (Section 2.7), it
would suffice to treat each possible course of events as a single state, giving
rise to a more classic neighborhood logic. It is only in the dynamic extension
of Section 3.3 that the temporal structure becomes relevant.

From basic oughts to goals. An agent’s goals, we have said, form a subset of
her basic oughts. The latter, however, are potentially inconsistent which goals
are not. A central component for the transition from basic oughts to goals will
hence be (maximally) consistent subsets of basic oughts, as these guarantee
the principles of INTERNAL CONSISTENCY and STRONG CONSISTENCY to be
satisfied.®* Note, however, that there can be multiple maximally consistent

8A competing notion of consistency, which we might call free choice consistency, is dis-
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subsets of basic oughts. So how are goals related to maximally consistent sets
of basic oughts? There exist at least two viable ways of approaching this:

e In a strict reading, a basic ought is adopted as a goal if it is contained
in every maximally consistent set of basic oughts.

e In a more tolerant approach, a basic ought is adopted as goal if it is
contained in some specific maximally consistent set of basic oughts.

The tolerant approach will, in general, lead to more goals than the strict ap-
proach. In fact, by picking a single maximally consistent subset of basic
oughts, it guarantees the agent to do the best she can in terms of adopting
a multitude of goals without violating consistency.® The following analysis
follows the tolerant approach.'® We are hence in need of a mechanism for
selecting which maximally consistent set of basic oughts corresponds to goals.

Linear priority on basic oughts. For selecting a maximally consistent
subset of basic oughts, we assume the latter to be ordered linearly.!! By
means of the lexicographic order (cf. Definition 2.11), this linear order extends
to a priority ordering among sets of basic oughts. The agent then adopts the
highest ranked maximally consistent subset of her basic oughts as goals.!? The

cussed in Veltman (2011). Veltman would consider O(—p) and O(p V 1) inconsistent, as
the former violates the free choice expressed by the latter. We do not deal with free choice,
and hence we limit ourselves to a classic account of consistency. Free choice in the context
of planning is considered in Marra and Klein (2015).

9This mirrors, from a formal point of view, the question on how reasons accrue to support
all-things-considered oughts (cf. Horty, 2012; Nair, 2014, 2016).

10The strict approach is prominently pursued by Kratzer (2012c) in her seminal approach
to the semantics of deontic operators. There, a possibly inconsistent set of normative re-
quirements N creates an ideality ordering on a set W of possible worlds. To define the
ordering, let N(w) for a world w be the set of normative requirements from N satisfied at
w. The ordering is then defined by w > v (read “w is more ideal than v”) if N(w) D> N(v).
A deontic necessity statement Oy, finally, holds true in the framework if ¢ is satisfied in all
>-maximal worlds. Notably, >-maximality is tightly related to maximally consistent sub-
sets. More specifically, world w is >-maximal iff no M with N(w) C M C N is satisfiable in
any v € W, i.e., iff N(w) is maximally W-consistent. It follows that Oy is true iff ¢ holds
in all intersections of maximally consistent subsets of norms. This is exactly the above strict
reading.

In fact, various aspects of Kratzer’s approach have counterparts in the present frame-
work. To make these explicit: normative requirements N and possible worlds correspond
to basic oughts and histories of tree T respectively. The deontic necessity operator, finally,
corresponds to our modality for derived oughts.

' Hence, although we do not rule out the possibility of having both Oy and O—¢ as basic
oughts, we exclude irresolvable dilemmas. One basic ought must take priority over the other.

12 As mentioned above, the framework is relative to the agent’s beliefs. Hence, we do not
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current framework is, however, modular in this respect. Any other mechanism
for picking out one element from any given set of maximally consistent set of
oughts would function just as well. In fact, the choice of selection mechanism
does not have any impact of the static analysis of Sections 2.6 and 2.7. In
particular, the assumption of oughts being ordered linearly is non-substantial
for the present purpose.

2.4.3 Towards a Logic for Enkrasia

The construction of our formal framework proceeds as follows. Sections 2.5—
2.7 define two static logics Agpgr and Agpi, 0. Having modalities for basic
oughts, goals and derived oughts, these already incorporate ENKRASIA through
a number of axioms regulating the relationship between the three components.
The second of these logics offers an additional global modality O allowing the
agent to reason about which options are available to her.

2.5 The Language

To begin, let us specify the logical language used. The construction proceeds
in several steps. First, we define two languages £y and £; to talk about present
and future states of affairs. This language will serve to express the content of
oughts and goals. Afterwards, we introduce language £, that allows to reason
about basic and derived oughts, goals and their interaction.

Definition 2.3. Let At be a finite or countable set of atomic propositions.
The basic language L, is given by the standard language of propositional
logic combined with a future-tensed operator F. It is defined by the following
BNF:

U= plo[Y AYIFY

for p € At. The intended reading of modal expressions F'i is “1) is true at
least once in the future”. We denote the dual of F' by G. G hence reads as
“1) is always true in the future”. Operators — and V, finally, are defined as
usual.

exclude the possibility that the agent has quite extravagant beliefs on which basic oughts
take the precedence over the rest. This is perhaps a case in which the wide-scope reading
of ENKRASIA fits better than the narrow-scope, as it does not lead to the conclusion that
rationality requires of the agent to adopt as a goal something ultimately stemming from her
misled priority relation.
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It is convenient to consider the future looking fragment of Ly:

Definition 2.4. The language L, is the fragment of Ly containing only
future-tensed formulas where every atomic proposition is in the scope of a tem-
poral operator. Formally, L, is defined as follows:

@ = Fy|-plo A

for ¢ € Ly. Building on £;, the modal language for reasoning about basic
oughts, goals in plans, and derived oughts can be defined.

Definition 2.5. The modal language Ls is given by the following BNF:
p = p|lOY|Goalp| Dp|—plo A ¢

for p € At and ¢ € £;. The intended reading of the three modal operators
is the following: Oy reads as “¢ is a basic ought”, Goaly as “¢ is a goal in a
plan”, and finally Dy reads as “y is a derived ought”. Again, operators — and
V are defined as usual.

Two observations about Ly are in order. Firstly, the language does not allow
for iterated modalities. This is a feature shared with several other systems of
deontic logic. Secondly, being built over the temporal fragment L£; of Ly, the
modal language L, only allows for basic oughts, goals and derived oughts to
scope over future-tensed formulas. Our oughts and goals are, as we have said,
future-looking.

2.6 Semantics

Before introducing logical principles on the above languages, we specify the
intended semantic structures for basic oughts, goals, and derived oughts. Sec-
tion 2.7 then provides an axiomatization that is sound and complete with
respect to the semantics introduced here. We begin our analysis by introduc-
ing trees, delineating how the agent envisages the possible unfoldings of future
events.

Definition 2.6. A tree is an ordered set T = (T, <7) where T is a set of
moments and <7 a tree-order on T. We make two additional assumptions
about <7. First, the tree order is assumed to have a root, i.e., a minimal
element ty satisfying to <7 t for all t # to. Second, <1 is also serial, i.e.,
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every moment must have at least one successor.'> A history h, finally, is a
mazximal linearly ordered subset of T .

Intuitively, to indicates the current time step, i.e, the moment at which the
agent ponders what to do. Notably, a tree is the union of its histories, i.e.,
T = U{h € T | hhistory}. We will make heavy use of this later. To
ease terminology, we will use the term subtree for any tree 7' that is of the
form (J,cpis B With Hist a set of histories of 7. We will denote the set of
subtrees of T by P(T). Lastly, let 77 and T” be subtrees of T given by 7' =
Unemisy b and T = U, cpisn b respectively. Then define the intersection
subtree 7T'M7" of T as the subtree generated by Hist' " Hist”, i.e., T'MT" :=

U h 14
heHist'NHist" '°*

Based on the definition of a tree, we can define a tree model for our temporal
language L.

Definition 2.7. A pointed tree model is a tuple M = (T, ty,v) where
T = (T,<7) is a tree, to the distinguished time, i.e., the root of T, and
v : At — P(T) is a valuation function that maps each atomic proposition of
the background language into a set of moments of T .

A pointed tree models provides a semantics for language Ly:

Definition 2.8. Let M be a pointed tree model. The evaluation of formulas
of Lo on time-history pairs t/h with t € h of M is defined as follows:

o M,t/h = pifft €v(p) for p atomic

o Mt/ —p iff Mot/h I ¢

o M,t/hl=p Ay iff M t/h = ¢ and M t/h =1

e M,t/h = Fy iff there is a t' € h such that t <7 t' and M,t'/h = ¢

Finally, we say that a formula is true at t simpliciter iff it is true at t/h’ for
all histories h' passing through t.

Definition 2.9. Let ¢ € Ly and t € T. The proposition expressed by ¢ at t,
i.e., the truth subtree [¢]’, is defined as follows:

[e] = | J{hlt € h and M, t/h |= o}

13This definition remains silent about the exact shape of a tree. It allows for finite as well
as infinite branchings and also for discrete as well as dense orders.
MNote that 7/m7” € T NT . In general, however, T'mT" is a proper subset of 7 N 7.
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Towards developing a semantics for the language Lo, we finally extend tree
models with neighborhoods representing the agent’s basic oughts. A central
component of these extended models will be sets of the form [¢]", representing
the truth set of ¢ as seen from the moment of deliberation .

Definition 2.10. An enkratic model is a tuple M = (T to,v, No, o)
where (T, tg,v) is a pointed tree model, and No C P(T) x L1 is a neighborhood
with the additional condition that (T', ) € No implies that T' = [¢]". Finally
=0 1s a conversely well-founded linear order on the set of all ¢ such that

([, ) € No.

Presently, we are only interested in the agent’s basic oughts at the time of
reasoning to. We can represent these with a set of treelike neighborhoods Np

listing all the basic oughts the agent is exposed to at .6

It might seem
counterintuitive to represent a basic ought by a subset-formula pair ([p]%, ¢)
rather than simply a subtree [p]®. The reason for this will become clear in
the next chapter (Section 3.3) where dynamics enters the picture. Briefly, two
propositions ¢ and ¢ may be co-extensional in the current tree, but might
cease to be so once new information about the world is acquired. For this

case, it is necessary to keep track of whether the basic ought prescribes that
@ or .

On a given enkratic model, we can construct additional structures related to
the semantics of goals and derived oughts. The first is the goal-neighborhood
Ng € P(T). For the construction we recall the definition of a lexicographic
order.

Definition 2.11. Let = be a conversely well-founded linear order on a set
of formulas W C Ly. Then the lexicographic order >;., on the power set
P(V) is defined by X »re. Y iff there is some x € X, x ¢ Y such that

{zeX|zroa}={2€Y|z>0x}.

In other words, x is the =gp-most important element on which X and Y dis-
agree.

YWhere =0 is a conversely well-founded linear order if and only if it is antisymmetric,
transitive, total and every subset B C {¢ | ([¢]", ¢) € No} has a =o-maximal element.

16The approach could be extended to include the agent’s basic oughts along all moments
of a tree. Such an extension requires additional conceptual work, as basic oughts may, for
instance, get discarded once they have been satisfied. Also, an extension will need to specify
what happens to basic oughts in future moments where they have become unsatisfiable for
pragmatic or principal reasons. Technically, such an extension would work by replacing the
neighborhood Np with a neighborhood function np : 7 — P(P(T) x L1).
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The goal neighborhood Ng C P(T) is determined by three conditions. First,
the goals in an agent’s plan must be derived from basic oughts. Second, the set
of goals in a plan should be consistent. The third condition, finally, expresses
that the set of goals is chosen optimally, given the agent’s priority relation ¢
between her basic oughts. Formally, the conditions on Ng are:

i) No CA{le]™ | (Iel”, @) € No}-

ii) Ng is maximally consistent, i.e.,
a) there is some history h of T with h C [¢]% for all [¢]* € Ng and

b) whenever Ng C Y C {[p]® | ([¢]®,¢) € No} there is no history
h' with b’ C ] for all ] € Y.

ili) Ng is =p-maximal, i.e., whenever Y satisfies i) and ii) then

{o | [¢]"™ € No} =rex {0 ][] € Y}

where =1, is the lexicographic order on P({p | ([¢]* ») € No}) induced
by >=0. (Cf. Definition 2.11).

Note that the three conditions uniquely determine the neighborhood Ng which
is therefore well-defined.

From Ng the third central component of enkratic models —besides basic
oughts and goals— can be defined. Let us begin by introducing what we call
the admissible subtree 7goa1. The admissible subtree Tgoq, briefly, is the
intersection of the various subtrees corresponding to the agent’s goals. Hence,
it consists of all those histories that guarantee all of the agent’s goals to be
satisfied. It is from this admissible subtree that the agent’s derived oughts are
determined. Derived oughts indicate what holds in 7g.q, and therefore can
be thought of as expressing the necessary conditions for the fulfillment of all
the agent’s goals. To state things formally, the admissible subtree is defined
as

- to
TGoal = (m[[goﬂtOENG [[80]] .

From the properties of Ng, it follows that 75, is non-empty. Having defined
TGoal, We can give the semantic conditions turning enkratic model into models
for language L5. Unlike Ly, the language £, is evaluated on moments t rather
than time-history pairs t/h. We take this to be a natural condition, as L,
represents the agent’s oughts and goals at a moment in time ¢y where she
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has not yet acted on any particular course of events, i.e., any history h. The
following definition builds on the evaluation of £y (and hence £;) on pointed
tree models, cf. Definition 2.8.

Definition 2.12. The evaluation of L5 on an enkratic model M is given by
the following clauses:

e M,tl=pifft € v(p) for p atomic
o Mit =g iff Mt~ ¢

e Mitl=p Ay iff Mt =@ and M, t =1

o M.t = Oy iff ([¢l™, ) € No

o M,t = Goaly iff [¢]" € Ng and ([¢]"™, ) € No.
o Mt = Do iff Toom € []"

Notably, the semantics of operators O, Goal and D does not depend on the
moment t of evaluation, but only on the initial time t,. These modalities,
hence, are meant to represent the agent’s basic oughts, goals and derived oughts
at the time of deliberation t.

In sum, the semantics of all three modalities supervenes on two components
of the model: The neighborhood Ny and the priority ordering >o. While the
semantics of O, the basic ought modality, is directly given by Np, the Goal
modality’s neighborhood is derived by having >¢ pick a maximally consistent
subset of Np. This goal neighborhood, in turn, defines the D derived ought
modality’s admissible subtree by means of intersection.

2.7 Syntax: Axioms and Results

In this section, we provide an axiomatization for the various languages intro-
duced in Section 2.5. We start with axioms for the temporal languages £, and
L.

Ke Gl —=v) = (Gp = GY)

4 Gp — GGy

L FoNFy = (F(e AY)V E(p NFEY)V E(Y A Fp))

D¢ -GL

These are accompanied by the classic necessitation rule:

e
F Gy NECq
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The first two axioms are the standard K and 4 axioms, expressing that G is
a normal modal operator and that the ‘later’ relation is transitive. The third
axiom L reflects the fact that histories are linear, expressing that two future
events ¢ and ¢ will either be simultaneous, or that one comes after the other.
Finally, the D-style axiom D¢ expresses that time never ends, as there always
is a future moment. We denote by Ay, the temporal logic over language L,
generated by Kq,4,L, Dg and G-necessitation NEC.

Next, we turn to the extended language L5. Operators O and Goal only have
a limited logical structure. Reflecting the actual content of oughts issued by
a normative source, we do not presuppose any logical requirements on basic
oughts other than being invariant under replacement with logical equivalents.
This is the content of:
Py
FOp < Oy

The corresponding intensionality condition for the Goal operator also holds,

INToH

as is shown in Lemma 2.15. While goals and basic oughts are not closed under
logical reasoning, derived oughts are. In particular, the D-operator is normal
and non-trivial, as expressed by the following axioms:

Kp D(p— ) —= (Do — D) -

Dp -DL F Dy VECP

Lastly, and most importantly, the logic is guided by three interaction axioms
describing the interplay between goals, basic and derived oughts. It is these
principles that embody the ENKRASIA principle in the logic.

GO Goaly — Ogp
GD Goalp — Dy
MAX Op A =Goalp — D—p

The first of these expresses that basic oughts are the only admissible sources
of goals in the agent’s plan. Every Goal follows from a basic Ought. The
second axiom, GD, is a weak converse, saying that every Goal gives rise to a
corresponding Derived ought. Most importantly, the third axiom, MAX, em-
bodies the bounded validity of ENKRASIA. This can best be seen from its
counterpositive =D—p — (Op — Goaly): if it is not the case that already
- is a derived ought, then if ¢ is a basic ought, ¢ is also a goal. Hence, in
combination with Kp and Dp, MAX states that every basic ought has a corre-
sponding goal unless this causes a violation of consistency. Put semantically,
MAX expresses that the set of goals is a Maximally consistent subset of the
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agent’s basic oughts.'”

Definition 2.13. The Enkrasia logic Ag,i. on language Lo is defined by
all propositional tautologies together with the axioms Kg,4,1., Do, Kp, Dp,
GO, GD,MAX and the rules INTo, NECg and NECp (c¢f. Table 2.1).

Before moving on to completeness, let us take a moment to derive a number
of consequences of the above axioms. First, we note that whenever an agent
has a goal to ¢, her derived oughts contain all logical consequences of ¢. This
follows immediately from axioms Kp and GD together with NECp.

Fact 2.14.
Fp =Y
= Goalp — Dy
Second, we note that the Goal operator is closed under replacement with logical
equivalents:
Lemma 2.15.

oo
F Goaly < Goali)

Proof. Assume F ¢ <+ 1. For a contradiction, also assume that Goaly but
—Goaly. By GO we have Op and hence by INTo also OY. Hence we have
Oy A\ =Goaly which implies D— by MAX. On the other hand, GD implies
Dy. By NECp and Kp this implies D(¢ A —t)) which, again by Kp, implies
D1 contradicting Dp. O

Next, note that the logic does not demand an agent’s basic oughts to be jointly
consistent. Our agent may, for instance, believe both Oy and O—p simultane-
ously. The set of goals, however, is required to be internally consistent.

Lemma 2.16. Let A C Ly be a consistent set and let S = {p € L, | Goaly €
A} Then S e, L

Proof. Assume for a contradiction that Sty L. Since all its axioms corre-
spond to first order expressible frame conditions, Ay, is compact (cf. Black-
burn et al., 2001, Chapter 2.4). Hence there is a finite Sy C S such that
So Fivemy L+ By Fact 2.14, we have {Goalp|p € So} Fau Aoes, Py- By Kp

PESo

I7If we had instead chosen the strict principle of translating basic oughts into goals,
(cf. Section 2.4.2) i.e., only taking those basic oughts that are contained in all maximally
consistent subsets instead, MAX would need to be replaced by the weaker Op A =Goaly —
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we then get {Goalp|p € S} Fa,, .. D/\wes0 @, ie., {Goalp|lp € S} Fa,,, DL
— contradicting Dp. O]

An immediate consequence is that the Goal operator satisfies the D-axiom,
ie.,

F Goaly — ~Goal—y

In fact, this consistency requirement is solely responsible for discrepancies
between basic oughts and goals. By MAX, whenever Op A =Goalp hold at
some state w, this is because Goaly could not have been consistently added
to the set of present goals, as it would require both Dy and D—y to hold
simultaneously.

Having specified our treatment of ENKRASTA, it is now time to present a general
characterization result. However, before being able to do so, we need to make
an extra assumption about enkratic models. We assume the neighborhood
No to be closed under logical equivalence. That is, if ¢ and ¢ are logically
equivalent in Asemp, and ([¢]%, ¢) € No then also ([¢]", ) € No. It follows
immediately that also N is closed under Ay, logical equivalence. With this
assumption, we can show the following characterization result, which is proved
in the appendix.

Theorem 2.17. The logic Ag,., is sound and complete with respect to the
class of enkratic models.

2.7.1 Enriching the Language: A Global Modality

Note that language Lo suffers from what might be perceived as a lack of ex-
pressive power. So far, Lo can express whether the agent is under a certain
basic ought that ¢ and whether this ought translates into a goal. What L,
cannot yet express is whether the agent considers ¢ possible in the first place,
i.e., whether she believes her basic ought that ¢ to be satisfiable. To remedy
this, we add a new modal operator O, where Oy for some ¢ € L, is to express
that ¢ holds in all possible histories. As usual, & stands for the dual of O.
So O expresses that there is a possible y-history or, at least, one the agent
considers possible. To incorporate O, we expand language £, to Lo given by
the BNF:

@ := p|OY|Goalh| DY|OY|—plp A ¢
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for p € At and ¢ € £;. The semantics of L on an enkratic model is given by
the semantics of £, extended with the clause

M, tE Op iff M, t/h' E o for all histories h’ with t € I/

On the axiomatic side, the new modality O is governed by the axioms and
rules below. The first, ND, expresses that the agent is under a derived ought
to ¢ whenever ¢ is unavoidable to her. Kg is the K-axiom for O.

ND Ogp — Dy Fo

Ko O(p =) = (Op = 0Y) F Oy
We denote by Agnkro the extension of Ag,r. with ND, K5 and NECg. That
is, Apnkr o is the logic on Lo defined by all propositional tautologies together
with the axioms Kg, 4,1, Do, Kp, Dp, GO,GD,MAX,ND,K; and the rules
INTo, NECp, NEC; and NECH. See Table 2.1 for an overview. As we will see
below, ND covers the full interaction between O and the other operators.

NECy

Axioms of A¢emyp over £
4 Gy — GGy e
De -GL - Go
Ke  Glp—=v) = (Gp = GY)
L FoNFY = (F(p ANY)V E(e ANFY)V E(Q A Fo))
Axioms of Agpi, over Lo
Kp  D(p =)= (Dp = DY) E e

NECq

Dp -DL - Dy NECD

GD  Goaly — Dy

GO  Goaly — Op Foeu INT
MAX Op A =Goaly — D—p FOp < Oy ©

Atemp for £y formulas inside O, Goal, D

Additional Axioms for Ag,k. o over Lg
ND Op — Dy Fo
Ko O(p—=¢) = (Op - 0Y) = O

NECH

Table 2.1: Axioms and rules of Ayepnp, Apnir and Apper o
Having the expressive resources of Agpi, o, we are finally in a position to show
that goals satisfy STRONG CONSISTENCY, as desired.

Lemma 2.18. Let A C Ly be consistent, and let S C {p € L1 | Goalp € A}
be finite. Then {Goalp € A} Fap,, o O N, cq¢-
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Proof. Assume /\%S Goalyp. By iterated application of GD, we can derive
/\Goalgoes Dy. By Kp and NECp this implies D/\Goawesgp By Kp and Dp
this implies = D— /\Goalwes . The counterpositive of KD then allows us to

derive & Agouipes #-
[

An immediate consequence is:

= Goaly — <p

We turn now to a characterization result for Agp, o:

Theorem 2.19. Assume At is infinite. Then the logic Appir o is sound and
weakly complete with respect to the class of enkratic models.

The proof can be found in the appendix. Note that a strengthening of this
result is not valid. Unlike Ag,,, the extended logic Ag,k, o is only weakly com-
plete with respect to the class of enkratic trees, at least if At is infinite.!'®

2.7.2 Back to Challenge I: From Inconsistent Oughts to
Consistent Goals

This is the right moment to return to the two challenges posed in Section
2.3. We consider them in turn. The first challenge concerned the potential
tension between ENKRASIA and the two principles of INTERNAL and STRONG
CONSISTENCY of goals in plans. Within the current framework, the tension
was solved by weakening ENKRASIA. INTERNAL and STRONG CONSISTENCY
of goals are logically valid principles, while ENKRASIA is only valid within
bounds. INTERNAL and STRONG CONSISTENCY are, in fact, the only bounds
to ENKRASIA’s validity. While basic oughts are possibly inconsistent, and
hence not all basic oughts can correspond to goals, the agent’s set of goals
is guaranteed to be a maximally consistent subset of her basic oughts. That
is, the agent validates as many instances of ENKRASIA as is possible without
violating INTERNAL and STRONG CONSISTENCY.

18To see this take some ¢ € £ that is neither a tautology nor a contradiction. Then the set
{Cp AD=p}U{=0% | ¢ € L1} i8 Appkr,o consistent. In fact, every finite subset thereoff is
realizable in a enkratic -model. However, for a enkratic -model M to satisfy {-Ov | ¥ € L1}
we need that No = (). This, however, implies that the admissible subtree is all of 7, which
yields that Mty E D— iff M, tg ¥ Oy, i.e., it is impossible that M, tg ¥ O A D—p.
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Note that the bounds imposed on ENKRASIA do not, as such, fully determine for
which basic oughts the principle is valid. There might be more than one max-
imally consistent subset of the agent’s basic oughts, hence additional choices
are necessary. To this end, the framework incorporates a selection mechanism,
fueled by the agent’s priority ordering . This aspect is, however, less central
for the resulting logic. Any alternative selection mechanism would validate the
same logical principles.

To illustrate the choices made, let us return to Example 2.1: Suppose I
believe I ought to repay 10 euro to my friend Ann. I also believe I ought to
go to the movies with Barbara. However, money is scarce, and I believe it is
impossible for me to do both.

Put formally, the basic oughts of Example 2.1 are O(F'r) and O(Fm) (we
assume, for the sake of illustration, that no other basic oughts are in play).
If ENKRASIA were applied unrestrictedly, it would follow that Goal(Fr) and
Goal(Fm) which, given that =O(Fr A F'm), would violate STRONG CONSIS-
TENCY. Hence, ENKRASIA can only be applied to a maximally consistent
subset of those basic oughts, i.e., either to {OF'r} or to {OFm}. Which one of
the two depends on the lexicographic order induced by >=¢. Suppose I believe
that settling my debt with Ann takes precedence over going to the movies with
Barbara, i.e., Fr =0 Fm. It follows that ENKRASIA applies only to {OF'r}.
The only goal derived is Goal(Fr), and since <(Fr) holds, no violation of
INTERNAL or STRONG CONSISTENCY occurs.

2.7.3 Back to Challenge II: Basic and Derived Oughts

The second challenge asked to distinguish valid from invalid logical inferences
about oughts. Our focus was specifically on the notorious principle of deontic
closure. Even if one accepts that deontic closure is not generally valid, we
have argued that an outright rejection of the principle is a too strong, and
ultimately unsatisfying, solution. The challenge, hence, is to provide a deontic
logic that is thick enough to license those instances of deontic closure that are
unproblematic.

A central step towards meeting this challenge was the distinction between
two types of oughts: basic and derived. Building on this distinction, we can
illustrate the main characteristics of those deontic inferences that are valid in
our logics Agpr and Ag,ir 0. Let us begin by limiting the possible conclusions
derivable from valid deontic inferences. Leaving aside axiom GO and INTy,
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the logics Apprr and Agpg, o can only produce derived oughts as conclusions.
In valid instances of deontic closure, hence, the ought inferred as a conclusion
is a derived ought D in our sense.

More positively, valid deontic inferences are of the following kinds. First, the
axiom GD allows us to infer a derived ought D¢ from a corresponding basic
ought, provided that Goalp also holds. This reflects the idea that derived
oughts are necessary conditions for the fulfillment of goals. Second, since the
derived ought operator D is a normal modality, classical reasoning within the
scope of derived oughts is a valid mode of inference. Thus, new derived oughts
can be derived by standard modal reasoning from old ones. Finally, within
the extended logic Apyir o, axiom ND can be used to infer derived oughts also
from global facts about the space of available options.

To illustrate the strength of this approach, let us recall the main lines of
Example 2.2: Suppose that I ought to repay Ann 10 euro. Moreover, I
believe that unless I refrain from going to the movies it is impossible to repay
Ann. So, I conclude, I ought not go to the movies.

We have called the inference in the above example practical inference, and
argued that valid practical inferences move from basic oughts to derived oughts.
In the specific case of Example 2.2, practical inference moves from O(Fp),
indicating the basic ought to repay Ann (i.e., once), to D(G—m), indicating
the derived ought to refraining (i.e., always) from going to the movies. It is
a characteristic of our approach that derived oughts indicate the necessary
conditions for the fulfillment of the agent’s goals. To derive that D(G—m) we
therefore need to require that repaying Ann is in fact a goal in the agent’s
plan. With this in place, we can apply the inference rules described in Section
2.7 to derive the desired conclusion:

0 o 1)
(i) O(Fr— G—c) (P2)
(iii)  Goal(Fr) (P3)
(iv)  Goal(Fr) — D(Fr) Axiom GD
(v)  D(Fr) From (iii), (iv) and Modus Ponens
(vi)  D(Fr — G—c) From (ii) and ND
(vii) D(G—c) From (v)—(vi) and Kp

Let us conclude with some observations about Ross’ Paradox. The distinction
between basic and derived oughts allows us to disentangle different readings of
Ross’ Paradox. Some of these are problematic, others in fact are not. Suppose
we start from a basic ought to mail the letter. From such a premise, the
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logics Appkr and Ag,r o allow us to infer at best a derived ought to mail or
burn the letter.!® Such an inference is not paradoxical. Being a derived ought,
mailing or burning the letter is not an ought to which ENKRASTA may apply: It
cannot become a goal in its own right. Such a derived ought merely describes
a necessary condition for the fulfillment of the goal of mailing the letter, not
a sufficient one. In fact, burning the letter is not an admissible option (i.e.,
states of affairs in which the letter is burnt lie outside the admissible subtree).
Hence, also a derived ought not to burn the letter can be inferred.

2.8 Conclusion

We can now take a preliminary stock. The focus of our project is (an interpre-
tation of) the Enkratic principle of rationality, according to which rationality
requires that if an agent sincerely and with conviction believes she ought to
X, then X-ing is a goal in her plan. We have developed a framework aimed at
investigating the logical structure of such a principle and its implications for
deontic logic.

Main ingredients of our framework are basic oughts, goals and derived oughts.
Basic oughts are the inputs of the agent’s deliberation. They are the oughts to
which ENKRASIA may apply, that is, those oughts that potentially correspond
to goals. We say “potentially” because there is a tension between, on the
one hand, allowing for (jointly) inconsistent basic oughts and, on the other,
requiring INTERNAL and STRONG CONSISTENCY for goals. There are several
ways in which such a tension can be solved. We pursued a tolerant approach:
even if not all basic oughts can correspond to goals, the agent’s set of goals is
guaranteed to be a maximally consistent subset of her basic oughts. ENKRASIA
is therefore a principle of bounded validity — whose only bounds are INTERNAL
and STRONG CONSISTENCY.

From goals, derived oughts follow: these indicate the necessary (but possibly
not sufficient) conditions for the fulfillment of all the agent’s goals. Derived
oughts are conceptually distinct for basic oughts, and such conceptual distinc-
tion emerges especially with respect to ENKRASIA: ENKRASIA applies to basic
oughts but not to derived oughts. We showed that such conceptual distinction
between oughts plays a significant logical role, specifically in delineating which
instances of deontic closure are valid. Within the framework, deontic closure
is valid whenever the ought inferred is a derived ought, but not if it is a basic

9 And even that only if also the goal to mail the letter is present.
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ought. This allowed us to validate inferences (such as practical inference) that
intuitively strike as plausible, but also to distinguish between problematic and
unproblematic readings of Ross’ Paradox (and to validate the latter).

The next chapter investigates the dynamic relationship between basic oughts,
goals and derived oughts.
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2.9 Appendix: Proofs

This section is devoted to prove the completeness of the logic Ag,x and of its

extension A gy 0.2

The completeness proof for Ag,,. follows the following strategy:
e We want to prove that every consistent set of £, formulas has a model

e To do so, we follow the standard method of extending such consistent
set to a maximally consistent set (via Lindenbaum Lemma) and then
construct an appropriate canonical model.

e The way the canonical model is constructed is as follows:

— First note that such maximally consistent set of £y formulas, call
it A, contains formulas like atoms, boolean combination thereof,
formulas like Og, Goalp, Dy (with ¢ future tensed) and boolean
combinations thereof.

— We build a canonical tree model such that (i) all literals (i.e., atoms
and negated atoms) in A are true in the root of the tree, (ii) if O¢
and Goaly are in A, then all histories of the tree make ¢ true, and
(iii) Op and —Goalp are in A, then no history of the tree make ¢
true. As a result, if Dy is in A then all histories make ¢ true; if
=Dy is in A then no history makes ¢ true.

— In order to build such canonical tree model, we show that, given A,
we can construct a linear tree (i.e., a tree given by just one history)
canonical model such that (i) it makes true all the literals in A and
all the formulas ¢ for which Dy is in A, and (ii) it makes false some
1 for which = D1 is inA.

— Then we collect all those linear trees (for all ¢ for which =D is in
A), and build a branching tree by making all the roots identical.

e We show that the resulting canonical model is an enkratic model which
satisfies A, and is therefore the model we were looking for.

Before we can prove Theorem 2.17, we need the following auxiliary lemma:

20The completeness proofs for Agnkr and Appero in Klein and Marra (2019) are by
Dominik Klein. Here I present annotated versions of those proofs. All remaining errors are
mine.
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Lemma 2.20. Assume A C Ly is mazimally Ap,i, consistent. Let AP = {¢p €
Ly | Do € A}, let AP = {p € L1 | =Dy € A} and let A" C A be the set
of all literals, i.e., atoms and negated atoms, occuring in A. Then for every
Y € NP there is a linear®* tree Hy = (hoy, <3) with root t—, such that
Hey,t—y E ) and Hoy,ty E @ for every o € AP UA.

Proof. Let xy € A™P, we will construct the desired linear tree H_, = (hoy, <2;)-
By axioms Kp and Dp, the set AP U {=x} is Ayepmp consistent. Since all
¢ € AP U {—x} are future looking, i.e., every atom is in the scope of a modal
operator, also AP U{=x}UA" is Ay, consistent. We can hence expand it to
a maximally Ay, consistent subset I' C Ly. The rest of the proof proceeds
by a classic buldozing argument. For the sake of completeness, we hint at the
details.

Let M = (W, R) be the A4, canonical model over Ly. That is, W is the set
of all maximally Ay, consistent subsets of £, and ORY iff F'p € © for all
p € Lo with p € X. Let H = {3 € M |'RX}. We show that R is transitive
and complete on H. Transitivity follows from the 4 axiom. For completeness
let © #3 € H, wlog ©,% # I'. We have to show ©RY. or X RO.

Pick enumerations pf, 0% ... of © and ¢, T ... of ¥. For i € w let ¢} =
/\3'.:l ¢; for x € {©,X}. Note that, since © # X, there are j,k > 0 such that
92 = —pp. Letting iy = max(j, k) we have that Fy,.,. —(¢f A7) for all
i >ip. As ©,% are maximally consistent we get ¢° € ©,¢F € ¥ for all i € w.

By construction, we have RO and I'RY. The Truth Lemma then implies
that Ff € T for x € {©,%X} and all i € w. Hence, we have for all i that
Fy® A Fy € T. By L, this implies that F(¢ AYF)V F()2 A Fy) vV F (A
Fy?) € T. In particular, T contains either F(y© A ¢F) for infinitely many
i, (2 A FyF) for infinitely many indices i, or F(¥F A ¢P) for infinitely
many i. Since by, = (¥ A Fy?) for all but finitely many 4, the first case
is impossible. We treat the case where I' contains F () A FF) for infinitely
many i, the other case being similar. We will show that F'y* € © for all i € w.
By K¢ and the construction of the 1, this entails that Fip € © for all p € 3,
which, together with the definition of R, implies that © R>..

To see that FF € O for all i € w, assume for a contradiction that this is false,
i.e., that there is some 7, with F’ %‘i ¢ ©. By maximal consistency, this implies
that =F1)7 € ©. Hence, there is some ¢ € © with -y, —(4P A Fi; ). By

21e., a tree where < is a linear order.
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construction of the ¢, this implies -, =(¢¥9 A F1p%) for all j > max(in, j).
In particular, since I" contains F(y© A Fy)F°) for infinitely many i, there is some
Jo > max(in, j) with F(¢ A Fy2) € T but Fy,,,., =9 A Fip3). This, in
connection with D¢, contradicts the consistency of I'. Hence the assumption
was false and we obtain that Fy” € © for all i € w.

To finish the proof, we need to ensure that R is a linear order on H. This is,
in general, not true. However, by a classic bulldozing argument (cf. Venema,
2001), we can transform H into a linearly ordered tree H = (h, <4), with <y
minimal element I' such that H,I'F ¢ & ¢ € I'. Renaming I" to -, h to h-,,
and H to H-, finishes the proof. m

Now, we can finally show Theorem 2.17. The completeness direction pro-
ceeds by constructing a special tree model 7, with the property that for each
([e]™ ) € No either [p]' = T or [¢]* = 0. Consequently, it will hold that
Taow = T. The main task of the construction, hence, is to ensure that the
histories of T are such that 7 C [¢]* < Dy € A. The corresponding con-
struction bears some resemblance to the completeness proof for ATL (Goranko
and van Drimmelen, 2006).

Proof of Theorem 2.17: For completeness, we show that every maximally A gz,
consistent subset A of L, is satisfiable in an enkratic model. Let AP = {p €
L1 ]| Dp e A}, let AP = {p € L1 | =Dy € A} and let A C A be the set
of all literals, i.e., atoms and negated atoms, occuring in A. Using Lemma
2.20, we pick linear trees H—,, = (h-y, <3) with root t_, for each ¢ € A™P as
above. Note that all ¢, share the same atomic valuation, as this is completely
determined by A", Moreover, note that ~D1 € A by Dp. Hence L. € A™P
and thus the set of linear trees picked is non-empty.

We have to construct an enkratic model M = (T ,tg,v, N,, =0). As tree T we
take the union of the H-,, where we identify all t_,;. Formally, for a linear tree
H = (h, <u), let T}, be the set of all moments but the first of H. Let:

T={t}u )T,
YeB

and <7 the inherited tree-order, making ¢y the root. Finally, the valuation v
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is defined by

t=tgand p e A

tewv(p) iff {

orteTy —andt€ vy, (p)

Finally, we define No by ([¢]®, ) € No iff Op € A. Moreover, we pick an
arbitrary well-founded ordering ¢ on {¢ | ([¢]™, ¢) € No}.

For the completeness argument, we begin with some observations about the
root ¢y of this tree. First we note that, for ([¢]™,¢) € No(ty), we have
[e]te = T if Goale € A, and [¢] = 0 else. In the former case, we have
Dy € A by GD. By construction, this implies that every -, and hence
every branch h/ty of T satisfies h/ty E ¢, i.e., [¢]® = T, which is what
had to be shown. In the other case, Goalp ¢ A, we have, by MAX, that
D—p € A. Again by construction, every branch h/tg of T satisfies h/ty E —p,
ie., [¢]"™ = 0. The last two observations imply that:

Ng = {[¢]” | Op € A, Goalp € A}. (2.1)

In particular, by GD, Ng(to) = {7} if there is some Goaly) € A and Ng(tg) =0
else. In either case we have @XGNG(tO)X =7.

Now we can show that our model is as desired, i.e., M,ty F ¢ iff p € A. The
argument is an induction over the complexity of ¢. As induction base, we show
the claim for ¢ an atom or of the form O, Goaly or Dy for some ¢ € L;. In
the induction step we then show that if the claim holds for ¢, s € Ly then
also for =y and (1 A y. This induction step is trivial. We only need to show
the claim for the induction base.

If ¢ is atomic, the claim holds by definition of the valuation on ¢y. If ¢ is Ov
for some i € Ly, this follows immediately from the construction of Ny. If ¢
is Goaly for 1» € L1 the claim follows immediately from Equation 2.1.

The only non-trivial case is when ¢ is of the form D for 1) € L. For the left to
right direction, assume Mty E D1. We have to show Dy € A. First, note that
M, ty F Dy implies that (¢ y., X C [¢]. Since for each X € Ng holds that
X ={T} or X = 0, this implies that 7 C [¢]*. Assume for a contradiction
that Dy ¢ A. By maximality, this implies =Dy € A. By construction, there
is a branch h_, of T with T,ty/h-y E —tb. In particular, T € [¢]", which is
a contradiction. Hence the assumption was false and Dy € A. For the right
to left direction, assume Dy € A. Recall that, by construction, every branch
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h of M satisfies M, to/h F 9. In particular, [y, X C [¢]", which implies
that M, to E Di. 0

Proof of Theorem 2.19: The proof borrows heavily from the proof of Theorem
2.17. We only highlight the relevant differences. For weak completeness, we
have to show that whenever there is some ¢ € Lo with /.5, . —p, there is
some enkratic model M, w with M, w E ¢. Let such ¢ be given. Without loss
of generality, we can assume that ¢ is in disjunctive normal form, i.e,

n k;
@Z\//\Xi,j

i=1j=1

where each y; either is an atom, a negated atom, or of the form Xy or - X¢
for X € {O,Goal, D,0} and ¢ € L£;. By MAX, we have Op <
(Op AGoalp)V (Op A D—p). We can hence assume, without loss of generality,

“AEnkr,D

that every disjunct /\f:1 Xij of ¢ has the property that, for each x;; of the
form O1), either Goaly) or D—) appears as some of the x; ; with 7/ < k;.
Likewise, as F-ap,,. o 70@ ¢ (20p A =Dg) V (=0p A Dyp), we can assume,
that for each x; ; of the form =01, either D1 or D1 appears as some of the
Xij with j° < k;. Moreover, by GO, we can assume that, for each x; ; of the
form Goali, also O appears as some of the x; j» with j° < k; Finally, by Dp,
we can assume that, for each ¢ < n, =D appears as some x; y with j/ < &;.
To show that ¢ = \/I_, /\f: ; Xi 1s satisfiable in an enkratic model, it suffices
to show that one of its disjuncts is satisfiable in an enkratic model. Hence, it
suffices to show the claim for ¢ = 1, that is for ¢ of the form /\?:1 X;- Let such
a o be given and let X = {x1,...xx}

In a similar fashion as in Theorem 2.17, let AP = {p € Li|Dp € X}, let
A" = {p € £1|0p € X}, let AP = {p € Li|-Dp € X} and let At =
{x € X|x = pory = —p}. Note that A™P # @ as L € AP, As At is
infinite, we can pick an atom py that does not occur in any of the formulas
in X. Pick a valuation A" extending A, i.e., some maximally consistent
At C {p,—p | p € At} with A D AM such that —p, € A, By a slight
adaptation of Lemma 2.20, there are linear trees H_, = (h_y, <3), with root
t-y for each ¢ € A™P, such that H_y, 1y, F = and H_y,t-y F x for every
x € APUAPUA", Moreover, let AP = {=p € £,|-0p € X and Dp € X} be
the set of formulas that are possible without being a derived goal. By another
slight adaptation of Lemma 2.20, there are linear trees H, = (h},, <3,), with
root t), for each p € AP such that H),t, F pand H),t, F x for every
x € A7 U Al
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Before constructing the desired enkratic model, we show the following claim:
There is a formula pg such that H_y, t_y E po for allp € A™P, but H! sty F =po
for all ¢» € A%P. To see this, note that by definition of sets AP and A®/P,
every member of A%/P is of the form —y with y € AP. Let py = N-yenorn X-
We hence have that H-y,t-y E po for all ¥ € A7, but H,t), & —=py for all
€ AP ie., py has the desired property.

Now, we construct a enkratic model M = (T, tg,v, No, =0o) satisfying ¢ as
follows. We pick linear trees H-,, for each ¢ € AP and H,, for all Y € AO/D a5
above. As py does not occur in any of the formulas in X and —py, € A%, we can
assume wlog that py is globaly false on all H-,, and H;,. With these, we define a
tree T as in the proof of Theorem 2.17. By the previous claim, there is formula
po such that H_y, t_y E po for all p € A™P, but H! sty F —po for all i € AO/P,
Since pq is false everywhere, p = py V Gpy has the same property. Moreover,
since py does not occur in X, we also have that Op,~Op, Goalp, ~Goalp are
all not contained in X. Define the neighborhood No by ([¢]™,¢) € No iff
Oyp € X or ¢ = p. Finally, as priority relation >o, we pick any well-founded
ordering on {¢ | Op € X} U {p} that has p as maximal element.

We can now show that M,ty F ¢. Since ¢ = /\%X ¥, it suffices to show
that M, tg F ¢ for all ¢ € X . If ¢ is an atom or negated atom, this follows
immediately from the construction. The same holds if ¢ is of the form O, =O¢p
or Oy. If ¢ is of the form —O¢p we have by our assumption that either Dy € X
or Dy € X. In the first case ~p € AP and H,,t., F —p, and hence
M, ty # Op. In the second case, p € A™P and H-,, -, F —p witnessing again
that M, to & Op.

For the remaining cases, we define subtrees S and 8" of T by & = J{H-v |
v e AP} and 8 = J{H), | ¥ € AYP}. Since for each Oy € X also
Goaly € X or D—) € X, we can use the same argument as in the previous
theorem to show that for Oy € X, we have that S C [¢]% if Goaly € X,
and [y C S"if D— € X. Since [p]® = S, and p is the o maximal
element of {¢ | Op € X} U {p}, we get that [p]" with Op € X can only be
in Ng if [p]' € 9, ie., if Goalp € X. Moreover, since S C [¢]* whenever
Goalp € X, we get that Ng = {[¢]® | Op, Goaly € X}. By our assumption
that Op € X whenever Goaly € X, this simplifies to Ng = {[p]® | Goaly €
X} and hence rm[[so]]toeNc [¢]" = S. From there, the same argument as in the
previous theorem implies that M.ty F ¢ if ¥ € X is of the form Goalp or
De. If 9 is of the form =Dy, note that there is, by construction, a branch h-,
with M, to/h-, E —p. Since h_, C S and (m[[@]]toe]\,c [¢]P = S, this implies
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Mty E =Dy. Finally, if ¢ is of the form —Goaly, we need to distinguish
whether Op € X or not. If not, we have, by construction, that ([¢]", ¢) € No,
which immediately implies that M, ty F =Goalp. For the case that Op € X, we
have by construction that also D—¢ € X. For this case, we have shown above
that [] C S, which implies [¢]® € Ng. Again, we get M.ty F ~Goalp as
desired. O]
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Chapter 3

From Oughts to Goals. Part 11

This chapter continues the investigation of the Enkratic principle of rationality,
by exploring the dynamic relationship between basic oughts, goals and derived
oughts. We focus on practical dynamics, i.e., on changes in the possible courses
of events the agent believes are open to her. By means of product updates,
we represent operations that can add or remove possible courses of events. We
investigate how and under which conditions these operations affect the notions
at play in Enkrasia, specifically goals and derived oughts.

3.1 Introduction

Our contribution to the logic and the implications of ENKRASIA is grounded
on the conceptual distinction between basic oughts, goals and derived oughts.
This chapter focuses on the dynamic relationship between those notions.

We can distinguish at least three kinds of dynamics relevant to our investiga-
tion of ENKRASIA: (i) temporal dynamics, concerned with tracking the agent’s
basis oughts, goals and derived oughts through the progressing of time; (ii)
normative dynamics, concerned with changes of the basic oughts the agent
believes in; and finally (iii) practical dynamics, concerned with variations of
the possible courses of events the agent believes are open to her. All three
kinds of dynamics possibly open interesting formal and conceptual questions,
but for this chapter we restrict our attention to practical dynamics.

The effects of practical dynamics on oughts and goals are delicate. In this chap-
ter we explore the formal features of practical dynamics, and use resources from
the logics of action models to represent the effects that removing or adding
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possibilities have for the agent’s goals and derived oughts. Our motivation
is twofold. Firstly, in practical philosophy, a certain stability under practical
dynamics is commonly attributed to goals (Bratman, 1987). We aim to con-
tribute to such literature by addressing the conditions for such stability, and by
illustrating how the stability of goals can make prominent the conceptual dis-
tinction between those basic oughts corresponding to goals and derived oughts.
Secondly, while there exists a well-established tradition on logical dynamics,
the focus has been so far mainly on the effects on the attitude of belief.! This
chapter aims at complementing the literature on dynamic logic by drawing
attention to oughts and goals.

The chapter has the following structure. We start by introducing a challenge,
which illustrates the relevance that practical dynamics has for the notions
involved in ENKRASIA (Section 3.2). Then we move to a dynamic extension
of our enkratic logics Agnk, and Agnkr 0. Specifically, we define the operation
of product update between enkratic models and temporal update models, and
show how product updates can be used to represent some illustrative examples
(Section 3.3). Finally, in Section 3.3.2 we prove some general results on the
effects that removing and adding possibilities have for goals and derived oughts.
These general results show that the dynamic relation between basic oughts,
goals and derived oughts is less trivial than one could perhaps expect. This
concludes our investigation on the logic and the implications of ENKRASIA:
in Section 3.4 we compare our approach to other logical frameworks in the
literature, and conclude by indicating some possible future directions.

3.2 Challenge III: Dynamic Conditions

There exist certain challenges surrounding ENKRASIA. In the previous chapter,
we introduced two of them: they concerned the filtering of inconsistent basic
oughts and the restricted validity of the principle of deontic closure. The
third challenge, finally, brings dynamics into the picture. Our initial reason
for focusing on dynamics is conceptual, as it is especially when seen through
the lenses of dynamic change that the differences between basic oughts, goals
and derived oughts become most prominent. The following two observations
illustrate what we have in mind.

Information change in the context of plans (so-called plan management) has been, on
the other hand, the focus of works in the field of theoretical artificial intelligence. See, e.g.,
Bratman et al. (1988), Horty and Pollack (2001), Pollack (1992), Pollack and Horty (1999).
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Firstly, it is a well-known feature of goals in plans that they tend to be stable
under various perturbations (cf. Bratman, 1987, pp. 16,67). Reflecting the fact
that goals are ultimately things the agent has committed to, there is a tendency
for goals in plans to resist reconsideration, and in particular not to be discarded
at every slight change that might occur in the agent’s information:

Example 3.1. Suppose that giving 10 euro back to Ann is a goal in my plan.
My plan involves reaching Ann’s house either by car or bus, as I believe these
are the only options for getting to her place. Now if I learned that my car is
broken, I would not simply give up my goal to repay Ann. Normally, I would
rather maintain my goal and replan to get to her house by another means, for
instance, by bus.

Let us call practical dynamics any changes in the agent’s information about
what the world looks like. This is, in fact, the kind of dynamics at work in
Example 3.1. Then, the basic idea is that goals in plans are not reconsidered
whenever practical dynamics occurs. Of course, goals are not irrevocable. They
should, for instance, be dropped if they become inconsistent (cf. Bratman,
1987, p.16). Yet, goals are stabler than other notions with respect to practical
dynamics.

This leads us to a second observation. Echoing Horty (2015), we can appeal to
a sort of stability test to illuminate the conceptual distinction between basic
oughts, at least those that correspond to goals via ENKRASIA, and derived
oughts. The following example shows that derived oughts are generally less
stable with respect to practical dynamics:?

Example 3.2. Suppose I ought to repay 10 euro to Ann (basic ought), and I
hold the corresponding goal in my plan. Moreover, suppose that I do not have
a lot of money, and hence conclude that I ought not go to the movies (derived
ought), although I would really like to. Now if I learned that I have additional
money at home, sufficient for both repaying Ann and buying a cinema ticket, 1
would give up that I ought not go to the movies. While I would maintain that
I ought to repay Ann, and hence that doing so is a goal in my plan, I would
not maintain that I ought to make sure not to go to the mouvies.

Hence, while the difference between basic oughts and derived oughts is not ex-
plicitly reflected in surface grammar, testing stability with respect to practical
dynamics can help to make this conceptual distinction salient.?

2A version of Example 3.2 is discussed in Horty (2015), p.225.
3We thank an anonymous reviewer for drawing attention to the fact that the contrast
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The above observations show the relevance of investigating the effects of prac-
tical dynamics. Unanticipated obstacles or unexpected opportunities can di-
versely affect various notions at play in ENKRASIA, specifically goals in plans
and derived oughts. The challenge then consists in precisely characterizing
how and under which conditions these change dynamically.

3.3 Practical Dynamics

This section provides a formal background to investigate the dynamics of basic
oughts, goals and derived oughts. More precisely, we consider how goals and
derived oughts change when the agent receives new information that impact
her mental picture of the world and the options available to her. In general, this
information may trigger significant replanning, as the agent’s original options
might not be admissible anymore or new, better options have become available.
Studying these dynamic variations — we hold — provides additional insights
into the relationship between basic oughts, goals and derived oughts.

As mentioned above, our focus here is exclusively on what we have called
practical dynamics. This means that the dynamics studied here is not fueled
by time progression and the according changes to the set of options available.
For this exposition, we assume the agent to rest in moment ¢y, i.e., she has
not yet begun to put her plans into action. Even before beginning to act, the
agent might receive information that changes her beliefs of available future
courses of events (van Ditmarsch et al., 2008; Baltag et al., 1998). Moreover,
we stipulate that this information is purely descriptive: the agent does not
receive any information that leads her to adapt or discard any basic oughts.
Rather, updates may only concern further available courses of events she had
not yet considered, or that certain options she had considered are, in fact,
not available. Crucially, leaving the set of basic oughts intact does not entail
that the agent’s set of goals remains unchanged. Which of the agent’s basic
oughts translate into goals precisely depends upon whether they are satisfiable
in a given situation and, more general, which sets of basic oughts are jointly
satisfiable.

In the following, we provide a dynamic account of how the agent’s goals and
derived oughts change when the available courses of events do. We illustrate
this with the following example, which brings together our previous Examples

between basic oughts and derived oughts is not marked in ordinary language. The distinction
between the two oughts is rather conceptual.
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3.1 and 3.2:

Example 3.3. Suppose that I ought to repay my friend Ann 10 euro today
(basic ought), and that is a goal in my plan. I start to plan my day accordingly.
I believe I can get to Ann’s house only by bus or car, so it follows that I ought
to take the bus or the car (derived ought). Moreover, since my money is scarce,
it follows that I ought not go to the movies today (derived ought), although I
would really like to. In fact, I have even promised my friend Barbara to go
to the movies with her (basic ought), but repaying my debt takes precedence
(priority relation). Consider the following epistemic updates.

Update 1: Suppose I learn that the car has a dead battery, and I cannot
fiz the problem on time to reach Ann’s house to give her the 10 euro. So,
I conclude I ought to take the bus and replan my day accordingly.

Update 2: Suppose that later, I learn that I can simply walk to Ann’s (her
place is unexpectedly quite close). Hence, now there are again two ways
wn which I can reach her house: by walking or by bus. I conclude it’s no
longer true that I ought to take the bus.

Update 3: Finally, suppose that I find some extra money at home: It is
no longer true that I do not have enough money to repay Ann and go
to the mouvies. I can do both. Hence, it ceases to be true that I ought
not go to the mouvies. In fact, as I had promised my friend Barbara to
accompany her, it now follows that I entertain the goal of going to the
movies.

Figure 3.1 illustrates this situation: The top left corner shows the initial tree,
the top right corner the tree after learning that the car’s battery is dead. The
results of the following two updates are depicted in the bottom row.

3.3.1 Product Enkratic Models

We turn now to a formal representation of practical dynamics for the logics
Agnkr and Apgpir o introduced in the previous chapter. In line with much
work in computer science (e.g. Ciuni and Zanardo, 2010) we assume trees in
enkratic models to be discrete. To be precise, we assume that every history is
isomorphic to the natural numbers, i.e., it can be written as h =ty <7 t; <71
to <7 ...

For a tree T = (T, <7) let <;,, be the immediate predecessor relation,
ie. x <, yiff <7 y and there is no z € T with x <7 z <7 y. Note that



54 Chapter 3.
movies home home home movies home home
}om{ car bus, >om{ bus,

repay repay repay
M, \ P M \ /

home home

to to
. movies home movies
movi ;)me /home ;?me \home movies x home

walk, bus, / walk, bus,

home home

repay repay

Ms \T/

home
to

repay repay

M4\T/

home
to

Figure 3.1: Four stages of planning about going to the movies and repaying
money, indicated by the atoms repay and movies. In all models, we have
Frepay =¢ Fmovies and Np = {([F'repay]™, Frepay), ([ Fmovies]’, Fmovies)}.
Bold lines denote each model’s admissible subtree.

<7 and <, are in a tight relationship. As just shown, <;,, is definable from
<. Under our assumption that every history is isomorphic to the natural
numbers, the converse is also true: <7 is the transitive closure of <;,,. Hence,
providing an enkratic model M = (T, ty,v, N,, =¢) is equivalent to providing
an extended enkratic model M = (T, ty, v, N,, =0, <im) that includes the
relation <;,,. We will make use of this property later.

To technically define the dynamics of models, we refer to the concept of product
updates with postconditions (see van Ditmarsch et al. (2008); Baltag et al.
(1998) for some technical background). We focus on practical update models,
which do not introduce or revoke any basic oughts the agents is exposed to.
Rather these models merely change the tree of possible future histories.

Definition 3.4. A (practical) update model & = (S, sg, Rins, pre, post)
consists of a set of states S with sg € S, a relation R;,s C S x S, and maps
pre : S — Ly and post : S — P(At x {T,L}) such that (p, T) € post(s) =
(p, L) & post(s).
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Intuitively, S is a set of possible states with a temporal relation R;,s on it,
similar to the relation <;,, on 7. Each possible state or event s in S can
match and modify moments ¢ in 7. However, the matching might be subjected
to additional conditions to be met by ¢. These conditions are recorded in
pre(s). Finally, a state of the update model might prescribe a change to
atomic valuation at moment ¢. This change is represented by the postcondition
post(s), marking when a valuation should be forced true (i.e., (p, T) € post(s))
or false (i.e., (p, L) € post(s).

For the purposes of this chapter, we make two additional assumptions on the
update model. First, we demand the transitive closure R of R;,,, to be a dis-
crete tree order on S with root sy such that R;,, is the immediate predecessor
relation of R. Second, we require that for any s € S the set {—pre(t) | sRinst}
is Atemp inconsistent. In other words: for any formula ¢ € L, that is not a
Ayemyp contradiction, there is some successor ¢ of s such that pre(t) is logically
compatible with .

The second of the above assumptions, that for any s € S the set {—pre(t) |
SRimst} has to be Ay, inconsistent, is non-standard. In fact, this assumption
precludes classic approaches to public announcements or, more generally, the
deletion of possible worlds. The condition is needed to ensure that the non-
terminality axiom, Dg continues to hold in the updated model. As will become
clear in the formal treatment of Example 3.3, this restriction is far less severe
than it may seem at first sight. In fact, many cases of deletion can be mimicked
by postconditions, adequately transforming superfluous worlds.

Definition 3.5. Let M = (T, ty,v, N,, =0, <im) be an extended enkratic model
and € = (S, 80, Rims, pre, post) be a practical update model. The product
update of M with &, denoted by M ® &, is the extended enkratic model
((T'® S, <), (to, s0), v, N, =, <) defined as follows:

e T®S={(ts) eT xSIM,tEpre(s)}

Define a relation <, on T ® S as (t,s) <., (t,8) iff t <um t' and

m

SRimss'. The relation <’ is then the transitive closure of <

The valuation v’ : At — P(T' ® S) is defined by (t,s) € v'(p) iff either i)
(p, T) € post(s), or ii) t € v(p) and (p, L) & post(s)
([PD3is2 ) € N&™ 4 (Il ©) € NG

105 =
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To begin with, we note that M ® & is indeed an enkratic model. The proof of
the following lemma can be found in the appendix, along with all other proofs
of this section.

Lemma 3.6. Let M be an extended enkratic model and £ a practical up-
date model. Then ((T'® S, <), (to, s0), V', Nb, =5, <o) s an extended discrete
enkratic model.

To demonstrate the versatility of this approach, we show how all three updating
steps in Example 3.3 can be represented with update models. The first update
model & in Figure 3.2 corresponds to learning that the car is not available.
Note that by the second additional assumption on update models, the set
{=pre(s’) | sRimss'} has to be inconsistent for any s € S. We hence cannot
simply delete the car worlds, but need to replace going by car with something
else, in this case going by bus. The next update model & corresponds to
learning that I could walk to my friend’s house. Here, a copy of the going-
by-bus world is transformed into a walking-world. Finally, & corresponds to
learning that I have sufficient money to see the movies even after repaying my
friend.

The three update models displayed in Figure 3.2 generate the sequence of
models My, My, M3, M, depicted in Figure 3.1. More precisely, we have that
My ® E = Mz and M3 ® E = M,. For the transition from M; to Msy
this is not fully true: M; ® &; is not the same as M, since the former has
two duplicate branches of going by bus. However, as My can be gained from
M; ® &; by removing one of these duplicate branch, both models are logically
equivalent.

3.3.2 Back to Challenge III: Dynamic Conditions

We show several general results that illustrate the complex relationship be-
tween updates, goals and derived oughts. Practical update models, despite
not changing the set of basic oughts an agent is exposed to, can have intricate
and non-monotonic effects on the agent’s goals or derived oughts. In particu-
lar we show that the agent’s set of goals need not necessarily grow when her
available options grow, and it need not shrink if her options shrink.

To formulate these results, we fix a piece of notation. Let Hist(T) denote the
set of histories of a tree 7. For a given situation M, we call practical update
model £ a restriction if Hist(M ® £) C Hist(M), and an expansion if
Hist(M) C Hist(M ® &). Note that the first update in Example 3.3 is a
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€ post : () post : ()
1 pre : —car pre: T

/

post : () post : —car, bus post : ()
pre: T pre : car pre: T

post : () post : ()

& pre: T pre: T
post : ) —_ post : —bus, walk post : ()
pre: T pre : bus pre: T
S0
£ post : () post : ()
3 pre : home pre: T
post : ) post : () post : )
pre: T pre : —=home — pre: T
So post : movies, —home
pre: T

Figure 3.2: Practical update models corresponding to the three updating steps
from Example 3.3

restriction, while the second and third update exemplify expansions.

We can turn now to two structural results about restrictions and expansions
and how these impact the agent’s goals. In the following, we write n to
denote the goal formulas an agent pursues in model M (more formally, ng =

{p | M, to E Goalp}).

Lemma 3.7. Let M be an enkratic model where for each ([¢]™, @) and ([¢]™, )
in No with 1 =o ¢ it holds that ¢ € n}' whenever ¢ € n}!. Let € be an ez-
pansion of M. Then n}t C n¥'®%.

Lemma 3.7 identifies a condition under which the agent’s set of goals increases
if new options become available to her. This additional condition is crucial. In
general, an agent might drop some of her goals when new options become avail-
able. The following example provides an enkratic model M and an expansion
&£ of M such that n}t € n}®¢.

Example 3.8. Consider the enkratic models M, M’ displayed in Figure 3.3.
In both models we set No = {([Fp]™, Fp), ([Fa]*, Fq}), ([Gr]*,Gr}) and
Fp =0 Fq =0 Gr. Clearly, Hist(M) C Hist(M') and there is an update
model € such that M' = M ® E. Hence M’ is an expansion of M. In M
we have M.ty E GoalFp and M, ty E GoalGr but Mty 7 GoalFq. In the
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M
/r > P, r > I > P, r
r
to\‘r r p r
M /r P,T r P,r
r > I > I > P > I, q
to\
r r p r

Figure 3.3: An expansion M’ of M that does not C-increase the set of goals.
Bold lines indicate the admissible subtree.

expansion M’, on the other hand, we have M’ ty F GoalFp N GoalFq but
Mt # GoalGr. Hence ny' € ni®%.

Next, we turn to restrictions. Here, we show that an agent’s goal set cannot
grow as some of her options are removed.

Lemma 3.9. Let M be an enkratic model and let M ® & be a restriction of
M. Then it ¢ n1®e.

This does not imply that a restriction cannot give rise to new goals. When
certain goals become unreachable, other basic oughts the agent had discarded

before may move into focus. In formal terms: It is, in general, not true that

MQE
ng Cn

M. This is the subject of the following example.

Example 3.10. We use the same construction as in Example 3.8. Again,
consider the enkratic models M, M’ displayed in Figure 3.3. Again, we set
Fp >0 Fq >0 Gr and No = {([Fp]™, Fp), ([Fa]®, Fa}), ([Gr]*, Gr}) in both
models. FEvidently, Hist(M) C Hist(M') and there is an practical update
model € such that M is equivalent to M' @ £. Hence M is a restriction of

M. Then the same argument as above shows that n}'®¢ ¢ n.

The two examples above illustrate that purely practical updates can have com-
plex and non-monotonic effects on the agent’s goals or derived oughts. In par-
ticular, even practical updates merely expanding the set of available histories
may trigger the agent to drop certain goals of hers. Partially, such phenomena
are due to the exact choice of updating rule. In the present framework, the
agent calculates her set of goals from scratch after each update, picking as the
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new goal set the maximally consistent subset of basic oughts that is maximal
in the lexicographic order induced by >o.

An alternative updating policy might opt for minimal changes instead, adopt-
ing as the updated set of goals some maximally consistent subset that differs
minimally from the goal set the agent pursued before the update. While im-
mune to the non-monotonicity described above, such minimal change rules may
trigger a different type of non-conservativeness. Take for instance a two step
update where an agent is first informed that some history h of a given enkratic
tree model M is not available, followed by a second update indicating that the
first information was wrong and h is, in fact available. After executing both
updates, the tree of available options is exactly as it was in the starting model
M. With the original updating policy described above, the set of goals after
both updates is also the same as the initial goal set. However, this would, in
general, cease to hold if we followed a minimal change rule instead.* We take
this to illustrate that the existence of complex interaction patterns between
changes of available histories and the set of goals pursued does not hinge on the
exact updating policy — rather, it is a general fact of planning when exposed
to possibly incompatible sets of basic oughts.

This completes our investigation of the effects of practical dynamics on basic
oughts, goals and derived oughts, and concludes the project we embarked on
in the previous chapter.

3.4 Conclusion and Open Ends

We pursued two aims: analyzing the logical structure of ENKRASIA, and ad-
dressing some of the implications ENKRASTA has, in combination with certain
other principles of practical rationality, for deontic logic.

As for the first aim, we have argued that ENKRASIA is a principle of bounded
validity. Goals are subjected to two requirements of INTERNAL and STRONG

4To see that this holds true for any minimal change updating rule, consider a enkratic
model M counsisting of three branches f,g and h. Moreover, assume No to contain three
basic oughts O; - O3 which are satisfied in the subtrees {f, g}, {f, h} and {g, h} respectively.
Maximally consistent subsets hence are {O1,02},{01,03} and {O3,03}. Assume wlog
that {O1,02} is adopted as set of goals in M. After removing branch f, this set is not
consistent anymore, now only {O1,03} and {O3,03} are maximally consistent. One of
these is selected as new set of goals, wlog {O1,03}. Since {O1,03} remains maximally
consistent after adding f again, any minimal change rule must retain it as set of goals. In
particular, the set of goals after removing and re-adding f is different from before.
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CONSISTENCY which basic oughts are not. Both of these conditions set bound-
aries for the translation of basic oughts into goals. ENKRASIA, then, is only
valid as far as it does not conflict with either requirement of consistency.

In relation to the second aim, we have elaborated on the distinction between
basic and derived oughts. This distinction allows us to validate crucial deontic
inferences (crucially, a reading of the so-called practical inference) without
generating an unrestricted validity of deontic closure. In fact, by restricting
the conclusions of deontic closure to derived oughts, many of the paradoxical
implications usually associated with deontic closure no longer obtain.

The conceptual distinction between basic and derived oughts — ultimately
grounded in their interaction with goals — surfaces also in their kinematics.
We have provided a dynamical logical framework to account for the notion of
practical dynamics, and formally investigated the stability conditions of oughts
and goals under such dynamics.

Related approaches. To the best of our knowledge, ENKRASIA has not
been previously investigated explicitly from a logical perspective. There are,
however, a variety of logical frameworks that deal with notions pertaining to
practical rationality. We point to some of these. The analysis presented here is
linked to the logical tradition of interpreting intentions according to Bratman’s
(1987) planning theory. Related works —mainly focusing on normal modal
logic— include Cohen and Levesque (1990) and Lorini and Herzig (2008). The
latter paper also discusses practical inference, though in the context of forming
instrumental intentions rather than derived oughts.

For what concerns the dynamics of intentions and plans, related work includes
van der Hoek et al. (2007), with a focus on the operation of deleting plans.
A second reference is Icard et al. (2010), who provide an account of intention
revision based on AGM theory. Further complementary work includes Craven
and Sergot’s (2008) account of permitted and obligatory actions within tran-
sition systems, and Broersen et al.’s (2001) syntactic, default-based approach
on conflicts between beliefs, obligations, intentions and desires.

While various frameworks address the relationship between obligations, plans
and intentions, combinability across approaches is sometimes hampered by the
fact that these may refer to different things. Consider, for instance, Broersen
et al.’s 2001 BOID framework on beliefs, obligations, intentions and desires
mentioned above. BOID distinguishes, inter alia, between obligations (be they
believed by the agent or not) and intentions, denoting actions the agent plans
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on doing. In the present framework, in contrast, basic oughts are assumed be-
lieved by the agent. Goals in a plan, moreover, correspond to basic oughts the
agent decided to pursue. These form a category between BOID’s obligations
and intentions.

Future directions. The present approach fits in with a larger project on the
logic of oughts in the context of practical rationality. The analysis and the
framework presented here can be extended in different directions. We mention
two.

One possible extension of our framework pertains to the relation between
ENKRASTA and permissions. We have seen that the relation between oughts
and goals is not unidirectional. Oughts translate into goals, but also further,
derived oughts can be generated from a given set of goals. However, it seems
that not only oughts, but also permissions can be derived from what the agent
is committed to bring about. The admissible subtree, denoting the intersection
of all goals pursued by the agent, can be thought of as a weakest permission,
i.e., as the largest subtree the agent is permitted to arrive in, given her com-
mitments. Naturally, stronger permissions may also hold, permitting the agent
to arrive in any subtree of the admissible tree. A classic reference on this is
Anglberger et al. (2015).

A second possible extension relates to the way in which possible future courses
of events are represented. In the current framework we use a tree-structure
to represent the agent’s choices options among future unfoldings of events.
This picture can be refined in various ways. We may, for instance, restrict the
agent’s ability to fully select the future course of actions. That is, agents may
no longer be able to pick a specific branch, but merely to choose some subtree
to stay within. Conceptually, this might require a refinement of the principle
of STRONG CONSISTENCY, e.g., by demanding that if Goaly then the agent
believes she has an available choice option that guarantees . Formally, this
would amount to having equivalence classes of histories (representing choice
uncertainty) paired with a quantification over such classes. Similar topics have
been investigated by Horty (2001) and Ciuni and Zanardo (2010). The results
presented in these works could form a fruitful starting point for expanding the
logic of ENKRASIA.
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3.5 Appendix: Proofs

Proof of Lemma 3.6: We begin with showing that <’ is a tree-order on 7T'® S.
Transitivity is immediate, as <’- is transitively closed. For irreflexivity assume
the contrary, i.e., assume that there is some (¢',s') with (¢',s") <+ (¢, 5).
Hence there are (t',s") <., (t2,52) <%, -+« <bn (tnysn) = (t',s'). By definition
of M ® &, this entails that t' = t; <, ta... <im t, = t'. In particular, we get
t' <7 t', as <7 is the transitive closure of <;,,. But this contradicts the fact

that <7 is irreflexive.

Finally for inverse linearity, let (¢,s) € T'® S. We need to show that:
P={({s)eTaS|{t, s)<F(ts)}

is linearly ordered by </-. Let (¢, '), (£,3) € P be given. We have to show that
(t',s") < (1,3) or (1,8) <+ (t,s'). By assumption, we have that ¢/, <7 t.
By construction and the assumption that <+ has the order type of the natural
numbers, there is n’ € w such that (¢, s") = (¢;, s() <% ... <4 (¢, s,,) = (L, s)
with ¢, <im ... <im tw and sgRins. .. Rimssn. Likewise, there is n € w
such that (£,3) = (to,50) <5 ... < (ts,5:) = (t,s) with tg <im - .. <im ta
and SoR;ns ... RimsSn. By definition of a practical update model, R;,s is a
unique predecessor relation, i.e., xR;ns2 and yR;,s2z implies x = y. We hence
have that s/, | = 851, s/, 5 = S5_2.... The same reasoning yields that
t,  =tia, th o =1tso.... Since (T,<7) is a tree, we have that t' < ,
t <7 t' or t' = t. Without loss of generality, we assume the first, the other
cases being similar. Since ¢ <7 ¢, we have n’ > 7 and hence t = t, .. By the
above, this implies that (¢,3) = (¢, .,s!, ), and hence (¢, s") <!~ (£, 3).

n'—ns °n'—n

Finally, we have to show that the tree order </ is serial. To this end, let
(t,s) € T ® S. We have to show that there is some (#,s") € T'® S with
(t,s) <% (¥',s'). Note that by seriality of 7, there is some ¢’ with ¢t <7 t'.
By our discreteness assumption, we can pick ¢’ such that ¢ <;,, t'. Next, we
claim that there is some s’ € S with sR;,ss’ and M, E pre(s’). Note that
this claim implies that (¢,s) <’ (¢, s’), finishing the proof. So let us show
the claim. Assume not. That is, assume that M,t' & pre(s’) for all s € S
with sR;,ss’. Hence, M, t' E —pre(s’) for all s’ with sR;,ss’. This shows
that {—pre(t) | sRimst} is consistent, contradicting the assumption that S is a
practical update model. O

Proof of Lemma 3.7: Since M®ZE is an expansion of £, the set S = {[[w]]%/?@f%) |
[¥]%, € N&'}in M®E is consistent. By assumption, ny! is =o-upward closed
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in {¢ | ([¢]: ) € N§'} and hence also in {¢ | ([¢]¥ee. ) € No'*“}. In
particular, the <., maximally consistent subset of {[p]®%0) | (] %), ) €

N2'®%) contains S. This shows that n! C n!®*. O

Proof of Lemma 3.9: Assume for a contradiction that n}' C né’@g. This

implies that n! <7, nX'®. Hence, by construction of the neighborhood
N, the set {[0]% | [¢]uee € NG} must be inconsistent, ie., there
is no history h of T such that h € [p]’y for all p with []70,e € N&'.
This, however, is impossible: Né/l@g is by definition consistent in M ® &, i.e.,
there is some history h of M ® & with h C [p]® whenever [p]o € NJ'®¢.
Since M ® £ is a restriction of M, h is also a history of M, showing that

{Io | [[80]]3\4@)5 € Né/@g} is consistent. n
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Chapter 4

Objective Oughts and Reasoning
by Cases

In this chapter, we focus on future-dependent oughts, i.e., oughts whose truth
(now) is dependent on what will happen in the future. We have two aims:
(i) investigating the semantics of future-dependent objective oughts and (ii)
investigating the validity of Reasoning by Cases for objective oughts. These
two aims are related. It is shown that there is an interpretation of future-
dependent objective oughts for which Reasoning by Cases is not valid.

4.1 Introduction

A familiar view admits that certain oughts in morality and natural language
are objective.! Consider Oedipus, Jocasta’s son. There exists a sense of oughts,
the objective one, according to which the sentence “Oedipus ought not marry
Jocasta” is true. To a first approximation, objective oughts indicate what
is the best action to perform regardless of an agent’s epistemic limitations.
They are a function of facts of the world, known or unknown, and of sets
of values. Hence, in our mythical example, the sentence “Oedipus ought not
marry Jocasta” describes what is the right thing to do, the best course of

!See, e.g., discussions in Mellor (1983), Oddie and Menzies (1992), Broome (2013), Wedg-
wood (2003), Wedgwood (2016), Bykvist (2009), Hare (2011), Silk (2014a), Carr (2015).
Some of the best-known semantic frameworks for deontic modals are also based on such a
notion of objective ought. Those frameworks typically involve a state (or modal base) of
possible worlds describing a body of contextually relevant facts, and an ideality function
which indicates the deontically best worlds within the state. Kratzer (1991) and Kratzer
(2012d)’s semantics is an example: in the Kratzerian framework, deontic modals such as
ought, must, might indeed quantify over a circumstantial (i.e., not epistemic) modal base.

65
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action given the moral values on incest and given what ¢s actually the case —
namely, that Jocasta is in fact Oedipus’ mother. That Oedipus is ignorant of
this plays no role.

Being that objective oughts are a function of the facts of the world, a futurity
problem emerges: Can objective oughts depend on what will happen in the
future? If yes, how should they be accounted for?

We address the above questions, and investigate three solutions to the futurity
problem: (i) denying any objective interpretation of future-dependent oughts,
(ii) evaluating future-dependent objective oughts with respect to the relevant
future facts, (iii) evaluating future-dependent objective oughts with respect to
objective probabilities. It is shown that each solution triggers different con-
ceptual and logical implications for oughts. The probabilistic account (iii) is
the least standard: nevertheless we argue that it meets some plausible desider-
ata about the semantics of future-dependent objective oughts, while setting an
objectivist standard for decision making under indeterminacy and risk.

The analysis of the futurity problem and of its possible solutions complements
the existing literature on objective oughts and, in particular, contributes to the
current debate surrounding the so-called Miners’ Puzzle. Firstly, it is shown
that different senses of objective oughts arise depending on which solution to
the futurity problem is adopted. The characterization of objective oughts as
oughts from a God’s-eye view (Gibbard, 2005) — that is, oughts determined
by what will in fact be the case — is, contrary to the common conception, just
one of those possible senses.

Relatedly, the analysis presented in this chapter discredits the misconception
that objective oughts obey classical rules of inference. Recent literature on
the Miners’ Puzzle has shown that oughts that are relative to the agent’s epis-
temic standpoint do not validate the inference rule of Reasoning by Cases
(Kolodny and MacFarlane, 2010; Willer, 2012; Carr, 2015; Cariani et al., 2013;
Bledin, 2015). However, the Miners’ Puzzle emerges in a scenario of uncer-
tainty, therefore leaving the logic of objective oughts unaffected. We show that,
if the future is possibly indeterminate, then a Miners-like Puzzle emerges for
future-dependent objective oughts. Hence, Reasoning by Cases is not generally
valid for objective oughts either.

The chapter has the following structure. In Section 4.2, we introduce objec-
tive oughts. In Section 4.3, we discuss the Miners’ Puzzle and, more generally,
Reasoning by Cases under uncertainty. Future-dependent objective oughts and
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possible solutions to the futurity problem are investigated in Sec.4.4. In Sec-
tion 4.5, we bring to attention a Miners-like puzzle (called the Betting Puzzle)
involving (probabilistic) future-dependent objective oughts. It is argued that if
the Miners’ Puzzle shows that Reasoning by Cases is invalid under uncertainty,
the Betting Puzzle shows that Reasoning by Cases is invalid under indetermi-
nacy. Section 4.6 concludes. The appendix 4.7 contains the relevant formal
apparatus. It presents a formal semantics for probabilistic future-dependent
objective oughts, and shows how such semantics solves the Betting Puzzle. It
concludes by comparing the Betting Puzzle to a similar scenario proposed by
Horty (2001).

4.2 Objective Oughts

Let us begin with a general schema (GS) to represent objective views on oughts
(adapted from Bykvist, 2009):

(GS) At time t an agent a ought objectively to X if and only if X-ing is best
in light of F, with F non-epistemic.

In other words, F is a place-holder for whatever makes the action X best,
with the constraint that F is not analyzable in epistemic terms. F has, in this
minimal sense, an objective character.

F’s objective character, however, does not necessarily exclude any reference to
subjective features of the agent in S, such as her motives, values or desires.
For instance, objectivists do not need to deny the role that Greek values on
incest play in determining that Oedipus ought not to marry Jocasta. What
objectivists need to exclude is that F is defined in terms of the agent’s evi-
dence. That Oedipus believes that Jocasta is not his mother is not relevant to
determine what he objectively ought to do.

This chapter focuses on a common specification of the above schema, namely
the one that analyzes F in terms of facts of the world (for the moment, we
set aside the contribution of subjective features such as values). According to
such specification, objective oughts are defined as follows (see Gibbard, 2008;
Broome, 2013; Kolodny and MacFarlane, 2010):

Definition 4.1. At time t an agent a ought objectively to X if and only if
X-ing is best in light of the relevant facts.

Let us call the above definition FACTS. What are those facts? To the best of
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our knowledge, proponents of FACTS do not explicitly commit to any (meta-
physical) account of facts. For the purposes of this chapter, we adopt a stan-
dard semantic account of facts: facts are those propositions that are settled
true. For instance, it is a fact that Jocasta is the mother of Oedipus in the
sense that “Jocasta is the mother of Oedipus” is settled true.? Not all set-
tled true propositions will do, however. To qualify as a definition of objective
oughts, the relevant facts in FACTS need to be non-epistemic: facts about
what Oedipus believes, for instance, do not count. In what follows, we will thus
talk about facts as non-epistemic propositions that are settled true. Moreover,
we will treat ought and should as synonyms.

4.3 Reasoning by Cases Under Uncertainty

Objective oughts are not affected by problematic scenarios involving reasoning
under uncertainty. A prominent example of these scenarios is the so-called
Miners’ Puzzle. Here is how Kolodny and MacFarlane (2010) introduce the
puzzle:

Ten miners are trapped either in shaft A or in shaft B, but
we do not know which. Flood waters threaten to flood the shafts.
We have enough sandbags to block one shaft, but not both. If we
block one shaft, all the water will go into the other shaft, killing
any miners inside it. If you block neither shaft, both shafts will
fill halfway with water, and just one miner, the lowest in the shaft,
will be killed.

(Kolodny and MacFarlane, 2010, p.115)

Why is it a puzzle? Given the scenario, the following sentences seem all to be
acceptable:

1. You ought to block neither shaft
2. The miners are in shaft A or the miners are in shaft B
3. If the miners are in shaft A, then you ought to block shaft A

4. If the miners are in shaft B, then you ought to block shaft B

2There are specific contexts in which a more fine-grained semantic account of facts is to
be preferred. For instance Kratzer (2012b) argues that, for what concerns the semantics
of the verb to know and the semantics of counterfactuals, facts need to be something more
specific than proposition— rather, particulars or information units. In this chapter, we
adhere to the more standard semantic account of facts as settled true propositions.
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However, from the premises (2), (3), (4) via Reasoning by Cases it follows
that:?

5. You ought to block shaft A or you ought to block shaft B

which, in turn, contradicts (1). The puzzle has been taken to show that Rea-
soning by Cases is invalid for deontic arguments(Kolodny and MacFarlane,
2010; Willer, 2012; Carr, 2015; Cariani et al., 2013; Bledin, 2015).

For the purposes of the present chapter, two observations are particularly
relevant. Firstly, in order to show that Reasoning by Cases fails in the Miners’
scenario one does not need a premise as strong as (1). A weaker premise (la)
“It is not the case that we ought to block shaft A and it is not the case that we
ought to block shaft B” would suffice — as it would correspond to the negation
of (5). Premise (1) says something more: we do not simply lack the obligation
to block either shaft, we have the obligation to block neither. Such a strong
premise may emerge, for instance, from the application of a decision norm such
as MaxiMin, or mazimization of expected utility. Table 4.1 depicts the decision
problem faced in the Miners’ scenario.

miners are in A | miners are in B
Block A 10 0
Block B 0 10
Block neither shaft 9 9

Table 4.1: Decision problem for the Miners’ Puzzle

In Table 4.1, the numerical values are derived from the number of miners saved
(thus reflecting the moral values at place in the scenario). The states “miners
are in A” and “miners are in B” are equally likely, epistemically speaking (hence,
in terms of subjective probabilities). We ought to block neither shaft because
that action guarantees the best worst-case outcome (according to MaxiMin)
or because that action has the greatest expected utility.*

The second, and most important, observation is as follows: the Miners’ scenario
emerges as a puzzle because it involves a certain epistemic uncertainty, namely,

3Reasoning by Cases is a deductive inference rule from the premises 1 or @97,
Fif (o7 then 717 and Tif o then 157 to the conclusion ™ or o7

4See Cariani et al. (2013) for an analysis of the Miners’ Puzzle in terms of the decision rule
MaxiMin, Lassiter (2016) for an analysis in terms of maximization of expected utility, and
Carr (2015) for a general overview of the various approaches adopted to solve the Miners’
Puzzle.
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the uncertainty on where the miners are. Such uncertainty is relevant for
oughts that are sensitive to the beliefs/information that an agent possesses.’
However, it does not affect objective oughts. The position of the miners is
already settled. In the sense described above, it is a fact that the miners are
in shaft A or it is fact that the miners are in shaft B. In either case, it follows
that the objectively best thing to do is blocking the shaft the miners are in.
Thus, under the objective reading of ought as in FACTS, (1) is false (as is
the weaker (1a)), and the conclusion (5) is correctly derived from (2)-(4) by
Reasoning by Cases. Objective oughts appear, therefore, to obey such classical
inference rule.

4.4 Future-Dependent Objective Oughts

Having introduced the main characteristics of objective oughts, let us now
address the futurity problem that FACTS generates. The problem centers on
the notion of future-dependent oughts, which we clarify below.

With the term future-dependent oughts we mean oughts whose truth at ¢ de-
pends on considerations about what will happen at a later time t'. These
future-dependent oughts are ubiquitous in morality and natural language.

Consider, for instance, consequentialist ethical theory. According to conse-
quentialism, a sentence like “Agent a ought to do X” is true at t if the action
X will bring about the best consequences. Given the temporal relation be-
tween an action and its consequences (with the consequences happening after
the action), consequentialist oughts are thus future-dependent in the sense just
outlined: what counts as morally relevant for the rightness of an action at ¢
happens indeed at a later time ¢'.

Future-dependent oughts are not only technical terms in ethical theory; they
are part of natural language as well. We can distinguish at least two kinds of
sentences involving future-dependent oughts: (i) sentences that feature oughts
depending on some future object or individual (as in “You ought to now con-
gratulate the winner of tomorrow’s match”, where the referent of the definite
description “the winner of tomorrow’s match” will only be determined in the
future); and (ii) sentences that feature oughts depending on future states of
affairs or propositions. This chapter restricts the attention to sentences of the
latter kind.

5See Carr (2015) for an analysis of subjective oughts, and MacFarlane (2014), Kolodny
and MacFarlane (2010) and Silk (2014b) for an account of informational oughts.
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Sentences involving future-dependent oughts appear in contexts of both advice
and deliberation:

6. ADVISER: You ought to buy fire insurance for your house
7. AGENT: If the coin will land tails, I should bet on tails

The first sentence is an example of advice under risk: considerations about
whether and with which probability your house will — in the future — catch
fire are, amongst other things, relevant to determine whether you ought to get
fire insurance. The second sentence is an example of a conditional of practical
deliberation: considerations (and suppositions) on how the coin will land are
relevant when deciding how to place a bet.®

Now we can introduce the futurity problem: Is it possible to interpret future-
dependent oughts objectively? That is, are there future-dependent objective
oughts? If yes, how should those oughts be evaluated?

FACTS, which interprets objective oughts as functions of facts, does not pro-
vide a straightforward answer to these questions. The reason being that, while
it seems natural to think of facts about the present and the past (about what
is happening or happened), and therefore of objective oughts depending on
them, the future is characterized by conceptual and formal challenges. How
do considerations about what will happen in the future fit in such a picture
of objective oughts? The rest of the chapter is devoted to outline and eval-
uate possible solutions to this problem. Far from being an orthogonal issue,
we show that this has concrete implications for objectivist ethical theory and
deontic logic.

To qualify as a solution to the futurity problem, three minimal desiderata are
in place:

e Conservativity. An adequate solution to the puzzle should (i) maintain
an objectivist character, that is, it should fit with the general schema
[GS] presented on p.67, and (ii) at most extend FACTS to account for
future-dependent oughts.

e Univocality. An adequate solution should provide a univocal definition
of objective oughts, be they dependent on the past, present or future.

6For the sake of simplicity, we consider only indicative conditionals of deliberation. For
a general defense of conditionals of deliberation as indicatives — and not as counterfactuals
— see DeRose (2010).
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o Neutrality about the Future. An adequate solution should not rely on any
structural semantic commitment about future contingency.

The rationale behind the above desiderata is the following. Conservativity
assures minimality of change: an adequate solution to the futurity problem
should still qualify as objectivist, and provide the same account as FACTS for
what concerns oughts that are dependent on the present or the past. Univo-
cality recommends that there be a unique, fixed meaning of objective oughts.
Finally, the last desideratum recommends that a solution to the futurity prob-
lem does not presuppose any particular answer to the question of future con-
tingency (cf. MacFarlane, 2003).

Let us illustrate the above desiderata via an example. We can imagine an
account of objective oughts going roughly as follows: objective oughts that
are dependent on the past and the present are defined in light of the relevant
facts, while future-dependent oughts are defined in light of a different feature
®. If the feature ® were non-epistemic, the account would satisfy conservativ-
ity (as it would fit with [GS] and, at most, extend FACTS). However, it would
not satisfy univocality: objective oughts would be given a different definition
whether they depend on the past, the present or the future. Finally, an ac-
count committed to the impossibility of future contingents would violate the
desideratum of neutrality.

Equipped with the above desiderata, we turn now to the possible solutions of
the futurity problem.

4.4.1 No Future-Dependent Objective Oughts

The first, simplest solution to the futurity problem consists in keeping FACTS
as it is, and denying that future-dependent oughts can have an objectivist
interpretation. To the extent that FACTS treats objective oughts as functions
of facts, and that what will happen in the future is not yet a fact, there is no
way to determine objectively the truth of sentences involving future-dependent
oughts. A natural semantic background for such an account of objective oughts
is given by the so-called “growing block” frameworks.”

"According to “growing block” frameworks, only the past and present objectively exist.
Semantically, the history of the actual world ends at the present time, after which there is
nothing. Such history, however, grows with the passing of time: new slices are added, and
the edge of history moves forward. Since on growing block frameworks there is only the
past and the present, FACTS can account only for objective oughts that depend on what
happened in the past or is happening in the present. For a critical discussion of the growing
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This solution is compatible with having other types of oughts be future-
dependent, for instance oughts based on an agent’s beliefs or credences about
what will happen in the future. It is under the objectivist reading that the
truth of future-dependent oughts would not be determined.

Although this solution meets the three desiderata above, it appears too strong.
Which implications would such account of objective oughts have? Consider
the following scenario: a bookmaker offers you a bet on a coin toss. Assume
that, perhaps unknown to the bookmaker herself, both coin’s sides are heads,
and therefore the coin will certainly land heads. Supposing that you value
monetary gain, it seems natural to say that you objectively ought to bet on
heads. However, the latter ought is a future-dependent one: after all, what
assures monetary gain is the side on which the coin will land. Hence, if this
solution to the futurity problem were adopted, the truth of “You should bet on
heads” could not be determined objectively. This is too cautious an account
of objective oughts and objective decision making. In what follows, we show
that there are alternative ways that can make sense of (at least some) future-
dependent objective oughts.

4.4.2 Future-Dependent Objective Oughts and Facts

A second way of accounting for future-dependent objective oughts is to treat
what will happen in the future as a fact. There would be future facts — in the
sense of non-epistemic propositions about the future that are settled true —
and their status would be on a par with present and past facts. This solution
to the futurity problem would not require any modification of FACTS.

This solution would meet the desiderata of conservativity and univocality.
There are at least two semantic frameworks in which the desideratum of neu-
trality can be satisfied: these correspond to the so-called “Peircean” approach
to branching time or the so called “thin red line” approach.®

Peircean Approach and Branching Time

A widespread semantic approach in temporal logics consists in allowing the
temporal evolution of the world to have the shape of a branching tree: the

block views, see Merricks (2006).

8We are therefore excluding semantic frameworks that impose linearity of time. Those
frameworks would permit one to represent future facts in terms of propositions about the
future that are settled true, but they would be committed to denying future contingency —
hence not satisfying the desideratum of neutrality.
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future is possibly open, and branches represent many possible continuations
of the world (Belnap and Green, 1994; Horty and Belnap, 1995; MacFarlane,
2003). For the purposes of this chapter, it is crucial to interpret the branches
as genuine objective possibilities. The future is possibly open not only in an
epistemic sense, but in re (see Belnap and Green, 1994, p. 365).

Formally, branching trees can be defined as follows:

Definition 4.2. Let T be a non-empty set of moments. A tree is an irreflexive
ordered set T—(T, <) in which the set of the <-predecessors of any moment t
of T is linearly ordered by <. A history is a mazimal linearly ordered subset
of T.

Such representation in terms of an objective branching tree is neutral with
respect to future contingency: the reason being that a linear time is just a
special case of branching time.

According to the Peircean interpretation of the future (Prior (1967) and Thoma-
son (1984)), at t it is true that "WillpT if and only if ¢ is true in all future
branches of t. Under this interpretation, trees can in fact provide an adequate
formal background for future facts. We have said that future facts are proposi-
tions about the future that are settled true; under the Peircean interpretation,
this amounts to saying that Willp is a future fact if and only if ¢ is true in all
possible futures. Or, to use a toy example: it is already a fact that the coin
will land tails if and only if the coin lands tails in all the future possibilities
that are open to us now.

Let us consider some further characteristics of the Peircean interpretation of
future facts. Firstly, if it is not a fact that the coin will land tails, then it
might be the case that in some possible futures the coin lands tails, and in
some other possible futures the coin does not land tails.” Secondly, even if it is
now a fact that the coin will land tails, it does not follow that that has always
been so. There might have been a future, possible in the past but not possible
anymore, in which it was not a fact that the coin would have landed tails (see
Thomason, 1984, p.143).

What are then the implications of having a Peircean account of future-dependent
objective oughts? Such a solution to the futurity problem implies that only
oughts that depend on already settled propositions about the future can be

90n the Peircean interpretation, "=Willy™ differs from "Will=p™: the latter implies the
former, but not viceversa (see Prior, 1967, p.129).
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interpreted objectively. In other words, this solution cannot account for ob-
jective oughts that depend on a chancy future. Sentences like “You ought to
get fire insurance for your house”, in contexts in which there is a certain risk
your house will catch fire, or “You should bet on tails”, in contexts in which a
coin is 0.9 biased, cannot be interpreted objectively — the reason being that,
in those contexts, it is not already settled whether your house will catch fire
or the coin will land tails. These do not count as facts under the Peircean
interpretation, and hence fall outside FACTS.

The Thin Red Line and Branching Time

There is one further approach that could provide a proper semantic background
for FACTS: the so-called thin red line.'® We have seen that, according to the
standard interpretation of branching time, the world could evolve in the future
through different histories. Among all those histories, however, there is only
one which corresponds to how the world will actually be. The thin red line
precisely marks out the actual future.

ha ha hs ha
< t

Figure 4.1: Dashed: the thin red line.

Consider again our coin example. There is a sense in which at ¢y, the moment
in which the coin is tossed, the future is open. It is possible that the coin
lands tails and it is possible that the coin lands heads. Amongst those two
possibilities, however, only one will be realized. That is the one picked up by
the thin red line. So, at ty it is a fact that the coin will land tails, if that
is what will actually happen, i.e., if the coin lands tails at a certain future
moment ¢ within the thin-red line. Postulating a thin red line would enable us
to have both future facts and different future possibilities accounted for. We
can say that it is a fact that the coin will land tails without committing to
saying that that is inevitable; after all, the coin could land heads.

What are the implications of the thin red line on future-dependent objective
oughts? Consider again the sentences “You ought to get fire insurance for your

0For a critical presentation of the thin red line approach, see Belnap and Green (1994);
MacFarlane (2003).
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house” and “You ought to bet on tails” in the context of a chancy future. Under
the thin red line interpretation, these future-dependent oughts can receive an
objective reading: their truth (or falsity) depends on whether your house will
actually catch fire or the coin will actually land tails, that is, on whether your
house catching fire or your coin landing tails lie on the thin red line.

The account of future-dependent objective oughts that emerges here is what
Oddie and Menzies (1992) call actual-outcome objectivism, and Hare (2011)
describes as “what an omniscient creature would advise to do” (see also Gib-
bard, 2008; Kolodny and MacFarlane, 2010). The sense of objective ought that
emerges from this solution to the puzzle is the one from a God’s-eye perspec-
tive: as in the case of an omniscient being who could already see the actual
development of the world, the truth value of future-dependent objective oughts
is already determined depending on whether the relevant propositions are true
or false on the thin red line.

This solution to the futurity problem has, however, some shortcomings. Firstly,
Belnap and Green (1994) and MacFarlane (2003) have extensively argued
against the commitment of a thin red line. The standard objection is that
the stipulation that there exists one, privileged thin red line amongst the
possible histories makes unclear in which sense the other possible histories
represent objective, ontological possibilities. If now it is a fact that the coin
will land tails, then, in a certain sense, that the coin will land tails is already
determined. Hence, the alternative histories might at most be epistemically
possible (it is a fact that coin will land tails, but we cannot know it yet), but
not possible in re. If this objection succeeds, then the thin red line solution to
the puzzle about futurity does not meet the third desideratum of neutrality.
The second shortcoming, or at least limitation, concerns the applicability of
an objectivist account of oughts defined from the God’s-eye perspective. As
in the Peircean interpretation, this account also does not provide any satis-
factory objectivist standard for deontic reasoning under indeterminacy: to the
contrary, issues related to risk are completely left out from a thin red line
objectivist approach.

4.4.3 Future-Dependent Objective Oughts and Objective
Probabilities

Let us take a preliminary stock. So far, we have discussed two sorts of solu-
tions to the futurity problem: rejecting an objectivist interpretation of future-
dependent oughts or interpreting objective future-dependent oughts as depend-



Objective Oughts and Reasoning by Cases 77

ing on future facts. What those future facts are is closely related to the tem-
poral interpretation adopted: under a Peircean interpretation, future facts are
those (non-epistemic) propositions that are true in all future branches; under
the thin red line interpretation, future facts are those (non-epistemic) proposi-
tions that are true along the one branch representing the actual future.

Both sorts of solutions maintain FACTS as the definition of objective oughts:
objective oughts are oughts directly relative to facts. The following solution
to the futurity problem takes a different approach, and departs from FACTS
by providing a probabilistic account of objective oughts. Such departure is,
however, less radical than it seems: probabilities, as it will be shown, play
a non-trivial role only for those objective oughts that are future-dependent.
Understanding future-dependent objective oughts primarily in terms of prob-
abilities about facts, rather than simply facts, allows us to considerably widen
the objectivist perspective: not only does the probabilistic account provide a
solution to the futurity problem, but it also sets an objectivist standard for
deontic reasoning under indeterminacy and risk.

In what follows, we introduce the probabilistic account of objective oughts and
discuss its main characteristics and implications for ethical theory and deontic
logic. A formal semantics is presented in the Appendix.

4.4.4 A Probabilistic Proposal

The probabilistic account is defined as follows:

Definition 4.3. At time t it is true that agent o ought objectively X if and
only if X-ing is best in light of the objective chances of the relevant facts to
obtain.

Where, again, facts are non-epistemic propositions that are settled true. Let us
call the above definition PROBABILITIES. Tt provides a univocal definition of
objective oughts that maintains the connection between objective oughts and
facts, but such connection is now mediated: objective oughts are functions of
the objective chances of the relevant facts. Moreover, the probabilistic account
qualifies as objectivist according to the general schema |GS| presented on p.67,
given the standard distinction between objective probabilities and subjective
probabilities (where the latter but not the former express an agent’s degrees
of credence). What an agent objectively ought to do is not defined in terms
of an epistemic feature of the agent.
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However, the probabilistic account needs some qualifications. There are several
possible ways in which PROBABILITIES can be implemented, particularly for
what concerns its interaction with temporal frameworks. We describe one of
those possible ways, and argue that it provides an adequate solution to the
futurity problem.

For continuity of exposition, we propose to understand PROBABILITIES
against the sort of branching temporal background that was introduced in
Sec.4.4.2 (see Def.4.2). Specifically, we take basic semantic structures to be
future branching trees as in the one depicted in Fig.4.2 below. The intended

AVAV
A4

Figure 4.2: Future Branching Tree

interpretation is that a future branching tree represents the temporal evolution
of the world from the perspective of the current moment ty: while the past is
already determined and — therefore — linear, the future may be open and
branch into several objective possibilities.!!

What we have said in Sec.4.4.2 about objective branching trees and future
contingency holds here as well: objective branching trees, and in particular
future branching trees, are neutral with respect to future contingency. Linear
time is nothing but a future branching tree with just one future branch.

Semantically, we adopt a fine-grained approach and evaluate sentences not
simply at moments, but rather at moment/history pairs ¢/h, indicating what
is true at the moment ¢ with respect to the temporal evolution marked out by
the history h. Thus, for instance, "Willp™ is true at t/h if and only if ¢ is
true at a future moment of ¢ along the history h. This fine-grained approach is

"' Note that “possible pasts” are excluded from future branching trees. The reason is that
with the passing of time, the tree loses some branches: among the different possibilities
that were open at a previous time, one is realized while the others are ruled out. From the
perspective of the current moment, those possible pasts constitute counterfactual possibil-
ities (i.e., ways the world could have evolved), but do not represent objective possibilities
anymore.
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commonly referred to as Ockhamist (Prior, 1967; Thomason, 1984; Horty and
Belnap, 1995; Horty, 2001).

Taking moment /history pairs as basic points of evaluation allows for a certain
expressibility. Firstly, it allows us to recover the Peircean interpretation of
facts about the future. If we think of settleness at a certain moment ¢ in terms
of what holds at ¢/h for all histories h passing through ¢, then at ¢ facts about
the future are those (non-epistemic) propositions that are true in all future
branches of ¢ (see Thomason, 1984).

Secondly, and most importantly, it allows us to discuss not only what the
future facts are, but also what the future facts could be. In other words, it
permits us to consider also those facts about the future that could obtain.
Imagine, for instance, that at ¢ there is the risk your house will catch fire.
This means that according to some — but not all — histories passing through
t your house will catch fire. We say that, conditional on those histories, it is a
fact that your house will catch fire. In other words, the fact that your house
will catch fire could obtain were the future branching tree constituted of solely
those histories in which your house will catch fire.

Why is the talk about future facts that could obtain relevant? The answer
is easily seen in relation to PROBABILITIES. By referring to the objective
chances of the relevant facts to obtain, the probabilistic account allows one to
deal with oughts that depend on a chancy future: the truth of “You ought to
get fire insurance for your house” depends precisely on the objective probability
of the fact that your house will catch fire —that is, on the objective probability
that the world could evolve along those histories in which your house will catch
fire. Contrary to the other approaches considered above, PROBABILITIES
therefore sets an objectivist standard for reasoning under indeterminacy and
risk.

4.4.5 Evaluating the Proposal

Before moving to the implications triggered by the probabilistic account, let
us evaluate whether it provides a satisfying solution to the futurity problem.
Recall our three desiderata:

e Conservativity. Let us start by noticing that PROBABILITIES main-
tains indeed an objectivist character, that is, it fits the general schema
[GS] presented at p.67. Since F is analyzed in terms of objective (i.e.,
non-epistemic) probabilities, the probabilistic account satisfies condition
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(i) of conservativity. Condition (ii) of conservativity recommends that
the probabilistic account at most extend FACTS to deal with future-
dependent oughts. This second condition is met if we pick a probability
function that plays a trivial role (assigning probability 1) for present
and past facts. Such a probability function is formally defined in the
Appendix. To the extent that the probability function works as ex-
pected, PROBABILITIES meets also the second condition of conserva-
tivity: PROBABILITIES extends FACTS by providing an account of
objective oughts in which the connection between oughts and facts is
mediated by objective probabilities, but at the same time by trivializing
such mediation for facts about the present and the past.

e Univocality. PROBABILITIES provides a univocal definition of objec-
tive oughts in terms of objective probabilities, be the oughts dependent
on the past, present or future.

o Neutrality about the Future. The semantic background of branching trees
is not structurally committed on whether the future is contingent or not.

Hence, PROBABILITIES provides a third, alternative solution to the futurity
problem.

4.5 Reasoning by Cases Under Indeterminacy

Contrary to the previous solutions to the futurity problem, PROBABILITIES
suggests an objective standard for decision making under indeterminacy and
risk: the objective probabilities of the relevant facts are what objectivists
should consider when determining what ought to be done. This means that for
the truth of sentences like “You ought to get fire insurance for your house” and
“You should bet on tails”, the objective probability that your house will catch
fire or the objective probability that the coin will land on tails are relevant
features of the world to be taken into account.

It should be noted that this approach does not guarantee future-dependent
objective oughts to hold retrospectively, so to speak. Suppose that at ¢y, given
the objective chance of the relevant future circumstances C, an agent o ought
objectively to X. However, even a high objective chance of C does not guarantee
that such C will actually be the case in the future. Therefore it could be the
case that, given the objective chance that C will happen tomorrow, the agent
objectively ought to do X now, but that tomorrow it is false that the agent
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objectively ought to have done X. There is no contradiction, however, between
“An agent « objectively ought to do X” true at tq, and “The agent « objectively
ought to have done X” false at ¢;. The context has changed.

4.5.1 The Betting Puzzle

We have seen that the Miners’ Puzzle does not affect objective oughts. Does
that mean that objective oughts always validate Reasoning by Cases? No,
at least if PROBABILITIES is adopted. To show this point, we bring to
attention the following betting puzzle. A similar scenario can already be
found in (Horty, 2001, p.53); the difference is that future-dependent objective
oughts are the focus of the betting puzzle presented here.

Consider the following betting scenario:

I offer you a bet. T will toss a fair coin (hence 0.5 objective
chance that the coin will land tails and 0.5 objective chance that
the coin will land heads) and ask you to guess on which side the
coin will land. If your guess is correct, you win 150$. However,
entering in the bet costs you 908.

Table 4.2 represents the decision problem at t:

Will Tails | Will Heads
Bet Tails 60 -90
Bet Heads -90 60
Bet nothing 0 0

Table 4.2: Decision Problem for the Betting Scenario

The decision problem for the Betting Puzzle is structurally identical to the
one in the Miners’ Puzzle. Crucially, in terms of maximization of (objective)
expected utility, the following sentences all appear to be acceptable:!?

8. The coin will land tails or the coin will land heads

9. If the coin will land tails, you should bet on tails

12Contrary to what happens in the Miners’ Puzzle, the rule MaxiMin is not directly appli-
cable to the Betting Puzzle, at least not to the extent that PROBABILITIES is adopted. In
fact, probabilities (be they objective or subjective) do not play any role in MaxiMin. How-
ever, MaxiMin would be compatible with the following modification of PROBABILITIES:
At time ¢ it is true that agent o ought objectively to X if and only if X-ing is best in light
of the objective possibilities, or objective chances of the relevant facts to obtain.
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10. If the coin will land heads, you should bet on heads
11. You should not bet
While, by Reasoning by Cases, it would follow:
12. You should bet on tails or you should bet on heads
which contradicts (11).

If the Miners’ Puzzle is taken to show that Reasoning by Cases is invalid for
belief/information dependent oughts, the same goes for the Betting Puzzle with
respect to the objective oughts of PROBABILITIES.The crucial difference
between the two, the Miners’ Puzzle and the Betting Puzzle, is that the former
concerns uncertainty, while the latter involves indeterminacy.

4.6 Conclusion

The standard definition of objective oughts as oughts dependent on relevant
facts leaves future-dependent oughts unexplained. We have investigated three
main strategies to account for future-dependent objective oughts. In par-
ticular, we have shown that there is a probabilistic interpretation of future-
dependent objective oughts that meets some natural desiderata and provides
an objectivist standard for reasoning under indeterminacy. Finally, we have ar-
gued that Reasoning by Cases is not a valid inference rule for objective oughts
in scenarios of indeterminacy.

4.7 Appendix: A Formal Semantics

Let us begin by defining probability trees and future branching frames.!?
Definition 4.4. A probability tree is a tuple E=(T, S, Pr), where T= (T, <

) is a finite tree, S is an algebra over the set of histories in T, and Pr is
a function assigning to each element of S a number in [0,1] satisfying the
following:

e Pr(T)=1

o Pr(T'uT")= Pr(T')+Pr(T") if T' and T" are disjoint elements of S.

BFor simplicity, we are limiting the exposition to the case of T finite. Def.4.4 above can
be easily extended for T infinite by considering o-algebras, closed under countable union,
instead of algebras. (See Halpern, 2003, p. 15). Moreover, for simplicity, we will identify a
tree T with the set of its histories Hist(T) whenever disambiguation is clear by context.
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In other words, the probability function Pr assigns to those sets of histories
in T that are in S their objective chance to be realized. Note that this does
not imply that all maximal subtrees of T are assigned objective chances. In
fact, there might be combinations of courses of events for which no objective
chance can be determined.

Definition 4.5. A forward branching frame is a tuple F =(T% S% Pr'o tq),
where E' =(T' St Prlo) is a probability tree, and to is the moment “now” such
that to € h', for all histories h' in T.

Definition 4.6. A forward branching model is a tuple M = (F,v) with
F=(T" St Prto ty) a forward branching frame. The valuation function v
maps each sentence letter from the background language into a set of t/h pairs

(with t € h) from T*™. Truth at t/h is defined as follows:
o M t/h = pifft/h € v(p) for p atomic
o M,t/h = —p iff Mt/h
o Mit/h = p ANV iff M, t/h =@ and M, t/h =
o M,t/h = Willp iff there is a t’ € h such that t <t and M,t'/h = ¢
e M,t/h = Pasty iff there is a t' € h such that t' <t and M,t'/h |= ¢

A formula is settled true at t if it is true at t/h for all histories h passing
through t.

Definition 4.7. Consider a forward branching model M = (T, S Pr'o tq v).
Let ¢ be a sentence of the background language. The proposition expressed
by ¢ in M at t, written Tﬁ"t, 15 defined as follows:

o T —U{hIM,t/h = o}

For simplicity, we write T, instead of T
M implicit.

hence leaving the reference to

From the above definitions it follows that the probability of those propositions
that are settled true at ty is trivially 1 (since the proposition expressed by
formulas that are settled true at to is T and Prio(T%) = 1).

We turn to the semantics of objective oughts. We use the operator O to
indicate objective oughts.

Definition 4.8. A deontic model M=(T% S Prio ¢, v, d) is a forward
branching model plus a deontic selection function d that maps each probability
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tree &'=(T", 5", Pr') to a set of histories of T that are deontically best — where
T C T is a subtree given by some histories of T*, S" = {x N Hist(T') | x €
St}, and Pr' = Pro(-|T).

Definition 4.9. Let M=(T% S' Pr' t, v,d) be a deontic model. Moreover,
let Tt be the subtree given by all histories of T passing through t, St =
{x N Hist(T") | x € S™}, Prt = Pr'o(:|T") and finally E'=(T*, S*, Pr'). The
truth of an objective ought at t/h is defined as follows:

o M,t/h = Op iff M t/h = ¢ for every I € d(EY)

Conditional objective oughts can be be derived from Def.4.9 by requiring Prt
to be normalized with respect to the subtree satisfying the antecedent of the
conditional and shifting d to that subtree (Kolodny and MacFarlane, 2010;
Willer, 2012; Yalcin, 2010; Carr, 2015).

Definition 4.10. Let M = (T S Prto ¢y v, d) be a deontic model. More-
over, let T}, be the proposition expressed by ¢ in M at t, Sj, = {x N Hist(T}) |
x € S}, Pry = Pr'o(:|T}), and &,—(T,, Sy, Pry). The truth of a condi-
tional objective ought at t/h is defined as follows:

e Mit/h=1 = Op iff M,t/h |= ¢ for every h' € d(E})

In other words: "¢ = O¢7is true iff TOp™ is true with respect to the subtree
generated by assuming 1 and the objective chances conditionalized to such
subtree.

Betting Puzzle. We construct a tree-like deontic model M of the betting sce-
nario. Suppose you are currently considering what to bet: the relevant decision
tree features six different histories (as six are the combinations between possi-
ble ways of betting and the outcome of the toss). The scenario is represented in
Fig.4.3, where T and H stand respectively for “The coin lands tails” and “The
coin lands heads”, while Bt/Bh/Bn stand for “You bet on tails/heads/nothing”.

We show now that all acceptable sentences of the Betting Puzzle are true at
to in each history A of the above model. Firstly we note that for each history
h it holds that M, ty/h = WillT v WillH.

Moreover, we define the deontic selection function d as follows (implicitly re-
flecting the rule of maximization of (objectively) expected utility):

For &% ¢ = (T Sin v Pricinr)y d(Eiur) = {1 € Ty o | Mito/I =
Bt}. That is, under the supposition that the coin will land tails, the deontic
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T T T H H
N %‘5 B n
to

Figure 4.3: Tree-like deontic model M for the Betting Scenario. Dark grey
indicates the subtree T,  in which WillT is settled true; Light grey indicates

the subtree T', ;; in which WillH is settled true. It is assumed that the

objective chances for T%, . and T, ;; to obtain are 0.5 respectively.

function would recommend to bet on tails.

Similarly, for €%y = (T s Swn > P u)s dEnn) = {1 € Ty |
M, to/h' = Bh}. Similarly to the previous case: under the supposition that
the coin will land heads, the deontic function would recommend to bet on
heads.

On the other hand, for £ = (Tt St Prlo) d(&) = {IW € T | M, to/I =
Bn}. Indeed, given the global context described by Table 4.2, betting nothing
is the action that maximizes expected utility.

By semantic definition, it follows that (for all histories A in the model):
M, to/h = WillT v WillH

M, to/h = WillT = OBt

M, to/h = WillH = OBh

M, to/h = OBn.

Thus, the above model validates all acceptable sentences of the Betting Puzzle.
The unacceptable conclusion, however, does not hold:

M. to/h = OBt vV OBh
Hence the Betting Puzzle is solved.

Comparison with the Gambling Problem. We would like to conclude
by comparing the Betting Puzzle discussed in this chapter with a similar one
proposed by Horty (2001), and known as the gambling problem. There are two
relevant differences. The first difference between the two puzzles is conceptual.
The notion of future-dependent oughts is central to the Betting Puzzle, while
in the gambling problem such a notion remains implicit. The second difference
is formal, and concerns how these puzzles are solved. We have seen that the
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semantics provided here solves the Betting Puzzle by both (i) blocking the
unacceptable conclusion that would follow via Reasoning by Cases (i.e., that
you should bet on tails or you should bet on heads) and (ii) validating the
acceptable judgment that you should not bet. It is the latter aspect of the
solution that is not present in Horty (2001). In fact, the deontic framework
adopted by Horty (2001) would always falsify sentences like “You should not
bet”, or “You ought to block neither shalf” — no matter what the stakes (in
terms of monetary gains or lives saved) are in the respective scenarios. More
generally, Horty’s (2001) deontic framework appears to have certain built-in
(decision-theoretic) commitments that make it impossible to derive an ought
that contradicts the ought that would follow via Reasoning by Cases. This
observation is the content of the following lemma.

Let ® and [i cstit] denote Horty’s (2001) deontic operator and stit operator.
For the relevant definitions, we refer the reader to (Horty, 2001, p.77).1

Lemma 4.11. In utilitarian stit models, the following formula is valid:
(AV B) AN O([i estiter]/A) AN O([i cstitps]/B) D = O [i estit(—pr A —p2)]
Proof. We sketch the proof of a more general result, namely that:
(A D C)AO([i estite]/A) D =@ ([i estit—yp]/C)
The original lemma follows from the above (with C := AV B). The proof

proceeds by contradiction.

Assume, by absurdum, that there is a utilitarian stit model M and index m/h
in which it is true that (A D C) A ©([i cstitp]/A) A O([i estit—p]/C).

1. From ©([i estity]/A) it follows that, when restricting to A-histories (i.e,
all histories A’ such that A is true at m/h’), all non-strongly dominated
actions contain only ¢-histories. Moreover there is at least one such
action K.

2. From ([i estit—p]/C) it follows that, when restricting to C-histories, all
non-strongly dominated actions contain only —p-histories.

3. Since (A D C), the set of all C-histories is a superset of the set of all
A-histories.

Lemma 4.11 resulted from a collaboration between me, Soroush Rafiee Rad and Dominik
Klein.
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4. From 1 and 2, it follows that K is strongly dominated in the set of C-
histories, i.e., there is an action K’ strongly dominating K on the set of
all C-histories and such that it contains only —p-histories.

5. By 3 and 4, K’ weakly dominates K on the set of A-histories.

6. In particular, there is a non-strongly dominated action on the set of
A-histories which (only) contains —p-histories. This contradicts 1.

]

Notes

e In the previous version of the manuscript, the forward branching frame in
Def.4.5 was defined as “F=(T, S, Pr', tq), where Pr' is Pr normalized
to that unique subtree that has ¢y as now” . Such definition has been
corrected, and uniformly changed.

e In the previous version of the manuscript, Def.4.8 did not specify T’, S’
and Pr’. This has been uniformly changed. T thank Allard Tamminga
for urging me to clarify this.

e The model M at page 85 was mistakenly referred to with the letter D.
This has been uniformly corrected.
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Chapter 5

When Is Reasoning by Cases
Valid?

This chapter brings together the counterexamples to Reasoning by Cases that
have been recently proposed, amongst others, by Kolodny and MacFarlane
(2010), Bledin (2014) and Carr (2015). The counterexamples all involve in-
dicative conditionals whose consequents are epistemically, deontically or prob-
abilistically modalized. We provide a unified explanation of why these coun-
terexamples emerge, and put forward a sufficient criterion for the validity of
Reasoning by Cases. Specifically, we first show that the failure of Reasoning
by Cases is not due to the presence of modals in the consequents of the indica-
tive conditionals. Finally, we argue that Reasoning by Cases is valid when it
involves consequents that have a certain property, namely upward local per-
sistence.

5.1 Introduction

This chapter is about the deductive inference rule of Reasoning by Cases and
the scope of its validity. We say the scope of its validity because the rule, which
goes from the premises T"¢; or o7, Tif 1, then ¢, 7 and Tif g, then 157 to
the conclusion T or 157, has recently been the subject of much dissent. Per-
haps the most famous attack comes from the so-called Miners’ Puzzle, brought
to attention by Kolodny and MacFarlane (2010), which shows that Reasoning
by Cases is invalid when it involves indicative conditionals whose consequents
contain deontic modals. The Miners’ Puzzle is not an isolate case, however.
Another counterexample, this time featuring indicative conditionals with epis-

89
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temic modals in the consequents, has been proposed by Bledin (2014). More-
over, a third counterexample with indicative conditionals involving probabilis-
tic modals in the consequents can be found, for instance, in Carr (2015).

The primary aim of this chapter is to provide a general account that could not
only illustrate that the interaction between indicative conditionals and deontic,
epistemic and probabilistic modals gives rise to the above counterexamples to
Reasoning by Cases, but also determine when Reasoning by Cases is a valid
inference rule. The account we defend here contributes to the literature in at
least two ways. First, it is general. Albeit the above counterexamples have
generated much recent debate, the literature so far has mainly focused on each
of those counterexamples taken in isolation. The starting point of this chapter
is instead the three counterexamples mentioned above, taken together. This
general approach can highlight the commonalities that the counterexamples
share and that would be overlooked had we considered only one single coun-
terexample. Moreover, considering the three counterexamples together permits
us to have a broader view on the distinctive behavior of indicative conditionals
and modals. A second contribution to the literature consists in providing a
sufficient criterion for the validity of Reasoning by Cases that improves on the
alternative accounts that can be found in Cantwell (2008) and Bledin (2014).
In particular, the criterion defended here extends and generalizes the one pre-
sented by Bledin (2014). If the criterion we propose is on the right track, then
it is good news for the supporters of classical reasoning, as it vindicates the
use of Reasoning by Cases in a wide variety of contexts.

The chapter proceeds as follows. The next section introduces the three coun-
terexamples mentioned above. The goal of the section is not to provide a full-
fletched defense of those counterexamples, but rather to discuss what those
counterexamples have in common. Specifically, the counterexamples all fea-
ture deontic, epistemic or probability modals that take narrow scope under
indicative conditionals. Section 5.3 shows that, contrary to what might be ex-
pected, the invalidity of Reasoning by Cases is not strictly speaking due to the
interaction between modals and indicative conditionals. To prove this point,
we defend a novel counterexample which does not involve any modal but only
indicative conditionals. Section 5.4 constitutes the positive contribution of this
chapter: it brings together the observations of the previous sections, and puts
forward a criterion sufficient to determine the scope of the validity of Reason-
ing by Cases. The criterion is based on the formal notion of local persistence
throughout contexts, and is expressed using the formal machinery of the so-
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called informational logic. Tt is shown that the counterexamples considered so
far all violate the criterion, while at the same time the criterion allows for a
wide range of instances of Reasoning by Cases (e.g., those involving atomic
sentences and boolean combination thereof, and those involving the epistemic
modal might). The chapter concludes by comparing the sufficient criterion
defended here to the alternative proposals in the literature.

Let us now begin with a closer look at the counterexamples to Reasoning by
Cases.

5.2 Three Modal Counterexamples

5.2.1 The One with Deontic Modals

We begin with the counterexample to Reasoning by Cases from Kolodny and
MacFarlane (2010). The counterexample involves deontic modals, and it is
mostly known as the Miners’ Puzzle. Recall the background scenario (Kolodny
and MacFarlane, 2010, p.115): Ten miners are either in shaft A or in shaft B,
but we do not know which. Their lives are at stake, and we can block at most
one of the shafts. If we block the shaft the miners are in, all ten miners live.
If we block the shaft the miners are not in, all ten miners will be killed. If we
block neither shaft, one miner will be killed. What should you do? Given the
scenario and the information you possess, the intuitive answer is: you ought
to block neither of the shafts, as this guarantees that nine miners are saved.!

!'Two remarks are in place here. First remark: there are two available readings of the
sentence “You ought to block neither shaft". The strong reading corresponds to the deontic
modal ought scoping over negation, and the weaker one to the negation scoping over ought.
Roughly speaking, the strong reading of “You ought to block neither shaft” indicates that you
have the obligation of refraining from blocking either shaft, while the weak reading indicates
that you do not have the obligation of blocking shaft A and you do not have the obligation
of blocking shaft B. This chapter follows Willer (2012); Carr (2015); Cariani et al. (2013);
Bledin (2015), and adopts the stronger reading. However whichever reading is adopted
does not make any difference to the issues under discussion here. Both readings generate
a counterexample as, in both cases, the sentence “You ought to block neither shaft” turns
out to be incompatible with the conclusion derived by Reasoning by Cases. Second remark:
as discussed by Carr (2015), the acceptability of the sentence “You ought to block neither
shaft” is sensitive to the changes in the scenario’s figures. Understanding which decision
rules guide our moral judgments in miners-like scenarios is a project worth pursuing, but
remains an intrinsically distinct problem with respect to the one we are concerned about
here (cf. Cariani et al., 2013). The problem this chapter addresses is strictly logical (i.e.,
the scope of validity of Reasoning by Cases), and not decision-theoretic. What matters for
the logical problem is that there exists a scenario in which what would logically follow via
Reasoning by Cases is not acceptable.
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Simultaneously, here is one way you can reason about the situation:

The miners are in A or they are in B
If they are in A, T ought to block A
If they are in B, I ought to block B

I ought to block A or I ought to block B

. .

The premises of the above argument are all acceptable: in the scenario it
holds that the miners are in shaft A or they are in shaft B; moreover, under
the supposition that the miners are in a specific shaft (in turn, shaft A or shaft
B), the right thing to do is blocking that shaft, as this allows all ten miners
to be saved. From those premises, however, via Reasoning by Cases it follows
that you ought to block A or you ought to block B. And here is the paradoxical
nature of the scenario: this conclusion contradicts what we have agreed on,
namely that you ought to block neither of the shafts.

We can now see why the Miners’ Puzzle constitutes a counterexample to Rea-
soning by Cases: it shows that there are instances of such an inference rule that
move from acceptable premises to an unacceptable conclusion. This particular
instance has the following form:

p1V D2
p1 = OUGHT ¢

P2 = OUGHT qs
OUGHT aq1 vV OUGHT q2

=~ W N =

We follow the standard practice of using V and = to indicate disjunction and
indicative conditional, respectively, and the sentential operator OUGHT for
the natural language deontic modal ought.

Let us have a closer look at the logical form of the counterexample, and in
particular at its premises. Premise 1 consists of a disjunction of atomic sen-
tences, while premises 2 and 3 are conditional sentences whose consequents
are deontically modalized. There is one important assumption on which the
counterexample relies, and that we would like to stress at this point: the as-
sumption that the logical form of the argument matches its surface form, and
in particular that the the deontic modal ought takes narrow-scope under the
indicative conditional. This assumption can be questioned, and perhaps the
most common way of doing this consists in endorsing a wide-scope analysis of
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ought. According to such analysis, in premises 2 and 3 the operator OUGHT
scopes over the indicative conditional, giving rise to the following, non-trivial
logical form:

T |p1Vp2

2 |OUGHT (p1 = q1)

3 |OUGHT (py = ¢»)

4 |OUGHT ¢ v OUGHT g,

Formalized in this way, the argument would not constitute a counterexample

to Reasoning by Cases because, clearly, the argument would not be a genuine
instance of the deductive inference rule. Criticisms against the general plau-
sibility of the wide-scope analysis of ought have been raised by Silk (2014b),
and further arguments against a sort of “wide-scoping solution” to the Miners’
Paradox can be found in Kolodny and MacFarlane (2010) and Charlow (2013).
We will come back to the issue of wide-scoping in Sec.5.3. For the moment,
it is sufficient to point out that the counterexample to Reasoning by Cases
generated by the Miners’ Puzzle relies on the availability of a narrow-scope
reading for the deontic modal ought.

5.2.2 The One with Epistemic Modals

A second counterexample to Reasoning by Cases can be found in Bledin (2014).
This time the counterexample involves epistemic modals — specifically the
epistemic modal must — in the consequents of indicative conditionals. Be-
fore introducing the counterexample, it is better to spend a few words on the
epistemic reading of the modal must and its dual might. Under the epistemic
reading, the modals must and might relate to some piece of knowledge or in-
formation: must p indicates that the available knowledge /information warrant
or makes necessary that p, while might p indicates that given the available
knowledge/information it is possible that p (Kratzer, 2012d; Veltman, 1985,
1996; Yalcin, 2007; Willer, 2013, 2015). For instance, upon noticing that the
lights in Roger’s study are on and knowing that Roger always turns all lights
off whenever he leaves his house, you can conclude that, in view of your infor-
mation, Roger must be at home.?

Keeping fixed the interpretation discussed above, we can now turn to the
counterexample involving epistemic modals. What follows is an adaptation

2Example from Kratzer (2012a).



94 Chapter 5.

from (Bledin, 2014, p.300). The scenario proceeds as follows: on the 8th of
May, a seminar will take place at your university — a nice occasion to also
talk to your supervisor about your new project or to talk about an upcoming
concert with your colleagues. You know that the 8th of May is either Monday
or Tuesday, but do not know which. Also, you know that if it is Monday
then your supervisor Ann must be in her office, and that if it is Tuesday then
your colleague Barbara must be in her office. What should you then expect
on the 8th of May? Unfortunately, given the information available to you, it
is possible that Ann is not in her office on the 8th of May (and so you will
not have the chance to talk about your new project) and it is possible that
Barbara is not in her office on the 8th of May (and so you will not have the
chance to talk to her about the concert). In other words, Ann might not be in
and Barbara might not be in. However, you can reason as follows:

1 | It is Monday or it is Tuesday
If it is Monday, then Ann must be in
If it Tuesday, then Barbara must be in

Ann must be in or Barbara must be in

- W N

That is, via Reasoning by Cases you conclude that, in light of your informa-
tion, Ann must be in or Barbara must be in. But this conclusion contradicts
what we established: namely that, given your information, Ann might not be
in her office and Barbara might not be in her office. After all, your information
does not warrant that you will have the chance to talk about your project nor
does it warrant that you will have the chance to talk about the concert.?

Hence, the scenario discussed here constitutes a second counterexample to
Reasoning by Cases. It shows that there are instances of the following form
that move from acceptable premises to an unacceptable conclusion:

P11V D2

p1 = MUST 1

p2 = MUST ¢

MUST ¢; vV MUST ¢,

=~ W NN =

31t warrants a weaker conclusion: namely that you will have the chance to talk about
your project or the concert. Indeed, given your information, it must be the case that Ann
is in or Barbara is in. As Bledin (2014) rightly points out, there is a difference of scope: in
the weaker conclusion, must scopes over a disjunction, while in the conclusion of the main
text must scopes under a disjunction.
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This counterexample shares the same assumptions as the previous one: namely
that the logical form of the above argument matches its surface form, and in
particular that the sentential operator MUST takes narrow scope under the
indicative conditional.*

5.2.3 The One with Probability Modals

Let us present the third counterexample that can be found in the literature.
This counterexample features probability modals, such as probably or likely, in
the consequents of indicative conditionals.

Just a few introductory words before delving into the counterexample. Proba-
bility modals such as probably or likely indicate what is probable relative to a
certain body of information — the standard assumption being that, for ¢ to be
probable, the likelihood of ¢ must be higher than 0.5 (Hamblin, 1959; Kratzer,
1991; Yalcin, 2007, 2010).° For instance, upon receiving the information that
a coin is 0.7 biased towards heads up, you can conclude that the coin will
probably land heads. Following Yalcin (2012b), we treat probably and likely
as synonyms.

The counterexample introduced here is due to Carr (2015).° Here is the sce-
nario:

Suppose that it is either Monday or Tuesday, but you do not
know which. And suppose the miners could be in shaft A, shaft

41t is perhaps also worth indicating what the counterexample does not assume: it does not
take a stance on whether the epistemic modal must has to be treated as an indirect evidential
or not (cf. Kratzer, 2012a; Veltman, 1985, 1996; Yalcin, 2007; von Fintel and Gillies, 2010;
Willer, 2015). Generally, the indirect evidentiality camp does not support the inference from
MUSTyp to ¢, as the former is taken to express something weaker than the latter. To the
contrary, the inference from MUSTy to ¢ is taken to be unproblematic in Veltman (1996),
Yalcin (2007) and Bledin (2014). The framework adopted in Sec.5.4, deriving from Bledin
(2014), actually validates the inference from MUSTp to ¢, but nothing in our analysis relies
on such inference.

5Fixing the threshold at 0.5 is motivated by the idea that ¢ is probably the case if and
only if it is more likely than not. Although such an account of probably and likely is widely
accepted, some concerns have been raised about having an absolute threshold fixed at 0.5.
For instance, it is questionable whether a sentence like “The coin will probably land heads”
is true when the coin is only 0.51 biased towards heads up. Others have proposed a relative,
non-absolute threshold to account for the fact that sometimes ¢ is taken to be probable
when it is more likely than each of its alternatives. For a critical discussion, see Yalcin
(2010). However, since none of the above concerns directly applies to the counterexample
discussed in this section, we stick with the standard 0.5 threshold.

6For another counterexample involving probability modals in the consequents of indica-
tive conditionals, see Moss (2015).
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B, or neither shaft: the likelihood of each is % The miners are in

shaft A only if it is Monday, and in shaft B only if it is Tuesday. If
it is Monday, it is % likely that the miners are in shaft A. And if it

is Tuesday, it is % likely that they are in shaft B.
(Carr, 2015, p.683)

This is all the information given about the situation. What follows is a visual
representation of the breakdown.

Tuesday & B

33%

33%
17,

Monday & neither

Monday & A -

Tuesday & neither

You reason as follows:

It is Monday or it is Tuesday
If it is Monday, then the miners are likely in A
If it Tuesday, then the miners are likely in B

The miners are likely in A or the miners are likely in B

= W NN =

The premises of the above argument are all acceptable: in the scenario it
holds that it is Monday or Tuesday; under the supposition that it is Monday,
then it is likely that the miners are in A (as the likelihood of the miners being
in A, provided it is Monday, is %) and, similarly, under the supposition that it
is Tuesday, then it is likely that the miners are in B. However, the conclusion
of the argument is not acceptable: given the available information, it does not
hold that the miners are likely in A nor it holds that the miners are likely in
B. It is equally probable that the miners are in A, that they are in B, or that
they are in neither shaft.

Hence, reasoning by cases from the above premises leads to an unacceptable
conclusion. Once again, if we assume that the logical form of the above ar-
gument corresponds to its surface form, and in particular that the sentential
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operator PROBABLY takes narrow scope under the indicative conditional, we
are left with a counterexample of the following form:

PV p2

» = PROBABLY ¢

py = PROBABLY ¢
'PROBABLY ¢, vV PROBABLY ¢,

N .

5.2.4 What in Common?

Let us take a stock. So far we have presented the three main counterexamples
to Reasoning by Cases that can be found in the literature. These are cases in
which an unacceptable conclusion follows from a set of acceptable premises.
Which lesson can be drawn from those counterexamples? First of all, all the
counterexamples reduce to the following form:

1 {p1Vope

2 |p1 = MODAL ¢,

3 |py = MODAL g,

4 |MODAL ¢, v MODAL ¢

Where MODAL stands for a deontic/epistemic/probabilistic modal, which
takes narrow-scope under the indicative conditional. This commonality be-
tween the counterexamples naturally suggests that the invalidity of reasoning
by cases is due — in a certain sense — to the interaction between deon-
tic/epistemic/probabilistic modals and indicative conditionals. Indeed, Bledin
(2015) recommends to “exercise caution” when using Reasoning by Cases in
languages that contain those modals and indicative conditionals.” Applying
the general form of Reasoning by Cases in such languages, he continues, can
lead to absurd results.

Let us begin from the suggestion that Reasoning by Cases is invalid because it
involves deontic/epistemic/probabilistic modals in the consequents of indica-
tive conditionals. Putting it positively, this suggestion provides an indication

"To be precise, Bledin (2015) talks about “informational modals”. Informational modals
are the modals we refer to in the main text, namely the deontic/epistemic/probabilistic
modals that are relative to a certain body of information. Hence, our change of wording
should not make any substantial difference. More about the term “informational modals”
will be said in Sec.5.4.
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of the scope of validity of Reasoning by Cases, and leads us to the following
hypothesis.

Take the general form of Reasoning by Cases:

L {1V
2 1=t
3 ﬁéwg
4 |1V e

If we consider exclusively the conditions to impose to the consequents 1, and
1y of the indicative conditionals, it holds that:

First Hypothesis: If 1; and vy are not deontically, epistemically
nor probabilistically modalized, then Reasoning by Cases is valid.

The above hypothesis is persuasive: evidence in its favor is given by the
fact that the only counterexamples we have encountered so far involved de-
ontic/epistemic/probabilistic modals. However, such a hypothesis is not the
final word on the matter. In particular, we suggest that it does not properly
track the scope of validity of Reasoning by Cases: Reasoning by Cases may
fail even in the absence of deontic/epistemic/probabilistic modals.

5.3 A Novel Counterexample: Just Condition-
als

The goal of this section is to improve on the First Hypothesis. Specifically, we
first show that the First Hypothesis is not correct by defending a counterex-
ample to Reasoning by Cases that does not involve any deontic/ epistemic/
probabilistic modal. In light of this novel counterexample, we put forward a
Second Hypothesis.

Here is the scenario: Imagine I offer you the chance to bet on a coin toss.
Suppose you have accepted the bet, but have not yet announced which out-
come you will bet upon. Hence I know that you will bet on tails or you will
bet on heads, but do not know which. Before tossing the coin, I reason as
follows:

P1: You bet on tails or You bet on heads

P2: If you bet on tails, then if the coin lands tails you win
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P3: If you bet on heads, then if the coin lands heads you win

The above premises are all acceptable: P1 holds as you have accepted the bet,
and premises P2 and P3 hold in virtue of the betting scenario. However, from
these premises, the following conclusion does not intuitively follow:

C: If the coin lands tails you win, or, if the coin lands heads you win

After all, you could lose your bet. But the above conclusion would follow, were
Reasoning by Cases applied.

To see that the scenario above constitutes a counterexample to Reasoning by
Cases, let us schematically represent it as follows:

You bet on tails V You bet on heads
You bet on tails = (The coin lands tails = you win)
You bet on heads = (The coin lands heads = you win)

(The coin lands tails = you win) V (The coin lands heads = you win)

=~ W N =

With the above logical form in mind, let us now spend a few words more on
why the conclusion is unacceptable. Recall that you have not yet announced
which option you will bet upon. Given the available information, there are
four live possibilities:

Figure 5.1: Open Possibilities in the Betting Scenario

Where Bt and Bh stand for You bet on tails and You bet on heads; while T
and H stand for The coin lands tails and The coin lands heads respectively.
The possibilities which lead you to win the bet are those colored in grey.

8There is an implicit futurity in the above scenario: you will bet, the coin will land and
(possibly) you will win. For simplicity, we ignore this issue here.



100 Chapter 5.

The sentence “If the coin lands tails you win, or, if the coin lands heads you
win” does not hold because, even if it is settled that the coin will land tails or
heads, there is the possibility that you lose the bet, depending on whether you
will bet on tails or heads. The given scenario does not rule out the possibility
of your betting on heads and the coin landing tails, nor the possibility of your
betting on tails and the coin landing heads. In those cases (i.e., wy and wy),
you would definitely lose your bet! In other words: it holds that if the coin
lands tails you win provided you bet on tails, and that if the coin lands heads
you win provided you bet on heads. But since it is left open on which one of the
two options (heads or tails) you will bet, then neither “If the coin lands tails
you win” nor “If the coin lands heads you win” hold unconditionally. Hence the
argument moves from acceptable premises to an unacceptable conclusion.

Two observations are in order: first, the counterexample relies on the same as-
sumptions of the counterexamples discussed in Sec.5.2, namely that the logical
form of the natural language argument matches its surface form, and that the
operator in the consequent of the indicative conditional has a narrow-scope
reading. In the present case, that operator is itself an indicative conditional
— so we are left with an invalid instance of Reasoning by Cases involving
right-nested indicative conditionals. This brings us to the second observa-
tion: importantly, the present counterexample does not involve any deon-
tic/epistemic/probabilistic modal. The First Hypothesis is therefore falsified.
Reasoning by cases does not fail only when the consequents are epistemi-
cally /deontically /probabilistically modalized. The issue has a more general
nature.

5.3.1 Two Objections and Replies

We consider two objections to the analysis so far presented.

1) Reasoning by Cases is invalid under the narrow-scope reading. This shows
we should reject the narrow-scope reading.

This objection suggests that, given that the counterexamples we have consid-
ered so far all assumed a narrow-scope reading of the operators in the conse-
quents, it is the narrow-scope reading which should be dismissed — not the
principle of Reasoning by Cases. Consider the counterexample presented in
this section. Under a wide-scope analysis, its non-trivial logical form is the
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following:
L |p1 Vs
2 [(mAq) = @
3 E ANagz) = ¢
4 (1= @) V= ¢

Clearly, the above argument is not an instance of Reasoning by Cases. Hence
even if the argument is invalid, Reasoning by Cases is not to blame.

There are two possible ways of articulating the above objection. One way,
which we call “always wide-scope”, recommends to uniformly reject narrow-
scope. Another way, which we call “sometimes wide-scoping”, argues that
sometimes narrow-scope should be rejected. We consider these positions in
turn.

An “always wide-scope” objection is under-motivated in the present context.
Adopting “always wide-scope” would indeed save Reasoning by Cases from the
counterexamples considered above, but at the price of blocking other intuitively
good arguments. Consider the following argument:

1 | You bet on heads
2 |If you bet on heads, then if the coin lands heads you win

3 | If the coin lands heads you win

The argument appears unobjectionable: it holds that, provided you have
bet on heads, if the coin lands heads you win. If the “always wide-scope”
were adopted, the above argument — which under the narrow-reading is an
instance of Modus Ponens — would be rejected. Hence the motivation for
“always wide-scope” is thin: the counterexamples to Reasoning by Cases are
blocked, but so are intuitively good instances of Modus Ponens.”

The “sometimes wide-scoping” claim is weaker, as it does not amount to deny-
ing that the narrow-scope reading is ever available. Rather, it amounts to
supporting the availability of wide-scope readings. As such, this position is
compatible with the analysis presented here. It is compatible with granting,
for instance, that the logical form of an argument should normally match its
surface form. In order to constitute an objection against the narrow-scope

9The same line of response to wide-scope analyses is adopted by Yalcin (2012b) in defense
of his counterexample to Modus Tollens.
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reading of the counterexamples above, the “sometimes wide-scoping” theorist
would need to argue that all those cases count as abnormal — so that a devia-
tion from the surface form is justified. Following Yalcin (2012b) and Cantwell
(2008), we are inclined to say that the burden of such proof is carried by the
“sometimes wide-scoping” theorist. In the meantime, we hold that the coun-
terexamples fall within the normal cases in which logical form and surface form
match.

2) Indicative conditionals have a modal flavor. So, the First Hypothesis was
not too far off: It can be straightforwardly weakened by requiring modal-free
consequents.

The way indicative conditionals have so far been informally interpreted has
indeed a modal component: conditionals like T = 97 involve a shift to an
hypothetical context in which ¢ holds — a shift that we have indicated using
expressions like under the supposition that ¢ or provided that ¢. This shifting
interpretation traces back to (a semantic version of) the so-called “Ramsey
Test”, and is standardly adopted (Kratzer, 2012a; Veltman, 1996; Gillies, 2010;
Yalcin, 2007; Willer, 2014). Granted that indicative conditionals hold a modal
flavor as just described, the objection leads to the following hypothesis:

Second Hypothesis: If ¢, and 1y are not modalized, then Rea-
soning by Cases is valid.

The Second Hypothesis is akin to the analysis of Cantwell (2008), who notices
that indicative conditionals which appear in the consequents of other indicative
conditionals give rise to the same kind of logical phenomena (in particular,
violations of classical logic principles) as other modalities.

In what follows, we show why and how the Second Hypothesis should be
replaced. Although the Second Hypothesis is true, it is stronger than re-
quired.

5.4 Information-Sensitivity and Persistence

The discussion has been largely “pre-theoretical” so far: we have introduced
three counterexamples to Reasoning by Cases that can be found in the liter-
ature, and defended a novel counterexample involving right-nested indicative
conditionals — all this without committing to any specific formal framework.
In this section, we present a notion — upward local persistence — that is rel-
evant to improve on the Second Hypothesis above. Such a notion is better



When Is Reasoning by Cases Valid? 103

expressed in formal terms.

There are different frameworks that could serve as a formal background for the
notion of upward local persistence.'® In what follows, we focus on some recent
developments of informational logic (Yalcin, 2007; Bledin, 2014). Informational
logic quite naturally embodies the accounts of modals and conditionals that are
adopted by the proponents of the three counterexamples considered in Sec.5.2,
and therefore permits us to fruitfully engage in the debate about the scope of
validity of Reasoning by Cases.

5.4.1 Informational Logic

Some linguistic expressions are relative to the body of information that is
assumed in discourse or reasoning. At this point, this does not come as a
surprise: in the previous sections, we have seen that modals such as ought,
must, may, probably can be dependent on a certain body of information, and
that the truth of sentences involving deontic, epistemic or probabilistic modals
may vary with changes in the available information. In informational logic, this
basic picture is formalized by evaluating sentences at a double-index (w, 1),
consisting of a possible world w and an information state ¢. It is convenient to
begin by modeling ¢ simply as a finite set of worlds.

Before delving into the details on how those information-sensitive expressions
are evaluated in informational logic, it is worth highlighting the general charac-
teristics of such a framework. What properly distinguishes informational logic

from the other frameworks mentioned above is the notion of support:'!

Definition 5.1. Let ¢ be a sentence of the background language and i an
information state. The information state v supports ¢ just in case p s true
at (w,1) for all w € i.

Hence to say that ¢ is supported in ¢ is to say that ¢ expresses a property that
holds for i irrespectively of any “vantage point” w € i. The notion of support
serves as a basis for the definition of logical consequence, which, in turn, can

0E.g., data semantics (Veltman, 1985), the Kratzerian framework for modality and con-
ditionals (Kratzer, 2012a,c,d), Kolodny and MacFarlane’s semantics (Kolodny and MacFar-
lane, 2010).

HThe formal notion of support traces back at least to Veltman (1996). In the main text,
we refer to the definition of support adopted in Bledin (2014). Bledin’s definition differs
from Veltman’s in being static and, ultimately, appealing to the notion of truth at (w,1).
For the purposes of the present chapter, Bledin’s formulation has some advantages with
respect to Veltman’s. We will come back to this when discussing the notion of upward local
persistence.
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be interpreted as preservation of properties of information states (Yalcin, 2007;
Bledin, 2014):

Definition 5.2. A formula v is o logical consequence of a set of formulas
D1y +eey Py WTEttEN 1, ... 0 = U, just in case there is no i which supports the
premises 1, ..., n but does not support the conclusion 1.

The above definitions provide us with a general overview of informational logic:
sentences are evaluated at indeces; support at ¢ is defined as truth at indeces
(w, 1) for all w € i; and logical consequence is defined in terms of preservation
of support.

Let us turn to the semantics of the background language. We adopt a step by
step approach: first the semantic clauses of atoms and boolean connectives,
then of deontic and epistemic modals, and finally of the indicative conditional.
The semantic clause for the probabilistic modal requires some modification of
the underlying notion of an information state, and so it is presented last.

Let V be an interpretation function that maps each atom in the background
language and world w to a truth value {7, F'}. Truth at (w,) for atoms and
boolean connectives is defined as follows:!?

e pis true at (w,i) iff V(p,w) =T

e —p is true at (w, 1) iff ¢ is not true at (w, 1)

© V1 is true at (w,q) iff ¢ is true at (w, ) or ¢ is true at (w, 1)
e o A is true at (w,i) iff ¢ is true at (w,7) and ¥ is true at (w, 1)
e » D is true at (w, i) iff p is not true at (w,q) or ¥ is true at (w,1)

Note that atoms and boolean connectives receive the standard interpretation.
In particular, it is worth stressing that the parameter ¢ plays no role in the
evaluation of an atomic sentence: atoms denote world properties which are not
sensitive to variations of information.

Deontic, epistemic and probabilistic modals are, on the other hand, sensitive
to those variations. Under such reading, they are called information modals.
Let us consider them in turn, starting from ought.

Let d be a function which maps each information state ¢ to a set of deontically

12Unless specified otherwise, the semantic clauses are taken from Bledin (2014) who, in
turn, credits Yalcin (2007) and Kolodny and MacFarlane (2010) (the latter especially for
the semantic clause of ought).
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ideal worlds d(i) C i. The deontic ought O is a universal quantifier over the
set of deontically ideal worlds:

e Oy is true at (w, 1) iff Yo € d(i), ¢ is true at (v,17)

In other words, a sentence O is true at (w, ) if and only if ¢ is true in all the
worlds which are deontically ideal relative to the information state .

Epistemic modals must (O) and might () express, respectively, what is nec-
essary and possible given a certain body of information. That is, they are
universal and existential quantifiers over i:

e Oy is true at (w,q) iff Vo € 4, ¢ is true at (v, 1)
o O s true at (w, 1) iff v € 4, ¢ is true at (v,7)

Now we turn our attention to the indicative conditional. In Sec.5.3.1 we argued
that indicative conditionals involve a shift to a hypothetical context in which
the antecedent holds. This idea is made precise as follows.

First, let us write [i + ¢] to indicate a maximal ¢-subset of an information
state i. More precisely, [i + ] is such that:

i) Tt is a @-subset of i, i.e., [i + ] C i such that Yw € [i + ¢|: ¢ is true at
(w, [i + ¢])

ii) It is maximal, i.e., there is no ¢’ such that [i + ¢] C ¢ C i and 7' is a
p-subset of 7.

Intuitively, [i + ¢] is a maximal subset of i where ¢ is true everywhere.

Equipped with this definition, we can finally turn to the semantic clause of the
indicative conditional (Kolodny and MacFarlane (2010)):

o ¢ =1 is true at (w, ) iff V[i + ¢|, Vv € [i + ¢]: ¢ is true at (v, [i + ¢])

where, as just explained, [i + ¢] is a maximal ¢-subset of i. In case there is
just one maximal @-subset of i (for instance, when ¢ does not contain any
modality), the semantic clause of the conditional reduces to the following,
simpler one:

e ¢ =1 is true at (w,q) iff Vo € [i + ¢|: ¥ is true at (v, [i + ¢])

Indicative conditionals involve a change of context: antecedents restrict the
information state in which consequents are evaluated. True indicative condi-
tionals are those whose consequents are true for every world in that restricted
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information state. Or, to phrase this using the notion of support as defined in
Def.5.1: an indicative conditional is true if and only if the information state
which supports the antecedent also supports the consequent.

The case of the informational modal probably requires some further sophisti-
cation, as the simple definition of information states as sets of worlds is not
sufficient. Following Yalcin (2010) and Yalcin (2012b), we take information
states to be probability spaces, i.e., pairs i = (s;, Pr;) where s is a finite set of
worlds and Pr is a probability function obeying the standard laws of proba-
bility calculus.!® The semantic clause for probably (A) is the following:

e Ay is true at (w, ) iff Pr;({v: ¢ is true at (v,7)}) > 0.5

Roughly speaking, Ay is true at (w, 7) if and only if the likelihood of ¢ relative
to ¢ is higher than 0.5. This concludes our presentation of the semantics of
informational logic.

What principles does the semantics of modals and indicative conditionals re-
flect? From what we have observed so far, it follows that it is the parameter ¢
that plays a crucial role in the semantics of information modals and indicative
conditionals. Contrary to what is the case for atoms and boolean connectives,
if a sentence like O, Op, O, Ap or ¢ = 1 is true at (w, ) then it is true at
(v,1) for every world v € 7. One way to see this result is to interpret the se-
mantics of informational modals and indicative conditionals through the lenses
of a kind of expressivism: informational modals and indicative conditionals do
not describe properties of worlds, but rather express irreducible features of
informational states. This kind of expressivism has been defended, for in-
stance, by Yalcin (2012b) and Starr (2016), and seems particularly suited to
some dynamic versions of the informational logic framework. Specifically, it
is suited to those dynamic versions which dismiss the notion of truth at (w,7)
altogether, and establish the semantics on different grounds.'* However, the

13In particular, Pr satisfies:
e Normalization: Pr(s)=1
e Non-negativity: Pr(p) > 0, where p is a subset of s
e Additivity: Pr(pUq) = Pr(p) + Pr(q), where p,q are disjoint subsets of s.

See Yalcin (2010, 2012b) and, for a general introduction to probability calculus, Halpern
(2003).

MFor this type of dynamic semantics, the seminal reference is Veltman (1996). In Veltman
(1996), meaning is not associated to truth conditions but rather with a so-called context
change potential, that is, with the effect that a certain sentence triggers in the information
state. The context change potential of some linguistic expressions (like atoms) consists in
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present semantics of informational modals and indicative conditionals struc-
turally relies on the notion of truth at (w,i), which serves as basis for the
notions of support and logical consequence. An alternative interpretation is
hence available: rather than irreducible features of information states, infor-
mational modals and indicative conditionals can be taken to describe global
properties of worlds given an information state. In the section Sec.5.4.2, we
show that there is at least one, technical, reason to do so.

Before moving on, let us consider some of the (in)validities informational logic
predicts.

Remark 5.3. Modus Ponens is valid, as it is Reasoning by Cases with the
material conditional. However, Reasoning by Cases with indicative condition-
als is invalid. In particular, none of the problematic arguments described in
Sec.5.2-5.3 1s valid.

L g op=9vEY

1V P2, 1 D 1, P2 D ol 1 V iy
p1Vp2, pr = Oqu, p2 = Oga = Oq1 V Ogo
p1Vp2, p1 = Oqi, po = Og = Oq1 V Oy

p1 VP2, D1 = Aqi, p2 = Aga = A V Age

SR S T SR

P1 VD2, p1= (1 = @), p2= (3= @) (1 = @) V (4¢3 = ¢2)

Proof of the validity of Modus Ponens can be found in Bledin (2014), while the
validity of Reasoning by Cases with material conditionals follows from the fact
that boolean connectives receive a standard interpretation in informational
logic. This is a good result, as what this chapter is after is not Reasoning
by Cases with the material conditional. More importantly, informational logic
predicts Reasoning by Cases with indicative conditionals not to be generally

valid. In particular, all the counter-intuitive arguments in Sec.5.2-5.3 are
blocked.! 16

ruling out worlds which do not have the properties described by those linguistic expressions.
Informational modals and indicative conditionals, on the other hand, express properties of
information states, and their context change potential simply consists in testing whether
the relevant information state has those properties. Their meaning is therefore irreducible
to any property that holds at the world-level. See also (Willer, 2013, 2014; Gillies, 2010;
Yalcin, 2012a).

15 Counter-models to prove 8-6 can be straightforwardly derived from the scenarios de-
scribed in Sec.5.2-5.3.

16 For the sake of illustration, we sketch the counter-model of the problematic argument
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5.4.2 Reasoning by Cases and Context Change

Equipped with a more precise account of informational modals and indica-
tive conditionals, we can now see that the inference rule of Reasoning by
Cases involves a double context change. Consider again the general form of
the rule:

©1 VP2
1 =
ﬁ:>¢2
Y1 V i

The first context change happens in premises 2) and 3): from a global state i

= W NN =

which supports "¢1 V 97 we move to its partial states ¢’ and i” which support
T and "o respectively. This is the shifting effect of indicative condition-
als’ antecedents. The second context change happens at the level of 4): from
the partial states i and ¢” that support the consequents T1);7 and Tiy7 re-
spectively, we move back to the global state ¢ and conclude that ¢ supports

Ty Vapy .

For the second context change to be legitimate, however, the information that
is incorporated into each of the partial states need to survive in ¢. This survival
is not to be captured in terms of support, but rather in terms of truth at a
world given an information state. To illustrate this point, an example might

described in Sec.5.3. The relevant information state ¢ is the one of Figure 5.1 (where Win
is true at (wq,7) and (ws,4)). Premises (P1) BtV Bh, (P2) Bt = (T = Win) and (P3)
Bh = (H = Win) are all supported in i. Let us show that all premises are true at any
(wj,1), for w; € i. (P1) is trivial, let us turn to (P2). To show that "Bt = (T = Win)?
is true at (wj,%), let us consider [i + Bt] = {wi,w2}. We need to show that "T" = Win?
is true at (wy, [ + Bt]) and at (ws, [i + Bt]). We write [[i + Bt] + T] for the T-maximal
subset of [i + Bt]. Since [[i + Bt] + T] = {w:1} and Win is true at (ws, [[i + Bt] + 1),
it holds that mT = Win7 is true at (wy, [ + Bt]) and at (ws, [¢ + Bt]), which is what we
needed to show.The case for (P3) is similar to (P2). On the other hand, the conclusion (C)
(T = Win) vV (H = Win) is not supported in 4. In particular, 77" = Win7 is not true at
any (wyg,1), for wy € i, because [i + T = {wy,ws} and Win is not true at (wq, [i + TY).
Similarly, "H = Win7 is not true at (wy, 7) because [i + H] = {wa, w3} and Win is not true
at (ws, [¢ + H]). Since none of the disjuncts is true at (wyg, ), neither is their disjunction

(©).
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be helpful. Consider the following valid instance of Reasoning by Cases:

1 | The coin lands tails V The coin lands heads
The coin lands tails= you win 10$
The coin lands heads=- you win nothing

You win 10$ V You win nothing

=GV )

Let 7’ be a partial state which supports “The coin lands tails”. The information
incorporated into 7', namely that you win 103, does not need to be supported
in the global state . That would be too strong, as it would amount to requiring
that the body of information i warrants your 10$ win. A better way to go is
then to understand the survival of the information that you win 10$ in terms
of truth at the world-level: what needs to be ensured is that every world that
carries the information that you win 10$ with respect to the state i’ carries
the same information with respect to the global state ¢. Only in this way can
we legitimately conclude that the body on information ¢ is such that you win
10 or you win nothing.

World-level information survival from partial states to the global state can be
captured by means of the following notion (Veltman, 1985; Gillies, 2010):

Definition 5.4. A sentence ¢ is upward locally persistent iff Vw, i, i with
i' Ci:if @ true at (w,i') then ¢ true at (w,1).

In other words, a sentence is upward locally persistent when its truth at a
world given an information state i’ persists at the same world given a larger
information state ¢. Examples of upward local persistent sentences are atoms
and boolean combinations thereof. This is not surprising, as the truth of an
atomic sentence does not depend on the information state parameter. More
remarkable is that a sentence like "G, containing the information modal
might, is upward locally persistent (that is because might is interpreted as
existential quantification).

5.4.3 Final Hypothesis

Let us take stock. We have shown that Reasoning by Cases involves a double
context change, and in particular it involves a context change from partial
states back to the global state. To ensure that the latter change is legitimated,
we have argued that the information that a world carries given a partial state
should survive in the global state. Upward local persistence guarantees such
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survival. This leads to the third, and final hypothesis concerning the scope of
validity of Reasoning by Cases:

Final Hypothesis: If v; and vy are upward locally persistent,
then Reasoning by Cases is valid.

5.4.4 Assessing the Final Hypothesis

The analysis of Reasoning by Cases as involving a double context change and
the formulation of the Final Hypothesis that follows from such analysis provide
an explanation of why Reasoning by Cases fails in the four counterexamples
considered in Sec.5.3-5.4. In all those cases, the consequents ¢, and ), are
not upward locally persistent.

Remark 5.5. None of the following sentences are upward locally persistent:
e Og
e Og
N

® g1 = Q2

The cases of TOg 7 and T¢q; = @277 are easy to see: the epistemic modal must and
the indicative conditional are interpreted as universal quantification (hence not
persistent in an enlarged domain of quantification). For "Oq7, it is sufficient
to point out that the function d can assign different sets of deontically ideal
worlds to different information states. It is even possible that d(i') ¢ d(i) for
i" C 4. Thus, a sentence like "Ogq™ is neither upward locally persistent nor, we
might say, downward locally persistent.'” Concerning the modal probably, it
should be noted that the probability of an outcome can be higher that 0.5 on
a certain set of possible outcomes, but its probability can decrease once the
set of possible outcomes is enlarged.

The notion of upward local persistence, on which the Final Hypothesis is based,
marks a clear distinction within informational modals. It also indicates in
which sense indicative conditionals resemble certain informational modals but
not others. In this sense, the Final Hypothesis makes a finer distinction than
the Second Hypothesis, which only refers to modalized sentences. Moreover,
the Final Hypothesis predicts that Reasoning by Cases is valid for the epistemic

7To the extent that permissions are interpreted as the dual of oughts, then also sentences
like Pq are neither upward nor downward locally persistent.
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modal might, which we have shown being upward locally persistent. This pre-
diction is independently supported by the observation that the epistemic might
appears to validate other logical principles, such as Modus Tollens, that are
known to be problematic for the other informational modals and the indicative
conditional (cf Yalcin, 2012b)).

The Final Hypothesis, therefore, predicts a wide array of valid instances of
Reasoning by Cases: for example, all those in which v¢; and 1 are atomic,
boolean combinations of atoms, or of the form "7, In setting the boudaries
of Reasoning by Cases, Bledin (2014) discusses only simple valid instances of
Reasoning by Cases in which v, and ¢, are atomic. The Final Hypothesis
indicates how Bledin’s (2014) analysis can be extended and generalized. Horty
(2001) and Kooi and Tamminga (2007) present two criteria (respectively: suffi-
cient, and necessary and sufficient) for the validity of specific instances of Rea-
soning by Cases: those involving dominance oughts and weak action oughts.
While our Final Hypothesis concerns the general scope of validity of Reasoning
by Cases in different domains, Horty (2001) and Kooi and Tamminga (2007)
set finer boundaries within the deontic domain.

Let us conclude by mentioning that the Final Hypothesis is, in a certain sense,
too cautious. Upward local persistence constitutes a sufficient criterion to
identify valid instances of Reasoning by Cases, but not a necessary one. There
are some valid instances of Reasoning by Cases in which ¢y and ) are not
upward locally persistent (notice, indeed, that the Final Hypothesis is not a
biconditional). We discuss here two of those valid instances.

First, as shown by Bledin (2014), from the premises "0y V Oy, Ty = 1)y
and "Ogpy = 1571, one can correctly derive M) V 57 even for 1 and 1) not
upward locally persistent. This observation is consistent with our analysis of
Reasoning by Cases for which the principle generally involves a double con-
text change. In the special case in which the first premise is of the form
Ty, V Oy, there is no proper shift to any partial state: the global state al-
ready supports ; or it already supports 5. Hence the requirement of upward
local persistence, meant to ensure a legitimate change from partial states back
to the global state, is vacuous.

A second example of a valid instance of Reasoning by Cases that does not make
use of the requirement of upward local persistence is the following (where ¢
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and ¢y partition the global state, and A indicates probably):

L o1V

2 o1 = Ay
3 |pa = Aty
1 | o,

Similarly, a valid instance is obtained if probably is substituted in the above
example by the epistemic must. Is the above pattern generalizable? Unfor-
tunately not. Consider again the Miners’ scenario described in Sec.5.2. It is
possible to slightly modify the Miners’ Puzzle as follows:

1 |The miners are in A V they are in B
They are in A = you ought to block one shaft
They are in B = you ought to block one shaft

- W

You ought to block one shaft

The argument has the same pattern as the one just considered for probably.
The premises are all acceptable, given the Miners’ scenario: the miners are in
A or they are in B, if they are in A then you ought to block one shaft (shaft
A), if they are in B then you ought to block one shaft (shaft B). However,
the conclusion is not acceptable: after all, you still ought to block neither
shaft.

5.5 Conclusion

When is Reasoning by Cases valid? We argued that it is valid if the conse-
quents of indicative conditionals are upward locally persistent. Upward local
persistence is a sufficient criterion, general enough to account for a wide va-
riety of intuitively valid instances of Reasoning by Cases but effective enough
to rule out problematic instances of Reasoning by Cases involving oughts,
the epistemic must, probably and right-nested indicative conditionals. Beyond
the particular framework in which the criterion was formulated, the analysis
presented in this chapter aimed at showing how indicative conditionals and
informational modals interact in Reasoning by Cases.
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Notes

e In the previous version of the manuscript, the first part of Def.5.1 indi-
cated (w,i) as an index. To ease readibility, this has been omitted.

e Footnote 16 has been added to the previous version of the manuscript.
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Chapter 6

Conclusion

This thesis has not advanced a unique deontic logic, but rather sought to
shed some light on the various facets of the logical structure of oughts. We
see the novelty of our contribution as mainly resulting from broadening the
perspective on oughts. The logic of Enkrasia presented in the first part of
this work considered the structure of oughts in their rational interaction with
goals in plans. The second part focused on the inference rule of Reasoning by
Cases and investigated the scope of its validity — not only within the deontic
domain, but also in comparison with other modal domains.

We conclude by providing a general overview of the chapters’ contributions.

Chapter 2 began by considering an interpretation of the rationality principle of
Enkrasia, by which if an agent believes strongly and with conviction she ought
to X then X-ing is a goal in her plan. We argued that such relation between
believed oughts and goals is not trivial. In fact, it is neither a serial relation nor
a unidirectional one. As for the first aspect, not all basic oughts correspond to
goals. The logical framework developed in Chapter 2 captures the idea that
Enkrasia is indeed a principle of bounded logical validity: it is valid within
consistency bounds. As for the second aspect, we argued that further oughts
can be derived from goals. These derived oughts register the necessary condi-
tions for the fulfillment of all the agent’s goals, but do not translate back into
further goals to be planned for in themselves. The neighborhood logic we pro-
posed captured some fine-grained semantic distinctions between basic oughts
(which function as the input of the agent’s deliberation), goals and derived
oughts. Finally we have showed that drawing the distinction between basic
and derived oughts can help discriminate between valid and invalid instances
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of deontic closure. Chapter & continued the investigation of Enkrasia by con-
sidering how believed oughts and goals vary under dynamics. We limited the
attention to practical dynamics, which only concern changes in the possible
courses of events open to the agent. While this sort of dynamics leaves basic
oughts unaltered, it significantly affects goals and derived oughts. By using
resources from dynamic epistemic logic, we represented both the growth and
the decrease of the agent’s options. These dynamics made prominent the dis-
tinction between basic oughts, goals and derived oughts. Goals, in particular,
displayed a relative stability under practical dynamics — in line with what is
generally theorized in planning theory.

In Chapter 4 and Chapter 5 we turned to our second topic of inquiry: the
inference rule of Reasoning by Cases. Our investigation was carried out under
the assumption that the so-called Miners’ Puzzle provides a genuine counterex-
ample to the validity of Reasoning by Cases. Our aim was not to defend this
assumption, although we are sympathetic towards it. Rather, our general con-
cern was about which sort of lessons can be drawn from it. Firstly, one could
speculate that although the Miners’ Puzzle shows that Reasoning by Cases is
not generally valid in the deontic domain, there are some oughts — the objec-
tive ones — for which Reasoning by Cases is still a valid inference rule. In fact,
the Miners’ Puzzle concerns situations of epistemic uncertainty, and objective
oughts are not tied to the information agents possess. Chapter 4, however,
showed that this conjecture does not hold: there exists an interpretation of
objective oughts for which Reasoning by Cases is invalid. We illustrated this
by constructing a Miners-like Puzzle that was not ultimately founded on un-
certainty, but on indeterminacy. Thus, even if Reasoning by Cases might still
be valid for objective oughts under certain interpretations, it is not so for all of
them. Chapter 5 broadened the perspective by considering further counterex-
amples to Reasoning by Cases. These occur across different domains: not only
deontic, but also epistemic and probabilistic. As modality is the common de-
nominator of those counterexamples, one could hypothesize that the invalidity
of Reasoning by Cases is indeed due to its application to modals. We argued
that this hypothesis both undergenerates and overgenerates. It undergenerates
because a further counterexample to Reasoning by Cases can be constructed
employing only indicative conditionals. It overgenerates as it misses finer dis-
tinctions between modals. A more promising approach lies in the observation
that a double context-change is involved in Reasoning by Cases. We theorized
that the common denominator of all the above-mentioned counterexamples is
that they involve sentences whose truth values do not persist when contexts
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change. Persistence, thus, enabled us to elaborate a sufficient criterion for
the validity of Reasoning by Cases. This result, as well as the contribution
presented in the first part of the thesis, emerged by attempting to broaden
the perspective on oughts. Doing so has allowed certain new questions to be
asked, and — hopefully — a few answers to be drawn.
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